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Abstract. Industrial Augmented Reality (AR) is an emerging spatial computing
technology which involves the use of head-mounted displays or hand-held devices
such as tablets or smartphones to superimpose digital content onto the worker’s
physical to foster their productivity, learning, and interactions with machines,
tools, and other workers. Industrial AR has been adopted in many industries such
as manufacturing, healthcare, aerospace, and defense, predominantly for training
or remote assistance purposes. Yet, several technical and technological challenges
remain to be addressed for industrial AR to evolve from a spatial visualization
tool to a more intelligent and adaptive assistive tool that not only augments the
spatial and causal reasoning ofworkers but can also provide themwith just-in-time
training and support on the job. This chapter provides some technical background
on industrial AR and underscores several research and development directions
which can potentially materialize this vision.
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1 Introduction

The rapid growth of Artificial Intelligence (AI) and spatial computing technologies
such as AR are transforming the landscape of work and human-machine interaction in
several industries. These technologies are increasingly adopted by many companies to
complement human work and upskill workers [1]. This is also in part due to the shortage
of skilled workers, workforce aging and retirement, shifting skill requirements, and the
increasing complexity of industrial technology. In manufacturing industry, for example,
most companies have predicted a steady demand for workers over the next few years
[2], despite shedding nearly 5 million workers between 2000 and 2016 [3], as COVID-
19 has increased the need to produce more goods domestically [4]. Yet, about 26% of
industrial workers in the United States are retiring [5] and finding skilled workers is
more challenging that ever [6]. It is anticipated that near 2.4 million manufacturing jobs
will be left unfilled by 2030, which is likely to incur a cost of $2.5 trillion to the U.S.
manufacturing GDP [7].

The skills gap in industry is due to the need for complex, career-spanning expertise
that are hard to automate in the foreseeable future [8]. Some companies are gradually
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adopting AR as an experiential training and assistive technology to train and upskill
their workers faster [9]. Boeing was one of the early adopters of industrial AR for
wire assembly of aircrafts, which led to a 25% reduction in their cycle time and nearly
eliminated all the errors that used to occur during the assembly process [10]. Similar early
results have been reported by EU-funded STARMATE [11, 12] and SKILLS [13–15]
projects, as well as companies such as Honeywell [16], Porsche [17], and Mercedes-
Benz [18].More recent studies also point to the affordances of industrial AR for fostering
performance and learning on tasks such as assembly [19–21], maintenance [22, 23], and
inspection [24–26].

Extant approaches to industrial AR are mostly concerned around AR authoring [22,
27–31], object tracking and registration [20, 32, 33], comparative analysis of various AR
hardware (e.g., headset, tablet, projector, haptic) [19, 25, 34, 35], and remote assistance
[36]. The affordances of industrial AR for intelligent, adaptive, and personalized teaming
and collaboration between humans andmachines are yet to be discovered. Specifically, it
is necessary to understand how AR coupled with AI technologies can enhance learning
and adaptability of workers on the job through intelligent human-machine teaming,
while avoiding potential risks associatedwith over-dependence on technology and stifled
innovation. This chapter first provides a background summary of industrial AR followed
by a discussion on the following fundamental research topics and directions for future
research and development in this domain.

A. Delivering a given task instruction to a worker through AR can be done in a variety of
mode such as text, alert, image, animation, or video. However, each mode is likely to
have a different impact on the worker’s efficiency, error rate, learning, independence,
and cognitive load. It is therefore necessary to explore different modes of instruction
delivery throughAR and their impact theworker andwork. Understanding the usabil-
ity and limitations of different modes can potentially inform more optimized design
of AR user experiences tailored to worker needs and specific task requirements.

B. AR can be used as a training tool prior to task execution or as an assistive tool
during task execution. It is important to make such distinction to delineate training
scenarios,whereAR support is removed after training, fromassistive scenarioswhere
AR support is used on a just-in-time basis. Deciding which route to take depends
partly on the worker choice complexity [37], novelty and extent of task components,
procedures, and functional attributes [38], and the required level of reasoning and
decision-making.

C. Learning sciences research underscores the necessity of scaffolding and fadingmech-
anisms that align with the learner’s attention and cognitive processes to help them
construct knowledge. One-size-fits-all delivery of task information through ARmust
be replaced with an intelligent system that dynamically scaffolds instructions to the
subject matters that workers need information on. Previous research underscores the
necessity of devising scaffolding mechanisms that align AR instructions with the
learner’s attention and cognitive processes to help them construct knowledge [39–
41]. Hence, it is necessary to understand the nature of the scaffolding that AR affords,
and how to design it in the most effective way for the ongoing success of individual
workers through intelligent worker-AR teaming.
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D. Extant methods are mainly concerned with the provision of procedural knowledge
[42] through AR—the knowledge related to performing sequences of actions. How-
ever, this approach merely helps a worker learn “how” to perform a given task
without effectively learning the “why” behind work instructions, quality assurance
guidelines or specifications, and informal job knowhow. Only by understanding the
deeper causal relationships behind the procedural instructions can workers develop
the cognitive agility to solve new problems and adapt to new circumstances.

The remainder of this chapter is organized as follows. Section 2 provides a brief
overview of the state-of-the-art in industrial AR. Section 3 presents a case study on
industrial AR in manufacturing that aims at illuminating research topics A-D. Section 4
discusses several research challenges and research directions within the scope of topics
A-D.

2 State-of-the-Art in Industrial AR

A comprehensive review of industrial AR in manufacturing and assembly is provided by
[43], which highlights the technical features, characteristics, and industrial applications
of AR. The review article categorizes the AR applications in the assembly domain into
training, design and planning, and guidance. The main research challenges identified
include tracking and registration, collaborative AR interfaces, 3D workspace scene cap-
ture, and context-aware knowledge representation. Similar surveys [44, 45] have been
conducted on industrial AR applications in maintenance, which emphasize operation-
specific applications, AR hardware and development platform comparison, visualization
methods, tracking, and authoring solutions. The key technical challenges identified by
these articles include automated authoring, context-aware adaptation, and human-AR
interactions. Other studies also point to similar challenges in the areas of technology
(e.g., tracking/registration, authoring, UI, ergonomics, processing speed), organization
(e.g., user acceptance, privacy, cost), and environment (e.g., industry standards for AR,
employment protection, external support) [46, 47].

The rest of this section discusses some of the prior work associated with research
topics A-D presented in Sect. 1. Topic A seeks to explore the impact of various modes
of task instruction delivery through AR on the skill acquisition of workers. Topic A
has been addressed by many studies from different angles. For example, a compari-
son between the effects of verbal, paper-based, and AR instructions on manufacturing
workers’ productivity, quality, stress, help-seeking behavior, perceived task complexity,
effort, and frustration was conducted by [19]. A field study on AR-assisted assembly
[48] shows progress in physical and temporal demands, effort, and task completion time.
A study on paper-based and head-mounted AR instructions for assembly [49] indicate
significant reductions in error rates and task completion times through AR. The effects
of an AR fault diagnosis app on the performance of novices with AR support and experts
with no AR support were studies by [50]. Results showed that AR-supported novices
outperformed experts with no AR support in terms of completion time, accuracy, and
cognitive load. The effects of an AR app compared to pictures on inspection task perfor-
mance were studies by [25], which showed improved task completion time, error rate,
gaze shifts, and cognitive load. The effectiveness of different modes of AR information
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delivery and their measured impact on various task performance metrics on a real-life
manufacturing task were recently investigated by the author his team [51], which is
reported in Sect. 3.

Topic B presented in Sect. 1 aims at understanding of the affordances of industrial
AR as a preliminary training tool versus a just-in-time assistive tool. Many recent stud-
ies have partially addressed this topic by investigating the usability, acceptability, and
organizational challenges of industrial AR. Field interviews were conducted by [35] to
understand the perspectives and acceptance of AR as an assistive tool among assembly
workers, which reported generally positive attitude about AR by many workers. A field
experiment was also conducted by [52] to study the organizational and technological
challenges of industrial AR for industrial workforce training, specifically hardware and
software limitations, user acceptance, ergonomics, usability, cost, and integration into
shop floor processes. The study concluded that there is a lack of sufficient research on
organizational issues, especially on user acceptance and integration. Another study [53]
explored the impact of a quiz mode in AR where the user must successfully complete
part selection quizzes in addition to AR training prior to task performance. It was shown
that the number of errors in new assembly tasks can be reduced by 79% compared to
baseline AR training. The usability of AR as an assistive tool for maintenance workers
was studied by [54], which reported that a relatively high usability of their AR app com-
pared to traditional modes of instruction. The conditions under which AR can be most
effective as an assistive tool versus a training tool are yet to be determined. Section 4
reports some of those conditions based on the findings from a recent study by the author
and his team [51].

Topics C and D aim to generate new insights on the potential for AR coupled with AI
to enable effective human-technology teaming in industrial workplaces. Extant literature
in industrial AR already reports many studies on intelligent context-aware AR apps for
industrial applications. A cognition-based interactive AR assembly guidance systems
was developed by [33, 55], which leverages tracking and registration techniques for
context-aware delivery of task instructions. Another study [56] integrates an intelligent
tutoring system comprised of domain knowledge, student models, and pedagogical mod-
els intoAR for personalized learning.A comprehensive reviewof research onAI-enabled
AR systems was done by [57], which mainly addresses vision system calibration, object
tracking and detection, pose estimation, rendering, registration, and virtual object cre-
ation inAR.Despite these remarkable efforts, several knowledge gaps related to TopicsC
andD remain to be addressed. First, learning sciences research underscores the necessity
of scaffolding and fading mechanisms [58–61] that align with the learner’s attention and
cognitive processes to help them construct knowledge [39, 41]. More research is needed
on transitioning from “one-size-fits-all” instructions towards personalized and adaptive
teaming between workers and industrial machinery through AR. Not addressing this
need can lead to overdependence on technology, lack of innovation by workers, and lim-
ited industry adoption, among other potential unintended consequences. Second, extant
methods are mainly concerned with the provision of procedural knowledge [42] through
AR; i.e., the knowledge related to performing sequences of actions. This approach may
only help workers learn “how” to perform a given task without effectively learning the
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“why” behind work instructions, quality assurance guidelines/specifications, and infor-
mal shop floor knowledge. Only by understanding the deeper causal relationships behind
the procedural instructions can workers develop the cognitive agility to solve new prob-
lems and adapt to new circumstances. The remainder of this chapter provides insights
into these challenging yet transformative research topics in industrial AR.

3 Case Study: Marine Engine Assembly

This section presents a case study conducted by the author in cooperation with a marine
engine manufacturer in Massachusetts and Massachusetts Manufacturing Extension
Partnership (MassMEP) to explore some aspects of topics A-D presented in Sect. 1.
Details of this study and experimental results are available in [51]. The task involves
assembling fuel cell modules of custom-made marine engines, which require following
different procedures for each engine model. Traditionally, the task is performed by an
experienced assembler who using standard hand/power tools to assemble the fuel cell
following instructions provided on a one-page instruction sheet that includes techni-
cal drawings and bill of materials (Fig. 1). The main challenge of this manufacturer is
that training their novice workers who usually come from mechanic or machinist back-
grounds often takes several weeks or months and is done by their experienced workers.
This is costly for the manufacturer and often leads to reduced productivity of their exist-
ing workers and high scrap or rework rates attributed to their new workers. The core
objective of the study was to understand if and how AR can help address this challenge.

3.1 Design of Experiments

Participants. 20 engineering students from Northeastern University participated in the
study, including 11 undergraduate students and 9 graduate students, 6 females and 14
males, 4 freshmen, 3 sophomores, 2 juniors, 5 seniors, 5 masters, and one PhD. All
participants had an average to high level of familiarity with electro-mechanical assembly
using simple tools, and little or no prior experience with AR. A questionnaire was
provided to the participants in the beginning to collect their demographics and prior
related experiences and use the data to counterbalance the experimental groups. The
participants received a brief introduction to the assembly tasks and tools prior to the
experiments. They were also briefly trained on using HoloLens 2 (AR headsets) for
browsing through the AR app, steps, and different modes of instructions.

Task and Apparatus. The experiments involved electro-mechanical assembly of a fuel
cell module for marine engines (Fig. 2, top left), a representative and relatively complex
assembly task. The bill of materials contains 26 groups of components that must be
assembled over 13 steps using standard tools such as open-ended wrench and Allen
socket and rachet. The components were placed on a numbered grid on the worktable in
front of the participants (Fig. 2, top right). The participants were divided into two groups
of AR-based and paper-based instruction. The AR app was developed using Unity and
Mixed Reality Toolkit (Fig. 2, bottom left). The app provides the instructions associated
with each step in three different modes (see Fig. 3): (a) expert capture videos with vocal
cues generated by mounting a GoPro on the forehead of an expert worker and recording
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Fig. 1. Top left: An expert worker performing the fuel cell assembly task. Top right: The fuel cell
assembly module. Bottom left: Hand and power tools used for assembly. Bottom right: Technical
drawing and bill of materials.

their task performance (Fig. 2, bottom right), (b) textual descriptions of assembly guides
and information for each step (e.g., part numbers, tools, procedures) alongwith images of
the parts to be assembled in that particular step, and (c) interactive 3D CAD animations
that allow users to view, rotate, and replay a holographic animation of the assembly step.
The AR hardware used for the experiments were HoloLens 2 headsets.

Procedure. Abetween-subject experiment designwas usedwhere the participants were
divided into two groups (Fig. 4): Group 1 (AR) and Group 2 (paper). The paper guides
include written step-by-step task instructions along with the technical documentation
and bill of materials (Fig. 1, bottom right). Each participant performed three assembly
cycles on three consecutive days and then returned after a few days to perform a final
assembly cycle using the opposite means of instruction (i.e., paper for Group 1 and AR
for Group 2). At the end of each round of experiments, both groups of participants filled
out a NASA Task Load Index (TLX) questionnaire [62], and the participants who used
AR also responded to the following questions:

• In a few words, explain your opinion about the use of AR as a training or assistive
tool for manufacturing workers.

• Tell us about your experience with HoloLens (scale: very low, low, neutral, high, very
high).

– How do you rate the level of comfort/fit of HoloLens?
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Fig. 2. Top left: The assembly part CAD model and exploded view. Top right: Worktable setup
and tools used for assembly. Bottom left: The AR app interface for one assembly step, including
textual descriptions and part images, interactive CAD animation, and expert capture video.Bottom
right: Recording expert capture videos. From [51].

Fig. 3. A schematic of an assembly step instruction in the AR app.

– How satisfied are you with the job you did?
– How do you rate your knowledge of the process to do it without the HoloLens?
– How much do you prefer to learn from a person rather than the HoloLens?
– How distracting or cumbersome do you find HoloLens?
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• How do you rate the impact of different modes of AR instructions on your ability to
learn the assembly task and improve your performance? (scale: not at all, very little,
somewhat, quite a bit, a great deal).

– Text and images
– Expert capture videos
– Interactive 3D animations

• In a few words, explain your opinion about the use of AR as a training or assistive
tool for manufacturing workers.

• What new, potentially interactive features would you recommend being incorporated
in the AR guides?

Fig. 4. Left: Participant using AR-based task information (Group 1). Right: Participant using
paper-based task information (Group 2).

The following data was also collected by observing each individual experiment:
round of experiment,mode of guide, time to completion (min), frequency of help-seeking
behavior (i.e., number of questions asked during assembly), the types of questions asked
(if any), number of errors, and the types of errors made (if any).

Metrics. Time to completion: The time needed or taken by the participant to complete
the task. It was measured by timing the assembly cycle. Number of errors: The number
of errors made during each assembly cycle. It was measured by counting the number
of errors per cycle and recording the type of error(s) for further analysis. Help seeking
behavior [19]: The number of times help is requested by the participant per assembly
cycle. It was measured by counting the number of times help is requested per cycle and
recording the question for further analysis. Learning curve: The degree of competence to
which the acquired assembly skill is retained through thepassageof time. Itwasmeasured
by recording the amount of improvement in time-to-completion, number of errors, and
help seeking behavior over time over temporally separated rounds of experiments on
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a given task. Independence from AR: The ability of AR-trained workers to accomplish
the same task without AR, and the impacts of AR on task performance of traditionally
trained workers. It was measured by bringing the participants in after a few days to
perform the assembly task with the opposite means of task information delivery, record
and compare their time-to-completion, number of errors, and help-seeking behavior
against their best recorded performance prior to the gap. Cognitive load: The amount of
working memory used to complete the task following the instructions. It was measured
using the NASA-TLX questionnaire. Utility of different AR modes: The usefulness of
different modes of AR information delivery for learning a task. It was measured using
the qualitative questionnaire mentioned above.

Hypotheses. AR significantly improves (H1) time-to-completion, (H2) number of
errors, (H3) help-seeking behavior, (H4) learning curve, (H5) retention, and (H6)
cognitive load of workers compared to paper-based instructions.

3.2 Results

Themain results of the experiments are presented in Fig. 5. The key findings of the study
were as follows: AR reduces the number of errors by 31–84%. The task completion times
of the two groups are about the same; however, that was partly due to the unfamiliarity
of participants with AR and some technical issues. Further, most participants reported
absolute independence fromAR after two/three cycles, which points to the effectiveness
of AR in improving task competency, and yet its low utility as an “assistive tool” for
routine tasks. Further, several participants suggested devising interactive help and voice
command systems.

Time-to-Completion. Statistical analysis of the results of experiments (Fig. 5) indicates
a significant difference between themean time-to-completion achieved by participants in
Groups 1 and 2 in Rounds 2 and 3. Group 2 (paper) significantly outperformed Group 1
(AR) in the second and third rounds of experiments in terms of task completion time, even
though Group 1 showed a slightly better performance in Round 1. Hypothesis H1 was
therefore rejected. It is speculated that Group 2 participants gradually transitioned from
following the task information to using their memory to complete the task, while Group
1 participants still went through the AR Instructions. The relatively poor performance of
the AR group in terms of completion time was also partly because of their unfamiliarity
with the AR headset.

Number of Errors. Statistical analyses on the mean number of errors presented in
Fig. 5 show that Group 2 made a significantly higher mean number of errors compared
toGroup 1 inRound 3 of the experiments. These results are also partly due to a significant
reduction in the number of errors made by the participants in Group 1, while the other
group maintained an almost steady and relatively higher number of errors throughout
Rounds 1–3. With these findings, hypothesis H2 can be accepted, which indicates the
significant impact of spatiotemporal alignment of task information and visual/vocal cues
with experience on the number of errors made during task performance.

Help-Seeking Behavior. Only two participants from each group sought help related to
AR app, part orientation, and sequence of assembly. This observation was consistent
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Fig. 5. Results of the human subject experiments.
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with the comments made by the plant manager of the marine engine manufacturer that
workers often tend to overthink and not reach out for help due to fear of embarrassment or
overconfidence, which may lead to failures down the line. This is yet another motivation
to create AR training and assistance systems that can address the needs and struggles
of workers without them having to reach out (or not reach out due to the feelings or
fear or embarrassment) to their coworkers or supervisors for help. These findings reject
hypothesis H3.

Learning Curve. Statistical analyses on the differences between mean time-to-
completion and mean number of errors of each group between Rounds 1 and 2, Rounds
2 and 3, and Rounds 1 and 3 indicated significant reductions in mean time-to-completion
between each round for both groups. It can therefore be stated that the means of instruc-
tion (i.e., paper versus AR) does not have any noticeable impact on task completion time.
However, observations also showed that although Group 2 made no improvement in the
number of errors made during assembly, Group 1 participants were able to significantly
reduce the number of errors between Rounds 1 and 3. It is thus concluded that not only
the use of AR leads to fewer errors, but it also helps workers significantly reduce the
number of errors in subsequent rounds of operation. HypothesisH4 is therefore accepted.

Independence from AR. The mean time-to-completion of each group in Round 3 and
Round4 (see Fig. 5) comprised two interesting observations. First,Group 1who switched
from AR guides in Round 3 to paper guides in Round 4 could complete their task even
slightly faster in Round 4 than in Round 3. Here is a quote from a Group 1 participant
after completing Round 4: “It was less cumbersome to assemble the components without
the AR headset on, but the paper drawings were much harder to interpret. I much prefer
the CAD animations; I imagine if I were to have started first with the paper-based
instructions and drawings, it would have taken me much longer to complete the task
initially. I suspect the only reason it took me around the same time to complete the task
with paper-based instructions is simply because I had assembled the component three
times already.” Second, Group 2 demonstrated significantly longer completion times in
Round 4 using AR than in Round 3 using paper, which is to some extent due to their
lack of prior experience with AR app. Moreover, Group 1 maintained their relatively
lower mean number of errors in Round 4 even after a few days, while the mean number
of errors by Group 2 was significantly reduced in Round 4. This indicates the role of
AR in accelerating workers’ learning and competency, its usefulness for traditionally
trained workers in avoiding more errors during task performance, and better memory
retention than paper-based instructions which results in a significantly lower number of
errors even after AR support is removed. Hypothesis H5 was therefore accepted.

Cognitive Load. Results of the NASA-TLX questionnaire (Fig. 5) indicate almost
identical levels of mental demand, physical demand, temporal demand, perceived per-
formance, effort, and frustration for both groups. These observations therefore reject
hypothesis H6. The assembly task was perceived as not too challenging by most
participants.

Modes of Instruction Delivery. The collected responses to the questions about the
impacts of different modes of AR (i.e., text, 3D animation, video) on task performance,
independence from AR, and experience with AR varied among the participants. Some
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found text instructions and 3D CAD animations more helpful: “The text instructions
and CAD animation together provided a great deal of detail about how to complete the
current step. Reading the instructions and visualizing the task through the animation
provided clarity on how to complete the task and what the subassembly should look like
afterward. Although helpful, the video was not completely necessary, and I skipped it
for most of the steps.” “Being able to rotate and view the CAD model was super helpful
during assembly. It allowed me to easily understand how all the parts fit together. The
other two were useful, but tended to get in the way as I was putting physical pieces
together.” Some other participants, however, found videos with vocal cues along with
textual instructions more helpful: “The CAD animation was somewhat useful, but I
preferred the video, as the instructor assembled the part at about the same speed that I
was. Additionally, there were little comments that helped, which a silent CAD animation
didn’t include.” “I tended to listen to the verbal cues from the video, occasionally
checking the text to confirm part numbers, and only once or twice double-checking with
the CAD animation.”

Independence from AR. Group 1 were initially highly dependent on AR: 70% of the
participants reported high or very high dependence on AR. This dependency, however,
gradually declined as only 20% of Group 1 were highly or very highly dependent on
AR by the end of Round 3. On the contrary, 90% of the participants from Group 2, who
switched from paper to AR in Round 4, stated that they are highly independent from
AR. Nevertheless, switching to AR helped this group significantly reduce the number
of errors made during assembly. Moreover, only 10% of the participants expressed a
preference to be trained by a person rather than by the AR app. These number are
expected to vary for actual manufacturing workers who belong to different age groups
and educational levels/backgrounds.

AR for Just-In-Time Assistance. The participants were asked to comment on the
use of AR as an assistive tool for workers. Text-to-speech features were recommended
to read out the textual instructions. Some also suggested the use of voice commands
for hands-free interaction with the AR content. Menu-based, non-procedural provision
of task information were suggested by some participants so the user can call certain
instructions on demand, rather than having to go through a fixed sequence of steps.
It was suggested to include more interactive and personalizable layout design for the
AR app so the user can use the layout they feel most comfortable in. Some participants
suggested help options that allow the user can get assistancewhen something goeswrong
or if they have a question about the task.

4 Discussion: Towards Intelligent AR Systems

Industrial AR has the potential to transformworkplace-based learning for future workers
and thus bridge the labormarketmismatch and enhance the productivity and/or quality of
future work. Yet, the technology is still evolving, and several key challenges associated
with technology development, socioeconomic impacts, and human factors are yet to be
addressed. The following section discusses several directions in line with research topics
A-D discussed in Sect. 1 with the vision of turning AR into an intelligent, adaptive, and
personalized assistant for incumbent and new workers across different industries.
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State-of-the-art industrial AR systems still offer limited personalized interactions
between workers and AR, and primarily offer procedural, one-size-fits-all instructions
with minimal attention to the individual worker’s needs and knowledge. This may lead
to potential unintended consequences such as overdependence on technology and stifled
innovation [13, 15, 63], and also hinder industry adoption. The provision of procedu-
ral knowledge [42] through AR—the knowledge related to performing sequences of
actions—merely helps workers learn “how” to perform a given task without effectively
learning the “why” behind work instructions. That prevents workers from developing a
deep understanding of the underlying causal relationships behind the procedural instruc-
tions can workers develop the cognitive agility to solve new problems and adapt to new
circumstances, especially in tasks that involve complex reasoning and decision-making.
Future research must explore how AR can intelligently tailor scaffolds to the specific
needs of workers to enhance not only their performance efficiency but their complex
reasoning skills for solving novel problems and adapting to changing work environ-
ments. It is therefore critical to build new methods at the nexus of AI, AR, and human-
machine interaction to understand how various sources of multimodal data captured by
AR devices, industrial machinery, and any other smart device or sensor can be harnessed
to interpret, predict, and guide the behavior of industrial workers and enable intuitive
human-machine teaming.

Future research must build new inference engines into AR for interactive and per-
sonalized task assistance informed by multimodal context data, user intent, and multi-
dimensional digital data. The outputs of the inference engine can be generated either
automatically or in response to user inputs (e.g., buttons, menus, dialog, hand gestures,
gaze). The automated outputs can be more focused on critical task information (e.g.,
safety features, warnings) while the on-demand outputs may involve declarative knowl-
edge or task assistance. Such inference engines can progressively tailor the instructions
to the specific needs of users based on the collected data on their performance. That is,
they can capture data on the history of user interactions with the auto-generated content
(e.g., interactions with menus, questions asked, or “gaze-time”) for each content, and
gradually remove contents below a certain usage threshold. A set of logical rules can
be applied for the inference engine to generate proper automated or on-demand system
outputs in any of the following or similar forms (Fig. 6):

• Spatially registered 3D visualizations.Given the identified 6D poses of objects, AR
systems can superimpose task guidance and digital information on physical objects
(e.g., part, robot, controller), along with textual instructions, and visualizations to
boost the spatial reasoning abilities of users.

• Notifications.Considering user intent and task status, AR systems can generate visual
or auditory notifications, based on job sheets and operations manuals, to ensure the
user is aware of important safety and operational features.

• Recommendations. AR systems can leverage multidimensional digital data (e.g.,
GD&T, 3D annotations, material specifications, and process notes) to assist workers
with reasoning about observed task progression.

• Spatial/causal reasoning animations. AR systems can include detailed 3D anima-
tions of the process for users to visualize what cannot be seen during operation.
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• Expert capture videos. AR systems. Can provide users with audiovisual “expert
stories”, captured using GoPro or over-the-shoulder cameras, which can be activated
using voice command, menus/buttons, or hand gestures on demand.

• Remote assistance. AR systems can also allow users to video call remote experts
from the app and share their screen to get immediate assistance.

Fig. 6. Schematic of an intelligent AR systemwith an inference engine for context-aware human-
machine teaming in industrial settings.

Consider, for example, human-robot collaboration in industry where workers and
collaborative robots synchronously process the same task in a shared physicalworkspace.
This is an increasingly common scenario in many industrial settings such as factories,
warehouses, and distribution centers, especially given the fact that human-robot teaming
is known to reduce idle time by 85% compared to when the task is performed by all
human teams [64]. Yet, the integration of collaborative robots into factories is currently
limited to structured operations with known, minimal, and fully predictable interactions
with humans. That is, collaborative robots are currently being used in factories as an
advanced, automated tool rather than an active and intelligent coworker for the human
operator. This “black-and-white” approach to automation in factories has reached its
limits, becausemanymanufacturing tasks such asmachine tending, assembly, inspection,
and part transfer are not 100% repetitive and involve many variations that cannot be
handledby exiting robots or require time-consuming reprogramming.Thismakes today’s
robotic coworkers inadequate assistants to human workers and impedes human-robot
teamwork.

AR coupled with AI capabilities can bridge this gap by functioning as a mediator
to enable the worker to preview and modify the programs and policies taught to the
robot, which will in turn lead to the progressive adaptation and convergence of shared
mental models between them (Fig. 7). AR can also facilitate the communication of
the worker’s intent to the robot through both explicit (e.g., hand gestures, gaze) and
implicit (e.g., eye/head gaze, wearables) modes of interaction. AR can also enhance



Augmenting Human-Machine Teaming Through Industrial AR 379

robot-to-worker interaction through multimodal communication channels such as 3D
visualization, haptics, and/or auditory signals. Such an intelligent AR mediator system
can potentially advance the understanding of how transparent sharing of intent and
awareness can shape teamwork fluency and trust between workers and robots.

Fig. 7. Two-way communication of information and intent between workers and robots through
an intelligent AR mediator.

5 Conclusions

The newer wave of industrial automation is not so much to replace workers but rather
to increase precision, safety, and product quality [65]. Modern automation is about
continuing to automate tasks that are dirty, dull, and dangerous, but preserving the ones
that are “value-added” and often desirable parts of the jobs for human workers. Those
kinds of value-added jobs are specifically the ones that are hard to automate, either
because they require sophisticated and precise manipulation of physical objects that
only a human is capable of or because they require complex reasoning and decision-
making that machines are not capable of. Informed by the experiments and conceptual
frameworks presented in Sects. 3 and 4, respectively, the author and his team assembled
a panel of ten experts from major industrial, academia, and federal institutions in the
U.S. and Europe to further illuminate the potentials and risks of industrial AR in the
human-centered automation era.

The discussions were facilitated by four high-level questions. (1) How widespread
do you think the adoption of AR technology inmanufacturing will be in the next 5 years?
Which firms would be best suited to adopt such technologies (e.g., size, product type,
capital/labor mix)?What impact might the adoption of AR technologies have on the skill
requirements for specific job roles in assembly? To what degree can AR technologies be
used to train the future manufacturing workforce? (2)What are the potential benefits and
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risks of AR for workplace-based learning on complex, career-spanning expertise in areas
such as assembly and maintenance? Do you see other training techniques/technology
alternatives on the horizon? (3) There is some evidence that overreliance of workers
on AR can cause “brittleness” of knowledge [63], hinder learning, and deteriorate per-
formance in adapting to novel situations. In your opinion, what are the impacts of AR
on the ability of workers to learn new tasks in a way that enhances their flexibility in
transferring their knowledge to new situations? (4) How can we interpret, predict, and
guide the behavior of AR-supported assembly workers through adaptive scaffolding of
instructions to the expertise level of individual workers, and immediate AR-based feed-
back on their actions and decisions? What are the implications for the design of future
AR technologies?

This chapter is concluded by presenting seven key insights drawn from the panel
discussion about the challenges and future trends in industrial AR:

1. AR can potentially be a disruptive assistive technology for manufacturing tasks
that are not rote and require complex reasoning and decision-making; for example,
inspection in regulated industries such as aerospace.

2. The acceptability of AR as a “tool” is likely to differ among incumbent and future
workers and different demographics. The experiments presented in this paper only
featured young and educated engineering students. Current AR technology may not
be well received by more senior workers because the interfaces are not as intuitive
as they should be for someone with little or no experience with AR or even with
computers.

3. AR can increase the accessibility of manufacturing jobs to workers with different
demographic characteristics by allowing for self-guided learning without the need
for physical and real-time interaction with a trainer.

4. AR can create new opportunities for remote learning and assistance from larger, and
possibly more diverse, pools of physically/temporally distant coworkers. It can also
enable remote assistance and collaboration by allowing the on-site worker to share
their experience with a remote expert and get immediate feedback with 3D visual
cues.

5. The adoption of AR by companies will require rigorous justification through both
proof-of-concept and economic cost-benefit analyses. It is important to educate com-
panies on the potential impacts ofARonefficiency andproductivity, the skills required
for building, maintaining, and updating the content, the costs of software and hard-
ware, and the acceptability of the technology among both incumbent and entry-level
workforce.

6. Scalability must be regarded as a key criterion for the ideation and design of AR
technologies. The marine engine manufacturer studied, for example, makes tens or
hundreds of different variations of a given part family.

7. AR can be coupled with digital thread technologies to provide workers with part,
process, and task information such as geometric dimensions and tolerances (GD&T),
3D annotations, material specifications, and process notes [66, 67] in real-time. AR
can also leverage industrial Internet-of-Things (IoT) data to enable access to real-time
machine data in semiautomated tasks such as robotic assembly or CNC machining.
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