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There is an increasing realization that algorithmic inductive biases are central in preventing
overfitting; empirically, we often see a benign overfitting phenomenon in overparameterized
settings for natural learning algorithms, such as stochastic gradient descent (SGD), where
little to no explicit regularization has been employed. This work considers this issue in
arguably the most basic setting: constant-stepsize SGD (with iterate averaging or tail
averaging) for linear regression in the overparameterized regime. Our main result provides
a sharp excess risk bound, stated in terms of the full eigenspectrum of the data covariance
matrix, that reveals a bias-variance decomposition characterizing when generalization is
possible: (i) the variance bound is characterized in terms of an effective dimension (specific
for SGD) and (ii) the bias bound provides a sharp geometric characterization in terms of
the location of the initial iterate (and how it aligns with the data covariance matrix). More
specifically, for SGD with iterate averaging, we demonstrate the sharpness of the established
excess risk bound by proving a matching lower bound (up to constant factors). For SGD
with tail averaging, we show its advantage over SGD with iterate averaging by proving
a better excess risk bound together with a nearly matching lower bound. Moreover, we
reflect on a number of notable differences between the algorithmic regularization afforded by
(unregularized) SGD in comparison to ordinary least squares (minimum-norm interpolation)
and ridge regression. Experimental results on synthetic data corroborate our theoretical
findings .
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1. Introduction

A widely observed and yet still striking phenomenon is that modern machine learning
models (e.g., deep neural networks) trained by stochastic gradient descent often generalize
while also achieving near-zero training error (i.e., despite being overparameterized and
under-regularized 2. See Belkin et al. (2020) for further discussion.). There is reason to
believe that characterizing these effects even in conceptually simpler (e.g. linear model)
settings will also help our understanding of more complex settings, because many high
dimensional effects are also observed even in simple linear models. For example, this benign
overfitting effect is also observed for the ordinary least square (OLS) estimator, where it is
observed that OLS generalizes in the overparameterized regime (Bartlett et al., 2020).

For OLS in particular, the recent work of Bartlett et al. (2020) established non-asymptotic
generalization guarantees of the minimum-norm interpolator for overparameterized linear
regression (the minimum-norm solution that perfectly fits the training samples (Zhang et al.,
2016; Bartlett et al., 2020)). More generally, there is a growing body of work studying
generalization in basic linear models in the overparameterized regime (Nakkiran et al., 2019;
Bartlett et al., 2020; Belkin et al., 2020; Hastie et al., 2019; Tsigler and Bartlett, 2020;
Muthukumar et al., 2020; Chatterji and Long, 2020; Nakkiran et al., 2020). In contrast, for
stochastic gradient descent (SGD) for least squares regression, the algorithmic aspects of
generalization are far less well understood, where we lack a sharp characterization of it and
when benign overfitting occurs (in other words, achieving diminishing generalization error).
This is the focus of this work.

With regards to SGD in the classical underparameterized regime, the seminal work
of Polyak and Juditsky (1992) showed that iterate averaged SGD achieves, in the limit as
the sample size goes to infinity, the statistically optimal rate, even up to problem dependent
constant factors 3; this optimality crucially relies on the dimension being held finite, along
with regularity assumptions that make the problem locally strongly quadratic. For the
case of finite dimensional, linear regression, there are a number of more modern proofs
which provide finite, non-asymptotic rates (Défossez and Bach, 2015; Bach and Moulines,
2013; Dieuleveut et al., 2017; Jain et al., 2017b,a). Besides, for smooth and strongly convex
problems, Rakhlin et al. (2012) showed that the iterate averaged SGD can achieve the
minimax optimal rate. With regards to the overparameterized regime, there is far less work
(Dieuleveut and Bach, 2015; Berthier et al., 2020) being notable exceptions. (See Section 3
for further discussion on these related works.)

SGD for linear regression. The classical linear regression problem of interest is:

min L(w), where L(w) = %E(xﬂy)wp[(y ~ w, %)), (1.1)

where x € H, is the feature vector, where, H is some (finite d-dimensional or countably
infinite dimensional) Hilbert space; y € R is the response; D is an unknown distribution

2. By “under-regularized”, we mean that the empirical training loss is near to 0, such as with OLS when
N>d.

3. Polyak and Juditsky (1992) provided a stronger distributional limit theorem showing that the distribution
of the averaged iterate (provided by SGD) precisely matches the distribution of the empirical risk
minimizer.
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Figure 1: Benign overfitting of SGD for linear regression. The plots show the training and test
risks achieved by SGD (constant stepsize, iterate averaging) for least square problem
instances (the spectrum of H, i.e., {\;} is specified under each subfigure). The problem
dimension is d = 2000 and the variance of model noise is 02 = 1 (hence the Bayes risk is
1). The plots are averaged over 20 independent runs. In (a), SGD overfits the training
sample (achieving a training risk smaller than the Bayes risk) but generalizes poorly. In
(b), SGD overfits the training sample and generalizes well, which exhibits the benign
overfitting phenomenon. In (¢), SGD generalizes on test samples and tends to forget
training samples, which indicates a regularization effect of SGD. See Section 6 for more
details.

over x and y; and w € H is the weight vector to be optimized. We consider the stochastic
approximation approach using constant stepsize SGD, with iterate averaging: at each
iteration ¢, an i.i.d. example (x¢,y;) ~ D is observed, and the weight is updated according
to SGD as follows:

wr = w1+ (yr — (W1, X¢)) Xy, t=1,...,N, (1.2)

where v > 0 is a constant stepsize, N is the number of samples observed, and the weights
are initialized at wg € H. The final output will be the average of the iterates:

In the underparameterized setting with finite dimension d (d < N), as mentioned earlier
(also see Section 3), a rich body of work has established that W enjoys the optimal risk
(up to constant factors) of O (do?/N), for sufficiently large N. The focus of this work is on
the overparameterized regime, where d > N (or possibly countably infinite).

Benign overfitting occurs in SGD for linear regression. Perhaps quite surprisingly,
the benign overfitting phenomenon, i.e., a predictor that fits training data very well but still
generalizes, happens for SGD (with constant stepsize and iterate averaging) even for the
simple, overparameterized linear regression. This is empirically verified in Figure 1, where
we see in Figure 1 (b) that, SGD overfits the training sample (achieving a training risk much
lower than the Bayes risk) but still generalizes on the test sample (the test risk is vanishing).
Understanding this phenomenon theoretically is one of the central goals of this work.
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Our contributions. Our main result can be viewed as a counterpart to the classical
analysis of iterate averaged SGD to the overparameterized regime for linear regression: we
provide a sharp excess risk bound showing how (unregularized) SGD can generalize even
in the infinite-dimensional setting. Our bound is stated in a general manner, in terms of
the full eigenspectrum of the data covariance matrix along with a functional dependency
on the initial iterate; our lower bound shows our characterization is tight. As a corollary,
we see how the benign-overfitting phenomenon can be observed for SGD, provided certain
spectrum decay conditions on the data covariance are met. We also extend our results to
SGD with tail-averaging (Polyak and Juditsky, 1992; Jain et al., 2017a,b), where we run
SGD for s iterations and then take average over the subsequent N iterates as the output.
(see Section 5 for more details.)

Some additional notable contributions are:

1. The sharpness of our bounds permits us to make comparisons to OLS (the minimum-
norm interpolator) and ridge regression. Notably, in a contrast to the variance of
OLS (Bartlett et al., 2020), the variance contribution to SGD is well behaved under
substantially weaker assumptions on the spectrum of the data covariance. This shows
how inductive bias of SGD, in comparison to the minimum-norm interpolator, can
lead to better generalization with no regularization. We also constrast our results to
ridge regression based on the recent work by Tsigler and Bartlett (2020).

2. One notable aspect of our work is a sharp characterization of a “bias process” in SGD.
In particular, consider the special case where y = w* - x (with probability one), for
some w*. Here, SGD still differs from gradient descent on L(w). Our characterization
gives a novel characterization of how the variance in this process contributes to the
final excess risk bound.

3. From a technical standpoint, our work develops new proof techniques for iterate aver-
aged SGD. Our analysis tools are based on the operator view of averaged SGD (Dieuleveut
and Bach, 2015; Jain et al., 2017b,a). A core idea in the proof is in connecting the finite
sample (infinite dimensional) covariance matrices of the variance and bias stochastic
processes to those of their corresponding (asymptotic) stationary covariance matrices
— an idea that was introduced in Jain et al. (2017a) for the finite dimensional, variance
analysis.

Notation. We use lower case letters to denote scalars, and we use lower and upper case bold
face letters to denote vectors and matrices respectively. For a vector x € H, ||x||2 denotes
the norm in the Hilbert space H, and x[i] denotes the i-th coordinate of x. For a matrix M,
its spectral norm is denoted by ||M||2. For a PSD matrix A, define ||x[|} = x" Ax.

2. Main Results

We now provide matching (upto absolute constants) upper and lower excess risk bounds for
iterate averaged SGD. We then compare these rates to those of OLS and ridge regression,
where we see striking similarities and notable differences.
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2.1 Benign Overfitting of SGD

We first introduce relevant notation and our assumptions. Our first assumption is mild
regularity conditions on the moments of the data distribution.

Assumption 2.1 (Regularity conditions) Assume E[xx'], Ex ®x®x®x], and E[y?]
exist and are all finite. Furthermore, denote the second moment of x by

H :=E,.plxx '],

and suppose that tr(H) is finite. For convenience, we assume that H is strictly posi-
tive definite and that L(w) admits a unique global optimum, which we denote by w* :=
argming, L(w).

Our second assumption is on the behavior of the fourth moment, when viewed as a linear
operator on PSD matrices:

Assumption 2.2 (Fourth moment condition) Assume there ezists a positive constant
a > 0, such that for any PSD matriz A®, it holds that

Exop[xx' Axx'] < atr(HA)H.

For Gaussian distributions, it suffices to take o = 13 Furthermore, it is worth noting that this
assumption is implied if the distribution over H™2x has sub-Gaussian tails (see Lemma A.1
in the Appendiz for a precise claim). Also, it is not difficult to verify that a > 1.5

Assuming sub-Gaussian tails over H 2x is a standard assumption in linear regression
analysis (e.g., Hsu et al. (2014); Bartlett et al. (2020); Tsigler and Bartlett (2020)), which
is also necessary to give a sharp excess risk bound for the minimum-norm interpolator
(Bartlett et al., 2020). However, as mentioned above, this assumption is strictly stronger
than Assumption 2.2. The assumption is somewhat stronger than what is often assumed
for iterate averaged SGD in the underparameterized regime (e.g., Bach and Moulines 2013;
Jain et al. 2017b) (see Section 3 for further discussion). Additionally, we also remark that
Assumption 2.2 can be further relaxed to that we only require A is PSD and commutable
with H, rather than all PSD matrix A (see Section 7 for more details).

Our next assumption is a noise condition, where it is helpful to interpret y — (w*, x)
as the additive noise. Observe that the first order optimality conditions on w* imply
Eyynl(y — (W, %))x] = VL(w") = 0,

4. This is not necessary. In the case where H has eigenvalues which are 0, we could instead choose w™* to be
the minimum norm vector in the set argmin,, L(w), and our results would hold for this choice of w*. For
example, see Scholkopf et al. (2002) for a rigorous treatment of working in a reproducing kernel Hilbert
space.

5. This assumption can be relaxed into: for any PSD matrix A that commutes with H, it holds that
Ex~p[xx'Axx'] < atr(HA)H. The presented analyzing technique is ready to be modified to cooperate
with the relaxed assumption with the observation that the fourth moment operator is linear and self-
adjoint. Similar relaxation applies to Assumption 2.4 as well.

6. This is due to that the square of the second moment is less than the fourth moment.
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Assumption 2.3 (Noise condition) Suppose that:
Y :=E [(y— (w*,x))xx |, o= |[H :SH 2|
exist and are finite. Note that X is the covariance matriz of the gradient noise at w*.

This assumption places a rather weak requirement on the additive noise (due to that it
permits model mis-specification) and is often made in the average SGD literature (e.g., Bach
and Moulines 2013; Dieuleveut et al. 2017). Observe that for well-specified models, where

Yy = (W*,X> +e e N(O Jnolse) (21)
we have that X = UnmseH and so 02 = Uﬁoise.

We would like to further point out that Assumptions 2.1, 2.2 and 2.3 are applicable
to both overparameterized and underparameterized regimes since they are made on the
population covariance matrix and data distribution, which are independent of the training
sample size.

Before we present our main theorem, a few further definitions are in order: denote the
eigendecomposition of the Hessian as H = Y, \;v; v/, where {);}2°, are the eigenvalues
of H sorted in non-increasing order and v;’s are the correspondmg eigenvectors. We then
denote:

— Kk T — T
H():k = Zi:l)‘ivivi y and Hk:oo = ZDk)\ivin

Similarly we denote Ij.; := Zle viv;r and Ip.oo 1= D ;0 ViV T. By the above definitions,
we know ( - 2
9 v, W
wiz = SV, = ST
' i<k ¢ i>k

where we have slightly abused notation in that H, ,lg denotes a pseudo-inverse.
We now present our main theorem:

Theorem 2.1 (Benign overfitting of SGD) Suppose Assumptions 2.1-2.3 hold and that
the stepsize is set so that v < 1/(a ), N;). Then the excess risk can be upper bounded as
follows,

E[L(Wy)] — L(w*) < 2 - EffectiveBias + 2 - EffectiveVar,
where

. . _ * 12 * (12
EffectiveBias = lwo —w \|H&11€* +lwo — Wl

1
’yQNQ

2a(lwo —w*[IF, . + Nyllwo — w3, ) [k* >
EffectiveVar = 0:k* k*:0/ [ N 2 )\2
ectivevar N’Y<1 ~ ZZ )\Z) (N + 0% ;

ot (Feey
I—ya) A\ \N 7 ’

i>k*

1>k*

with k* = max{k : A\, > ~%N}
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The interpretation is as follows: the “effective bias” precisely corresponds to the rate
of convergence had we run gradient descent directly on L(w) (i.e., where the latter has no
variance due to sampling). The “effective variance” error stems from both the additive noise
y — (w*,x), i.e., the second term of the EffectiveVariance error, along with that even if
there was no additive noise (i.e. y — (w*,x) = 0 with probability one), i.e., the first term
of the EffectiveVariance error, then SGD would still not be equivalent to GD. The cut-off
index k*, which we refer to as the “effective dimension”, plays a pivotal role in the excess
risk bound, which separates the entire space into a k*-dimensional “head” subspace where
the bias error decays more quickly than that of the bias error in the complement “tail”
subspace. To obtain a vanishing bound, the effective dimension k* must be o (N) and the
tail summation Y. .. A? must be o (1/N).

Additionally, we would like to point out that our bounds are valid (i.e., have finite upper
bound) as long as the global optimum w* and the initialization wyq satisfy |[wo —w*||% < oo,
which is equivalent to have a finite initial population risk, i.e., Lp(wg) < co. As a comparison,
prior works also assumed the source conditions on w*: Dieuleveut and Bach (2015) assumed
|IH™*(wo — w*)||2 < oo for & > —1/2, which is the same as our implicit condition on w*;
Berthier et al. (2020) assumed |H™*(wo — w*)||2 < oo for o > 0, which is stronger than
that in Dieuleveut and Bach (2015) and our paper.

In terms of constant factors, the above bound can be improved by a factor of 2 in the
effective bias-variance decomposition (see (4.6)). We now turn to lower bounds.

A lower bound. We first introduce the following assumption that states a lower bound
on the fourth moment.

Assumption 2.4 (Fourth moment condition, lower bound) Assume there ezists a
constant B > 0, such that for any PSD matriz A, it holds that

Ex-p[xx'Axx']| — HAH = §tr(HA)H.
For Gaussian distributions, it suffices to take 5 = 1.

The following lower bound shows that when the noise is well-specified our upper bound
is not improvable except for absolute constants.

Theorem 2.2 (Excess risk lower bound) Suppose N > 500. For any well-specified data
distribution D (see (2.1)) that also satisfies Assumptions 2.1 and 2.4, for any stepsize such
that v < 1/\1, we have that:

— * 1 * (12 1 * 112
E[L(Wn)] — L(Ww") > 100,282 [wo —w ||H(;1 +t 100 lwo — W&,
B (Iwo = wolE . + Nollwo —wili,. ) (e
n 0:k A +N’72 E )\12
1000N~ N P

+ O-r%oise ﬁ +N 2 Z )\2
50 \nN 77 i

i>k*

with k* = max{k : A\, > ﬁ}
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It is worth noting that the lower bound in Theorem 2.2 requires the data distribution
to be well-specified, which is stronger than the noise condition (Assumption 2.3) made in
the upper bound results (Theorem 2.1). Similar to the upper bound stated in Theorem
2.1, the first two terms represent the EffectiveBias and the last two terms represent the
EffectiveVariance, in which the third and last terms are contributed by the model noise
and variance in SGD. Our upper bound matches our lower bound up to absolute constants,
which indicates the obtained rates are tight, at least for Gaussian data distribution with
well-specified noise.

Special cases. It is instructive to consider a few special cases of Theorem 2.1. We first
show the result for SGD with large stepsizes.

Corollary 2.1 (Benign overfitting with large stepsizes) Suppose Assumptions 2.1-
2.3 hold and that the stepsize is set to v =1/(2a ), A\;). Then
4a?(35; \i)?
. )

EffectiveBias = ——=+—— —w"
ectiveBias N |lwo — w™||

2 1
HO:k*

kN e A7 )

+ lwo — w3,

EffectiveVar = (207 + 4a”|wo — w*||3y) - <N 12>, )

where k* = max{k : A\ > @Nz)”}

Note that the bias error decays at different rates in different subspaces. Crudely, in the
“head” eigenspace (spanned by the eigenvectors corresponding to large eigenvalues) the bias
error decays in a faster O (1 /N 2) rate (though there is weighting of \; in the head), while
in the remaining “tail” eigenspace, the bias error decays at a slower O (1/N) rate (due to
that all the eigenvalues in the tail are less than O (1/N)). The following corollary provides
a crude bias bound, showing that bias never decays more slowly than O (1/N).

Corollary 2.2 (Crude bias-bound) Suppose Assumptions 2.1-2.3 hold and that the step-
size is set to v = 1/(2a )", N;). Then

— o Saflwo — w33 N 2 (K N N
E|L(w — L(w™) < 2 4o | — + —=="——
[L(Wn)] (w*) < N +40 N + 102(3, \)2 )

where k* = max{k : \j, > @N“\Z}

Theorems 2.1 and 2.2 suggests that the excess risk achieved by SGD depends on the
spectrum of the covariance matrix. The following corollary gives examples of data spectrum
such that the excess risk is diminishing.

Corollary 2.3 (Example data distributions) Under the same conditions as Theorem 2.1,
suppose |[wog — w*||2 is bounded.

1. For H e R¥™4 et s = N" and d = N9 for some positive constants 0 < r < 1 and
q > 1. If the spectrum of H satisfies

N — 1/s, k <s,
"Tl1/d—s), s+1<k<d,

then E[L(Wx)] — L(w*) = O (N"~1 4 N179).
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2. If the spectrum of H satisfies N\, = k=F7) for some r > 0, then E[L(Wy)] — L(w*) =
O (N—r/(1+r)) ]

3. If the spectrum of H satisfies A, = k" log=?(k 4+ 1) for some 8 > 1, then E[L(Wx)] —
Lw*)=0 (logfﬁ(N)).

4. If the spectrum of H satisfies \y = e %, then E[L(Wy)] — L(w*) = O (log(N)/N).

2.2 Comparisons to OLS and Ridge Regression
We now compare these rates to those obtained by OLS or ridge regression.

SGD vs. minimum-norm solution of OLS. In a more restrictive setting where the
whitened data H™Y/2x has a sub-Gaussian tail and independent components, Bartlett et al.
(2020) proved that the minimum ¢ norm interpolator for the linear regression problem on
N training examples, denoted by wy, gives the following excess risk lower bound:

& k* NZZ> *)\2
E[L(WN)}_L( )>002<N+W>,

where c is an absolute constant, o2 is the variance of model noise, and k* = min{k > 0 :
Y isk Ai/ k41 > DN} for some constant b > 0. It is clear that in order to achieve benign
overfitting, one needs to ensure that k* = o (N) and >, 1« A?/(3 ;2 4+ Xi)2 = 0 (1/N). The
first requirement prefers slow decaying rate of the data spectrum since one hopes to get
alarge D ;o Ai/Ag41 for small k. On the contrary, the second requirement suggests that
the spectrum should decay fast enough since we need to ensure that the tail summation
Dkt /\12 is small. Consequently, as shown in Theorem 6 in Bartlett et al. (2020), if the
data spectrum decays in a rate A\ = k=% log_ﬂ (k+ 1), the minimum /¢e-norm interpolator
can achieve vanishing excess risk only when o =1 and 8 > 1. In contrast, our results show
that SGD can achieve vanishing excess risk for any o > 1 and 8 > 0 (as well as the case of
a=1and > 1, see Corollary 2.3 for details) since a fast decaying spectrum can ensure

both small k* (the effective dimension) and small tail summation Y. .. AZ.
SGD vs. ridge regression. Tsigler and Bartlett (2020) show that the ridge regression
estimator, denoted by VAvj\V, has the following lower bound on the excess risk:

2

“[i] e A
E[L(WA)] = L(w’ >max{clz 1+A/Ak+lpk me( M)}

where A is the regularization parameter, c¢; and cp are absolute constants and pg = ()\ +
> iok Ai)/(NAgs1). Tsigler and Bartlett (2020) further show that the lower bound nearly
matches the following upper bound of the excess risk:

Bl - L) < 6 (I, - (S5 Il )

NZz>k* 2 >
(>\ + Zz>k’* ) ’

k*
+ cho? +
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where ¢] and ¢} are absolute constants, and £* = min{k > 0: (3", Ai +A)/Apy1 > DN} for
some constant b > 0. Comparing this to Corollary 2.1 suggests that SGD (using a constant
stepsize with iterate averaging) may exhibit an implicit regularization effect that performs
comparably to ridge regression with a constant regularization parameter (here we assume
that tr(H) is of a constant order). A more direct problem-dependent comparison (e.g.,
consider the optimal learning rate for SGD and optimal A for ridge regression) is a fruitful
direction of further study, to more accurately gauge the differences between the implicit
regularization afforded by SGD and the explicit regularization of ridge regression.

3. Further Related Work

We first discuss the work on iterate averaging in the finite dimensional case before turning
to the overparameterized regime. In the underparameterized regime, where d is assumed
to be finite, the behavior of constant stepsize SGD with iterate average or tail average has
been well investigated from the perspective of the bias-variance decomposition (Défossez and
Bach, 2015; Dieuleveut et al., 2017; Lakshminarayanan and Szepesvari, 2018; Jain et al.,
2017a,b). For iterate averaging from the beginning, Défossez and Bach (2015); Dieuleveut
et al. (2017) show a O (1/N?) convergence rate for the bias error and a O (d/N) convergence
rate for the variance error, where N is the number of observed samples and d is the number
of parameters. The bias error rate can be further improved by considering averaging only
the tail iterates (Jain et al., 2017a,b, 2018), provided that the minimal eigenvalue of H is
bounded away from 0. We note that the work in Jain et al. (2017a,b, 2018) also give the
optimal rates with model misspecification. These results all have dimension factors d and do
not apply to the overparameterized regime, though our results recover the finite dimensional
case (and the results for delayed tail averaging from Jain et al. (2017a,b) can be applied
here for the bias term). We further develop on the proof techniques in Jain et al. (2017a),
where we use properties of asymptotic stationary distributions for the purposes of finite
sample size analysis.

Another notable difference in our work is that Assumption 2.2 (which is implied by
sub-Gaussianity, see Lemma A.1) is somewhat stronger than what is often assumed for
iterate average SGD analysis, where E[xx ' xx '] < R?H, as adopted in Bach and Moulines
(2013); Défossez and Bach (2015); Dieuleveut et al. (2017); Jain et al. (2017a,b). Our
assumption implies an R? bound with R? = atr(H). In terms of analysis, we note that
our variance analysis only relies on an R? condition, while our bias analysis relies on our
stronger sub-Gaussianity-like assumption.

Compared with Dieuleveut and Bach (2015), our bounds apply to least square instances
with any data covaraince spectrum (under Assumption 2.2) and are established in an
instance-wise manner, while the theoretical results in Dieuleveut and Bach (2015) are
developed under the certain capacity conditions (e.g., \; < s2/i% for some o > 1 and s > 0,
see A3 in Dieuleveut and Bach (2015)). Therefore, the bounds proved in Dieuleveut and
Bach (2015) are not instance-wise, i.e., their bounds will be the same for two different
problem instances that satisfy the capacity conditions with the same s and «. In comparison
with Berthier et al. (2020), their bounds rely on a weaker fourth moment assumption, but
rely on a stronger source condition on the ground truth parameter w* (compared with our
work and Dieuleveut and Bach (2015)): they require the norm |[H™*w*||2 to be bounded

10
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for & > 0 (see Theorem 1 condition (a) in Berthier et al. (2020)). In contrast, as we have
discussed after Theorem 2.1, our work and Dieuleveut and Bach (2015) only require the
source condition |[H™*w*||s < oo hold for « > —1/2. Lastly, we would like to point out that
our fourth moment assumption (Assumption 2.2) is a natural starting point for analyzing
the over-parameterized regime because it also allows for direct comparisons to OLS and
ridge regression, as discussed above.

Another series of prior works attempt to explain the generalization ability of SGD
through the lens of implicit regularization. For overparameterized least square problems, it
has been shown that multi-pass SGD converges to the minimum-norm solution (Neyshabur
et al., 2015; Gunasekar et al., 2018). However, it is arguable that such a norm-based implicit
regularization may not be sufficient to explain the generalization of SGD (Dauber et al., 2020;
Sekhari et al., 2021; Amir et al., 2021) for general convex optimization problems. It has been
shown that for some stochastic convex optimization problems, there is a sample complexity
separation between SGD and the regularized empirical risk minimization (RERM) (Dauber
et al., 2020; Sekhari et al., 2021) or the batch GD (Amir et al., 2021) (a followup work by
Amir et al. (2022) showed that GD can match the sample complexity of SGD when restricted
to stochastic convex optimization problems in the generalized linear form). Our work can
be seen as an extension of existing implicit regularization works for least square problems,
which builds a connection between the single-pass SGD and the ridge regression solution in
an instance-wise manner. As we have claimed in Section 2.2, SGD with iterate averaging
and constant learning rate is comparable to ridge regression with a constant regularization
parameter, which partially explains the implicit regularization effect of SGD for least square
problems. One of the authors’ follow-up works (Zou et al., 2021) has extended the analysis
on the implicit regularization of SGD by directly comparing the required sample sizes of SGD
and ridge regression when the learning rate of SGD and the regularization parameter of ridge
regression are allowed to be tuned, which precisely characterizes the least square problem
instances that are preferable for SGD or ridge regression. Besides, it is also interesting to
explore whether an instance-wise comparison between SGD and RERM can be obtained for
other convex optimization problems (e.g., logistic regression).

Concurrent to this work, Chen et al. (2020) provide dimension independent bounds
for averaged SGD; their excess risk bounds for linear regression are not as sharp as those
provided here.

4. Proof Outline

We now provide the high level ideas in the proof. A key idea is relating the finite sample
(infinite dimensional) covariance matrices of the variance and bias stochastic processes
to those of their corresponding (asymptotic) stationary covariance matrices — an idea
developed in Jain et al. (2017a) for the finite dimensional, variance analysis.

This section is organized as follows: Section 4.1 introduces additional notation and
relevant linear operators; Section 4.2 presents a refined bound on a now standard bias-
variance decomposition; Section 4.3 outlines the variance error analysis, followed by Section
4.4 outlining the bias error analysis. Complete proofs of the upper and lower bounds are
provided in the Appendix B and Appendix C, respectively.

11
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4.1 Preliminaries

For two matrices A and B, their inner product is defined as (A, B) := tr (A"B). The
following properties will be used frequently: if A is PSD, and B = B’, then (A, B) > (A, B’).
We use ® to denote the kronecker/tensor product. We define the following linear operators:
IT=1I0l, M=Ex0x9x9x], M=HoH,
T=HeI+IgH-M, T=HeI+IoH- HgH.

We use the notation O o A to denotes the operator O acting on a symmetric matrix A. For
example, with these definitions, we have that for a symmetric matrix A,

ToA=A, MoA=E[x Ax)xx'], MoA =HAH,
(Z—-~T)oA=E[I-vxx AT —~xx")], (Z—~7T)oA =I—-~H)AI—~H). (4.1)

We conclude by summarizing a few technical properties of these operators (see Lemma B.1
in Appendix).

Lemma 4.1 An operator O defined on symmetric matrices is called PSD mapping, if A > 0
implies O o A = 0. Then we have

1. M and M are both PSD mappings.

2. T—~T and T — 77’ are both PSD mappings.

3. M~ M and T — T are both PSD mappings.

4. If0 <~y < 1/Ay, then T~} exists, and is a PSD mapping.

5 If0 < v < 1/(atr(H)), then T~ o A exists for PSD matriz A, and T~ is a PSD
mapping.

4.2 The Bias-Variance Decomposition

It is helpful to consider the bias-variance decomposition for averaged SGD, which has been
extensively studied before in the underparameterized regime (N > d) (Dieuleveut and
Bach, 2015; Jain et al., 2017b,a). For convenience, we define the centered SGD iterate as
1 := Wy — W', Similarly we define ny := % Z?LBI .

(1) If the sampled data contains no label noise, i.e., y; = (w*,x¢), then the obtained SGD
iterates {nP'®s} reveal the bias error,

nb = (Lo ), ™ = mo (1.2

(2) If the iterates are initialized from the optimal w*, i.e., wo = w*, then the obtained SGD
iterates {ny2"'2"} reveal the variance error,

nz/ariance _ (I o 'YXtX;r) ,rlzfirliance + ’Yé-txtv ,r’(\)/ariance —_ 0’ (43)

12



BENIGN OVERFITTING OF CONSTANT-STEPSIZE SGD FOR LINEAR REGRESSION

where & = y; — (w*,x;) is the inherent noise. Note the “bias iterates” can be viewed as a
stochastic process of SGD on a consistent linear system; similarly, the “variance iterates”
should be treated as a stochastic process of SGD initialized from the optimum.

Using the defined operators, the update rule of the iterates (4.2) imply the following
recursive form of B, := E[np1®s @ nPiss]:

B; = (I — ’}/T) oB;_q and By = 19 ® 1o, (4.4)

variance ® ,r]varlance]

and the update rule (4.3) imply the following recursive form of C, := E[n;

Ci=(Z—-7T)oCi1+7°8, Cp=0. (4.5)
We define the averaged version of nb‘as and 1141 in the same way as Wy, i.e. n'f\}as =
~ Zt 0 n?lab and fyariance .= N Zt 0 nvanance With a little abuse of probability space,

from (1.2), (4.2) and (4.3) we have that

b1as vamance
+ny

N =

then an application of Cauchy—Schwarz inequality leads to the following bias-variance
decomposition on the excess risk (see Jain et al. (2017b), also Lemma B.2 in the appendix):

1 2
IE[L(WN)] ~ L(w") = 5 (HElijy © 7)) < (\/bias + \/variance> , (4.6)
. 1 . .
where bias := <H E[R™ @ nfi™]), variance := o (HL B[R @ nigioe]).

In the above bound, the two terms are usually referred to as the bias error and the variance
error respectively. Furthermore, expanding the kronecker product between the two averaged
iterates, and doubling the squared terms, we have the following upper bounds on the bias
error and the variance error (see Lemma B.3 in the appendix for the proof):

—-1N-1

. 1 1aS —pDlas
bias := 5<H,E[n}>V ® RS Z > (X—~H)*"H,By), (4.7)
t=0 k=t
1 N—-1N-1
variance := <H E[fyariance o pyariance] < N (I-~H)""H,C,). (4.8)
t=0 k=t

Note that in the above bounds, we keep both summations in finite steps, and this makes our
analysis sharp as N < d. In comparison, Jain et al. (2017a,b) take the inner summation
to infinity, which yields looser upper bounds for further analysis in the overparameterized
setting. Next we bound the two error terms (4.7) and (4.8) separately.

4.3 Bounding the Variance Error

We would like to point out that in the analysis of the variance error (4.8), Assumption 2.2
can be replaced by a weaker assumption: E[xxxx '] < R?H, where R is a positive constant
(Jain et al., 2017b,a; Dieuleveut et al., 2017). A proof under the weaker assumption can be
found in Appendix B.3. Here, for consistency, we sketch the proof under Assumption 2.2.

13
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To upper bound (4.8), noticing that (I — vH)*~*H is PSD, it suffices to upper bound
C; in PSD sense. In particular, by Lemma 5 in Jain et al. (2017a) (restated in Lemma B.4
in the appendix), the sequence {C;}—o,... has the following property,

2

0=Cy<Ci < <Coo=<—1" 1.
0—="1= - Oo_1—’)/04tr(H)

(4.9)

This gives a uniform but crude upper bound on C; for all ¢ > 0. However, a direct application
of this crude bound to (4.8) cannot give a sharp rate in the overparameterized setting.
Instead, we seek to refine the bound of C; based on its update rule in (4.5) (see the proof of
Lemma B.5 for details):

Ci=Z—~T)oCy_1+ 722
= (Z—~T)oCi1 + 1AM — M) 0Ci_1 + 2%

< (Z—4T)oCi1 +¥2MoCyi ++2%  (since M is a PSD mapping)

~ 3.2
< (T —~T)oCpi+ #‘:r(H)M oI++%%, (by (4.9) and M is a PSD mapping)
. 3,2 tr(H
= (Z—-~T)oCs_1 + %H +~%0%H, (by Assumptions 2.2 and 2.3)
_ A2g2
=(Z- Cio1+—m—m—
(Z=1T)eCor+ 1 — vyatr(H)

Solving the above recursion, we obtain the following refined upper bound for C;:

202 t—1 .
C: = Ttr(H) k_O(I* ¥T)" o H
___ e S(I —yH)"H(I - vH)* (b the property of Z —~T in (4.1))
1 —yatr(H) —
Lt t_l(I —yH)"H = S La— (T—(T—~H)"). (4.10)
= 1—qatr(H) ~ 1 —yatr(H)

Now we can plug the above refined upper bound (4.10) into (4.8), and obtain

0_2 N-1
variance < N2(1 — v tr(H)) Z <I NG Y = DRI R g ’YH)t>
t=0
o2 N—-1
= N e 2 2= (17 1A (==
t=0 i
o2
= N2(1 - yatr(H)) 'N'Z(l_ (1_V)‘i)N)2' (4.11)

i

The remaining effort is to precisely control the summations in (4.11) according to the

scale of the eigenvalues: for large eigenvalues \; > NL77 which appear at most £* times,
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we use 1 — (1 —y)\;)Y < 1; and for the remaining small eigenvalues \; < Niw we use
1—(1—=~X)N < O(Nv);). Plugging these into (4.11) gives us the final full spectrum upper
bound on the variance error (see the proof of Lemma B.6 for more details). This bound
contributes to part of EffectiveVar in Theorem 2.1.

4.4 Bounding the Bias Error

Next we discuss how to bound the bias error (4.7). A natural idea is to follow the same
way in analyzing the variance error, and derive a similar bound on B;. Yet a fundamental
difference between the variance sequence (4.5) and the bias sequence (4.4) is that: C; is
increasing, while By is “contracting”, hence applying the same procedure in the variance
error analysis cannot lead to a tight bound on B,;. Instead, observing that S; := 22;10 B,
the summation of a contracting sequence, is increasing in the PSD sense. Particularly, we
can rewrite S; in the following recursive form

S:=(Z—~T)oS;—1 + By, (4.12)
which resembles that of C; in (4.5). This motivates us to: (i) express the obtained bias error
bound (4.7) by S, and (ii) derive a tight upper bound on S; using similar analysis for the
variance error.

For (i), by some linear algebra manipulation (see the derivation of (B.13)), we can bound
(4.7) as follows:

b1as<—<1— (I—~H)N ZBt (I-(I-~H)",Sy). (4.13)

’YN2

For (ii), we first show that {S¢}:=1 . n is increasing and has a crude upper bound (see
Lemmas B.7 and B.9):

- tr ((I (- fyH)?N)BO)

7(1 —yatr(H))
Then similar to our previous procedure in bounding C;, we can tighten the upper bound on
S: by its recursive form (4.12) and the crude bound (M o Sy_; in (4.14)), and obtain the
following refined bound (see Lemma B.10) for Sy:

By=S;<Sy<---<Sy, and MoSy =<

CH. (4.14)

N-1 ) et ((T- - VH)QN)BO) -1 N
Sy = S (T— 7H)*By(I — vH H)2VH.
N_kz_:o( +H)"Bo(I—~H)" + e (H kz_:o —7

(4.15)

The remaining proof will be similar to what we have done for the variance error bound:
substituting (4.15) into (4.13) gives an upper bound on the bias error with respect to the
summations over functions of eigenvalues. Then by carefully controlling each summation
according to the scale of the corresponding eigenvalues, we will obtain a tight full spectrum
upper bound on the bias error (see the proof of Lemma B.11 for more details).

As a final remark, noticing that different from the upper bound of C; in (4.10), the
upper bound for S; in (4.15) consists of two terms. The first term will contribute to the
EffectiveBias term in Theorem 2.1, while the second term will be merged to the bound of
the variance error and contribute to the EffectiveVar term in Theorem 2.1.
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5. The Effect of Tail-Averaging

We further consider benign overfitting of SGD when tail-averaging (Polyak and Juditsky,
1992; Jain et al., 2017a,b) is applied, i.e.,

s+N—-1

_ 1
Wsis+N = N Z Wt.
t=s

We present the following theorem as a counterpart of Theorem 2.1. The proof is deferred to
Appendix D.

Theorem 5.1 (Benign overfitting of SGD with tail-averaging) Consider SGD with
tail-averaging. Suppose Assumptions 2.1-2.8 hold and that the stepsize is set so that v <
1/(atr(H)). Then the excess risk can be upper bounded as follows,

E[L(Wgs.s+n)] — L(w*) < 2 - EffectiveBias + 2 - EffectiveVar,

where
. . ]- s * 2 S * 2
EffectiveBias = ENE H(I —vyH)*(wo — W )HH&i* + H(I —vH)*(wo — W )HHk*m
da(llwo —w*l§  +(s+Nyllwo—wF . ) /=
EffectiveVar = 011 Klice” (T4 N2 Y A7
ectiveVar N’y(l —’yatr(H)) (N + N7y Z; i
_}_072. E+7. Z )\.+(S+N)/72.Z)\2
1—~atr(H) \ N ’ A

k* <i<kt i>kf

where k* = max{k : A\ > ,YLN} and k' = max{k : )\, > M}

Theorem 5.1 shows that tail-averaging has improvements over iterate-averaging. This
agrees with the results shown in Jain et al. (2017b): in the underparameterized regime
(N > d) and for the strongly convex case (Ag > 0), one can obtain substantially improved
convergence rates on the bias term.

We also provide a lower bound on the excess risk for SGD with tail-averaging as a
counterpart of Theorem 2.2, which shows that our upper bound is nearly tight. The proof is
again deferred to Appendix D.

Theorem 5.2 (Excess risk lower bound, tail-averaging) Consider SGD with tail-averaging.
Suppose N > 500. For any well-specified data distribution D (see (2.1)) that also satisfies
Assumptions 2.1, 2.2 and 2.4, for any stepsize such that v < 1/A1, we have that:

_ . 1 o (T —yH)*(wo — w*)|[3,.
B{L(Waesa0)] ~ L) 2 o - 7 w0 = Wy + o T,
Bllwo — w* |13 k*
k:Jf:oo 2 2
16000 N TV g}; i
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0.2 *
noise

k 2 2
W N+7 Z )\1+(S+N)’)/ Z)\Z s
k*<i<kt i>kt

+

where k* = max{k : \j, > NLV} and kY = max{k : A\, > m}

Comparing our upper and lower bounds, they are matching (upto absolute constants)
for most of the terms, except for the first effective variance term, where a ||wo — W*H%Mt is
lost (suppose that s = O(N)). Our conjecture is that the upper bound is improvable in this
regard. Obtaining matching upper and lower bounds for SGD with tail-averaging is left as a

direction for future work.

6. Experiments

In this section, we seek to empirically observe the benign overfitting phenomenon for SGD in
Gaussian least square problems and verify our theorems on the generalization performance

of SGD.

We first consider three over-parameterized linear regression problem instances with
d = 2000 and the spectrum of H as \; =i~ !, \; = i 'log(i) =2, and \; = i~2, respectively.
Besides, the ground truth is fixed to be w*[i] = i~!. The training and test risks for these
three problems are displayed in Figure 1. We observe that when \; = i~!, the SGD algorithm
overfits the training data and fails to generalize; when \; = i~ !log(i)~2, SGD overfits the
training data (achieving a training risk much smaller than the Bayes risk) while generalizes
well (achieving a vanishing test risk), which exhibits a benign overfitting phenomenon of
SGD; when \; = i~2, SGD gives vanishing test risk and tends to un-fit the training data,
which indicates a regularization effect of SGD. In sum, the experiments suggest that benign
overfitting of SGD can happen when the spectrum of H decays neither fast nor slow. This
is consistent with the benign overfitting of least square (minimum-norm solution) (Bartlett
et al., 2020), where for H with spectrum in form of \; = i~®log (i), the benign overfitting
phenomenon can only happen for « =1 and g > 1.

Then we consider 6 problem instances, which are the combinations of two covariance
matrices H with eigenvalues \; = i~! and \; = i~2 respectively; and three true model
parameter w* with components w*[i] = 1, w*[i] = i, and w*[i] = i~'°, respectively. We
investigate four algorithms: (1) SGD with iterate averaging (from the beginning), (2) SGD
with tail averaging (Wy/2.n—1), (3) ordinary least square (minimum-norm interpolator),
and (4) ridge regression (regularized least square), where the hyperparameters (i.e., v for
SGD and A for ridge regression) are fine-tuned to achieve the best performance. Results are
shown in Figure 2. We see that (1) SGD, with either iterate averaging or tail averaging, is
comparable to ridge regression, and significantly outperforms ordinary least square in some
problem instances, and (2) SGD with tail averaging performs better than SGD with iterate
averaging. These observations are consistent with our theoretical findings and demonstrate
the benefit of the implicit regularization from SGD.
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Figure 2: Excess risk comparison between SGD with iterate average, SGD with tail average,
ordinary least square, and ridge regression, where the stepsize v and regulariza-
tion parameter A are fine-tuned to achieve the best performance. The problem
dimension is d = 200 and the variance of model noise is 02 = 1. We consider 6
combinations of 2 different covariance matrices and 3 different ground truth model
vectors. The plots are averaged over 20 independent runs.

7. Discussion

This work considers the question of how well constant-stepsize SGD (with iterate average or
tail average) generalizes for the linear regression problem in the overparameterized regime.
Our main result provides a sharp excess risk bound, stated in terms of the full eigenspectrum
of the data covariance matrix. Our results reveal how a benign-overfitting phenomenon can
occur under certain spectrum decay conditions on the data covariance.

There are number of more subtle points worth reflecting on:

Moving beyond the square loss. Focusing on linear regression is a means to understand
phenomena that are exhibited more broadly. One natural next step here would be understand
the analogues of the classical iterate averaging results (Polyak and Juditsky, 1992) for locally
quadratic models, where decaying stepsizes are necessary for vanishing risk.

Relaxing the data distribution assumption. While our data distribution assumption
(Assumption 2.2) can be satisfied if the whitened data is sub-Gaussian, it still cannot
cover the simple one-hot case (i.e., x = e; with probability p;, where >, p; = 1). Here,
we conjecture that modifications of our proof can be used to establish the theoretical
guarantees of SGD under the following relaxed assumption on the data distribution: assume
that E[xx' Axx "] < atr(HA) - H + b||H||5 - H/2AH'Y? for all PSD matrix A and some
nonnegative constants a and b, which is weaker than Assumption 2.2 in the sense that we
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can allow a = 0; this assumption captures the case where x are standard basis vectors, with
a=0and b=1.
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Appendix A. Discussions on Assumption 2.2

Hsu et al. (2014); Bartlett et al. (2020); Tsigler and Bartlett (2020) assume that z := H 2x
is sub-Gaussian. The following lemma shows that our Assumption 2.2 is implied by assuming
sub-Gaussianity.

Lemma A.1 Suppose E[xx'] = H, and z := H 2x is o2-sub-Gaussian random vector,
then for any PSD matriz A, we have

E[(x"Ax)xx "] < 1602 tr(AH)H.

Proof Note that z is a o2-sub-Gaussian random vector with identity covariance matrix,
implying that for any fixed unit vector u that u'z is a o2-sub-Gaussian random variable.
Then we have the following inequality for any unit vectors u and v

El(u’2)’(v'2)? < /E[(u72)"] - \/E[(vT2)"] < max {E[(u"2)",E[(v'2)"]} < 16-o?,
where the first inequality follows from the Cauchy—Schwarz inequality; and the last inequality

uses the fact that u'z is 02 sub-Gaussian. Here, the factor 16 is due to the sub-Gaussian
property (Proposition 2.5.2, Vershynin (2018)). Next, for any PSD matrix A, suppose its
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eigenvalue decomposition is A = Zl uiuiu;, where p; > 0 is the eigenvalue and u; is the
corresponding eigenvector, we have

E[(z" Az)zz] = Z wiE[(u] z)%zz"]. (A.1)

For any unit vector v, we have:

v E[(z" Az)zz |v = ZuiE[(uz—z)z(szF] <16-0t. Z i = 16 - o2 tr(A).

(2 (2
This implies that for any PSD matrix A we have
E[(z' Az)zz"] < 16 - o tr(A)L (A.2)
Finally considering x = H%z, we have for any PSD matrix A:
E[(x"Ax)xx '] = E[(ZTH%AH%Z)H%ZZTH%]
= HE[(z' H2 AH2z)zz | |H:
1 4 1 1 1
<Hz2 160 tr(H2AH2) -1- H>

= 1602 tr(AH)H,

where the second line holds since ZTH%AH%Z is a scalar and the third line of the above
equation is due to (A.2). This concludes the proof. [ ]

Appendix B. Proofs of the Upper Bounds
B.1 Technical Lemma

Lemma B.1 (Restatement of Lemma 4.1) An operator O defined on symmetric ma-
trices is called PSD mapping, if A = 0 implies O o A = 0. Then we have

1. M and M are both PSD mappings.

2. T—~T and T — 7% are both PSD mappings.

3. M—M and T — T are both PSD mappings.

4. If 0 <y < 1/\1, then 7! exists, and is a PSD mapping.

5 If 0 < v < 1/(atr(H)), then T~ o A emists for PSD matriz A, and T~ is a PSD
mapping.

Proof The following proofs are summarized from Jain et al. (2017a,b), and we include
them here for completeness.
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. For any PSD matrix A > 0, by definition, we have
MoA =E[xx'Axx'] = 0,
Mo A =HAH - 0.
Therefore, both M and M are PSD mappings.
. For any PSD matrix A > 0, we have
(Z—9T) oA =E[T—~xx")AI —yxx")] = 0,
(Z-7T)oA=(I-~yH)AI-~H) = 0.
Hence, T — 4T and 7 — 77~' are both PSD mapping.
. For any PSD matrix A > 0,
(M—M)oA =E[xx Axx'] - HAH = E[(xx — H)A(xx' — H)] = 0.
Thus, T — T = M — M is PSD.

. According to (4.1), if 0 < v < 1/A;, I — vH is a contraction map, thus for any
symmetric matrix A, the following exists:

ST —AT)oA=) (I-H'AI-yH)"
t=0 t=0

Therefore, 25 (Z — vT)! exists and T~! = v 3252 (Z — 4T)" exists. Furthermore,
for any PSD matrix A > 0, we have

TloA=9) (T-7T)oA=7) I-yH)A(I-H)' =0,
t=0 =0
which implies 71 is a PSD mapping.
. For any finite PSD matrix A, consider the following identity
T oA=7) (Z-7T) oA
t=0

Clearly, if the right hand side exists, it must be PSD since Z — 7T is a PSD mapping.
It remains to show that > 7 (Z —v7)" o A is finite, and it suffices to show that

tr <Z(Z —T)to A> = Ztr (Z=~T) oA) < oo

=0 =0
Based on the definition of T, let Ay = (Z —~7T)" o A, we have

tr(A¢) = tr(Ay_1) — v tr(HA1) — ytr(A—1H) + % tr (E[xx" Axx'])
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=tr(A_1) — 2ytr(HA; 1) + 72 tr (At_lE[xxTxxT]). (B.1)
By Assumption 2.2, we have E[xx'xx '] < a tr(H)H. Therefore, it follows that
tr(Ay) < tr(Arq) — (27 — Ylatr(H)) tr(HA; )
<tr ((I—~H)A_1)
< (1 =yAa) tr(Ai1), (B.2)

where we use the assumption v < 1/(atr(H)) in the first inequality. This further
implies that

tr(A)
YAd

< oQ.

Ztr((I—vT)tOA Ztr (Ay) <
t=0 =0

Therefore, 7! o A exists, and is PSD. So 7! is a PSD mapping.

B.2 Bias-Variance Decomposition

Lemma B.2 (Bias-variance decomposition)

E[L(Wx)] — L(W*) = %<H,E['f]N ®@nn]) < (\/bias + \/V&riance>2,
where

1 1
bias := §<H, E[n%as ® T[blaSD variance :— 5 (H E[ —variance ® nvar1ance]>.

Proof This proof comes from (Jain et al., 2017a). For completeness we included it here.

With a slight abuse of notations (or probability spaces), we have n; = nPias  pyariance,
where the randomness of 7P and 5181 is understood as coming from the same probability
space as ;. This implies 7; = HP#s 4 fy21an Then we have

2

IN

E
1 T 1 T\ 1
E [( ﬁbl&b) .H- ﬁb1a5:| \/E |:< ﬁvarlance> .H- ﬁvarlance:|
(\/ V2N V2N V2N V2N

2
— <\/ <H E[,r,blas ® ﬁR}aSD \/ <H E[ ~variance ® nvarlance})) ,

where we use Cauchy—Schwarz 1nequahty in the inequality such that for any vector u and v,

Bllu+ vl < (Bl + EIvIE) =
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Lemma B.3 Recall iterates (4.4) and (4.5). If the stepsize satisfies v < 1/\1, the bias
error and variance error are upper bounded respectively as follows:

—-1N-1

bias 1= %(H,E[n}i}“@@ aRes]) < T2 Z > {(T—H)"H,By),
t=0 k=t
‘ | NoIN-l
variance := <H [ [qyariance g qyariance] < ~3 (I— YH)*'H, Cy).
t=0 k=t

Proof The proof will largely rely on the calculation in Jain et al. (2017b). Firstly, based
on the definitions of nP* and nP®s provided in (4.2) and (4.3), we have

[ bias ‘ ,rlblaS]

E [nvarlance | Varlance]

E[Ptnblasmblas] (I i ’VH) blaS (B.3)
E[P nvarlance + ,Yé'tXt|nVarlanCe:| _ (I _ ,YH) Varlance. (B.4)

Then regarding the quantity E[nblas ® nblas] we have

E [n]bi}as ® —blas

1 . .
— m < nlalas ® ,rlllc)laS] + Z E[nlalas ® n]lglaﬂ)
0<k<t<N-1 0<t<k<N-1
1 i i i ias
=7 < Eny* onp®+ Y. Em)*enp ab])
0<k<t<N-1 0<t<k<N-1
1 . .
_ ﬁ ( Z I _ ,YH)t kE[ bias ® n]l;las] + Z E[’I’[?las ® nk)las](l _ ’yH)kt>
OSkStSN 1 0<t<k<N-1
—1N-1
1 1 , _
- (00— Bl @ P + Bl @ nfe)1 - H)), (B5)

where we use (B.3) for k — ¢ (or ¢t — k) times in the second equality. Therefore, plugging
(B.5) into the inner product (H, E[RR* ® nR2]) and noticing H is PSD, we have

;<H Bl @ o)

—Dia
N
N—-1N-—
Z Z < I - ’yH)k tE[ bias ® ,r,tblas] + E[ bias Q ,',I;)lab](]: N ’yH)k_t>
=0 t

N—

1N-1
No 2 2 (A Rl i)
t=

=t

where the last equality holds since H and (I — yH)*~* commute.
By (B.4), we can similarly obtain the following for E[fjiariance g jjyariance]

I

—variance —variance
E[nN 87 )
—1N-1

Z Z ( I - ,YH)k—tE[nzlariance ® ,’,I;/arlance] + E[ variance ® ,’,szariance](l - ’)/H)k_t>,
=0 k=t
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which further leads to

N— —1

1 —vari —vari _ vari vari

§<H’ E[n]\?rlance ® ,',l]\:«[lrlance < I _ ,YH)k tH’ E[nt ariance ® nt arlance]>'
t=0 t

2

b
Il

This completes the proof.

B.3 Bounding the Variance Error

We first introduce a weaker assumption (compared with Assumption 2.2) on the data
distribution, which is sufficient to get our desired results on the variance error.

Assumption B.1 There exists a constant R > 0 such that E[xx'xx'] < R?H.

We make this assumption to emphasize that our variance analysis does not rely on stronger
assumptions than those in a number of prior works for iterate averaged SGD (Bach and
Moulines, 2013; Jain et al., 2017b; Berthier et al., 2020). Moreover, note that this assumption
is implied by Assumption 2.2 by setting A = I, which gives R? = a tr(H).

Recall the variance error upper bound in Lemma B.3:

—1N-1

Varlance<—z Z I ’ka ‘H, Ct>
t=0 k=t

We first have the following crude bound on C;.

Lemma B.4 ((Jain et al., 2017a) Lemma 5) Under Assumptions 2.1, 2.8 and B.1, if the
stepsize satisfies v < 1/R2, it holds that

2
Yo
0=Cyp=<C; <+ <Cop < —— 1
0> bVl > 2 LYoo 2 1_ 'YRQ
Proof This lemma directly comes from Lemmas 3 and 5 in Jain et al. (2017a). For
completeness, a proof is included as follows.
We first show that C; is increasing:

Cy=(Z—7T)oCi1+7°%
t—1
= Z(I - VT)k o (solving the recursion)
k=0
=Ci 1 +7%(T - ”yT)t_l oX
= Cy_q. (since Z — ~T is a PSD mapping by Lemma 4.1 )

Next we show that C, exists. Since C; is PSD and increasing, it suffices to show that
tr(C;) can be bounded uniformly. For any ¢t > 1, we have

t—1 00
C, =12 Z(I ~T)E < ~? Z (Z —~T)! (B.6)
k=0 t=0
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Let Ay := (Z —~T) ' oX, then Ay = (Z —4T) o A;_1. By Assumption B.1 we have
E[xx"xx"] = R?H. Then, by (B.1), we can get

tI‘(At)

r(Ai_1) — 2ytr(HA, 1) + 2 tr (At,lE[XXTXXT])
r(Ar1) — (27 —¥2R*) tr(HA;_ ;)
r(I—~vH)A1)

t
t
t
(1 —=vAa) tr(A¢-1), (B.7)

VAN VANVAN

where we use the assumption v < 1/R? in the second inequality. Combining (B.6) and
(B.7), we have for any ¢ > 1 that

[e.e]

tr(Cy) < ~2 itr (- 7T)t o ) = 72 Ztr(At) <

t=0 t=0

7 tr(3)
Ad

< 00.

Therefore, tr(C;) is uniformly upper bounded, hence C, exists.
Finally we upper bound C,,. Taking limits in (4.4), we have

Coo = (I —7T) 0 Cx +7°%,
which immediately implies
Co =77 1oX.
Recalling T =T+ YM — ’yﬂ/lv and the definitions and properties of the operators, we have

7~'OCOQ:7'0000—i—’y./\/locoo—nyK/IVOCOO
=YX+ 7Moo Cyx — 'vao Coso (since Coo =T 10 X)
<3+ MoCqx (since M is a PSD mapping by Lemma 4.1)
< y0*H 4+ yM o C.. (since ¥ < o?H by Assumption 2.3)

Recall that 7! exists and is a PSD mapping by Lemma 4.1, we then have

Coojrya2'%_1oH+’y%_loMOCoo
o0

<752y (T toM)oT 1oH. (solving the recursion) (B.8)

-
Il
o

In addition, we have
T1oH= W’Z(I—’Y%)t oH

=7 Z(I — yH)'H(I — yH)" (by the property of Z — T in (4.1))
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=1 (B.9)

Substituting (B.9) into (B.8), we obtain

Coo < y0?- Z(’y%_l oM)iol
t=0
=70"- > (7T Lo M)t oyT To Mol
t=0

< yo?- Z(’y%_l o M) toyR?T
t=0

<70° Y (YRY)'T
t=0
I Lo

-7 g
1—~yR2”

where the second inequality is due to M oI < R?H by Assumption B.1 and T1loH=<Iin
(B.9), and the third inequality is by recursion. This completes the proof. |

The following lemma refines the bound on C; by its update rule and its crude bound
shown in previous lemma.

Lemma B.5 Under Assumptions 2.1, 2.3 and B.1, if the stepsize satisfies v < 1/R?, it

holds that )

c, <12

_m'(l_(I_VH)t)-

Proof By (4.5) and the definitions of 7 and 7, we have
C; = (Z — ’)/T) 0Ci_1+ "}/22

= (T —~T)0Ci_1 + 73 (M — M) o Cy_1 ++°%
= (I - ’7:71) 0Ci_1 + ’YQM o0Cy_1+ 722, (B'l())

where the last inequality is due to the fact that M is a PSD mapping. Then by Lemma
B.4, we have for all ¢t > 0,

2 2 2 2
o Yo 9 T YR°o
B3] = {5

MoCi S MoCyxu Mo 7

I= . -H. B.11
1—~R?2 1—~R2 ( )

Substituting (B.11) and ¥ < |[H™Y/2SH1/2||, - H into (B.10), we obtain

~ R2 2
Ci 2 (Z-1T)oCr1+7* 17701;22 ‘H++% |[HYV2sH 2|, H
-
~ ’)/RQO'Q 5 o
e I_ C_ 2‘7'H .H
(Z—-~T)oCi1+~ -~ + 420
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2 2

~ veo
— Z — — T o H
( ’YT)OCt1+1_7R2
9 o  t—1
Vo F\k i i
< T (Z —~T)*oH. (solving the recursion)
TS
2,2 Il ~
_ 177}%2 ) (IT-yH)*H(I - yH)*  (by the property of Z — T in (4.1))
-
k=0
2 2 t-1
Vo k
j . (I — ’}/H) H
— P2
1-9R o

2
Yo
=1 e (- T-7H)),

where in the last inequality we use v < 1/R? < 1/tr(H) < 1/);. This completes the proof. B

We are ready to provide the variance error upper bound.

Lemma B.6 Under Assumptions 2.1, 2.8 and B.1, if the stepsize satisfies v < 1/R2, then

it holds that
o? k* 9
- = N - 2
1—7R? <N+7 gk:*)\z 7

variance <

where k* = max{k : A\ > NLy}

Proof By Lemma B.2, we can bound the variance error as follows

N-1N-1
variance < % Z Z (I- ~H)FH, Cy)
t=0 k=t
N-1
1
= oN? (I-(T—H)",Cy)
=0
N-1
o SN I 1 H)Y L (I (1-9H)Y))
T NP1 —yR?) ’
2 N-1
_ (1 — AN \N—t _ t
9 N-1

where the second inequality is due to Lemma B.5, {\;};>1 are the eigenvalues of H and are
sorted in decreasing order. Since v < 1/A;, we have for all ¢ > 1 that

1—(1—9A)Y <min {1,7N\;}. (B.12)

29



DirFAN Zou, JINGFENG WU, VLADIMIR BRAVERMAN, QUANQUAN GU, SHAM M. KAKADE

Set k* = max{k : A\ > ,YLN}, then

2
variance S m ZZ: min {1’ 72N2>\12}

62 2,2 § 2
R — * + v £
N(1—~R?) (k N g

i>k*

__ (K Y
“1oar\NTT A

i>k*

B.4 Bounding the Bias Error

In this part we will focus on bounding the bias error. Recall the bias error bound in
Lemma B.3:

1 N—-1N-1
bias < — (I-~H)""H,B,)
t=0 k=t
1 N-1
= N2 Z (I-(I-~yH)""" By)
v t=0
1 N-1
SN2 I-@X-yH)Y, ) By (B.13)
t=0

Let S, = Z?:_()l B, then we only need to bound Sy.
Lemma B.7 Let S, = ',;_:10 By, if v < 1/(atr(A)), we have
St =(Z—~T)o8Si-1+By.
Moreover, it holds that
By=Sp =281 X 2 8.
Proof By (4.4), we have
B, = (Z—7T)oB;1 =(Z—~T)" 0By, (B.14)

where we used recursion. Then we have

-1 -1
St=» (IT-9T)foBy=(T-7T)o (Z(I—’YT)kOBo) +Bo=(Z—~T)0Si-1+Bo.

k=0 k=0
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Moreover, since By is PSD for all ¢t > 0, it is clear that S; = S;_1 + B = S;_1. Besides, by
Lemma 4.1, we know that

Sec =Y (Z—7T) 0By =7"T""0By
k=0

exists. Thus it can be readily shown that
Bo=51 =258 =2St41 2 =2 S,

which completes the proof. |

Lemma B.8 Under Assumptions 2.2, for any symmetric matriz A, if v < 1/(atr(H)), it
holds that

MoT 1o < A

1 —yatr(H)

Proof We first tackle 7' o A. In particular, by Lemma 4.1 we have the operator 7!
exists and thus 7! o A also exists, which can be obtained by solving for the PSD matrix D
satisfying the following equation,

ToD=A.
Using the definition of 7', we have:
ToD=~yMoD + A — vHDH, (B.15)

where M o D = E[xx ' Dxx"]. Further by Lemma 4.1 we know that 7! and M are both
PSD mapping. This implies that for any PSD matrices U and U’ satisfying 0 < U < U’, it
holds that

0 MoU=<MoU, 0=<T 'oU=<T 'oU.
Combining the above two results we also have
0<MoT 'oU=<MoT toU. (B.16)
Therefore, applying the operator 7! to both sides of (B.15) yields

D=77T 'oMoD+T 'oA—~7T 'o(HDH)
<AT 'oMoD+T oA. (B.17)

Then we can apply the operator M to both sides of (B.17), by the monotonicity property
in (B.16), we have

MoD=<yMoT 'oMoD+MoT oA
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<> (Mo T o (MoT o A). (B.18)
t=0
By Assumption 2.2 we have
MoT oA <atr(HT o A)H. (B.19)

Additionally, based on the definition of T, we have

TloA=9) (T-7T) o A=~ (I-yH)'AI-+H)".

t=0 t=0

Therefore, it follows that

1:r(H7~’_1 oA)=~tr i H(I — ’YH)tA(I . ’YH)t)
t=0

=~ tr (Z H(I - VH)%A>
t=0

= tr (H(2H — yH?*)"'A)

< tr(A), (B.20)

where the last inequality is because we have v < 1/\; and thus H(2H — yH?)"! < L.
Substituting (B.20) into (B.19) yields

MoT oA = atr(A)H.

Note that we have 7 'H < I and M oI < atr(H)H, plugging the above inequality into
(B.18) gives

atr(A)

1 —~yatr(H)

MoT 1oA=MoD =<atr(A Zyatr
t=0

This completes the proof. |

Lemma B.9 Under Assumptions 2.1, and 2.2, if the stepsize satisfies v < 1/(atr(H)),
then

a-tr ([T —(Z—~T)" oBy)

MeoS = T e @)

-H.

Proof Note that S; takes the following form

t—1
S;:=Y (T—-~T)FoBy=7""T"o[T—(ZT-+T7)"By
k=0
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Note that by Lemma 4.1, we have 7 — 77~' <I—-~TsothatZ—(Z—-~T)<XZT—(T- 7’7’)’5.
Therefore, further note that 7! is a PSD mapping, we have the following bound on S;,

S: <7 T 1o [Z—(Z—~T)" oBo.
Then note that [Z — (Z — 77~')t} o By is a PSD matrix, applying Lemma B.8, we get

a-tr ([Z—(Z—~T)" oBy)
v(1 = yortr(H))

MoS; =y "MoT ' o[I—(Z-~T)"]oBo= ‘H.

This completes the proof.
|

The following lemma shows that using this crude bound on M o S; we are able to get a
tighter upper bound on S;.

Lemma B.10 Under Assumptions 2.1 and 2.2, let B, = B, — (1 —yH)"7 B, (I-~yH)"¢,
if the stepsize satisfies v < 1/(atr(H)), then for any t < N, it holds that

t—1
tI‘(BON)
S<§ I— ~H)F( LEBP0N) 1 B, ) (T — vH)E
t_kzo( 7 )(l—fyatr(H) * 0>( H)

Proof Recall the recursive form of S; given in Lemma B.7, we have
S = (I - "}/T) 0S; 1+ Bg.

Note that this is similar to the recursive form of C; provided in (4.5) but replacing 723
with Bg. Then we can use the similar proof of Lemma B.5 to get the upper bound of S;.
In particular, note that we will run SGD with IV steps, then Sy can be used as a uniform
upper bound on Si,...,Sy, we can upper bound S; by

St 2 (T —7T)oSi1+7*MoSy +Byg
yo - tr ([T — (I—v%)N] o By)

<(Z—-~T)oSi1+ () -H + Bo
t—1 o

_ TV 'ya-tr([If(I—vT)N]oBo).

= kZO(I ’)/T) ( 1= N tr(H) H+ Bo)
t—1

i e 1L <W b (Bo - gl:,:oii](vHB)O(I ) gy Bo) (I~ 7H)*,
k=0

where we use Lemma B.9 in the second inequality, the first equality is by recursion, and the
last equality is by the definition of 7T . [ |

We now put these lemmas together and provide our upper bound on the bias error:
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Lemma B.11 Under Assumptions 2.1 and 2.2, if the stepsize satisfies v < 1/(atr(H)), it
holds that

1 *1(|2
bias < —— IN? wo —w HH_1 + [[wo — W™ |fr,..

2a(lwo —w*[I3, . + Nyllwo —w*ll3y,. ) [k
(k* *:00 N 2 AQ
* YN (1 =~ tr(H)) (N N >

i>k*

where k* = max{k : A\, >y 1/N}.

Proof We can plug the upper bound of S; derived in Lemma B.10 into (B.13) and get

bi <LN 1 I—(I—+H)N, 1-~H)* yetr(Bon) H+ By | (I— ~H)*
s = yN? — 7 ’ 7 1 — yatr(H) 0 7
N—1
1 ~yatr(Bo n)
= I-yH)?? - (1—yH)VNT2k 0 H 4 By ).
TN? k0<( YH)™ — (I-~H) 1T o) BB
Note that
(I—yH)* — I - yH)NF = (I - yH)* (1 - yH)* — 1 - 7H)VH)
< (1 AH) (T )Y
We obtain
traBON)
bi <7 (I — AH)F — (I — AH)Nh TOND0N) gy g
18 Z< 7 — (=) "1 —yatr(H) o)

Therefore, it suffices to upper bound the following two terms:

I - atr(Boy) NE:I I—~H)* — (I—AH)V+E H)
N?*(1 —vyatr(H)) & ’
;N
b= Y (L 7H)" — (L H) By).
k=0

Regarding I, since H and I — vH can be diagonalized simultaneously, we have

atrI30N- N+k
I = § E [(1- 1T— )N TR
! N?2(1 —yatr(H : )" = (1= 7h) ]2

atr(B
~ N —(’Yi]‘;r)(H)) Z [1- =)

atrGBoN- 227212
S"yNQ(l—’yatr Zmln{l*yN)\}
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Oétl"(Bo,N) 9 9
~(1 — yatr(H)) ( T ZA) (B.21)

i>k*

where £ is the index of the smallest eigenvalue of H satisfying Ag« > v~1/N. Moreover,
recall that B = By — (I — yH)VBo(I — yH)") and By = (wo — w*) @ (wo — w*), we have

tr(Bo,v) = tr (Bg — (I— vH)NBo(I —vH)Y)) = 3 (1 - (1 — 7)) - ((wo — w*, v))”.

i
Note that
(1-(1- )Y < min{2, 2N\ },

thus it follows that,

. * 2 * *
tr(Bo,n) < Qme{l,N'y)\i}((wo —w ,vi>) < Q(HWO —w H%M* + Nv|lwo —w H%Ik*oo)
i

(B.22)

where k* = max{k : \y > NLW} Then plug this bound into (B.21), we have

20([[wo —w*I§ . +Nylwo—w*|&. ) [k
I < 0:k* k*:00/ M N 2 AQ B.23
L= Ny(1 —~yatr(H)) <N A Z L) ( )

i>k*

In the sequel we will upper bound 5. Let H= VAV be the orthogonal decomposition
of H, where V = (vj,vg,...) and A is a diagonal matrix with diagonal entries A1, Ag,. ...
Then we have

N—
1
TZ ((I— A" — (I - AN VTBV).
k=0

H

Note that (I —yA)* — (I — yA)N** is a diagonal matrix, thus the above inner product only
operates on the diagonal entries of V' BgV. Note that By = 770770T , it can be shown that

the diagonal entries of V' ByV are w} w3, ..., where w; = vl-Tno = V;—(Wo —w¥).
L Nl
b= > (A —yH)F — (1 - H)V By)
k=0

N—-1
1
T ON? Z Z [(1=2)F = (1 =y A) M H]w?
2N2Z —7Ai) }
< o 5 min (LN

1
S’YQNQ‘Zf—FZ)\w

i<k* i>k*
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1

= o o =Wl liwo = w7l

where the first inequality is by (B.12) and k* = max{k : Ay > 7~!/N}. Combining the
upper bounds on I7 and Is directly completes the proof. |

B.5 Proof of Theorem 2.1

Proof By Lemma B.2, it suffices to substitute into the upper bounds on the bias and
variance errors. In particular, by Young’s inequality we have

2
E[L(wWn)] — L(w") < (\/bias + \/V&I‘i&ﬂCG) < 2 - bias + 2 - variance.
Then we can directly substitute the bounds of variance and bias we proved in Lemmas B.6
and B.11. In particular, by Assumptions 2.2 we can directly get R? = o tr(H). Therefore, it
holds that
E[L(wn)] — L(w")

alwo — w3 (K ! : :
SQ[ () e = Wl o — Wl

v(1 = yatr(H) st 72N?
o2 k* 9
I S N - A2
+1—ww<H><Nﬂ 2 ﬂ

= 2 - EffectiveBias + 2 - EffectiveVar,

where

I 1 2 2
EffectiveBias = W - |lwo — W*HH&}@* + [lwo — W*HHk*m
o2

. z allwo — w3 k* 2 2
Effect = — N - A
ectiveVar <1 — yatr(H) + Ny(1 — yatr(H)) N 7 Z ’

i>k*

B.6 Proof of Corollary 2.2

Proof We will show that the corollary can be directly implied by Theorem 2.1. In terms of
the effective bias term, it is clear that

I 1 112 1
EffectiveBias < 7555 - Iwo = wllg1 + [lwo — w*llfy,..
1 — T T 2 T T 2
- ~2N? ')‘k*l (Vi wo —v; W*)" + Ay Z (vi wo —v; w*)".
i<k* i>k*
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where v; is the eigenvector of H corresponding to the eigenvalue A;. Based on our definition
of k*, we have A\.)! < N7y and A\g+41 < 1/(N%). Therefore, it follows that

|wo —W*H%

1
EffectiveBias < N Z (V;rW() — VTW*)2 = | N (B.24)

7
%

Then regarding the effective variance, given the choice of stepsize that v = 1/(2a tr(H)), we
have

| P/ k*
EffectiveVar < 2(02 + OW) <N + 92N - ;;* Af)
7

* 2 _ * (|2 *
o (gﬂgN.zAg)wavw <§V+72N.Dg>,

i>k* i>k*

Based on the definition of £*, we have \; < 1/(N~) for ¢ > k*, thus

VQNZA?S’YZM-

i>k* i>k*

Besides, we also have k*/N < 725;1 Ai. Therefore, we have

k* 92 _ * (|2
EffectiveVar < 202 - (N +92N-Y A?) + VO‘"V‘;"N Wl S
i>k*

According to our choice of stepsize that v = 1/(2atr(H)), we can get

Bolwo ~ Wl g~ o wil
vN — yN '

)

This further implies that

BffectiveVar < 202 - | 4 12N . S+ lIwo — w[l5. (B.25)
- N : ! yN
i>k*
Combining (B.24) and (B.25), we have
E[L(Wn)] — L(w™) < 2 - EffectiveBias + 2 - EffectiveVar
Aflwo — w*[[3 S L 2 2
S——§ ot N%—WN-Z)\I» :
i>k*

Further using the assumption that v = 1/(2a tr(H)) completes the proof. [ ]
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B.7 Proof of Corollary 2.3

Proof For the bias error term, recall the definition of k*, we have

. 1
EffectiveBias < O <N2 - |lwo — W*||ilall€* + [[wo — W*||%1k*oo>

IN

1 1 N .
O(m'/\k*'HWo—W I3+ Mg - lwo — w H%)

go@).

For the variance error term, it can be verified that all these examples satisfies ), \; < oo,
thus we have

. k* 2
EffectiveVar = O (N + N Z )\2-> .

i>k*
1. By the definition of £* we have k* = s = N", therefore

EffectiveVar = O (N N+ N-N"9) = O (N"! + N'79).
2. By the definition of £* we have k* = G)(Nl/(1+’")), therefore
—1-2r
EffectiveVar = O (Nl CNYAF) LN (Nl/(lJrr)) ) =0 <N*T/(HT)> :

3. By the definition of £* it can be shown that k* = Q(N/ logﬁ(N)) since otherwise

)\k* ) :w<10g5(]\7) . 1
’ N [log(N) — Blog(log(N))]”

) = /)

which contradicts to the fact that A\g«y1 = O (1/N). Besides, we have
* 1
S0t )
S o 22log™ (z + 1)
Then note that

1 < log? (z + 1) + 2Bz log??~L(2) /(z + 1)
22log¥ (x4 1) ~ 22 log*? (z) '

This implies that

/OO 1 g < /°° log?®(x + 1) + 2Bz log?? () /(= + 1>dx
o 22log?(x) T T Ji 22 log*’ ()

_ 1

© k*log?P (k4 1)
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=0 (N_1 log_ﬁ(k:*)) ,

where the last equality is due to the fact that 1/(k*log?(k* + 1)) = ©(1/N). As a
result, we can get

EffectiveVar = O [ k* - N"'+ N Y M| =0 (1og—ﬁ (k*)) o (1og—ﬁ(N)) :
i>k*

where the second equality is due to the fact that k«x /N = O (logfﬁ (k*)) and the last
equality is due to k* = Q(N/ logﬁ(N)).

4. By definition of k* we have k* = O (log N), therefore

EffectiveVar = O (Nfl -log N + N - eleOgN> =0 (N*1 log N) .

Summing up the bias error and variance error concludes the proof. |

Appendix C. Proofs of the Lower Bounds

C.1 Lower Bound for Bias-Variance Decomposition
We first introduce the following lemma to lower bound the excess risk when the noise is

well-specified as in (2.1).

Lemma C.1 Suppose the model noise & is well-specified, i.e., & and X are independent
and E[&] = 0. Then

N-1N-1
* 1 -
E[L(Wn) ~ L(w)] 2 55 >0 > (- H)""H.By)
t=0 k=t
1 N—-1N-1
i k—t
t=0 k=t

Proof Let P; =1 — yx;x/, then the definitions of nP in (4.3) and ny1ance (4.2) imply
_ t . tt
n}/)las — H P10, ,r,;/arlance — ,YZ H &iji.
k=1 i=1 j=i+1

Note that in the well specified case, the noise & = y; — (w*, x;) is independent of the data
X¢, and is of zero mean, hence

t t t
Bl o n ] =8| [[Pame 3 [T 6P|
k=1

i=1 j=i+1
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Z HPW0®HPXz' [&] = 0.

Jj=i+1

This implies that
Efj, ® ] = B[P @ 7Pias] 4 Efjyatiance g gyariance]
and furthermore,
E[L(Wx) ~ L(w")] = 1<H Eln © )
_ <H B[P @ b)) + <H E[jyariance g prariance]) (C.1)

Next, we lower bound each term on the R.H.S. of (C.1) separately. By (B.5), we have

. . 1 . .
B[R © 0] = 575 ( > Emem™l+ ) Enyte n/'i"as]> :
0<k<t<N-1 0<t<k<N-1

Additionally, by (B.3) we can get

N—-1 N-1
(1 X Emen) = (1Y 3 @) B o nk))
k=0
N

0<k<t<N-1 t=k+1
-1 N-1 )
— Z <(I ’)/H)t kH E[ bias ® n]E,’)laS]> > 0,
k=0 t=k+1

where the inequality is due to the fact that (I —vH)""*H and E[n}>® @ nP#5] are both PSD.
Therefore, it follows that

1
bias := §<H’E[ —bias 7b1as]>
1
> W <Ha E[n;?las ® ,rhlglab]>
0<t<k<N—1
1 N—-1N-— ‘ .
S s )
t=0 k=t
1 N—-1N-1 . .
=oN2 <(I —yH)" H,En)™ n,'?‘as]>, (C.2)
t=0 k=t

where the last equality holds since H and (I —~H)*~* commute. Repeating the computation
for the variance terms, we can similarly obtain

1 .
variance := 5 —(H,E[7} pyariance o, fjjeriance))

—1N-1
Z Z < "yH k tH E[ variance ®n§ariance]>' (Cg)
t=0 k=t
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Plugging (C.2) and (C.3) into (C.1) gives

E[L(Wy) — L(w")] = = (H, E[n; ® 1¢]) = bias + variance
> L . Z <(I ,YH)k H E[ bias ®I’77Pias]>

+ . <(I _ VH)k_tH, E[,nz/ariance ® nzzariance]>.

C.2 Lower Bounding the Variance Error

Lemma C.2 Suppose Assumptions 2.1 hold. Suppose the noise is well-specified as in (2.1).
If the stepsize satisfies v < 1/A1, it holds that

2
Ct - Vgréoise (I o (I o ")/H)Zt) )
Proof Recall that M — M is a PSD mapping by Lemma 4.1 and C;_1 is PSD, then from
(4.5) we have

Ci=(Z—-7T)oCi1+7°%
= (Z-9T)0Ci1+ (M —M)oCiy ++°S
= (Z—~T)oCi1 +~%02 H (since in the well-specified case ¥ = o2, . . H)

t—1
=20t (T—~T)FoH (solving the recursion)

ﬁw
'—‘O

=202 e - Z (I — vH)*H(I — yH)* (by the property of Z — 47 in (4.1))
k_

= 720301%' (I— (T —yH)%) . (241 —~*H) "

n01se . (I (I ’)/H)Qt)

where in the last inequality we use 29I — v?>H < 2+I. This completes the proof. |

Lemma C.3 Suppose Assumptions 2.1 hold. Suppose the noise is well-specified as in (2.1)
and N > 500. Denote

1 NoinNed

: k: t

variance = ~—— - < —yH)"'H Ct>
2N t=0 k=t

,_.
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If the stepsize satisfies v < 1/A1, then

2 ]{3*
variance > Iggse (N + N~2%. Z )\3) ,
i>k*

where k* = max{k : \y > NLW}

Proof We can lower bound the variance error as follows

N—-1N-1

variance = ﬁ Z Z ((I— YH)'H, Cy)
t=0 k=t

1 N-1
= d (I-@-m)Nt Cy)

v
=)
o
@
®

o I—(IT—yH)N ' T—(I-yH)*)  (use Lemma C.2)

o2 N-1
SRR 0

7 t=0

N-—1
> B 305 (1- (-0 ) (1= 1= 28).

where {\;}i>1 are the eigenvalues of H and are sorted in decreasing order. Define

H

:Z I-1-2"""H(a-1-2", o0<z<l,

t=0
then

n01se
variance > AN Z FlyA).
i>1

Clearly f(z) is increasing for 0 < x < 1. Moreover:

fa)=3 (1= =a)" = (=) + (1 2)N )

1—(1—az)V

N(1—2)V-1,
. +N(1 )

Next we lower bound f(x) within the range ]{, <zr<landO<z< N, respectively.
First consider 3 < z < 1. Notice that f(x) is increasing and (1 — W) > (1- $)500

500
1.1/3 if N > 500, thus for ]{, <z < 1, we have

f(z)>N—-2N 43N -(1-1/N)N¥ >0.1N.
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On the other hand, note that we have the fourth-order derivative of f(x) is positive when
x € (0,1/N), thus for 0 < z < 1/N, we can perform third-order Taylor expansion on f(x)
at x = 0, which gives

N(N —1)(N —2)z2> N(N —1)(N —2)(N — 3)23

@)= 6 - 12

N(N —1)(N — 2)z?
> ( i(Q )z (since x < 1/N)
2N32
> 22T (since N > 500)
25
In sum,
x, ¥ <z <1,
fl@)=q % o X )
2537 0<z<y.

Set k* = max{k : A\ > Niv}, then

variance > no‘se Z flyN)

4N?

o Nk*  2N3
> noise 2 )\2
_4N2<1O 257§1>

(]

o2 k*
> Zmoise [ ¥ 4 Ar 2 2 .
= 75 N + N7y Z/\Z

i>k*
This completes the proof. |

C.3 Lower Bounding the Bias Error

Recall that we have the following lower bound on the bias error

1 N—1N-1
bias > N (I-~H)""'H,B,),
t=0 k=t
from which we notice that
1 N—-1N-1 1 N—-1
> I-~+H)H B, = I-1I-~H" 1B
blaS_2N2;;<( Y ) 5 t> 27N2 t:0< ( v ) t>
1 N/2
N—
27N22<I_(I_’7H) t7Bt>
t=0
1 N/2
e (1= =2 3By (C.4)
t=0
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Let S, := ;:01 B;. Then the reminding challenge is to lower bound Sy/z41 = i\;/OQ B:.
Similarly to the idea of proving the upper bound, we first establish a crude lower bound on
S,, then improve it to a fine lower bound.

Lemma C.4 Suppose Assumptions 2.1 and 2.4 hold. If the stepsize satisfies v < 1/A1, then
for any n > 2, it holds that

S, = gtr (1= @=m)"2)By) - (T~ (1 7H)"?) +§<I —~H)' By - (I-~H)".

t=0

Proof We first build a crude bound for S,,. Recall that 7 — 7 is a PSD mapping by Lemma
4.1, then

n—1 n—1 n—1 n—1
Sn=Y Bi=)> (IT-1T)oBy=» (Z-7T) oBo=)» (I—-~H)" By (I-~H)".
t=0 t=0 t=0 t=0

Now we apply Assumption 2.4 with the above crude bound to obtain that

(M —M)oS, = Btr(HS,)H

t=0
— 5t (- (- 2H)") Bo) B
- itr((l (I H)")By) H

Next we use the above inequality to build a fine lower bound for S,:

Sn=(Z—~T)0Sn1+Bo=(Z—~T)0Su_1+~7*M *M)OS"*1+BO

= (Z—~T) o Sn_ 1+@tr((l—(I—VH)"*I)BO)HJFBO.

Solving the recursion we obtain

-1

3

Sp =

M

(Z—~T)'o {527 tr (I—-(I—~H)"'")Bo)H+ Bo}

t=0

n—1
_ b >t (IT— T —~H)" ) By) - (I-H)"H
t=0
n—1
+Y I-~H) Bg- (I-~H).
=0

\V)

~
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For the first term, noticing the following:

n—1

> ot ((T— T —~H)""") By) - (I—H)”H

t=0
n—1

=t (T (I—yH)""")Bo) - (I-2yH)'H
e

= > (- (T—yH)" ") By) - (I-2yH)'H

= n/2—1
=tr ((I— (@ —~H)"?)By) - (I-2yH)'H
(@m0 a2
- 217 tr ((I - 'yH)"/Q) BO) - (I - 27H)”/2>
- ; tr (T (1 —7H)"2) By) - (T (1 7)),

inserting which back to the lower bound for S,,, we complete the proof.

Lemma C.5 Suppose Assumptions 2.1 and 2.4 hold and N > 2. If the stepsize satisfies
v < 1/7, then

. 1 %112 1 * (12
bias > m . ||WO - W ||Hallc* + ﬁ : ||W0 - W ||Hk*oo
. %112 o * (12
P (Itwo = w1, + N lwo = w[%,.. ) (k2N TR
10007 N2 =)
i

where k* = max{k : \j, > NLW}

Proof According to (C.4) and Lemma C.4, we have that
. 1 1

> Py ((I - ’yH)N/4> BO) AT — (T = )N/ 1= (1— yH)N/4)

~ 8yN?2
I
. NJ2-1
+ 2’VNQ<I —(@—yH)N?, > (I-4H)" By (I- ”YH)t> -
=0
Ip)

The first term is lower bounded by

n> 85\[2 tr (1= (@ =vE)N*) By) - tr <(I G- 7H)N/4>2>
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- Sﬁv (Z (1- (= p0)w? ) | (Z (1-0- WN/4>2>’

7 7

where w; = v, (

lower bounded by

wo — w*) for vi,..., vy being the eigenvectors of H; and the second term is

. 1<N/21(I H)Zt (I* (I H)N/2> B >

2 2y N2 2 Y Y , Do
S 1 <N/2 1(1_2 H)t<I—(I— H)N/Z) B>
= N2 2 v Y » Do
- el (0 )
Sy

To further lower bound the two terms, noticing the following inequality:

v _f1-(-fi>1-ei > A >
L=(1=A)% =9 N(N=4) _2y2 < N 1
Z”YAi_ 32 "7)‘2‘23'7)‘1') )\2<W

Plugging this into the bounds for I; and Iz, and setting k* := max{k : \y > 1/(yN)}, we
then obtain that

p 1 2 N 2 1. PN 2
Ilzw' nger?Z)\zwz : %‘k+ 25 Z)\Z
i<k* i>k* i>k*

p . . .
= 000782 (HWo -w ||%O:k* + N ||wg —w H%{km) | B A2N2 Z 2,
i>k*

and that
1 1 -1, 2 72N2 2
122W 55 2N W g D
i<k* i>k*
(Iwo = w*lig-1 +72N2 llwo — w*Ii,... )
100'72N2 HO:k* Hk*:oo

Summing up the two terms completes the proof.

46



BENIGN OVERFITTING OF CONSTANT-STEPSIZE SGD FOR LINEAR REGRESSION

C.4 Proof of Theorem 2.2

Proof Plugging the bounds of the bias error and variance error in Lemmas C.5 and C.3
into Lemma C.1 immediately completes the proof. |

Appendix D. Proofs for Tail-Averaging

In this section, we provide the proofs for SGD with tail-averaging. Recall that in tail-
averaging, we take average from the s-th iterate, i.e., the output of the tail-average SGD
is

s+N—-1

Wss4N = — § Wit.

D.1 Upper Bounds for Tail-Averaging

The following two lemmas are straightforward extensions of Lemmas B.2 and B.3.

Lemma D.1 (Variant of Lemma B.2)

1 2
§<H> E[fs:s+N8 ® Ns:s4n]) < <\/bias + \/V&riance> ,

E[L(Ws.s4n)] = L(W") =

where

1 : 1 rian: — rian:
bias == (L E[RY y @ 7% y)),  variance = o (HL B[l @ a12ae)).
Lemma D.2 (Variant of Lemma B.3) Recall iterates (4.4) and (4.5). If the stepsize
satisfies v < 1/\1, the bias error and variance error are upper bounded respectively as
follows:

. | NoinN-l
bias := §<H,E[n};1§iN ® ﬁ?lgiN N2 Z < —yH)*'H Bs+t>
t=0 k=t
. 1 N-1N-
variance := §<H,E[77;’ff}\lfce ® Meeriance] S Z — yH)"'H, Cpy).
t=0

Proof By replacing By and Cy by B and C; in the proof of Lemma B.3, and repeating
the remaining arguments, we can easily complete the proof. |

D.1.1 BOUNDING THE VARIANCE ERROR

Lemma D.3 (Variant of Lemma B.6) Under Assumptions 2.1, 2.3 and B.1, if the step-
size satisfies v < 1/R2, then it holds that

2 k*
variance < JW' <N+7' Z Ai +7°(s+ N) - Z A§>,
k*<i<kt i>kt
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where k* = min{k : \; < ,YLN} and kY = min{k : \; < ﬁ}

Proof By Lemma D.2, we can bound the variance error as follows

| NoIN-
variance < — Z Z <(I — fyH)k_tH, Cs+t>
t=0 k=t
;| Nl
= oN? (I— (@ —yH)N™" Cypy)
t=0
0_2 N-1
< Vaow (I—(I—yH)"" (I— (I—~yH)*M))
t=0
0_2 N—-1
= N2(1 _ ’YRZ) Z (1 - (1- 7)\1)N7t) (1 (1 —~A )S+t)
i t=0
2 N-1
< i D (- =AY (1= (=)
i t=0

where the second inequality is due to Lemma B.5, {\;};>1 are the eigenvalues of H
and are sorted in decreasing order. Now we will move to upper bound the quantity
(1— (1 =~9A)N) (1= (1 —~A)*™), which will be separately discussed according to the
following three cases: (1) YA; > 1/N, (2) 1/(s+ N) <~\; < 1/N, and (3) YA < 1/(s+ N).
In case (1), we can crudely bound this quantity as follows,

(1= =72)Y) (1= (1 =)*) < 1.
In case (2), we can use (1 —yX\;)Y > 1 —~yN); and get
(1= =72)"N) (1= (1 =2)*N) < yNX -1 =9NA,.
In case (3), we can use (1 —yA\)Y > 1 —yNX; and (1 — X)) > 1 —~(s+ N)\;, and get

(L= @ =a)Y) (1= (@ =aN)" ™) <ANX - v(s+ N)\ = +*N(s + N)AZ

Therefore, set k* = min{k : \; < Niy} and kf = min{k : \; < m}, we have
2
variance < m : (k* +yN Z A\i +7*N(s+ N) Z Af)
k*<i<kt i>kf
:0-72. E_ny. Z )\'+’72(S—|—N>' Z)\Q
1-yR? \N ~ —)
k*<i<kt i>kf

This completes the proof.
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D.1.2 BOuNDING THE Bias ERROR

Similarly to (B.13) and using Lemma D.2, we have the following upper bound for the bias
error:

bias < — (I —~vH)""H,B,4)

Let Sgs4¢ = Zs+t ! Bj, then we only need to establish an upper bound for Sg.s1 .

Lemma D.4 (Variant of Lemma B.10) Let Sgsqt = > pi By, for any t > s and
Buy = By — (I —yH)" B, (I — vH)"%. Under Assumptions 2.1 and 2.2, if the stepsize
satisfies v < 1/(atr(H)), it holds that

= yatr(B —|—B N !
S,y < I — ~H)FSBy (I — vH)F s stV + Boys) (I—~H)?*H.
s.s+zv_k_0( VH)* T Bo(I— A H) T+ kz_:o v

Proof Based on the definition of S;.sy¢, we have

s+t—1 t—1

Sastt = Z By =Y (Z-~T)" 0By = (T —~T)oSusi-1 + Bs.
k=0

Therefore, following the similar proof technique of Lemma B.10, we can get

Sssin = Y (I—H)By(I—H)F +
0

=
=2

~1
Yatr(Bs,syn)

ot (H) (I —~H)*H. (D.2)

e
Il

Bl

Iy

Now we will upper bound I, which requires a carefully characterization on B,. Particularly,
the update form of By in (4.2) implies

B, =(Z—-7T)oBr1=(Z—1T)oBr 1+’ MoBy_.
By Assumption 2.2, we have M o By < atr(HBy) - H. Thus,

By, < (Z—~T)oBj_1 +7*MoBj_,

< (Z—~T)oBy_1+ay’tr(HB;_ 1) -H
k—1

= (T —~T)FoBo+ar?) tr(HBy) - (Z—+T)" "o H
t=0
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k-1
2 (Z—~T)*oBo+an?*> tr(HB)-H (D.3)
t=0
where in the third inequality we use the fact that Z — 'y'% is a PSD mapping and the last
inequality is due to (Z — 47)*1*H = (I — yH)?*~1=YH < H. Next we will upper bound
Zf;ol tr(HB;). Recall the definition of ' and its update rule, we have

bi bi T .,bi bi
E[[lmg*l131mx25] = B[ (X — yacrae, )ng5 13 10g"5)

bias bias bias bias

= M2 113 — 29El(xuxy , mp2 @ me5) [ms)
+ Y El (g xixg , mEEY @ mi23 2]
= {2513 — 29 (HL mg5 @ mi?) + 7% (Mo LS @ m5)
< [mR2513 — (27 — YPatr(H)) - (H, 9% @ npe),
where the inequality is due to the fact that Mol < atr(H)H. Note that By, = E[pPas@nbias],
taking total expectation further gives
tr(B) < tr(Bg_1) — (27 — Y tr(H)) - tr(HBy,_1),

which implies that

= tr(Bo) — tr(By)

tr(HB;) < . D.4
; (HB;) 2y — y2atr(H) (D-4)
Substituting (D.4) into (D.3) gives
_ k—1
B, X (Z-1T)"oBo+ay*) tr(HB,)-H
t=0
~ yatr(Bg — Bg)
<(Z-~7T)koB :
=T =2T) e Bo+ 2 —yatr(H)
Therefore, we further have
N-1 N-1
tI‘(BO - B )
I = S (1= AHE)FBy(I — )k 4 12 : I— ~H)%H. D.

Further note that By = (Z —47T)*Bg and T = T, we have
tr(Bg — By) = tr (Bo — (Z — 7T )°By)
<tr(Bo— (Z—~7)°Bo)
< tr (Bo — (I —yH)*Bo(I — yH)?)
= tr(Bo,s).
Now, we can substitute the above inequality and (D.5) into (D.2) and obtain the following
upper bound on S;.s4 N,

N-1 N-1

atr(B +B -
Ss:s+N < Il + I2 < Z(I o ’yH)k+SB0(I _ ’yH)k+8 + Y 1(_ :/ZFZ(H) 0,3) Z(I - "yH)QkH,
k=0 k=0
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where we use the fact that 0 <1 —yatr(H) < 2 — yatr(H). This completes the proof. W
Lemma D.5 (Variant of Lemma B.11) Under Assumptions 2.1 and 2.2, if the stepsize
satisfies v < 1/(atr(H)), it holds that

1
bias < —— N 5 - |[(T—yH)* (wo — W*)Hilai* + [|(T = yH)*(wo - w*)HiIk*m

N 404(”W0 ~ Wi, + (5 N)ylwo — Wi, ) ( K 2 Z )\2>
(1 = o () 2
where k* = max{k : A\ > WLN}

Proof Substituting the upper bound of S.s1 n into (D.1), we can get

N-1

. « tI‘(BS s+N T BO s 2k
bias < I AH)*H
s = N2(1 —yatr(H k—0< H)Y, (I 7H) >
I
N—-1
’7N2 <I — (I — yH)N, (I — AH)FBo(I — 7H)k+s> . (D.6)
k=0

Ip)

By (B.21), we can get the following bound on I3,

atr(BS s+N T+ By S) ( k* 9 2)
L < : <) (423N, D.7
7(1 — yatr(H)) N2 st (D7)

Then following the same procedure in (B.22), we have
tr(By,s4v + Bos) < 2tr(Bosin) < 4(llwo — wIIIE,,. + (5 + N)yllwo — w*llfy,. )

where k* = max{k A > ,YLN} (in fact k* can be arbitrary chosen). Plugging this into
(D.6) gives

% (|2 *(|2 *
I < da(llwo = w*[|3, , + (s + N)ylwo — w3, ) ' <k 2y )\2)

V(1 = yartr(H))

Additionally, we have the following upper bound on Is,

=

L= ,Y12 (T —7H)?H (1 — (1 —~H)Y), By)
0

£
I
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N-1
1
< - Z <(I . ’yH)k+2$ B (I . 'YH)N+k+287BO>'
YN
k=0
Similar to the proof of Lemma B.11, let V1, Vs, ... be the eigenvectors of H corresponding
to its eigenvalues A1, A, ... and w; = v, (I — WH) (wg — w*), we have

I, < 7N2 Z ((I—yH)F — (I-yH)N* (1I-7H)*B,)

- vlzvz Z Z (L= 72k = (1 = AV HH]w?

- 2N2 1= (1 =N) }
w2

< rf-mmww}

1
< N2 Z*-FZ)\M

1<k* i>k*

1 112 o

= W ) H(I —yH)*(wo —w )HHO—}& + H(I —yH)*(wog —w )HHk*m7 (D.8)

where k* = max{k : \y > «%N} Combining (D.7) and (D.8) immediately completes the
proof.
|

D.1.3 PrROOF OF THEOREM 5.1

Proof By Lemma D.2, it suffices to substitute into the upper bounds on the bias and
variance errors. In particular, by Young’s inequality we have

2
E[L(Wn)] — L(w") < (\/bias + \/variance) < 2 - bias + 2 - variance.

Then we can directly substitute the bounds of variance and bias we proved in Lemmas D.3
and D.5. In particular, by Assumptions 2.2 we can directly get R? = o tr(H). Therefore, it
holds that

E[L(Wy)] = L(w")
<o L@ A (wo w*)HiI_.l* + | = 7H)*(wo — w

,}/2N2
2 Z )\2)

2a|wo — w3 (
7(1 — ya te(H)) =

+1—'y22tr(H). <IX;+7- Z )\¢+72(5+N)-Z)\?>]

k*<i<Ef i>kf

1
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= 2 - EffectiveBias + 2 - EffectiveVar,

where

EffectiveBias = N (X —~H)*(wo —w )Hi{&i* + [|(T = ~vH)*(wo — W )Hf{k*m

2

. g k* 2 2
Eﬁ‘ectlveVarzl_fyatr(H)-<N+7' Z )\i+7(8+N)‘z/\z‘>
k* <i<kt >kt

, Aa(lwo =Wl + (s + Nyliwo = wWllfy, ) - (k*
NA(1 — va tr(H))

+92N Z /\22>

i>k*

D.2 Lower Bounds for Tail-Averaging

In this part we assume the noise is well-specified as in (2.1), and consider the SGD with
tail-averaging

The following lemma is a variant of Lemma C.1, and lowers bound the excess risk.

Lemma D.6 (Variant of Lemma C.1) Suppose the model noise & is well-specified, i.e.,
& and x¢ are independent and E[&] = 0. Then

N—-1N-1
E[L(Wyspn) — L(w" Z ((1—H)*"H, B, )
t=0 k=t
—1N-1
<1 ~H) H,Cs+t>.
t=0 k=t

We then present the lower bound for the variance error.

Lemma D.7 (Variant of Lemma C.3) Suppose Assumptions 2.1 hold. Suppose the
noise is well-specified (as in (2.1)). Suppose N > 500. Denote

—1N-1
variance = Z Z < —'H Cs+t>
t=0 k=t
If the stepsize satisfies v < 1/A1, then
2 k*
variance > g(‘)’ge N Z Ai +(s+ N)y Z /\2 ,
k*<i<kt i>kf

where k* = max{k : \j, > NLV} and kY = max{k : \; > m}
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Proof We can lower bound the variance error as follows

1
variance = IN? Z <(I —yH)*'H, Cs+t>
t=0 k=t
1 N-1
= 2~ N2 Z <I - (I - PYH)N_ta Cs+t>
v t=0
0_2 N-1
> 4?35; (I—(I—-yH)N I~ (I—yH)??H)  (use Lemma C.2)
t=0
0_2 N-1
= Tooise 5737 (11— (1= 92V (1 (1= 90)26H0)
i t=0
o2 N-1
>N (T= (=) (1= (1= N)*)
i t=0

fz) = (I-1-2x)V " H(1-1-2), o<z<l,
t=0
then
: > 01210ise A
variance > — 558 ; F(yAi).
We have the following lower bound for f(z).

N-1

flay=3 1-0-a)" ") (1~ 1-2)")
t=0
3N _q
4

Z (1 _ (1 _ $>N—t—1) (1 (1 _ :U)S“rt)

=¥

We then bound f(x) by the range of .

1. For x > 1/N, we have that
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2. For 1/N >z > 1/(s + N), we have that
@) =5 (1-a - (1- -2
2%(1—(1—33)%) (1—(1—5+1N>S+4N)
=5 (- (%) (=) >

3. Forx <1/(s+ N) < 1/N,

we have that

N
f@) =5 (1-0-0%) (1-0-277)
N N N/4
25 (- (%)) (- (-257))
S (s +N)N2$2
- 128 ’
In sum, we have that
N 1
?\7027 NIS < 1,
f(@) = { 100% , TN =T < N
(S+1];2N 2, 0<z< s+1N
Set k* = max{k : \y, > Niv} and kT = max{k : A\, > (S+N }, then
2 .
variance > ﬁ wa)‘i)
i
o’ .. [ Nk* N2 (s+ N)N?
> _noise o \: 2, )\2
=82 {50 T 1007 Z it Ty 7 Z i
k*<i<kt i>kt
> Toe [ K Y NN SN
=600 \ N7 (s
k*<i<Ekft i>kt

This completes the proof.

Next we discuss the lower bound for the bias error. Similarly to (C.4) and using Lemma

D.6, we have that

N—-1N-1

blaSZWZZ<I YH)F'H, Byyy) =

t=0 k=t
N/2

- 2'7N2 Z<I

N—-1
27]\722 (I— (I-yH)""" Byy)
t=0

ta Bs+t>
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N/2
1
> I—(I—~yH)M2S B, D.9
_27N2< (I—~H) ,g s+t> (D.9)
Let Sgsqn := Z?:_ol B, = ?:_01 (Z —4T)! o Bs. We remain to build lower bound for

Ss:s+N/241- Comparing the definitions of S.s4n With Sy, the only difference is that By is
replaced by Bs. Therefore we directly have the following lemma.

Lemma D.8 (Variant of Lemma C.4) Suppose Assumptions 2.1 and 2.4 hold. If the
stepsize satisfies v < 1/A1, then for any n > 2, it holds that

Seoin = gtr ((1-@—~m)2)B,) - (T- (X H)"?) + nf(l —H)' - B, - (I - yH)"

t=0

Lemma D.9 (Variant of Lemma C.5) Suppose Assumptions 2.1 and 2.4 hold and N >
2. Denote

—-1N-1

bias = N2 Z Z < —vH) k ‘H B5+t>

t=0 k=t

then if the stepsize satisfies v < 1/v1, it holds that

. *\ (12 2 A72 *\ (12
bias > Tz (10— VD wo = w) ey +9 N2 (1= 9B o ) )
B llwo — w* |3
kT:oo * 2 2 2
Ny N A
+ 16000V T ;; i)

where k* = max{k : \j, > NLW} and kY = max{k : A\, > m}

Proof According to (D.9) and Lemma D.8, we have that

, 1 1 N
bias > 7N2<I_(I /VH) N7z Ss:s+N/2+l>— 2y N2<I_(I_7H) /Zass:s+N/2>
B N/4 N/2 N/4
> 7 —(I— AT = (1= (1 —
> o tr (1= (@ 9H)M1) B, ) - (1= (1= AH)M2 1 (1 yH)N/4)
L
1 N/2—1
T 3N <I—(I 00 RN (I—'yH)t-BS-(I—'yH)t>.
t=0
Iz

Also noticing a lower bound for Bg:
B.=(Z—7T)* 0By > (Z-1T) 0By =(I-vH)" Bg- (I - vH)".

Then the first term is lower bounded by

I > 85\72 tr ((I (- 'yH)N/4> (I— 7H)25B0> tr <<I (- fyH)N/4>2>

56



BENIGN OVERFITTING OF CONSTANT-STEPSIZE SGD FOR LINEAR REGRESSION

B N/4 2s, 2 N4\ 2
= o (2 (- 0= et ) Eij(l—u—w ) ).
where w; = VZT(WQ —w*) for vi,..., vy being the eigenvectors of H; and the second term is

lower bounded by

, N/2—1
I, = 27N2< Z: I- ’YH)zt (I -(I- ’YH)N/2> aBS>
> 271N2< N/szl(l — 27H)’ (I —(I- ’YH)N/Q) ,Bs>

> WlNQ< (1 (1~ E)Y4) H, (1 H) Bo(1 — H)*)
= e 2 (1= (L= ) A7 (= ),

To further lower bound the two terms, noticing the following inequalities:

N 1
N Ji-(-FHT>1-e1>1 A >
1_(1—’7)\2')4 > N NN(N74) 212 N5 Z le
TN T T YA 2 5 oA A< gy,

and

0, A\ > 2

Z—’YS’

142 1 1
(1_§)SZE7 )\i<%7

(1 =) > {

where we use the fact that (1 — 1/5)? is a strictly increase function of s for s > 2 so
that (1 — 1/s)®* > 1/16. Plugging these into the bounds for I; and I3, and setting
E* := max{k : A\, > 1/(yN)} and kf := max{k : A\, > 1/(v(s + N))}, we then obtain that

B YN 2 1 ’72N2 2
I > ST 2 e ANV
L=g 82 | 780 > A AR TR B

i>kf i>k*

B llwo — w*||3
Kkt * 2 n72 2
= x|k N .
16000V T Z)‘Z ’
i>k*
and that
1 1 _ v2N? 9
h>—— 1 —- ~L1- z’sz‘2 : i (T —yX\i)’w;
22 oy (35 2 A (L= )'w)” + 5 32N ((1 =)

i<k i>K*
= s (I AH) (g — w1+ N2 (L ) (wo —w) ).
10072]\]2 HO:k* Hk*:oo

Summing up the two terms completes the proof.
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D.2.1 PROOF OF THEOREM 5.2

Proof Plugging the bounds of the bias error and variance error in Lemmas D.9 and D.7
into Lemma D.6 immediately completes the proof. |
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