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Abstract: This paper proposes a bidirectional rapidly-exploring random trees (RRT) algorithm
to solve the motion planning problem for hybrid systems. The proposed algorithm, called
HyRRT-Connect, propagates in both forward and backward directions until an overlap between
the forward and backward propagation results is detected. Then, HyRRT-Connect constructs a
motion plan through the reversal and concatenation of functions defined on hybrid time domains,
ensuring that the motion plan satisfies the given hybrid dynamics. To address the potential
discontinuity along the flow caused by tolerating some distance between the forward and
backward partial motion plans, we reconstruct the backward partial motion plan by a forward-
in-hybrid-time simulation, effectively eliminating the discontinuity. The proposed algorithm is
applied to an actuated bouncing ball system to highlight its computational improvement.
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1. INTRODUCTION

In the context of dynamical systems, motion planning
consists of finding a state trajectory and corresponding
inputs that connect initial and final state sets, satisfying
the system dynamics and specific safety requirements.
Motion planning for purely continuous-time dynamical
systems and purely discrete-time dynamical systems has
been extensively explored in existing literature; see, e.g.,
LaValle (2006). Some examples include graph search algo-
rithms, artificial potential field method and sampling-based
algorithms. The sampling-based algorithms have drawn
much attention because of their fast exploration speed
for high-dimensional problems as well as their theoretical
guarantees; especially, probabilistic completeness, which
means that the probability of failing to find a motion
plan converges to zero, as the number of iterations ap-
proaches infinity. Compared with other sampling-based
algorithms, such as probabilistic roadmap algorithm, the
rapidly-exploring random tree (RRT) algorithm (LaValle
and Kuffner Jr, 2001) is perhaps most successful to solve
motion planning problems because it does not require a
steering function to solve a two point boundary value
problem, which is difficult to solve for most systems.

While the aforementioned motion planning algorithms
have been extensively applied to purely continuous-time
and purely discrete-time systems, comparatively less effort
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has been devoted into motion planning for systems with
combined continuous and discrete behavior. For a special
class of hybrid systems like continuous-time hybrid systems
or hybrid automata, some RRT-type motion planning
algorithms, such as hybrid RRT (Branicky et al., 2003)
and R3T (Wu et al., 2020), respectively, have been devel-
oped. These methodologies have also found application
in falsification of hybrid automata such as the Monte-
Carlo sampling algorithm (Nghiem et al., 2010) and the
Breach toolbox (Donzé, 2010). However, this class of hybrid
systems lacks the generality needed to cope with hybrid
system arising in robotics applications, especially those
with state variables capable of both continuous evolution
and discrete behaviors. In recent work, Wang and San-
felice (2022) formulates a motion planning problem for
hybrid systems using hybrid equations, as in Sanfelice
(2021). This formulation presents a general framework
that encompasses a broad class of hybrid systems. In the
same paper, a probabilistically complete RRT algorithm,
referred to as HyRRT, specifically designed to address
the motion planning problem for hybrid systems, is intro-
duced. Building on this work, Wang and Sanfelice (2023)
introduces HySST, an asymptotically near-optimal motion
planning algorithm for hybrid systems from the Stable
Sparse RRT (SST) algorithm. HySST stands as the first
optimal motion planning algorithm for hybrid systems and
its computational efficiency is notable, achieved through
the sparsification of vertices during the search process.

It is significantly challenging for the majority of motion
planning algorithms to maintain efficient computation per-
formance, especially in solving high-dimensional problems.
To improve the computational performance, a modular mo-



tion planning system for purely continuous-time systems,
named FaSTrack (Herbert et al., 2017), is designed to simul-
taneously plan and track a trajectory. FaSTrack accelerates
the planning process by only considering a low-dimensional
model of the system dynamics. Kuffner and LaValle (2000)
introduces RRT-Connect, an algorithm that propagates
both in forward direction and backward direction, leading
to a notable improvement in computational performance.
Inspired by this work, we design a bidirectional RRT-type
algorithm for hybrid dynamical systems, called HyRRT-
Connect. HyRRT-Connect incrementally constructs two
search trees, one rooted in the initial state set and con-
structed forward in hybrid time, and the other rooted in
the final state set and constructed backward in hybrid
time. To the best of the authors’ knowledge, this is the
first bidirectional RRT-type algorithm for systems with
hybrid dynamics. The proposed algorithm is illustrated in
an actuated bouncing ball system, showing a significant im-
provement in computational performance, which highlights
the efficiency of the proposed algorithm.

The remainder of the paper is structured as follows.
Section 2 presents notation and preliminaries. Section 3
presents the problem statement and introduces an example.
Section 4 presents HyRRT-Connect algorithm. Section 5
presents the reconstruction process. Section 6 illustrates
HyRRT-Connect in an example. Proofs and more details
will be published elsewhere.

2. NOTATION AND PRELIMINARIES

2.1 Notation

The real numbers are denoted as R, its nonnegative subset
is denoted as R, and its nonpositive subset is denoted as
R<g. The set of nonnegative integers is denoted as N. The
notation int I denotes the interior of the interval I. The
notation S denotes the closure of the set S. The notation
0S denotes the boundary of the set S. Given sets P C R"
and @ C R"”, the Minkowski sum of P and @, denoted as
P+Q,istheset {p+q:p€ PqecQ}

2.2 Preliminaries
A hybrid system H with inputs is modeled as Sanfelice

(2021)
xr =
" { i flzyu) (x,u) el 1)
" =g(z,u) (x,u)€eD

where x € R” represents the state, u € R™ represents the
input, C C R"™ x R™ represents the flow set, f : R" x
R™ — R"™ represents the flow map, D C R" x R™
represents the jump set, and g : R™ x R™ — R"™ represents
the jump map. The continuous evolution of x is captured by
the flow map f. The discrete evolution of x is captured by
the jump map g. The flow set C collects the points where
the state can evolve continuously. The jump set D collects
the points where jumps can occur. Given a flow set C, the
set Uo == {u € R™ : Jx € R” such that (z,u) € C}
includes all possible input values that can be applied
during flows. Similarly, given a jump set D, the set Up :=
{u € R™ : 3z € R such that (z,u) € D} includes all
possible input values that can be applied at jumps. These
sets satisfy C C R” x Ug and D C R™ x Up. Given a
set K C R™ x U,, where % is either C or D, we define
IL(K) := {z : 3u € U, such that (z,u) € K} as the
projection of K onto R™, and define

C':=1lc(C), D':=Tp(D). (2)

The domain of a solution to A, hybrid input/arc, solution
pair to H, and concatenation operation are defined as
follows; see Sanfelice (2021) for more details.

Definition 1. (Hybrid time domain). A set E C Ry, x N
is a hybrid time domain if, for each (T,J) € E, the
set EN([0,7] x {0,1,...,J}) can be written in the form

Uj:O([tj,th} x {j}) for some finite sequence of times

{t;}/2) satisfying 0 =tg <ty <ty < ... <ty =T,
Definition 2. (Hybrid input). A function v : dom v — R™
is a hybrid input if dom v is a hybrid time domain and
if, for each j € N, ¢t — wv(t,j) is Lebesgue measurable
and locally essentially bounded on the interval I7 := {t :
(t,7) € dom v}.

Definition 3. (Hybrid arc). A function ¢ : dom ¢ — R™ is
a hybrid arc if dom ¢ is a hybrid time domain and if, for
each j € N, t — ¢(t,j) is locally absolutely continuous on
the interval I} := {t: (t,j) € dom ¢}.

Definition 4. (Solution pair to a hybrid system). A hybrid
input v and a hybrid arc ¢ define a solution pair (¢,v) to
the hybrid system H as in (1) if

1) (¢(0,0),v(0,0)) € CU D and dom ¢ = dom v(=
dom (¢, v)).
2) For each j € N such that I(; has nonempty interior
int(]é), '(¢>,v) satisfies (¢(t,j),v(t,7)) € C for all
t € int I}, and Lo(t,5) = f(o(t, §),v(t, ) for almost
all t € I,
3) For all (t,j) € dom (¢,v) such that (¢,5 + 1
dom (¢,v), (¢(t, ), v(t, ) € D, ¢(t, j+1) = g(o(
v(t, 7))
Definition 5. (Concatenation operation). Given two func-
tions ¢7 : dom ¢; — R™ and ¢2 : dom ¢o — R"™, where
dom ¢; and dom ¢ are hybrid time domains, ¢o can be

concatenated to ¢ if ¢7 is compact and ¢ : dom ¢ — R™ is
the concatenation of ¢3 to ¢1, denoted ¢ = ¢1|p2, namely,

1) dom ¢ = dom ¢ U (dom ¢ + {(7,J)}), where
(T,J) = maxdom ¢ and the plus sign denotes
Minkowski addition;

2) ¢(ta]) = ¢1(t7]) for all (taj) € dom ¢1\{(Ta J)} and
o(t,j) = ¢pa(t — T,5 — J) for all (¢,5) € dom ¢ +
{(T, 1)}

3. PROBLEM STATEMENT AND APPLICATIONS
The motion planning problem for hybrid systems studied
in this paper is given as follows.

Problem 1. (Motion planning problem for hybrid systems).
Given a hybrid system #H as in (1) with input v € R™
and state x € R", initial state set Xo C R"™, final state
set Xy C R”, and unsafe set X, C R” x R™, find
(¢,v) : dom (¢,v) — R™ x R™, namely, a motion plan,
such that, for some (T, J) € dom (¢, v), the following hold:

) €
t?j)?

1) ¢(0,0) € X, namely, the initial state of the solution
belongs to the given initial state set Xo;

2) (¢, v) is a solution pair to H as defined in Definition 4;
3) (T,J) is such that ¢(T, J) € Xy, namely, the solution
belongs to the final state set at hybrid time (7, J);

4) (¢(t,4),v(t,5)) ¢ X, for each (t,j) € dom (¢, v) such
that t+7 < T+ J, namely, the solution pair does not
intersect with the unsafe set before its state trajectory

reaches the final state set.



Therefore, given sets Xg, X, and X, and a hybrid system
H as in (1) with data (C,f,D,g), a motion planning
problem P is formulated as P = (Xo, X, X, (C, f, D, g)).

Consider the following motivation example.

Ezample 1. (Actuated bouncing ball system). Consider a
ball bouncing on a fixed horizontal surface. The surface
is located at the origin and, through control actions, is
capable of affecting the velocity of the ball after the
impact. The dynamics of the ball while in the air is

. . xT9 .
given by & [7} :
x := (x1,72) € R?, the height of the ball is denoted by
1, and the velocity of the ball is denoted by x3. The
gravity constant is denoted by . The ball is allowed to
flow when the ball is on or above the surface. Hence, the
flow set is C' = {(z,u) € R2 x R : x1 > 0}. At every
impact, and with control input equal to zero, the velocity
of the ball changes from negative to positive while the
height remains the same. The dynamics at jumps are given

€

by T = {—/\332 —l—u}
u > 0 is the input applied only at jumps and A € (0,1) is
the coefficient of restitution. Jumps are allowed when the
ball is on the surface with nonpositive velocity. Hence, the
jump set is D := {(z,u) € R2xR: 21 = 0,22 < 0,u > 0}.

f(z,u) when (z,u) € C, where

=: g(x,u) when (z,u) € D, where

An example of a motion planning problem for the actuated
bouncing ball system is as follows: using a bounded input
signal, find a solution pair to (1) when the bouncing ball
is released at a certain height with zero velocity and such
that it eventually reaches a given target height with zero
velocity. The input is constrained to be positive and upper
bounded by a specific positive real number. To complete
this task, not only the values of the input, but also the
hybrid time domain of the input need to be planned
properly such that the ball can reach the desired target.
One such motion planning problem is given by defining
the initial state set as Xy = {(14,0)}, the final state set
as Xy = {(10,0)}, the unsafe set as X,, = {(z,u) € R? x
R:u € (—00,0] U[5,00)}. The motion planning problem
P is given as P = (Xo, X, Xu, (C, f, D, g)). We solve this
motion planning problem later in this paper.

4. ALGORITHM DESCRIPTION
4.1 Overview

In this section, a bidirectional RRT-type motion planning
algorithm for hybrid systems, called HyRRT-Connect, is
proposed. HyRRT-Connect searches for a motion plan by
incrementally constructing two search trees: one starts
from the initial state set and propagates forward in hy-
brid time, while the other starts from the final state set
and propagates backward in hybrid time. Upon detecting
overlaps between the two search trees, a connection is estab-
lished, subsequently yielding a motion plan, as described
in Section 5. Each search tree is modeled by a directed
tree. A directed tree T is a pair 7 = (V, E), where V is
a set whose elements are called vertices and F is a set of
paired vertices whose elements are called edges. A path
in T = (V,E) is a sequence of vertices p = (v1,va, ..., V)
such that (v;,v;41) € E for all i = {1,2,....k — 1}.

The search tree constructed forward in hybrid time is
denoted as 7™ = (VI E™) and the search tree con-

structed backward in hybrid time is denoted as 7PV =
(VP EPW). For consistency, we denote # in (1) as H™ =
(O, v DV ¢™). Each vertex v in V™ (respectively,
VPW) is associated with a state of H!™ (respectively, the
hybrid system that represents inverse dynamics of H™, de-
noted H""), denoted 7,. Each edge e in E™ (respectively,
EP%) is associated with a solution pair to H™ (respectively,
HPW), denoted 1), that connects the states associated with
their endpoint vertices. The solution pair associated with
the path p = (v1,ve,...,v) is the concatenation of all
the solutions associated with the edges therein, namely,
Vp = V(s o) [V (wa,09) | -+ [V (0r_1 ,00)> Where ¢, denotes the
solution pair associated with p.

The proposed HyRRT-Connect algorithm requires a li-
brary of possible inputs to construct 7TV, denoted
U™ = UL, Uly), and to construct 7PV, denoted UPY =
UE¥,U»Y). The input library U™ (respectively, UP™) in-
cludes the input signals for the flows of H" (respectively,
HPY), collected in UL (respectively, U2V), and the input
values for the jumps of H! (respectively, HP"), collected
in UN (respectively, UBY).

HyRRT-Connect addresses the motion planning prob-
lem P = (Xo, Xy, Xy, (C™, {2, DV ¢)) using input
libraries 4™ and UP™ through the following steps:

Step 1: Sample a finite number of points from Xj (re-
spectively, X ) and initialize a search tree T =
(Vi E™) (respectively, TPV = (VP¥ EPV)) by
adding vertices associated with each sample.

Step 2: Incrementally construct 7% forward in hybrid
time and 7P" backward in hybrid time, execut-
ing both procedures in an interleaved manner.

Step 3: If an appropriate overlap between 7™ and
TP is found, reverse the solution pair in 7PV,
concatenate it to the solution pair in 7™, and
return the concatenation result.

4.2 Backward-in-time Hybrid System

In the HyRRT-Connect algorithm, a hybrid system that
represents backward-in-time dynamics of H™ = (C™v, f&v,
D' ¢"™), denoted HPY (CPY, fP% DDV gbW) s re-
quired when propagating trajectories from Xy. The con-
struction of HP¥ is as follows.

Definition 6. (Backward-in-time hybrid system). Given a
hybrid system H!Y = (C*, fiv, DIV ¢f)  the backward-
in-time hybrid system of H, denoted HP¥, is defined as

&= fbw(x7u)

HPY
{ac+ € ¢"(z,u)

1) The backward-in-time flow set is constructed as
wa = wa'

2) The backward-in-time flow map is constructed as
P(z,u) == — (2, u) for all (z,u) € CPV.

3) The backward-in-time jump map is constructed as
(@) = {z € BT : @ = ¢¥(zu),(s,u) €
D'} for all (x,u) € R x R™.

4) The backward-in-time jump set is constructed as
D¥ = {(z,u) € R*" xR™ : 3z € R* : 2 =
g¥(z,u), (z,u) € DV},

(z,u) € CPY
(z,u) € DY

(3)

where



While the jump map g™ of the forward-in-time system
H™ is single-valued, the corresponding map ¢V in HPY
may not be, especially if g®" is not invertible. Therefore,
a difference inclusion in (3) governs the discrete dynamics.

4.8 Construction of Motion Plans

To construct a motion plan, HyRRT-Connect reverses a
solution pair associated with a path detected in 7P% and
concatenates it with a solution pair associated with a path
detected in 7, according to Definition 5. The following
result shows that the resulting concatenation is a solution
pair to H™ under mild conditions.

Proposition 7. Given two solution pairs 11 = (¢1,v1) and
g = (¢h2,v2) to a hybrid system H™, their concatenation

Y = (¢,v) = (¢1|d2,v1]vz), denoted 1 = P1iP2, is a
solution pair to H if the following hold:

1) 1 = (¢1,v1) is compact;
2) ¢1(T,J) = ¢2(0,0), where (T, J) = maxdom 1;
3) If both I{Zl and 132 have nonempty interior, where

Ii} ={t: (t,j) € dom ¢} and (T, J) = maxdom 1,
then 19(0,0) € C.

The reversal operation is defined next.

Definition 8. (Reversal of a solution pair}). Given a com-
pact solution pair (¢,v) to HY = (C™, f& D, ¢™),
where ¢ : dom ¢ — R, v : dom v — R™, and (T,J) =
max dom (¢,v), the pair (¢',v’) is the reversal of (¢,v),
where ¢’ : dom ¢/ — R” with dom ¢/ C R>g x N and
v’ : dom v/ — R™ with dom v’ = dom ¢', if:

1) The function ¢’ is defined as
a) dom ¢’ = {(T,J)} —dom ¢, where the minus sign
denotes the Minkowski difference;
b) ¢'(t,5) = (T —t,J — j) for all (¢,7) € dom ¢'.
2) The function v’ is defined as
a) dom v’ = {(T, J)} —dom v, where the minus sign
denotes Minkowski difference;
b) For all j € N such that I? = {t: (¢,5) € dom v’}
has nonempty interior,
i) For all t € int I7, V/(t,j) = v(T — t,J — j);
ii) If I° has nonempty interior, then v/(0,0) €
R™ is such that (¢'(0,0),v(0,0)) € Ctv;
iii) For all ¢ € I’ such that (t,j + 1) ¢ dom v’
and (¢, j) # (0,0), v'(t,j) € R™.
c) For all (¢,j) € dom v’ such that (t,j + 1) €
dom o', V'(t,j) =v(T —t,J —j—1).

Proposition 9 shows that the reversal of the solution pair
is a solution pair to its backward-in-time hybrid system.

Proposition 9. Given a hybrid system #™ and its backward-
in-time system H"Y, if 1 = (¢,v) is a compact solution
pair to H™, then the reversal o' = (¢',v’) of ¢ = (¢, v) is
a compact solution pair to HPW.

The following assumption on the solution pairs that are
used to construct motion plans integrates the conditions
in Proposition 7 and Proposition 9.

Assumption 10. Given a solution pair ¢¥7 = (¢1,v1) to a
hybrid system H™ = (C™, % D™ ¢™) and a solution
pair 19 = (¢2,v2) to the backward-in-time hybrid system
HPY associated to H!"W, the following hold:

1) 91 and 1o are compact;

2) ¢1(T’17 Jl) = (]52(1-727 Jz), where (Tl, Jl) = max dom ¢1
and (T3, J2) = max dom 1)g;

3) If both I{zﬁ and I{g have nonempty interior, where
I = {t: (t,j) € dom ¢}, (T1,.1) = maxdom ¥,
and (TQ, JQ) = max dom %, then ¢2(Tg, Jg) eC.

The following result validates that the hybrid signal con-
structed using the solution pairs satisfying Assumption 10
is a solution pair to H™.

Lemma 11. Given a hybrid system H'™ and its backward-
in-time hybrid system HPY, if 4, is a solution pair to H™
and v, is a solution pair to HPY such that ¢; and vy
satisfy Assumption 10, then the concatenation 9 = )y |1}
is a solution pair to H™, where 1}, is the reversal of 5.

4.4 HyRRT-Connect Algorithm

The proposed algorithm is given in Algorithm 1. Step 1
in Section 4.1 corresponds to the function calls 7™.init
and 7PV.init in line 1 of Algorithm 1. The construction
of 7™ in Step 2 is implemented in lines 3 - 10. The
construction of 7P¥ in Step 2 is implemented in lines 11 -
18. The solution checking in Step 3 is executed depending
on the return of the function call extend and will be further
discussed in Section 5. For the function calls in Algorithm 1
and Algorithm 2, see Wang and Sanfelice (2022).

Algorithm 1 HyRRT-Connect algorithm
Input: Xo, Xp, Xy, HY = (O, fI, DIV, gV) bW =
(CPv, o, DPY, gPW), U™, UPY), i, ppY € (0,1), K € Nxo,
XIv o o', Xt 5 piw' xbw 5 Cbw" and XY 5 Dbw'
1: T™.init(Xo), TPV.init(Xy)
2: for k=1to K do
3: randomly select a real number % from [0, 1].

4: if »™ < pf% then
5: zf¥ < random_state(C™').
6: extend(7, zfv (U Uy, 1Y, X, XEV).
7 else
’
8: zf%  « random_state(D™').
rand
9: extend(7TV, x?};nd’ (Uéw,ug”), HW, X, X;W)
10: end if
11: randomly select a real number #P¥ from [0, 1].
12: if rP% < pb% then
13: x}r’;"nd < random_state(CPW').
14: extend(TPV,abV  (UEW, UDY), HPY, X, XPW).
15: else
’
16: abV .« random_state(DPV').
17: extend(TbW,:vEX’nd, (Ucb,w,ugw),HbW,Xu,X;W).
18: end if
19: end for

Algorithm 2 Extend function
1: function EXTEND(T, z, (Uc,Up), H, Xu, X«)
2: Veyr < nearest_neighbor(z, T, H, X4);
3: (is_a_new_vertex_generated, Tpew, Ynew) ¢ Dew_state
(vcury(thvl[D)y?{7)<u)
4 if is_a new_vertex_generated = true then
5 Unew < T.add_vertex(Tnew);
6 T.addfedge (vcur, Vnew, wnew)§
T return Advanced;
8
9
0

end if
return Trapped;
: end function




5. MOTION PLAN RECONSTRUCTION

The following two scenarios are identified for which a
motion plan can be constructed by utilizing one path from
T and another one from 7P":

S1) A vertex in 7' is associated with the same state in
the flow set as some vertex in 7PV,

A vertex in 7™ is associated with a state such that a
forward-in-hybrid time jump from such state results
in the state associated with some vertex in 7PV, or
conversely, a vertex in 7PV is associated with a state
such that a backward-in-hybrid time jump from such
state results in the state associated with some vertex

in T,

Neglecting approximation errors due to numerical compu-
tation, it is typically possible to solve for an exact input
at a jump from one state to an other, as required in S2.
However, due to the random selection of the inputs and
the family of signals used, satisfying S1 is not typically
possible. This may lead to a discontinuity along the flow
in the resulting motion plan. A reconstruction process is
introduced below to address this issue.

5.1 Same State Associated with Vertices in T™ and TP%
In S1, HyRRT-Connect identifies if there exists a path
P = (v, o1Y), (1, 08Y), e (o, 0l)

(4)
(e(f)w’ egwa e efvv;/—l)

s2)

in 7™, where m € N, and a path

pbw ((U[l))w U%W) (U%W gw)a“'a( Ewlavgw))

()
= (egwﬂ e]fwv ] 62‘11)
in 7P%, where n € N, satisfying the following conditions:

C1)
C2)

T, € Xo, where v is the first vertex in pf™
for each i € {0,1,...,m — 2}, if ¢~ and 'll)efvil
both purely continuous, then Eef_xl (0,0) € C™v,

are

C3) Typw € Xy, where vdW is the first vertex in pPv

C4) foreachi € {0,1,...,n—2}, if erw and 7/’4’}:1 are both
purely continuous, then 1, b (0,0) € € Chv,

C5) Tytw = Tybw, Where oY s the last vertex in p™ and

EW is the last vertex in p"¥

if wefw_l and webvi | are both purely continuous, then
Eeb‘zl (TP¥,0) € C™, where (T"V,0)

6)

If HyRRT-Connect is able to find a path p™ in 7™ and
a path p"¥ in TP satisfying C1-C6, then a motion plan
to P can be constructed as wfwwbw/, where, for simplicity
of notation, ' = (¢, vIV) := dpfw denotes the solution
pair associated with the path p™ in (4) and is referred to as
a forward partial motion plan, YV = (¢PV,0PV) = 'l/;pbw
denotes the solution pair associated with the path pPV in
(5) and is referred to as a backward partial motion plan,

and zbb“’/ denotes the reversal of ¥®¥. The result ¢fw|1/1bwl
is guaranteed to satisfy each item in Problem 1 as follows:

1) By C1, it follows that wfwwbwl starts from Xj.
Namely, item 1 in Problem 1 is satisfied.

2) Due to C2 (respectively, C4), by iterative applying
Proposition 7 to each pair of @egw and Eeﬁﬁ ) (respec-

= maxdom ¥ bw .
n—1

tively, Eesm and @65’11) where i € {0,1,...,m — 2}
(respectively, i € {0,1,...,n — 2}), it follows that
I (respectively, 1®") is a solution pair to H™
(respectively, HP"). Furthermore, given C5 and C6,
Lemma 11 establishes that wfw\ﬂ;bw/ is a solution pair
to H.

3) C3 ensures that ©™|¢*"" ends within X;. This
confirms the satisfaction of item 3 in Problem 1.

4) For any edge e € p'™ U pP%, the trajectory v, avoids
intersecting the unsafe set as a result of the exclusion
of solution pairs that intersect the unsafe set in
the function call new_state. Therefore, item 4 in
Problem 1 is satisfied.

In practice, guaranteeing C5 above is not possible in
most hybrid systems. Thus, given § > 0 representing the
tolerance associated with C5, we implement C5 as
|§vfy‘§’ - ful’l""‘ <9, (6)

leading to a potential discontinuity during the flow.
5.2 Reconstruction Process
To smoothen and control the discontinuity associated
with (6), we propose a reconstruction process. Given the
hybrid input v®" of ¥®" identified in S1, the reconstruction
process involves simulating a hybrid arc, denoted ¢", such
that it starts from the ﬁnal state of ¢, flows when

ﬂows Jumps when vP Jumps and applies the 1nput
(t, §) — vP¥'(t, §), where vP" denotes the reversal of v"
We generate ¢" via the following hybrid system, denoted
H,ow , with state € R™ and dynamics:

o L= fopw (x’vzw, (t,]:)) (t,j.‘) €Cyp o
= gyow (2,0" (t,7))  (t,5) € D,
where
(1) Dy = {(t,§) € dom vP¥ : (t,5 4 1) € dom v**'};

(2) Cpw = dom vVPY'\D_ pur;
(3) gyow (@, u) := g(x,u) for all (z,u) € R™ x R™;
(4) foow (a: u) = f(x,u) for all (z,u) € R™ x R™.

We require that the reconstruction result, given by the
hybrid arc ¢", satisfies the following conditions:

R1) ¢"(0,0) (T, J), where ¢ is the state
trajectory of ¥ identified in S1 and (T, JV) =
max dom ¢V,

R2) ¢" is a maximal solution to H v such that dom ¢* =
dom vP¥’

Notice that the final state of the reconstructed motion plan

¢" converges to ¢"¥(0,0) € Xy as the tolerance J in (6)

approaches zero. Furthermore, if ¢"¥(0,0) is not on the

boundary of X, then there is a tolerance ensuring that ¢*

ends in X;.

5.8 Connecting Two Search Trees via a Jump

In S2, HyRRT-Connect checks the existence of p™ in (4)
and p” in (5), which, in addition to meeting C1-C4
in Section 5.1, results in a solution to the following
constrained equation, denoted u*, provided one exists:

fuf{“’ - g(f'uf;’;’ ’ U*)a U*) e D™. (8)
At times, this constrained equation can be solved ana-

lytically (e.g., for the system in Example 1) or numeri-
cally (e.g., using ideas in Boyd and Vandenberghe (2004)).

(TUE‘Q’ )



Hence, a motion plan is constructed by concatenating ¥,
a single jump from T, m t0 Tyow, and P . This approach
constructs a motion plan before detecting overlaps between
T and 7P in S1, improving efficiency and preventing
the discontinuity introduced by (6) through a jump.

6. SOFTWARE TOOL AND SIMULATION RESULTS

We illustrate the HyRRT-Connect algorithm and this
tool! in Example 1.

Ezample 2. (Actuated bouncing ball system in Example
1, revisited) We initially showcase the simulation results
of the HyRRT-Connect algorithm without the functional-
ity of connecting via jumps. We consider the case where
HyRRT-Connect precisely connects the forward and back-
ward partial motion plans. This is demonstrated by delib-
erately setting the initial state set as Xo = {(14,0)} and
the final state set as Xy = {(0,—16.58)}. In this case, no
tolerance is applied, and thus, no reconstruction process is
employed. The motion plan detected under these settings
is depicted in Figure 1(a). However, for most scenarios,
such as the settings in Example 1, if we require strict
equality without allowing any tolerance as in (6), then
HyRRT-Connect fails to return a motion plans in almost
all the runs. This demonstrates the necessity of allowing a
certain degree of tolerance in (6). The simulation results,
allowing a tolerance of § = 0.2, are shown in Figure
1(b). A discontinuity during the flow between the partial
motion plans is observed, as depicted in the red circle
in Figure 1(b). This discontinuity is addressed through
the reconstruction process and a deviation between the
endpoint of the reconstructed motion plan and the final
state set is also observed in Figure 1(c).

lan

— Forward Partial Motion P
—B: Partial Motion Plan

0 5 10 15 0 5 10 15

(a) Precise connection during the (b) A discontinuity during the
flow is achieved. flow in red circle.

— Forward Partial Motion Plan
20 ——Backward Partial Motion Plan 20
Initial state
15 o Final state

Initial state
O Final state
—Forward Search Tree
— Backward Search Tree
—Motion plan

Partial Motion Plan 10

T2
=3

20 s
h s m s 0 5 10 15 20 25 30

(c) The backward partial motion
plan is reconstructed.

(d) HyRRT-Connect

Fig. 1. Motion plans for the actuated bouncing ball.

We proceed to perform simulation results of HyRRT-
Connect showcasing its full functionalities, including the
ability to connect partial motion plans via jumps, and
results are shown in Figure 1(d). This feature enables
HyRRT-Connect to avoid discontinuities during the flow,
as it computes exact solutions at jumps to connect for-
ward and backward partial motion plans. Furthermore, we

1 Code at https://github.com/HybridSystemsLab/HyRRTConnect.git

compare the computational performance of the proposed
HyRRT-Connect algorithm, its variant Bi-HyRRT (where
the function to connect partial motion plans via jumps
is disabled), and HyRRT. Conducted on a 3.5GHz Intel
Core i7 processor using MATLAB, each algorithm is run 20
times on the same problem. HyRRT-Connect on average
creates 78.8 vertices in 0.27 seconds, Bi-HyRRT 186.5
vertices in 0.76 seconds, and HyRRT 457.4 vertices in
3.93 seconds. Compared to HyRRT, both HyRRT-Connect
and Bi-HyRRT show considerable improvements in com-
putational efficiency. Notably, HyRRT-Connect, with its
jump-connecting capability, achieves a 64.5% reduction
in computation time and 57.7% fewer vertices than Bi-
HyRRT, demonstrating the benefits of jump connections.

7. CONCLUSION

We present HyRRT-Connect, a bidirectional algorithm to
solve motion planning problems for hybrid systems. It
includes a backward-in-time hybrid system formulation,
validated by reversing and concatenating functions on
the hybrid time domain. To tackle discontinuities during
the flow, we introduce a reconstruction process. The
computational improvement is exemplified in an actuated

bouncing ball example.
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