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Summary

Transcriptional activation domains (ADs) of gene activators have remained enigmatic for
decades as short, extremely variable, and structurally disordered sequences. Using a rational
design and high throughput in vivo experimentation, we determine the grammar rules and
exceptions for the language of ADs. According to identified rules, billions of highly active ADs
can be composed of balanced amounts of acidic/aromatic amino acids, with either mixed
composition of aromatic residues, or using only one aromatic residue mixed with acidic
residues. However, equally active sequences can be composed of only aliphatic leucine and
aspartic acid residues. The much rarer LD exceptions have a higher ratio of hydrophobic/acidic
balance and display a specific LDL(L/D)DLL motif. For aromatic/acidic ADs the intermixing of
proline residues in context of amphipathic a-helix structures significantly increases the AD
activity. The identified grammar rules and exceptions are interpreted in application to the
biochemistry of AD function and eukaryotic gene expression.
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Introduction

Transcriptional activation domains (ADs) of gene activators are the key molecules determining
activation and expression levels of eukaryotic genes. ADs have remained enigmatic for decades
as extremely variable short sequences, which are usually intrinsically disordered, and interact
with an uncertain number of potential targets during transcription activation. Along with other
intrinsically disordered protein regions (IDRs), ADs are critical for the transcriptional dynamics
and associated phase transitions during liquid-liquid phase separation®. Solving the long
standing riddle of AD sequences remains an important goal of molecular biology?, and
understanding the language of AD sequences is an important step in solving the enigma.

It was suggested previously®# and confirmed® that AD sequences usually follow certain general
rules: absence of basic residues, presence of acidic and hydrophobic (mostly aromatic)
residues, balance between acidic and hydrophobic residues, minimal formation of homo-amino
acid clusters by acidic or hydrophobic residues, and preferential terminal location for
hydrophobic residues and internal location within AD for acidic residues. Machine learning
analyses of AD sequences selected in vivo to function within the Gen4 and HSF contexts in
yeast showed that the preference for aromatic residues is W>F>Y and for acidic residues D>E.
This preference was consistent with findings of several publications®’. It was shown further that
for in vivo AD activity it is sufficient to have only aromatic and acidic residues*, including
hundreds of sequences composed entirely from Ws and Ds?®.

To clarify features and properties of ADs, in addition to confirming the high functionality of the
combinations containing only Ws and Ds, we explored if it is possible to have active iaive AD
sequences comprised entirely from F and D, Y and D, or L and D residues. We asked if
aromatic residues are exclusively important for AD activity, or if the acidic-aliphatic amino acid
combinations can also form active ADs. In addition, we investigated the impact of mixing
aromatic residues in comparison to sequences having only one specific hydrophobic residue in
combinations with acidic residues. We showed that hundreds of active ADs can be constructed
from either: acidic residues intermixed with a variety of combinations of W, F, Y, and L residues,
or acidic residues paired with only W, F, or L, but not Y residues. In addition, we found that
while the acidic-aromatic requirement for functional ADs generally dominates, it is possible to
have short highly active sequences comprised entirely from Ls and Ds. Importantly, the
functional LD sequences, unlike sequences with aromatic residues, have a specific
LDL(D/L)DLL mini-motif. Based on our results we formulate specific grammar rules the AD
sequences follow and analyze exceptions to these rules.

Results

Experimental setup. The experimental setup was adopted from the our previous analysis
of AD sequences containing all possible combinations of W and D for all positions for a stretch
up to 12 positions® and described in details in the Methods section. Briefly, thousands of
individual nucleotide sequences (Fig. 1A) were parallel-synthesized and cloned into a previously
constructed® yeast centromeric parental shuttle vector in which the library sequences were
fused individually to the Gal4 DNA-binding domain sequence. The resulting plasmid library was
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transformed into the yeast Y2HGold strain, where the individual Gal4 hybrid activator proteins
were expressed and screened for functionality as ADs driving the expression of the Gal-
Aureobasidin antibiotic resistance reporter gene (Fig. 1A). The library DNA for different growth
time points was isolated and sequenced to determine the number of reads for each individual
sequence and its change over time. The growth slope for each sequence was calculated and
served as a measure of the AD functionality. Since the results were obtained within the scope of
the whole library pool screening, the results for individual sequences and for all different
sequence sets can be considered to be obtained under identical experimental conditions and
thus to be accurately comparable. In addition, each sequence was labeled by multiple individual
barcodes; thus, the results for each individual sequence are the mean of multiple (typically five)
independent experimental repeats (Fig.1B). Counts for each barcode were first normalized to 0
time point (Fig.1B), and then normalized to the slope of null (stop codon) sequences (see Star
Methods for details). As a part of the library, we used the sequences of known AD regions, such
as Gal4(840-857), Gal4(860-872) and VP16 sequences®'?, as internal positive controls (Fig.
1C). As negative controls, we used null sequences that contained a stop codon after the DBD.
To ensure the high stringency, the cutoff for a “functional AD” was defined as a growth slope
two standard deviations above the mean of 97 individual stop codon-null sequences (see
methods).

To test the reproducibility of our assay, we compared the slopes for individual control
sequences in our current study and previously published results* and see good correlation (Fig.
1C, Spearman’s rho = 0.718). In addition, we similarly looked at the correlation of other
sequences which are shared between the library of the current study and the independent
library analyzed previously®. The results show an excellent correlation (Fig. 1D-E Spearman’s
rho = 0.944) indicating reproducibility of this assay across experiments.

Functional ADs can be composed of varying combinations of W, F, Y, or L residues
balanced with D residues. Since it was shown previously that simple repetition of the WD
dipeptide is sufficient to create highly active in vivo ADs*#, we asked if other dipeptide
combinations could also be active, testing monotonous di-peptide repeats of 8 or 10 amino
acids pairs composed from D and another one of 20 amino acid residues. Confirming previous
observations*8, the di-amino acid peptides containing D and W, or D and F had the highest
functionality scores (Fig. 2A). Additional activity was observed for the L and a minor activity for T
containing peptides. Since previous reports repeatedly highlighted the importance of aromatic
residues and Ls*"", we focused on W, F, Y and L residues balancing them with D residues,
asking if each individual hydrophobic residue alone or in combinations with other hydrophobic
residues could create an in vivo functional AD.

We decided to test three different sequence templates each with balanced amounts of
acidic and hydrophobic amino acids: flanked (DDDXXXXXDD), intermixed (DXDXDXDXDX), or
an amphipathic helix (XGDGXGDGXGDGXGDGXGDG) indicated below as (XGDG)5, where Xs
were W, F, Y, or L amino acids. The rationale behind template choices was that (i) the flanked
template with all Xs as Ws, as previously shown?® and Fig. 1E, produces the AD with one of the
highest activity among thousands identified, (ii) the intermixed template Fig. 1E is a simple
balanced hydrophobic-acidic template which also was previously reported producing in vivo
active ADs**8, while (iii) the amphipathic helix template sequence with hydrophobic Xs, if folded
into a canonical a-helix, always creates a short amphipathic helix segment that was repeatedly
reported to be important for functionality of ADs”-12-14,




When we used individual W, F, Y, or L amino acids for all X positions within the flanked
template context (Fig. 2B), only tryptophan produced an in vivo active AD, which is consistent
with the previous report®. For the intermixed template (Fig. 2C) both Ws and Fs were able to
create in vivo active AD, with slightly higher activity level for Fs over Ws, while Ls and Y's did not
produce activity in this context. The amphipathic a-helix template (Fig. 2D) did not have ADs
with a significant activity level for any of four individual W, F, Y, or L amino acids.

To determine the effect of mixing different hydrophobic amino acids within an AD, which is
more typical for natural ADs, we created a library with all combinations of W, F, Y, and L across
five X positions, which amounts to 1024 sequence variants for each template: flanked (Fig. 2E),
intermixed (Fig. 2F), and amphipathic helix (Fig. 2G). For the flanked template 47.2%
(483/1024) of sequence variants were above the threshold for functionality, for the intermixed
template 57.4% (587/1023) of sequences are functional, while for the amphipathic helix
template only 16.2% (166/1024) of sequences were above the threshold. The average slope of
functional sequences is 2.2 for the flanked template, 1.6 for the intermixed template, and only
0.5 for the amphipathic helix template. For all three templates the highest functionality was
recorded for sequences containing a mixture of different hydrophobic residues especially in the
context of the flanked and intermixed templates (Fig. 2 E, F) in comparison to sequences
containing only one hydrophobic residue for all X positions (Fig. 2 B, C, D). If templates are
compared to each other (Fig. 2 E, F, G), the flanked template produced sequences with highest
activity, while the intermixed template produced the highest number of active ADs.

The number of each specific hydrophobic residue in the sequence affects AD activity
differently. Generally, an increase in the number of Ws is beneficial regardless of template (Fig.
S1A), whereas for Fs this trend is only observed for the intermixed template (Fig. S1B).
However, while Ls and Ys can be present in highly active ADs, an increased number of L
residues is not necessarily beneficial (Fig. S1C), and for Y it is detrimental (Fig. S1D). These
trends are consistent with the previous ML analysis of the unbiased random sequence AD
libraries > showing the W>F>Y preference among aromatics and a mild near-neutral effect of L
residues within tens of thousands of analyzed active ADs. Analyzing the effects of positions for
a specific hydrophobic residue in different templates, we observe that functional sequences with
the flanked template often have L or F residues present at the most C-terminal position (Fig.
S1E).

The compositional analysis of mixed sequences revealed that instead of one specific
composition, a diverse set of compositions of W, F, Y, and L residues produce functional ADs
across these three sequence templates (Table S1). These functional compositions, with 5-60
possible sequence arrangements each, often have high functionality. In general, W and F
residues contribute most to function across all three templates, L residues are less common
than W or F across functional sequences, and Y residues are rarely present in functional
sequences. The flanked template is most functional when enriched in W residues. The
intermixed template is most functional when enriched in F residues. The amphipathic template
is most functional when depleted of L and Y residues.

To uncover any residue position preferences among functional sequences, we calculated
the proportion of each residue at each position among the most functional (top 5%) for each set
of sequences. The outcomes summarized in Fig. 2E (sequence logos), indicate that for the
flanked template there is some preference for Ws toward the N-terminus of the active
sequences and some preference for Ls more internally. For the intermixed template (Fig. 2F)
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there is some preference for Fs over Ws and even more so over Ls. For the amphipathic helix
template (Fig. 2G) there is a preference for Ws over Fs, which both dominate over Ls. The only
position where L is preferred is toward the N-terminus of AD. The investigation of non-functional
sequences (bottom 5%) suggests that Y is significantly enriched and generally is detrimental for
AD functionality. Overall, the minimotif analysis performed using the above approaches, as well
as SlimFinder''¢, and MEME suite'”'8, indicates that a wide variety of short sequences
containing balanced acidic/hydrophobic composition can function in vivo as ADs with no specific
mini-motif dominating any of tested libraries. The non-functional sequences also do not contain
any specific minimotif.

In summary, we analyzed a total of 3071 sequences with W, F, Y, L amino acid sequences
balanced with an equal number of Ds using three templates and found 40% (1236/3071) of
sequences above the functionality threshold in the context of our assay. Within functional
sequences for each template, we found that a wide variety of different sequences can function
as an active in vivo AD with varying levels of activity. The active AD sequences similar to
previous observations*’'" do not have any specific dominant minimotifs, but instead have a
wide variety of functional sequence compositions.

The presence of proline significantly increases the functionality of sequences as
ADs in the context of an amphipathic helix template. The outcomes for the amphipathic
helix template analyses (Fig. 2G) indicating extremely low functionality of this template are in
slight disagreement with a previous report® demonstrating that similar amphipathic helix-forming
template generated 19.6% (21,163/107,975) of functional sequences . The difference between
templates, however, is that in the previous study the analyzed template was
WXDXWXDXWXDXWXDXWXDX designed to determine what X amino acids could facilitate or
hinder the activity, while in the current study the analyzed amphipathic template (XGDG)5 was
XGDGXGDGXGDGXGDGXGDG designed to determine what combinations of hydrophobic
amino acids are conducive for the AD activity within the amphipathic helix context. Using the
glycine in current study is justified by the fact that it was shown previously as being neutral for
AD activity®>. However, glycine residues are also known as helix destabilizers, thus could
contribute to the low yield of AD functional sequences in the (XGDG)5 template. To test the
effect of the helix formation for this template we tested all individual amino acids instead of
glycine. The outcomes (Fig. 3) indicate that although some amino acids are predicted to
stabilize the hydrophobic/acidic amphipathic helix, especially L, M, and W (Fig. 3B) the only
amino acid that created significant AD activity was P - the known a-helix breaker (Fig. 3A). The
level of activity in this context evidently correlates with the number of Ps used in this template
(Fig. 3C, Spearman’s rho = 0.466), with a slight trend for Ps being more advantageous for the
N-terminus of the sequence (Fig. 3D). As in previous study?®, these results suggest that breaking
the amphipathic hydrophobic/acidic helix and thus preventing aromatic residues residing on one
side of the helix from interacting with each other is beneficial for AD activity in vivo.

Robust in vivo AD activity displayed by sequences with only a single type of
hydrophobic residue balanced with aspartic acid. Our results and previous investigations®
showed that sequences containing only Ws (Fig. 2B and C) or Fs (Fig. 2C) balanced with acidic
residues can create ADs functional in vivo. We wanted to investigate if different combinations of
Ws, Fs, Ys, or Ls alone balanced with Ds can create functional ADs in vivo and how numerous
those combinations can be. Evidently (Fig. 4A) and consistent with previously published
results®, 34.3% of sequences in the WD10 set containing combinations of Ws and Ds for 10



positions (350/1021 sequences) are above the functionality threshold, 35.5% (363/1022
sequences, FD10 set) are functional if all Ws are replaced with Fs (Fig. 4B), and 22%
(225/1023 sequences, LD10 set) are functional if Ls are the only hydrophobics (Fig. 4C), while
only 0.8% (8/997 sequences, YD10 set) are barely above the threshold for D and Y
combinations (Fig. 4D).

The existence of a significant number of functional L and D combinations is especially
interesting because the machine learning (ML) analysis of large unbiased random sequence
pools (10%-10° sequences) screened for functional ADs in vivo® showed only minor importance
of Ls for AD functionality, and L-rich regions in transcriptional activator IDRs are often not
considered as ADs”'?'° or more specific to human ADs"'. Even though LD combinations
created fewer functional ADs than the WD and FD combinations (Fig.4 A, B, C), the LD
combinations produced sequences with the highest overall functionality (Fig. 4C). The
compositional (Fig. 4 E, F, G), positional (Fig. 4 H, |, J), and amino acid clustering analyses
(Fig. 4 K, L, M) of functional WD10, FD10, and LD10 combinations revealed that all three
sequence sets follow three previously reported® sequence rules: maintaining the general
balance between hydrophobic and acidic residues within each individual functional AD
sequence (Fig. 4 E, F, G), preferred C-terminal location of hydrophobic and internal location of
acidic residues (Fig. 4 H, 1, J), and avoiding homo-amino acid clusters (Fig. 4 K, L, M). For
functional sequences, the average balance between Ds and Ws is 5.42 within the 10 amino acid
stretch (slightly higher W presence) (Fig. 4E), and 5.23 for Fs and Ds (Fig. 4F), while for Ls and
Ds it is 5.75 which is shifted toward excess of Ls (Fig. 4G) making sequences with six Ls and
four Ds the dominant functionality cohort among the LD10 combinations.

We next tested the frequency of a specific amino acid for each of ten positions for the most
functional sequences (top 5%) and non-functional sequences (bottom 5%) (Fig. 4 A, B, C,
sequence logos). It is evident that for the WD10 and FD10 sets, there is a similar probability
between hydrophobic and acidic residues for each position in the sequence with some
preference of hydrophobic residues for the C-terminus, which is consistent with the positional
analysis (Fig.4 H, 1, J). Tested for sensitivity to the mono amino acid cluster formation (Fig. 4 K,
L, M) it is evident that in all three datasets the ADs had greater functionality if hydrophobic or
acidic residues were not clustered (high patterning parameter value)? but instead evenly
intermixed (low patterning parameter value).

To identify mini-motifs enriched in the functional sequences in each dataset, we determined
the average slope of sequences that contain all possible progressively longer combinations of
amino acids (Fig. S2). The mini-motif search within each of the WD10, FD10 and LD10
sequence sets revealed that there were no clear minimotifs enriched in functionality in WD10
and FD10 sets; however, the LD10 set has a small number of functionally enriched minimotifs,
especially for the 7 amino acid long window, with LDLDDLL noticeably enriched in functional
sequences (Fig. S2). The FD10 set has the greatest diversity of functional sequences with
46.9% of 7 amino acid long sequences having a functional average growth slope while the LD10
set has the least diversity of functional sequences with only 28.1% of 7 amino acid long
sequences having a functional average growth slope.

Highest activity LD10 AD sequences have an LDL(D/L)DLL motif with an important
LDDLL core sequence. Because the top functional LD10 sequences have especially high
functionality value, we extended the motif search analysis for these sequences. To test if active
AD sequences have any Short Linear Motifs (SLiMs), we used the MEME motif discovery tool'”
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'8, The motif search confirmed the findings for the LD10 set, identifying the SLiM LDL(D/L)DLL
with very low E-value (4.2x108) (Fig. 5A). In fact, among the top functional 5% of sequences 20
out of 52 sequences contained the LDLDDLL sequence, and 12 out of 52 sequences contained
the LDLLDLL sequence. When we applied the same approach for the WD10 and FD10 sets, no
motifs had significant E-values.

We then checked the importance of each specific position within the LDL(D/L)DLL
sequence. By selecting within the LD10 set the sequences containing the LDL(D/L)DLL stretch
with only one amino acid in a specific position deviating from the consensus and calculating the
average functionality score for each subset, we see that the most important core of the
sequence is L(D/L)DLL with LDDLL being the more common sequence (28 out of 50 functional
sequences containing the LDL(D/L)DLL motif) (Fig. 5A). An important quality of the
LDL(D/L)DLL is that if it is inversed to LL(D/L)LDL it loses much of its functionality (Fig. 5 B, C).
Similarly, sequences are inactive when the positions of only two letters within the LDDLL core
are reversed, i.e. for the top functional sequence: LLDLDLDDLL (slope = 6.70) vs
LLDLDLDLDL (slope =-0.984) or second top functional sequence: DLLDLDDLLL (slope =
6.40) vs DLLDLDLDLL (slope = 0.067). The effect of sequence inversion was tested for all
functional WD10 FD10 and LD10 sequences in each set. Generally, the disruptive effect is
clearly seen for the LD10 and WD10 sequences, but the FD10 sequences were significantly
more tolerant to the inversions, which correlates with the functional sequences in the FD10 set
being the most variable for specific sequence motifs.

Sequences containing the L(D/L)DLL core still varied in activity. To test what factors are
affecting the activity level of LD10 set sequences, we tested if in addition to the presence of the
motif, they also follow the rules we formulated before® and confirmed in Fig. 4. It is evident that
sequences containing the core L(D/L)DLL motif generally are more functional if the amount of
the acidic and hydrophobic residues is balanced and quickly lose activity with excess of either
acidic or hydrophobic residues (Fig. 5E). The activity level is also correlated with the proximity of
hydrophobics toward the C-terminus of the molecule (Fig. 5F). Notice, that the bump for the
middle positions for Ds is likely the result of Ds being in the middle of the LDL(D/L)DLL maotif.
The presence of L-clusters in addition to the L(D/L)DLL core also negatively affected the level of
activity (Fig. 5G). Notice, the functional exceptions containing a relatively high clustering score
all have balanced L/D content and the presence of the LDL(D/L)DLL motif.

Presence of positively charged residues negatively affects AD functionality. Another
rule that was obvious from the previous ML analysis of the random pool sequences® was the
requirement for the absence of positively charged residues: R, K, and to a lesser degree H. We
checked how sequences containing an otherwise active AD module (e.g.,
GGGGGDDDWWWWWDDGGGGG) are affected by presence of R residues, the most
positively charged amino acid. Evidently (Fig. 6A, Spearman’s rho = -0.755), presence of only
one R replacing a G within varying positions significantly reduced the AD activity, two Rs in
many cases reduced the AD activity closer to the threshold, while most of the sequences
containing 3Rs in different positions eliminated the AD activity entirely. The position of the
positively charged residues within the sequence correlated with the greatest negative effect at
the N-terminus of the sequence (Fig. 6B, R? for 2 R residues = 0.58), and the AD activity was
sensitive to clustering of Rs (Fig. 6C).

Algorithms trained/designed on natural AD sequences are not accurate and often
overpredict the functionality of “synthetic” ADs. Since we used designed sequences in our
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libraries, which might not necessarily be present in natural gene activators, and because recent
ML models were developed by training on natural AD sequences, we wanted to see how well
these ML models predict the functionality of our “synthetic” ADs. We used the most
comprehensive to date PADDLE model trained on AD sequences from all 162 yeast (S.
cerevisiae S288C) transcription factors, broken into over 10,000 fragments'2. This model was
demonstrated to have an accuracy of 92% '? for prediction of ADs in human activators. In
addition, we compared the results of PADDLE prediction with the predictions made by the
Attention AD model?' trained on an unbiased large (>1076) set of random sequences screened
for AD activity in vivo in the context of Gecn4 DBD’. The Attention AD model is an improved
modification of the ADpred model” which has high AUC 0.98 when tested on the fraction of the
dataset not used for training.

Applying PADDLE model to our current datasets (Fig. 7 panels A, B, Cand G, H, |, J) we
see that the AUC value varies between 0.58 — 0.92 depending on the dataset. The Attention AD
model (Fig. 7, panels D, E, F, and K, L, M, N) has AUC values of 0.57-0.87, which is slightly
lower consistently for all datasets. However, the Attention AD model has greater overall
accuracy (Acc) in all datasets except for LD10. When we look at the correlation between the
predictions made by models (X-axes) and the in vivo functionality scores (Y-axes) we see that
PADDLE tends to overpredict (most of values are in the right two quadrants), with stark example
of the flanked template (panel A) where all sequences are predicted to be functional, while in
vivo ~50% are not functional. A similar trend is observed for the intermixed template (panel B),
while amphipathic template sequences (panel C) with the highest accuracy were predicted to be
mostly inactive ADs. A similar trend of overprediction is observed (panels G, H, |, J) for the
WD10, FD10, LD10 (with lesser degree), and for YD10 (mostly inactive sequences) datasets.
As a comparison to the PADDLE model the Attention AD model, in addition to having lower
AUC values, appears to make random mistakes in some cases, with wider distribution of values
for all four quadrants (panels D, E, F, and K, L, M, N).

Another recently developed tool for prediction of AD functionality for a sequence is a
mechanistic predictor based essentially on the composition of the sequence®. It accurately
predicted nonfunctional sequences (Fig. 7, panel O, dotted lighter color violins), but has poor
prediction with 53% - 18% accuracy depending on the dataset. The likely reason for the poor
performance of the mechanistic predictor is that it is based primarily on composition, counting
charged (D, E) and hydrophobic residues (W, F, Y, L) and does not consider other rules.

PADDLE and the Attention AD model are neural network ML models, and thus do not
clearly reveal the ML features used for the model building and predictions. However,
understanding ML features and connecting them to AD biochemical features is important for
deducing the mechanism of AD function. For this reason, we tested how each quadrant: true
positive (TP), false positive (FP), true negative (TN), and false negative) in Fig. 7 panels J, H, I,
and K, L, M follow the basic rules we emphasized above (balance of acidic and hydrophobics,
C-terminal preference of hydrophobic residues, and no-cluster formation). We used WD10,
FD10, and LD10 datasets because only these sets are truly randomized using all possible
combinations of specific hydrophobic residue and D. Evidently (panel P) for both ML models
the lowest deviation from the hydrophobic/acidic balance is for TP and the highest is for TN,
with intermediate level for FP and insufficient data for FN. Similar situation is for C-terminal
preference of the hydrophobic residue (panel Q) and for clustering score (panel R). Thus, at
least these three basic rules appear to be recognized by both ML models. Although we see this



correlation, the rules are likely formulated mathematically differently by NN models and by us. In
addition, to test the importance of each rule we performed logistic regression (see Star
Methods) testing the importance of each rule. All three rules contributed significantly (Table S2)
showing importance of deviation from the acidic/hydrophobic balance, position of hydrophobics,
and homo-amino acid clustering.

The computational feature development is not a trivial task because features might overlap
and contain exceptions. For instance, balance and clustering rules are connected, as the more
is the deviation from balance between hydrophobic and acidic residues, the higher is the
probability of clustering. Although homo amino acid clustering has generally a negative impact
on AD functionality (Fig. 4 K-M and Fig. 5G), it might depend on a specific context. For
instance, we see that while clusters of 4-6 Ws flanked by Ds are functional, this type of
clustering is not tolerable for function if instead of Ws, Fs or Ls are used (Fig. S3). This
observation might be a reflection of the hydrophobicity level. According to many hydrophobicity
scales and the normalized best hydrophobicity scale??, among W, F, and L, the amino acid W
has the lowest hydrophobicity and thus while flanking Ws with Ds prevents intramolecular
hydrophobic aggregation, for F and L the repulsion of flanking Ds is maybe not sufficient.
Further ML feature development connecting them to biochemical features of ADs will be an
important task for revealing more nuanced rules, allowing us to gain more insights in the
mechanism of AD function.

Discussion

ADs’ functionality has remained enigmatic for decades as ADs do not follow the foundational
biochemistry/molecular biology specificity triad: specific sequence determines specific structure,
which in turn determines specific interactions. Although it was repeatedly demonstrated by
screening of sequence libraries in vivo that ~1% of all random sequences are functional as
ADs*"2324 the extremely high variability of AD sequences is largely either ignored or
underestimated. Considering the 20 amino acid optimal minimum length for ADs’, the whole
combinatorial space constitutes 20*20 sequences and 1% of it is a staggering ~10"24
sequence possibilities for a single gene activator molecule. Absence of structural specificity is
widely accepted, and it is by now a convention to characterize ADs as a typical example of
intrinsically disordered protein regions. The spectrum of AD targets range from basal
transcription factors such as TBP 252°, TFIIB 3937, TFIIH 3233, TFIIA 343° | RNA polymerase Il *,
variable TAFs ¥, Mediator subunits Med17 (Srb4), Srb10, Med15 (Gal11), Med2, and Med 25 3%
45 as well as subunits of chromatin remodeling and histone-modifying complexes such as Ada2,
Taf17, Tra1 (SAGA and NuA4 complexes) 652, Swi1 and Snf2 (SWI/SNF complex) 52°*, and
CBP %57 Some ‘fuzzy’ interactions between Gal4 and Gen4 ADs and Med15 were analyzed in
detail', however it was stated that other equally fuzzy ‘free for all’ interactions are possible with
other coactivators and are not investigated. Understanding ADs remains a difficult, long-
standing fundamental scientific problem?. Solving the AD enigma has foundational practical
importance as multiple diseases including cancer are associated with changes in gene
expression. The correction of the inappropriate expression level by modification of specific
activator AD sequences by genome editing such as CRISPR-Cas9 technology seems to be
increasingly feasible and beneficial; however, it requires first understanding AD sequence
features and creation of ML models able to accurately predict the modified AD activity level.
Decoding the language of ADs is one of the starting points in solving the AD enigma.
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To be able to study the grammar of ADs, we intentionally used sequences which are
enriched in hydrophobic amino acid residues (W, F, Y, L), previously identified to be important
for AD function®>', so that we limit the number of nonfunctional AD sequences and to
significantly increase the number of functional ADs in comparison to random sequence
libraries*”. The main, immediate, and general finding of our study, consistent with previous
reports®7811 is that a significant number of active ADs can be as short as 10 amino acids and
contain balanced acidic/hydrophobic sequences with mixtures of W, F, Y, L amino acids (1236
out of 3071 tested sequences using three different templates Fig. 2). More surprisingly, for a 10
amino acid stretch a high AD activity is achievable by using Ds in combination with only Ws, or
Fs, or Ls, but not Ys (350/1021 in WD10, 363/1022 in FD10 and 225/1023 in LD10 sets, Fig. 4).
In analyzing this large number of functional sequences, even when the composition is limited to
a mix of W, F, Y, L as hydrophobics, or even for only a unique hydrophobic within a 10 amino
acid stretch, no specific minimotif was identified among functional sequences, except for LD10
sequences.

Despite not having even short consensus sequences except for the LD10 set, ADs follow
certain grammar rules that we® and others®® started to formulate and refine based on high
throughput experimental data and informatics analyses. The foundational rules that are clear
from our current and previous?® study are formulated below, but not necessarily in a strict order
of importance: (i) the absence of basic amino acid residues or at least a net negative charge,
see Fig. 6 and 3, (ii) the balance between acidic and hydrophobic, preferably aromatic residues,
see Fig. 2-5 and 35, (iii) with aromatic residues dominating in AD composition over aliphatic
residues, see Fig. 2, 3 and 3, (iv) with acidic and hydrophobic residues preferably not forming
significant acidic or hydrophobic clusters, see Fig. 4, 5, 6 and 3, (v) and with hydrophobic
residues preferably situated closer to the C-terminus and acidic residues situated more
internally, see Fig. 4, 5, 6 and 3. (vi) Additionally, for sequences following the above rules the
functionality increases with an increased number of proline residues, see Fig. 3 and 3.

The analysis of these rules and their relation to the existing models is important for gaining
insights into the biochemical processes involved. Rule (i) suggests that the interacting targets or
target binding sites contain positively charged amino acids; thus, if an AD also has an excess of
positively charged amino acids it creates an electrostatic repulsion which negatively affects AD
function. Rule (ii) suggests that interactions with AD targets likely involve both electrostatic and
hydrophobic interactions, because sequences not containing either hydrophobic or acidic amino
acids are generally not functional*’2*. Additionally, the balance between acidic and hydrophobic
amino acids is also consistent with the “stickers and spacers” idea for IDRs®® and the related
“acidic exposure” model® for ADs, whereby the balanced composition of hydrophobic and
hydrophilic residues keeps hydrophobic residues from forming hydrophobic condensates, thus
readying and exposing them for interactions with functional targets. The significant preference
for aromatic residues in rule (iii) suggests that the AD target interactions do not simply involve
hydrophobic interactions but likely also encompass pi-pi interactions specific for aromatic
residues. Rule (iv) is related in interpretation to rule (ii), as it also ensures that intramolecular
hydrophobic aggregates are not formed. Rule (v) suggests that positioning the hydrophobics at
the spatially free C-terminus ensures the best exposure of hydrophobics.

The results indicating the exceptional benefits of having proline residues within the AD
sequence (Fig. 3) suggest that contrary to the expectations of hydrophobic/acidic amphipathic
helix being beneficial for AD function”'2'4, the presence of proline as a “helix breaker” is highly
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beneficial (rule (vi)). The likely explanation for this phenomenon is that by breaking the helix at
least in the context of the amphipathic helix (Fig. 3), Ps prevent intramolecular interactions
between hydrophobic residues. In this respect the proline phenomenon is in line with rules (ii)
and (iv). Additionally, the proline phenomenon explains the existence of the entire proline rich
class of ADs, which was observed long ago® but never was fully explained.

There are, however, interesting exceptions from the above rules which in some cases can
help us to understand the foundational rules more deeply. For instance, for rule (i) the
occasional presence of positively charged amino acids, as long as it does not greatly reduce the
net negative charge of AD (Fig. 6), modulates the level of AD activity which might be important
during the evolutionary adaptation of the biological object. Similarly, for rule (ii) a deviation from
the acidic/hydrophobic balance also modulates the AD level of activity (Figs. 2, 4, 5). For rule
(iii) all functional ADs within the frame of the flanked template DDDXXXXXDD (Fig. 2E)
constitute a deviation from the no-clusters rule. However, within this template the flanking Ds
likely ensure the solvent exposure of hydrophobics within the cluster by repulsion, which is
similar to the effect of an even and balanced distribution of acidic and hydrophobic residues in
the intermixed template (Fig. 2F). Deviations from rule (iv) also modulate the AD level of activity,
which might be important in evolutionary adaptations.

The example of ADs containing only Ls and Ds as a deviation from rule (iii) deserves special
consideration. Although LD sequences were reported several decades ago®® as possible
candidates for ADs, they are rarely considered as a functional alternative to a typical
aromatic/acidic ADs. It was shown that LXXLL motif is present in multiple coactivators such as
CBP/p300, Rip140, TAFH and others®' playing a facilitating role for the recruitment of these and
other coactivators for the proper transcription activation. In some cases, the L-enriched
sequences are considered important for the function of the gene activator molecule, however
not as ADs but rather as sequence modules influencing the sequence selection/discrimination
by the DNA binding domain of the gene activator'®. According to modern high throughput
experimentation studies in yeast and in human, although ADs are dominated by aromatic and
acidic residues, and largely are consensus-less, the LXXLL motif was indicated to be associated
with AD activities for some sequences'"'2. Previous work based on the ML analysis of large
unbiased datasets of random AD sequence libraries®” showed that typical ADs overwhelmingly
contain aromatic residues as hydrophobic representatives with Ls only occasionally facilitating
aromatic residues. However, our current study shows that LD sequence combinations, although
much rarer than aromatic/acidic sequences (Fig. 4), can create ADs which surpass
aromatic/acidic ADs in level of functionality. The rarity of LD ADs is based on the unique
requirement in this case to have a specific LDL(L/D)DLL consensus (Fig. 5) which is unusual for
ADs as largely consensus-less sequences (Fig. 2 E, F, G, and Fig. 4 A, B, C). In addition, the
usual balance between hydrophobic and acidic residues is shifted in this case toward more
hydrophobics (in this case Ls) due to the LDL(D/L)DLL motif. These facts suggest that the
interacting target of LD AD has very specific structural characteristics. Consistent with this
specificity and suggesting that chirality might be involved is also an observation that inversing of
the LDLDDLL sequence to LLDDLDL (Fig. 5C) or changing position of just two amino acids to
LDLDLDL eliminates the functionality.

The key question regarding the mechanism of ADs’ function is the determination of actual
AD target(s) and thus clarifying the mechanism of action. In this respect functional LD
sequences seem as an exception from the general aromatic/acidic compositional rule and can
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be considered as a special case with a special type of target or special mode of interaction, e.g.
the leucine zipper type of interactions with coactivators. However, the similarity in levels of
activity of ADs with LD composition and ADs with a multitude of all other hydrophobic/acidic
compositions (Figs. 2 - 5) characterized in identical conditions for all sequences within our high-
throughput experimental setup, suggests that the mechanism is possibly universal, because
otherwise for thousands of very compositionally diverse sequence variations there are
thousands of different targets and mechanisms, which is unlikely. The ADs with the LD
composition, because they require more Ls for functionality, a specific motif, and a very special
arrangement of amino acids, likely even in 3D, may then inform us about very special structural
characteristics of the universal target. One such target suggested earlier®%? might be the
interface between the DNA and histones in the nucleosome (Fig 8). The hypothesis of AD
interaction with the DNA/histone interface is consistent with the biochemical analysis of all rules
discussed above. Importantly, the sequences identified in our screen are reminiscent by
chemical nature (aromatic-hydrophilic) to the DNA groove binders such as netropsin and
chromomycin, which recently were shown to initiate the histone octamer translocation in vitro®:.
The universality of the AD mechanism between lower and higher eukaryotes is suggested by
similar composition of ADs between yeast and human®"-'"'2 and the retention of AD
functionality when transferred between biological phyla®4-e.

The ML approach and the ML feature development is a new way to get insights to the
mechanistic aspects of AD function. The fact that PADDLE trained on natural AD sequences'?
and the Attention AD model?' trained on the unbiased random sequence set, both perform
suboptimal on our "synthetic” sequence sets (Fig.7 A-N) is likely because the total combinatorial
space is enormous amounting to ~10”24, and both ML models were trained on comparably tiny
fractions of sequences, with the designed sequences being outside of either training set. Thus,
our sets can be used for additional training of future ML models likely improving their accuracy.
The similarity of the overprediction outcomes for both PADDLE and Mechanistic Predictor which
is based on the composition suggests that hidden ML features of PADDLE, are likely also
dominated by compositional features. The noticeable overpredictions of functional ADs by
PADDLE over more random mistakes by the Attention AD model might suggest that our design
of AD sequences generally reflects the natural selection. The combination of designed AD
approach and further development of ML models, and connection ML and biochemical AD
features is potentially a prospective research direction.

Limitation of study. Although we provide and analyze a massive library of variable
sequences tested for functionality as ADs, our study is limited to in vivo characterizations. The
actual mechanism of AD function—either via direct physical recruitment of coactivators and
transcriptional machinery components, or by the AD action as a surfactant (Fig. 8), or both—
remains unclear, which highlights the fundamental long-standing enigma of eukaryotic gene
regulation. The reasons for the AD problem to be so hard and potential ways to solve it are
reviewed recently 8. To test potential AD target(s) additional in vitro modeling with identified AD
sequences will be necessary in the future.
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FIGURE LEGENDS

Figure 1. Experimental setup and controls. A — Experimental setup: oligo pool synthesis, followed by
cloning in bacteria, then isolation of plasmid library and transformation in yeast, followed by screening for
growth phenotype determined by expression of the reporter gene regulated by the activator with a specific
AD, then isolation of DNA pool, NGS sequencing, and data analysis. For more details see Methods
section and 8. B — raw (not normalized to null sequences) data for three inactive (top) and three
active (bottom) sequences. X-axis: time of cell growth on the medium containing Aureobasidin (days).
Y-axis: CPM(Log2) normalized to 0 time point. Each dot represents the value for an individual biorep
barcode (see methods). C — Library internal controls. X-axis: null sequences and previously characterized
individual sequences; Y-axis: growth slope for cells carrying the individual sequences. Error bars defined
as mean +/- two standard deviations normalized to 0 time point and to null sequences. D — Internal
controls functional reproducibility. X-axis: slope value for individual sequences in HSF1 library#; Y-axis:
normalized slope value for individual sequences in current Gal4 library. E — W and D residue containing
control AD sequences functional reproducibility; X-axis: slope value for individual sequences in previous
WD design library? ; Y-axis: same as in C.

Figure 2. Functionality of balanced acidic/hydrophobic sequences in different arrangement
contexts. A — Functionality of dipeptide repeats with an aspartic acidic (D) residue in the first position of
the dipeptide. Two dipeptide templates: 8 repeats (dotted borders) and 10 repeats (solid borders). X-axis:
individual amino acid used in X positions (blue — basic, red — acidic, green — hydrophilic neutral,
yellow/orange hydrophobic, pink — others); Y-axis: growth slope of cells carrying the individual
sequences. B-D — Functionality of sequences with only one type of hydrOophobic residue (W, F, L, or Y)
within three sequence templates: flanked template (DDDXXXXXDD, panel B), intermixed template
(DXDXDXDXDX, panel C), and amphipathic helix template (XGDGXGDGXGDGXGDGXGDG, panel D).
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Axes same as in A. E-G — Distributions of AD activities of mixed amino acids (W, F, L, and Y) within five X
positions in each sequence template: flanked template (panel E), intermixed template (panel F), and
amphipathic helix template (panel G) (1024 individual sequences for each template). X-axis: template
used; Y-axis: same as in A. Values above violin plots indicate percentage of functional sequences within
each template dataset. Blue bar indicates the average growth slope for sequences above the 0 threshold.
Inset sequence logos depict proportion of each amino acid at each position, for the top 5% (top) and
bottom 5% (bottom) of sequences for each template dataset.

Figure 3. The presence of proline significantly increases the functionality of sequences as ADs in
the context of amphipathic helix template. A — Functionality of sequences with the amphipathic helix
template (WXDXWXDXWXDXWXDXWXDX) where X in all positions represents one of the 20 amino
acids. X-axis: individual amino acids; Y-axis: growth slope of cells carrying the individual sequences. B —
a-helix predictions for each individual sequence. X-axis: helicity probability predicted using Agadir 88; Y-
axis: same as in A. C — Effect of number of proline residues in the G-amphipathic helix template
(WGDGWGDGWGDGWDGDWGDG). X-axis: number of proline residues within the sequence replacing
glycine residues. Y-axis: same as in A. D — Effect of position of proline residues in the G-amphipathic
helix template. X-axis: average position of proline residues, the actual position for sequences with a
single proline residue or the average for sequences with two or three proline residues. Y-axis: same as in
A.

Figure 4. Robust in vivo AD activity displayed by sequences with only a single type of
hydrophobic residue balanced with aspartic acid. A-D — Distributions of AD activities for sequences
containing all combinations across ten positions of D with W (WD10, panel A), F (FD10, panel B), L
(LD10, panel C), or Y (YD10, panel D) (1024 individual sequences for each dataset). X-axis: dataset
used; Y-axis: growth slope of cells carrying the corresponding sequences. Values above violin plots
indicate percentage of functional sequences within each dataset. Blue bar indicates the average growth
slope for sequences above the 0 threshold. Inset sequence logos depict proportion of each amino acid at
each position, for the top 5% (top) and bottom 5% (bottom) of sequences for each dataset. E-G — Effect
of number of hydrophobic residues for WD10 (panel E), FD10 (panel F), and LD10 (panel G) AD
sequences. X-axis: number of W, F, or L residues. Y-axis same as in A. Values above boxplots indicate
percentage of functional sequences within each data subset. H-J — Effect of position of hydrophobic (W,
F, or L) and D residues for WD10 (panel H), FD10 (panel I), and LD10 (panel J) AD sequences. X-axis:
position of residues within the 10 positions of the sequences. Y-axis: percent of cells carrying the
corresponding sequences that have a growth slope above the functionality threshold. Horizontal lines
correspond to the overall percent functionality of each template dataset. K-M — Effect of hydrophobic
clusters for WD10 (panel K), FD10 (panel L), and LD10 (panel M) AD sequences. X-axis: Patterning
parameter?® where small values correspond to fewer clusters of the same residue (see Methods). Y-axis:
same as in A.

Figure 5. Highest activity LD10 AD sequences have an LDL(D/L)DLL motif with an important
LDDLL core sequence. A — LDL(D/L)DLL motif (inset sequence logo) identified using the MEME motif
discovery tool'” in 40 of the top 50 functional LD10 sequences. Activities of sequences containing a single
amino acid variation within the LDL(D/L)DLL motif. X-axis: sequence variants (substituted residue
underlined). Y-axis: growth slope of cells carrying the corresponding sequences. B — Activity
discrimination of the LDL(D/L)DLL motif. X-axis: presence or absence of the motif in the sequence. Y-
axis: same as in A. C — Activity discrimination of the inversed LLD(L/D)LDL motif. Axes: same as in A. D —
Effect of position of the L(D/L)DLL core motif within the sequence. X-axis: distance of motif from the N-
terminus of the AD (color coded) within sequences containing LDDLL or LLDLL. Y-axis: same as in A. E —
Effect of number of L residues for sequences with the L(D/L)DLL core motif within the sequence. X-axis:
number of L residues (color coded) within sequences containing LDDLL or LLDLL motif. Y-axis: same as
in A. F — Effect of position of L and D residues for sequences with the L(D/L)DLL core motif (either LDDLL
or LLDLL present) within the sequence. X-axis: position of residues within the 10 positions of the
sequences. Y-axis: percent of cells carrying the corresponding sequences with a growth slope above the
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functionality threshold. Horizontal line corresponds to overall percent functionality of the L(D/L)DLL core
motif containing sequences. G — Effect of hydrophobic clusters for sequences with the L(D/L)DLL core
motif (either LDDLL or LLDLL present) within the sequence X-axis: Patterning parameter?® where small
values correspond to fewer clusters of same residue (see Methods). Y-axis: same as in A.

Figure 6. Presence of positively charged residues negatively affects AD functionality. A — Effect of
number of arginine residues in the flanked template (GGGGGDDDWWWWWDDGGGGG) with R
residues replacing G residues. X-axis: number of arginine residues within the sequence. Y-axis: growth
slope of cells carrying the corresponding sequences. B — Effect of position of arginine residues in the
flanked template. X-axis: average position of arginine residues. Y-axis: same as in A. C — Effect of
clustered arginine residues for sequences containing two arginine residues. X-axis: sequence groups
based on position of residues: both residues upstream of the AD (N-cluster), both residues downstream
of the AD (C-cluster), and residues on either side of the AD (Spaced). Y-axis: same as in A.

Figure 7. Performance and comparison of ML models PADDLE and Attention AD, and Mechanistic
Predictor. A-N — PADDLE ML model” (panels A, B, C, G, H, I, & J) and Attention AD model?®' (panels D,
E, F, K, L, M, & N) used to predict functionality across seven sets of sequences: Flanked WYFL (panels
A-B), Intermixed WYFL (panels B-E), Amphipathic Helix WYFL (panels C-F), WD10 (panels G-K), FD10
(panels H-L), LD10 (panels I-M), and YD10 (panel J-N). X-axis: Z-scores represent predicted probability
of functionality using PADDLE (see Methods) with scores greater than a threshold of 4 predicted to be
functional”. Probability values represent predicted probability of functionality using Attention_AD with
scores greater than a threshold of 0.5 predicted to be functional. Y-axis: growth slope of cells carrying the
corresponding sequences. Values in the upper left corner of each panel are the correlation between the
growth slope and prediction (r), area under the ROC curve (AUC) and the fraction accurately predicted
(Acc). O — A modified Mechanistic Predictor® used to predict functionality across seven sets of
sequences. The modified predictor applied to sequences with a total length of 20 residues: Functional
ADs = [-6.5 <= Net Charge <= -4 & Number of W, F, and L Residues >=3]. Distributions of sequences
predicted to be functional (solid borders) and sequences predicted to be non-functional (dotted borders).
X-axis: dataset used; Y-axis: same as in A. Values on the graph represent the percent of experimentally
determined functional sequences out of the sequences predicted to be functional using the modified
mechanistic predictor. P-R — Average scores for three rules: balance (panel P), position (panel Q), and
clustering (panel R) within sequences correctly predicted (true positives (TP) and true negatives (TN))
and incorrectly predicted (false positives (FP) and false negatives (FN)) to be activation domains by
PADDLE (solid borders) and Attention AD (dotted borders). Deviation from balance is the absolute value
of the difference in number of acidic and hydrophobic residues. C-terminal preference is the slope
calculated from a best fit line where the X-axis was 1-10 for the ten positions of each sequence and the
Y-axis was the number of sequences that had a hydrophobic residue at each position, with a greater
preference indicating more hydrophobic residues toward the C-terminus (see Fig. 4 panels H, |, J).

Figure 8. Proposed mechanism for AD peptide action. On the nucleosome surface the AD peptide
(e.g. DDDWWWWWDD or LLDLDLDDLL) interacts with DNA bases via hydrophobic residues (in case of
aromatic residues — via intercalation) while interacting with histone tails by electrostatic contacts between
acidic residues of the AD peptide and basic residues of histone tails. Created bulge of DNA later is
propagated by a chromatin remodeler, similar to the proposed action of DNA groove binders®3, so that the
histone octamer is translocated away from the gene promoter opening it for the transcription initiation
complex assembly. Note: the structures of depicted peptides are predicted by AlphaFold2 ML model®°,
which for the LD peptide suggests that the structure is amphipathic with all Ls situated on one side
possibly aligning with the DNA groove. Elements of figure created with BioRender.com.
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STAR Methods
RESOURCE AVAILABILITY

Lead Contact. Requests for further information and resources should be directed to the lead contact,

Alexandre Erkine (aerkine@butler.edu).

Data and code availability.

- The datasets generated for this study are available in the Gene Expression Omnibus (GEO)

repository, in series GSE277056.

- Code used for data analysis and figure generation is provided at

https://doi.org/10.5281/zenodo.13351327

Key resources table

REAGENT or RESOURCE SOURCE IDENTIFIER

Raw sequencing data This paper GEO: GSE277056

Analyzed data This paper Zenodo:
https://doi.org/10.5281
/zenodo.6461744

Software and algorithms

Analysis code This paper Zenodo:
https://doi.org/10.5281
/zenodo.6461744

cutadapt Martin, M.7° https://pypi.org/project/c
utadapt/

STAR Dobin, A. et al.™ https://github.com/alexd
obin/STAR

PADDLE Sanborn, A.L. et al.? https://github.com/asan

born/PADDLE

LSTM Attention-AD

Wang, X. & Kihara, D.?

https://github.com/kih
aralab/Attention AD

Other

Yeast strain Y2HGold Takara Cat# 630498
Plasmid pGBKT7 Takara Cat# 630489
Plasmid pRS314 Addgene Cat# 77143

METHOD DETAILS

Library Construction, Cloning, and Screening

The parental library plasmid was constructed by cloning the fragment containing the ADH1
promoter and the Gal4(1-147) DBD cassette, PCR amplified from the commercially available pGBKT7
vector. The PCR fragment was cloned into the Sac/ and Kpnl sites of the centromeric yeast shuttle vector

pRS314.

The design library containing 12,400 individual sequences each 60 nucleotide long. Individual
sequences are described for each figure. If sequences are less than 20 amino acid residues the
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remaining space was filled by glycine codons, as it was shown previously that glycine is neutral for the
AD activity38. Each library sequence had an individual 20-nucleotide barcode directly following the stop
codon to improve alignment performance. The library was synthesized at the GenScript commercial
facility, amplified by PCR five times (each time appending a unique Biological Replicate (BioRep)
barcode), quantitated for the DNA content, and mixed in equal proportions into a single pool. For
description of more detailed steps, see Fig. S4. The pool was cloned into the Ncol and Sall restriction
sites remaining from the pGBKT7 fragment of the parental library plasmid. The library complexity was
estimated by individual colony counts after transformation for a fraction of the total transformation mix,
then multiplying by the fraction factor. Total complexity was estimated to be ~10”6. The total content of
individual sequences within the library was determined by NGS at GenScript. The NGS also confirmed
the in-frame fusion of AD sequences to the Gal4 DBD region. After the bacterial cloning and verification,
the plasmid library was isolated for the following yeast transformation.

The isolated plasmid library was transformed into the yeast strain Y2HGold, available
commercially from Clontech/Takara. The maintenance of the library complexity was determined by the
individual colony count for a fraction of a transformation mix as described above for the bacterial
transformation. The number of individual yeast transformants for the entire library was estimated to be
~1076. After transformation, the whole-library cell culture was transferred into the —trp synthetic yeast
growth medium containing 200 ug/mL of aureobasidin and grown for four days with daily 1/100 dilution to
maintain the culture in the mid-log phase. Cell culture samples were taken at 0, 1, 2, 3, and 4 days. DNA
was isolated using a Thermo Scientific Pierce Yeast DNA Extraction Reagent Kit. The library component
was isolated by PCR using the Invitrogen AccuPrime SuperMix | kit with primers containing lllumina
adapters and barcodes unique for each DNA sample. DNA samples were controlled for purity, repeatedly
quantitated for DNA content, and sequenced at the NovoGene commercial facility.

QUANTIFICATION AND STATISTICAL ANALYSIS
Sequence Processing

For each sample, cutadapt’® was used to demultiplex by BioReps, remove adapter barcodes, and
remove sequence reads shorter than 73 residues. Reads from the design library were mapped using
STAR"! to a pseudo-genome of 12,400 sequences. The pseudo-genome was built using the 12,400
designed sequences, with their unique barcodes, each represented as its own “chromosome.” The
pseudo-genome is a general feature format file with one “gene” assigned to each “chromosome.”
Successful mapping required a perfect match (allowing no mismatches). For each sample, the output
read (gene) count file was used as the input for further data processing.

Estimation of Sequence Growth Rates

Data processing and analyses were conducted in R version 4.2.3 72 . Correlations among the
read counts of biological replicates (BioReps) were calculated to ensure reasonable consistency. For
each sample, counts for each sequence were converted to log transformed counts per million. The counts
were then normalized to the average count for each sequence at the initial timepoint. Sequences
detected in fewer than two of the five BioReps at the initial timepoint were removed (366 sequences).
Sequences where counts drop to 0 at the first growth timepoint were removed (78 additional sequences),
as no accurate growth slope could be calculated. Robust linear regression (implemented in the MASS
package in R) was used to estimate the growth slope of each sequence over time; this was our final
estimate for the functionality of each sequence. Growth slopes were calculated for the remaining 11,956
sequences using all BioReps at the initial timepoint and first growth timepoint. The intercept was not
defined, though expected to be ~0 based on normalization. A functionality threshold was determined as
the mean growth slope + 2 standard deviations for the non-functional stop-codon controls (n=97). The
functionality threshold was subtracted from all slopes to set the threshold to zero. Sequences with
adjusted growth slopes greater than zero are considered functional. Percent functionality corresponds to
the percentage of sequences in a group with a slope greater than zero.
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Sequence Sets

The library contained several control sequence sets: sequences comprised solely of a stop-codon
(n=97), 8 replicates of 24 natural AD sequences (n=192), and 8 replicates of 3 previously tested
sequences containing W and D residues (n=24). In addition to the controls, the library was comprised of
various sequence sets that cover the combinatorial space for a given sequence template. All dipeptide
combinations repeated 4, 6, 8, or 10 times (n=1421). Aromatic/hydrophobic (W, Y, F, or L) and aspartic
acid (D) residues in a ten-residue sequence: WD10 (n=1022), YD10 (n=997), FD10 (n=1022), and LD10
(n=1023). Flanked template (GGGGGGGGGGDDDXXXXXDD) with all combinations of W, Y, F, and L
residues in place of X (n=1020). Flanked template (GGGGDDDWWWWWDDGGGGG) with 1, 2, or 3
glycine residues replaced with arginine residues (n=176). Intermixed template
(GGGGGGGGGGDXDXDXDXDX) with all combinations of W, Y, F, and L residues in place of X
(n=1019). Amphipathic template (XGDGXGDGXGDGXGDGXGDG) with all combinations of W, Y, F, and
L residues in place of X (n=1024). Amphipathic template (WGDGWGDGWGDGWGDGWGDG) with all
glycine residues replaced with other amino acids (n=18) or 1, 2, or 3 glycine residues replaced with
proline residues (n=175).

Sequence Feature Analyses

Among each set of sequences, the effects of the following sequence features on function were
determined for aromatic/hydrophobic and basic residues: number of residues, balance of different
residues, position of residues, clustering of residues, and multiresidue motifs. Balance refers to an equal
number of aromatic/hydrophobic and basic residues. The effect of the position of residues along each AD
was visualized as the percent of all sequences with the specified residue at the specified position that
were functional or through sequence logos for groups of sequences. Sequence logos (prepared using
ggseglogo package in R) depict proportion of each residue at each position within a set of sequences.

Clustering refers to grouping of the same consecutive residue. Clustering was calculated using
the “patterning parameter” metric defined by Martin et al 2. In brief, the “patterning parameter” was
calculated as the average deviation of local sequence aromatic asymmetry from total sequence aromatic
asymmetry normalized to the maximally clustered score. “Aromatic” (W, F, or L residues in this study)
asymmetry is the difference between the fraction of the AD sequence thatis W, F, or L residues and the
fraction of the AD sequence that is D residues. The total sequence is 10 residues while the local
sequences are 5 residue wide windows scanning through each sequence. A maximally clustered
sequence in this context would have 5 consecutive W, F, or L residues and then 5 consecutive D
residues (or the inverse). This sequence has the lowest possible total sequence aromatic asymmetry (0.5
— 0.5, perfectly symmetrical) and the highest possible local sequence aromatic asymmetry (1 — 0 or 0 — 1)
with two of six windows with only one type of residue. Normalizing to the maximally clustered sequence
sets this sequence to a “patterning parameter” value of 1 while the least clustered sequences will have
scores approaching 0.

For sequences with 1-3 proline or arginine residues inserted across AD sequences, the average
position of these residues was calculated for each sequence by first assigning the 20 positions of each
AD with values from 1-20 and then averaging the values that correspond to the position of the proline or
arginine residues.

Logistic Regression

For the WD10, FD10, and LD10 sets, the number of hydrophobic residues, deviation from
balance, average position, and clustering were converted into features scaled to scores between 0 and 1.
The number of hydrophobic residues is a count of the number of residues within each 10-position long
sequence. The deviation from balance was calculated by taking the absolute value of the difference
between the number of hydrophobic and acidic residues in each sequence. The average position of
hydrophobic residues was calculated the same way as the average position of proline or arginine
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residues described above. For these three features the maximum value was 10 (10 hydrophobic
residues, a completely imbalanced sequence with a deviation of 10, or a sequence with a single
hydrophobic residue at position 10), so these features were all scaled by dividing each score by 10. The
“patterning parameter” was directly used as the clustering feature. The effect of each of these features on
predicting functionality were determined using logistic regression (stats package in R). Coefficient
estimates for the model for each set represent the average change in the log odds of a sequence being
functional per increase in each rule value from a value of 0 to 1.

Mini-Motif Analysis

Minimotifs enriched in functional sequences were determined systematically by calculating the
average slope for all sequences containing each combination of residues for 3-8 residue wide windows.
Minimotifs were also identified among the top 50 functional LD10 sequences using MEME'"'®, To ensure
identification of all significant minimotifs using MEME, default settings were used expect for minimum
motif width that was decreased to 3 and number of motifs to search for increased to 20. Subsequent
analyses were conducted on sequence subsets that were prepared using regular expressions to select
sequences that contain specified motifs.

Secondary Structure Prediction and Analysis

For each unique 20-aa-long AD sequence, secondary structure prediction was performed with
SPOT-1D"3, and helicity prediction was performed with Agadir6®.

Functional AD Prediction Models

Three separate models trained and designed based on natural AD sequences were applied to the
design library to predict functionality: PADDLE ML model'?, Long Short-Term Memory model with
Attention AD mechanism 21, and the Mechanistic Predictor®. To apply the PADDLE and Attention AD
models to the library, each sequence was supplied alongside a set of 20 background sequences so that
each sequence could be embedded in the background sequences to produce sequences of the required
residue lengths (53 for PADDLE, 30 for Attention). The background sequences were generated randomly
to contain equal amounts of the residues A, G, S, T, N, Q, and V. The no secondary structure PADDLE
model was then applied to those inputs which generates Z-scores based on the probability of being an
active transcription activation domain. The Attention AD model provides probabilities of functionality, for
which we selected 0.5 as a cutoff.

The Mechanistic Predictor (MP) is an experimentally informed and empirically modified set of
conditions to predict functional ADs. The MP, based on a library of sequences with 39 residues:
Functional ADs = [-13 <= Net Charge <= -8 & Number of W, F, and L Residues >=6]. As our library
consists of sequences with a total length of 20 residues, the MP had to be modified to be applied to our
library by halving all the numeric cutoffs. The modified predictor applied to our library with sequences with
a total length of 20 residues: Functional ADs = [-6.5 <= Net Charge <= -4 & Number of W, F, and L
Residues >=3]. Net Charge is determined for each sequence by adding 1 for each basic residue (R, K,
and H) and subtracting 1 for each acidic residue (D and E). The modified MP was then applied to each
sequence in the library resulting in either a prediction of a functional or nonfunctional AD.
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Figure 1. Experimental setup and controls. A — Experimental setup: oligo pool synthesis,
followed by cloning in bacteria, then isolation of plasmid library and transformation in yeast,
followed by screening for growth phenotype determined by expression of the reporter gene
regulated by the activator with a specific AD, then isolation of DNA pool, NGS sequencing, and
data analysis. For more details see Methods section and 8. B — raw (not normalized to null
sequences) data for three inactive (top) and three active (bottom) sequences. X-axis: time of
cell growth on the medium containing aureobasidin (days). Y-axis: CPM(Log2) normalized to 0
time point. Each dot represents the value for an individual biorep barcode (see methods). C —
Library internal controls. X-axis: null sequences and previously characterized individual
sequences; Y-axis: growth slope for cells caring the individual sequences normalized to 0 time
point and to null sequences. Error bars defined as mean +/- two standard deviations. D —
Internal controls functional reproducibility. X-axis: slope value for individual sequences in HSF1
library*; Y-axis: normalized slope value for individual sequences in current Gal4 library. E — W
and D residue containing control AD sequences functional reproducibility; X-axis: slope value
for individual sequences in previous WD design library® ; Y-axis: same as in C.
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Figure 2. Functionality of balanced acidic/hydrophobic sequences in different arrangement
contexts. A — Functionality of dipeptide repeats with an aspartic acidic (D) residue in the first position of
the dipeptide. Two dipeptide templates: 8 repeats (dotted borders) and 10 repeats (solid borders). X-axis:
individual amino acid used in X positions (blue — basic, red — acidic, green — hydrophilic neutral,
yellow/orange hydrophobic, pink — others); Y-axis: growth slope of cells carrying the individual
sequences. B-D — Functionality of sequences with only one type of hydrophobic residue (W, F, L, orY)
within three sequence templates: flanked template (DDDXXXXXDD, panel B), intermixed template
(DXDXDXDXDX, panel C), and amphipathic helix template (XGDGXGDGXGDGXGDGXGDG, panel D).
Axes same as in A. E-G — Distributions of AD activities of mixed amino acids (W, F, L, and Y) within five
X positions in each sequence template: flanked template (panel E), intermixed template (panel F), and
amphipathic helix template (panel G) (1024 individual sequences for each template). X-axis: template
used; Y-axis: same as in A. Values above violin plots indicate percentage of functional sequences within
each template dataset. Blue bar indicates the average growth slope for sequences above the 0 threshold.
Inset sequence logos depict proportion of each amino acid at each position, for the top 5% (top) and
bottom 5% (bottom) of sequences for each template dataset.
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Figure 3. The presence of proline significantly increases the functionality of
sequences as ADs in the context of amphipathic helix template. A — Functionality of
sequences with the amphipathic helix template (WXDXWXDXWXDXWXDXWXDX)
template where X in all positions represents one of the 20 amino acids. X-axis: individual
amino acids; Y-axis: growth slope of cells carrying the individual sequences. B — a-helix
predictions for each individual sequence. X-axis: helicity probability predicted using Agadir
(Mufioz & Serrano, 1994); Y-axis: same as in A. C — Effect of number of proline residues
in the G-amphipathic helix template (WGDGWGDGWGDGWDGDWGDG). X-axis:
number of proline residues within the sequence replacing glycine residues. Y-axis: same
as in A. D — Effect of position of proline residues in the G-amphipathic helix template. X-
axis: average position of proline residues, the actual position for sequences with a single
proline residue or the average for sequences with two or three proline residues. Y-axis:
same as in A.
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Figure 4. Robust in vivo AD activity displayed by sequences with only a single type of hydrophobic residue balanced
with aspartic acid. A-D — Distributions of AD activities for sequences containing all combinations across ten positions of D
with W (WD10, panel A), F (FD10, panel B), L (LD10, panel C), or Y (YD10, panel D) (1024 individual sequences for each
dataset). X-axis: dataset used; Y-axis: growth slope of cells carrying the corresponding sequences. Values above violin plots
indicate percentage of functional sequences within each dataset. Blue bar indicates the average growth slope for sequences
above the 0 threshold. Inset sequence logos depict proportion of each amino acid at each position, for the top 5% (top) and
bottom 5% (bottom) of sequences for each dataset. E-G — Effect of number of hydrophobic residues for WD10 (panel E), FD10
(panel F), and LD10 (panel G) AD sequences. X-axis: number of W, F, or L residues. Y-axis same as in A. Values above
boxplots indicate percentage of functional sequences within each data subset. H-J — Effect of position of hydrophobic (W, F, or
L) and D residues for WD10 (panel H), FD10 (panel I), and LD10 (panel J) AD sequences. X-axis: position of residues within
the 10 positions of the sequences. Y-axis: percent of cells carrying the corresponding sequences that have a growth slope
above the functionality threshold. Horizontal lines correspond to the overall percent functionality of each template dataset. K-M
— Effect of hydrophobic clusters for WD10 (panel K), FD10 (panel L), and LD10 (panel M) AD sequences. X-axis: Patterning
parameter?® where small values correspond to fewer clusters of the same residue (see Methods). Y-axis: same as in A.
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Figure 5. Highest activity LD10 AD sequences have an LDL(D/L)DLL motif with an important
LDDLL core sequence. A — LDL(D/L)DLL motif (inset sequence logo) identified using the MEME
motif discovery tool'” in 40 of the top 50 functional LD10 sequences. Activities of sequences
containing a single amino acid variation within the LDL(D/L)DLL motif. X-axis: sequence variants
(substituted residue underlined). Y-axis: growth slope of cells carrying the corresponding sequences.
B — Activity discrimination of the LDL(D/L)DLL motif. X-axis: presence or absence of the motif in the
sequence. Y-axis: same as in A. C — Activity discrimination of the inversed LLD(L/D)LDL motif. Axes:
same as in A. D — Effect of position of the L(D/L)DLL core motif within the sequence. X-axis: distance
of motif from the N-terminus of the AD (color coded) within sequences containing LDDLL or LLDLL.
Y-axis: same as in A. E — Effect of number of L residues for sequences with the L(D/L)DLL core motif
within the sequence. X-axis: number of L residues (color coded) within sequences containing LDDLL
or LLDLL motif. Y-axis: same as in A. F — Effect of position of L and D residues for sequences with
the L(D/L)DLL core motif (either LDDLL or LLDLL present) within the sequence. X-axis: position of
residues within the 10 positions of the sequences. Y-axis: percent of cells carrying the corresponding
sequences with a growth slope above the functionality threshold. Horizontal line corresponds to
overall percent functionality of the L(D/L)DLL core motif containing sequences. G — Effect of
hydrophobic clusters for sequences with the L(D/L)DLL core motif (either LDDLL or LLDLL present)
within the sequence X-axis: Patterning parameter2® where small values correspond to fewer clusters
of same residue (see Methods). Y-axis: same as in A.
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Figure 6. Presence of positively charged residues negatively affects AD functionality. A —
Effect of number of arginine residues in the flanked template (GGGGGDDDWWWWWDDGGGGG)
with R residues replacing G residues. X-axis: number of arginine residues within the sequence. Y-
axis: growth slope of cells carrying the corresponding sequences. B — Effect of position of arginine
residues in the flanked template. X-axis: average position of arginine residues. Y-axis: same as in A.
C - Effect of clustered arginine residues for sequences containing two arginine residues. X-axis:
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residues downstream of the AD (C-cluster), and residues on either side of the AD (Spaced). Y-axis:

same as in A.
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Figure 7. The PADDLE ML model and Mechanistic Predictor trained/designed on natural AD sequences overpredict the
functionality of “synthetic” ADs. A-N — PADDLE ML model'? (panels A, B, C, G, H, I, & J) and Attention_AD model 2! (panels D,
E, F, K, L, M, & N) used to predict functionality across seven sets of sequences: Flanked WYFL (panels A-B), Intermixed WYFL
(panels B-E), Amphipathic Helix WYFL (panels C-F), WD10 (panels G-K), FD10 (panels H-L), LD10 (panels I-M), and YD10 (panel
J-N). X-axis: Z-scores represent predicted probability of functionality using PADDLE (see Methods) with scores greater than a
threshold of 4 predicted to be functional. Probability values represent predicted probability of functionality using Attention_AD with
scores greater than a threshold of 0.5 predicted to be functional. Y-axis: growth slope of cells carrying the corresponding
sequences. Values in the upper left corner of each panel are the correlation between the growth slope and prediction (r), area under
the ROC curve (AUC) and the fraction accurately predicted (Acc). O — A modified Mechanistic Predictor® used to predict
functionality across seven sets of sequences. The modified predictor applied to sequences with a total length of 20 residues:
Functional ADs = [-6.5 <= Net Charge <= -4 & Number of W, F, and L Residues >=3]. Distributions of sequences predicted to be
functional (solid borders) and sequences predicted to be non-functional (dotted borders). X-axis: dataset used; Y-axis: same as in A.
Values on the graph represent the percent of experimentally determined functional sequences out of the sequences predicted to be
functional using the modified mechanistic predictor. P-R — Average scores for three rules: balance (panel P), position (panel Q), and
clustering (panel R) within sequences correctly predicted (true positives (TP) and true negatives (TN)) and incorrectly predicted
(false positives (FP) and false negatives (FN)) to be activation domains by PADDLE (solid borders) and Attention_AD (dotted
borders). Deviation from balance is the absolute value of the difference in number of acidic and hydrophobic residues. C-terminal
preference is the slope calculated from a best fit line where the X-axis was 1-10 for the ten positions of each sequence and the Y-
axis was the number of sequences that had a hydrophobic residue at each position (see Fig. 4 panels H, |, J).
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Figure 8. Proposed mechanism for AD peptide action. On the nucleosome surface the AD
peptide (e.g. DDDWWWWWDD or LLDLDLDDLL) interacts with DNA bases via hydrophobic
residues (in case of aromatic — intercalating) while interacting with histone tails by electrostatic
contacts between acidic residues of the AD peptide and basic residues of histone tails. Created
bulge of DNA later is propagated by a chromatin remodeler, similar to proposed action of DNA
groove binders (PMID: 36574674), so that the histone octamer is translocated away from the gene
promoter opening it for the transcription PIC assembly. Note: the structures of depicted peptides
are predicted by AlfaFold 2 ML model, which at least for the LD peptide suggests that the
structure is amphipathic with all Ls situated on one side, thus possibly able to create multiple
contacts with the DNA groove. Elements of figure created with BioRender.com.
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Figure S1. Compositional and positional analysis of functional AD sequences in context of
flanked, intermixed, and amphipathic helix templates, related to Figure 1. A-D — Effect of
number of hydrophobic residues: W (panel A), F (panel B), L (panel C), or Y (panel D) within three
sequence templates: flanked template (DDDXXXXXDD, red), intermixed template (DXDXDXDXDX,
blue), and amphipathic helix template (XGDGXGDGXGDGXGDGXGDG, yellow). X-axis: number of
residues. Y-axis: growth slope of cells carrying the corresponding sequences. E-G — Effect of
position of hydrophobic residues: W, F, L, or Y within three sequence templates: flanked template
(panel E), intermixed template (panel F), and amphipathic helix template (panel G). X-axis: position
of W, F, L, or Y residues within the 5 X positions of the template sequence. Y-axis: percent of cells
carrying the corresponding sequences that have a growth slope above the functionality threshold.
Horizontal lines correspond to the total percent functionality of each template dataset.
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Figure S2. Search for SLiMs in WD10, FD10, and LD10 datasets identifies a spectrum of
short sequences enriched for in vivo active ADs, related to Figure 4. A-C — AD activity heat
maps for all possible 3 to 8-residue long sequences for WD10 (panel A), FD10 (panel B), and
LD10 (panel C) datasets. Cell shading corresponds to average growth slope for all sequences
containing the designated mini-motif short sequence.
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Figure S3. Activity of sequences containing large clusters of hydrophobic
residues, related to Figure 4 and 5. A-C — Sequences with a single hydrophobic
cluster flanked entirely by D residues. D-F — Sequences with a hydrophobic cluster
[defined as a set number of hydrophobics flanked by 2 D residues, or flanked by 1 D
residue directly before the edge, or present at either edge of the sequence] with the
remaining residues being all possible combinations of hydrophobic and D residues.
(extracted from the WD10, FD10, and LD10 sets).



A Synthesized Fwd Ampl Rev Ampl

i seq Mscl/Ncol . se
on chip q Cbrary S1P LibrBC q
Length of synthesis = 137 nt
33 60 3 20 21
B Amplicon T S0/t
from chip <«—— N
Biorep
BC
s il o Rev Am%IO_Srzll/Pstl/Notl
seq Mscl/Ncol Library P Libr BC seq BC P
End product Il T (N ]
Length = 175 bp 33 60 3 20 21 8 41

C Creation ofthe Cut with Ncol and Sall (or other REs) and ligate into parental vector,
plasmid library (or use recombination), clone library in E.coli, then in Yeast, and screen.

End product Insert length = 145 bp

Plasmid _:_ [E plasmid

6.5 KB 60 20 21 8 6.5 KB

D Sample preparation for sequencing

P5seqPr
—
T T (W
P5 PS5 BC
ARl = — D P7seqPr
O T s (W
Length = 313 bp
End product <P7BC P7
(Hlumina amplicon)
P5seqPr Rev AmplBlorep P7seqPr
PS5  P5BC Ascl Library STP |iprBC seq Sacl  p7BC  p7
e -:— l:-
29 7 33 7168 60 20 21 8 630 34 7 24
E Illlumina

. Rev Ampl
Sequencing Readl

P5 PSBC —”  Ncol Library S©P [ibr BC
e

Read?2

seq .
PP sall—> p7BC P7

<« <«
Read3 Read4

Figure S4. Schematic representation of wet lab steps for library sample
preparations, related to Star Methods.: A — massive parallel synthesis of the design
library; B — BioRep barcodes appending; C — cloning into parental yeast shuttle vector;
D — sample preparation for NGS lllumina sequencing; E — sequencing at lllumina
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Flanked Intermixed Amphipathic Helix

Group Percent Average Percent Average Percent Average | Number in
Functional Slope Functional Slope Functional Slope Group

W5LOFOYO . 0.22 1

W4L1FOYO 0.55 5

W4LOF1Y0 0.66 5

W4LOFOY1 J -0.18 5

W3L2F0YO0 0.29 10
W3L1F1Y0 0.64 20
W3L1FOY1 J -0.27 20
W3LOF2Y0 0.85 10
W3LOF1Y1 J J -0.08 20
W3LOFOY2 J -0.76 10
W2L3F0YO0 -0.45 10
W2L2F1Y0 0.10 30
W2L2F0Y1 i d -0.73 30
W2L1F2Y0 0.45 30
W2L1F1Y1 . J -0.38 60
W2L1FOY2 5 ’ -1.02 30
W2LOF3Y0 s 0.74 10
W2L0F2Y1 4 -0.15 30
W2LOF1Y2 . -0.84 30
W2LOFOY3 -1.20 10
W1L4FOYO J -1.48 5

W1L3F1Y0 s -0.99 20
W1L3FOY1 d -1.38 20
W1L2F2Y0 . -0.44 30
W1L2F1Y1 -1.09 60
W1L2FOY2 30
W1L1F3Y0 20
W1L1F2Y1 60
W1IL1F1Y2 60
W1L1FOY3 20
W1LOF4Y0 5

W1LOF3Y1 20
W1LOF2Y2 30
W1LOF1Y3 20
W1LOFOY4 5

WOL5FOYO0 1

WOL4F1Y0 5

WOL4FOY1 5

WOL3F2Y0 10
WOL3F1Y1 20
WOL3F0Y2 10
WOL2F3Y0 10
WOL2F2Y1 30
WOL2F1Y2 30
WOL2FO0Y3 10
WOL1F4Y0 5

WOL1F3Y1 20
WOL1F2Y2 30
WOL1F1Y3 20
WOL1FOY4 5

WOLOF5Y0 1

WOLOF4Y1 5

WOLOF3Y2 10
WOLOF2Y3 10
WOLOF1Y4 5

WOLOFOY5 1

Table S1. Diverse sequence compositions produce functional ADs across three
templates, related to Figure 2. Templates — Flanked (DDDXXXXXDD), Intermixed
(DXDXDXDXDX), and Amphipathic Helix (XGDGXGDGXGDGXGDGXGDG). Group —
Description of sequence composition with numbers of each residue (W, L, F, and Y). Number in
Group — Number of unique sequences with a given sequence composition. Percent Functional
— Percent of cells carrying the corresponding sequences that have a growth slope above the
functionality threshold. Cells shaded with a gradient from 100% (green) to 0% (red). Average
Slope — Average growth slope across cells carrying the corresponding sequences. Cells shaded
with a gradient from high positive slope (blue) to low negative slope (red).



Clustering

Number of Deviation from Average position of (Patterning
hydrophobics Balance hydrophobics Parameter)
WD10 10.67 -9.67 11.18 -4.37
FD10 11.48 -18.19 16.13 -16.42
LD10 17.76 -8.93 7.87 -8.16

Table S2. Logistic regression coefficient estimates for grammar rules on WD10, FD10,
and LD10 sequences, related to Figure 7. Logistic regression models were computed for
each set (WD10, FD10, LD10) to confirm the effect of the rules on functionality of ADs. Input
values for each rule were calculated for each sequence and scaled as necessary to values
between 0 and 1 (see methods, Logistic Regression). Output values represent average change
in the log odds of a sequence being functional per unit increase in each rule value. All rules
contribute to the functionality prediction for all three sets (p<0.001). Negative values for balance
and clustering represent that sequences with larger values for these rules are less likely to be
functional.
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