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ABSTRACT 
In this paper, we present a comprehensive study and 

performance analysis on the AutomataScales simulations 
method focusing on electric propulsion systems for deep space 
missions. These applications require precise and time efficient 
simulations. However, traditional simulation methods such as 
Particle-In-Cell (PIC) method facing challenges from 
computationally intensive (2.5-21 days), memory demands 
(random-access memory or RAM and CPU), and steep learning 
curve for researchers. These limitations reduce their 
effectiveness in resource-constrained environments. For 
instance, each GB of RAM consumes approximately 0.1875 watts 
which resulting in more power consumption ranging from 87.1 
to 145.2 MW per simulation run. The AutomataScales method 
combines discretization techniques with cellular automata and a 
multi-layer, multi-resolution approaches. This method offers a 
powerful tool to model complex multiphysics interactions and 
utilizing hybrid numerical scheme (discrete and continuous) with 
lower computational time and memory usage. The method 
depicts intricate and accurate behaviors in various types of 
particle trajectory (ionized particles, primary and secondary 
electrons) and plasma physics (particle collision and ionization). 
It provides a scalable and adaptable framework for multiphysics 
simulations with almost real-time simulation (0.1 second per 
time step). A key aspect of our research is the computational 
efficiency of AutomataScales. Our results show that the method 
can achieve up to 36.9 times faster, and 2.1 times less physical 
memory (RAM) compared to commercial simulation tools such 
as COMSOL Multiphysics software. This substantial reduction 
in computational resources make AutomataScales more efficient 
and accessible for researchers to explore broader design 
variables in their early design process with or without 
computational constraints. 

Keywords: AutomataScales, Cellular automata, 
Multiphysics Simulations, Multi-Resolution Analysis. 

 
1. INTRODUCTION 

The advancement of computational power has 
revolutionized the way we approach the design of complex 
engineering systems. Instead of relying solely on rapid 
prototyping, we now heavily rely on physics-based simulations. 
While some of these methods can be time-intensive, the 
integration of machine learning with computer graphics offers a 
promising horizon. This enhances user interaction and 
visualization of data, while also increasing simulation speeds. 
 Physics-based dynamic simulation modeling in 2D or 3D is 
essential in understanding and designing complex systems such 
as electric propulsion thrusters. Types of electrical thrusters can 
be classified as electrothermal systems for Resistojets and 
Arcjets, electrostatic systems for ion thrusters, and 
electromagnetic systems for Pulsed Plasma thrusters (PPT) or 
Hall Effect thrusters (HET) [1]. Information about the 2D and 
3D responses of engineering properties in electric propulsion 
like temperature, density, viscosity, pressure, and velocity 
enhances design by allowing lower-cost testing and flexible 
inspection. The cost of experimental studies is high, and 
traditional measurement techniques are limited in spatial or 
temporal resolution, making comprehensive studies challenging. 
For example, when attempting to develop an ion thruster, 
experimentation is limited due to the size, equipment, and 
conditions of the vacuum chamber, making it difficult to conduct 
tests in a wide range of operating scenarios [2]. In addition, more 
complicated systems are usually composed of several sub-
systems (e.g., hollow cathode, ionization chamber [3–5], anode, 
magnetic properties, and neutralizer [6]) with multi-physics 
interactions between each sub-system such as mechanical 
interactions, electrical interactions (e.g., surface charging, 
electric forces), magnetic interactions (e.g., magnetic 
interactions [7]) and physical interactions (e.g., erosion [8], 
particle-particle interactions and collision [9]). Thus, 
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preliminary numerical simulations enable designers to study 
accurate complex dynamical systems (e.g., nonequilibrium 
plasma dynamics [2,10], plasma turbulence [11–13]) to obtain 
the distributions of plasma parameters for various system 
designs [14].  
 To analyze how fluids flow, most computational fluid 
dynamics (CFD) software tools require a numerical method and 
a mathematical model of the physical case; the underlying 
equations can vary significantly by flow regime. The Navier-
Stokes (NS) equation is recognized as a mathematical 
representation of the fluid-related physical model. In fluid 
dynamics, gas dynamics, and thermodynamics, the method may 
be applied to describe changes in all physical properties. This 
includes mass transfer, phase change, heat transfer, and chemical 
reactions. Because the Navier-Stokes equation can be used in 
various fields, assumptions for each simulation model are 
required to obtain accurate results such as conservation of mass, 
conservation of momentum, inviscid fluids, and Newtonian 
fluid. In a fluid that conducts electricity, there is a possibility that 
an electric body force will occur, which can significantly alter 
the trajectory of the fluid flow. Ionized gas is one such fluid. It 
consists of free electrons, neutral components, and ionized 
components. Therefore, addition equations are needed such as 
the kinetic-energy balance equation for the streamlines, the 
internal energy of a molecule, the matter-energy equation, the 
Joule effect, caused by the flowing of a conduction current in the 
electromagnetic field, and the electromagnetic energy equation 
[15]. By using the modified NS equation for the hypersonic flow 
with an electromagnetic field, complex phenomena can be 
solved by keeping most of the parameters constant and varying 
only a single variable of interest such as velocity of a particle. 
The accuracy of numerical simulation studies focusing on a 
single parameter of interest from a single subsystem must 
therefore be balanced with the complexity of the model [16,17]. 
Therefore, it is extremely difficult to develop adequate 
assumptions and equations for each subsystem and integrate 
them to simulate multi-physics interactions for the whole 
system. 

While machine learning promises rapid predictions and 
detailed insights into real-time users’ interactions such as those 
between fluids and objects, its complex neural networks and data 
dependency present significant challenges. It is often difficult to 
comprehend and only capable to accurately model the physics 
behavior within the range of available data [18]. Recent research 
into Cellular Automata has shown the potential to integrate with 
Multiphysics interaction simulation models, presenting a 
revolutionary avenue to support early design decisions. This 
integration promises to offer both depth and speed, enabling 
designers to anticipate a multitude of physical phenomena at the 
foundational stages of design.  

Traditional simulation methods for particle trajectory in 
electric propulsion such as the Particle-In-Cell (PIC) method 
facing challenges due to its computational intensity and high 
memory demands. The simulation using this method can take 
substantial computing resources from 2.5 to 21 days to compete 
for each model, varying by the complexity of each case. 

Additionally, these methods have a steep learning curve for 
researchers to adopt quickly and effectively. The high 
computational demands also lead to increased power 
consumption. For instance, gigabyte (GB) of RAM consumes 
approximately 0.1875 watts. This translates to total power 
consumption ranging from 87.1 to 145.2 megawatts per 
simulation case [19–21]. These limitations from both computing 
resource and time reduce their computational efficiency in 
resource-constrained environment [22]. The AutomataScales 
method addresses these issues by integrating discretization 
techniques with cellular automata and utilizing a multi-layer, 
multi-resolution approaches. This method models complex 
multiphysics interactions using a hybrid numerical scheme that 
combines discrete and continuous techniques, thereby reducing 
computational time and memory usage while maintain the 
simulation accuracy. AutomtaScales able to capture intricate 
behavior in various particle trajectory (ionized particles and 
primart and secondary electrons) by using transition rules from 
the cellular automata framework as well as plasma physics 
phenomena (particle collisions and ionization). It provides a 
scalable and adaptable framework for multiphysics simulations 
with almost real-time simulation (up to 0.1 second per time step). 
Our research demonstrates that AutomataScales can perform up 
to 36.9 time faster and use 2.1 times less memory (RAM) 
compared to commercial tools such as COMSOL Multiphysics. 
This significant reduction in computational resources enables 
AutomataScales more efficient and accessible which allow 
researchers to explore broader range of design spaces in the early 
design process with or without computational constraints. 

This research aims to comprehensively elaborate on the 
theory behind the AutomataScales method (previously referred 
to as Layered Automata [23]). Moreover, we conduct extensive 
performance analysis based on the prior case study [23] to 
validate the efficiency of the approach. This paper contributes to 
three main areas as follows: 1) demonstrating the robustness of 
the AutomataScales computational grid that ensure stable and 
consistent simulations across various scenarios. 2) analyzing the 
influence of different layer resolutions on simulation accuracy 
and computational efficiency, and 3) evaluating the accuracy of 
the AutomataScales method in modeling complex system with 
lower computational costs. These contributions support 
researchers by offering a low-fidelity simulation tool that can 
promptly visualize complex physics phenomena. Additionally, 
the AutomataScales method could accelerates the learning 
process for researchers to set up higher fidelity simulations 
accurately and efficiently. 

The structure of this paper is delineated as follows: Section 
2 delves into established computational meshing techniques, 
electric propulsion models, cellular automata methodologies, 
and multi-resolution theory for each field. Section 3 elaborates 
on a novel Multiphysics interaction method, “AutomataScales: 
Integrating Scales in Multiphysics Modeling.” Section 4 
illustrates the research design underpinning this study. 
Computational performance insights are elaborated upon in 
Section 5 along with conclusions on the efficacy of the proposed 
approach. 
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2. BACKGROUND 
 This section provides a review of four main methodologies 
and theoretical foundations that support AutomataScales 
simulation as follows: 1) elaborating on discretization 
techniques used in physics simulation, 2) exploring the 
applications and challenges of ring cusp discharge type ion 
thrusters simulations, 3) examining the current development of 
cellular automata in multiphysics simulations, and 4) discussing 
the importance of multi-resolution techniques across various 
fields to enhance simulation accuracy and efficiency.  
 
2.1 Discretization Techniques in Physics Simulations 
 Discretization techniques are foundational in computational 
physics simulations, serving as a bridge between the 
mathematical underpinnings and their practical computational 
applications. In areas like computational fluid dynamics (CFD) 
and plasma physics, these techniques are indispensable. Both 
fields often rely on complex differential equations to describe 
fluid motions or plasma behaviors, but many real-world 
scenarios and geometries elude exact analytical solutions. 
Hence, an approximate yet precise solution is paramount, and 
this is where discretization comes into play. By converting the 
continuous mathematical descriptions into computable models, 
discretization techniques ensure that simulations in CFD and 
plasma physics are not only accurate but also computationally 
efficient, capturing the intricate dynamics of fluids and plasmas. 
The four main categories of discretization techniques are mesh-
based, cell-based, particle-based, and particle-in-cell or PIC 
method (Fig. 1). 
 
2.1.1 Mesh-based Techniques  
 Finite Element Method (FEM) stands out in the realm of 
mesh-based methodologies for solving fields related equation 
such as Maxwell’s equations (the electric and magnetic fields). 
This technique is paramount for tackling boundary and initial 
value problems described by PDEs. Two pivotal considerations 
underpin CFD meshing: mesh density and mesh geometry, which 
includes structured, unstructured, or hybrid meshing patterns. 
With the evolution of CFD, adaptive meshing, which adjusts in 
alignment with flow gradients and complex geometrical 
nuances, has gained prominence [24]. 
 
2.1.2 Cell-based Techniques 
 Cellular Automata (CA) is known for using the cell-based 
method to model complex systems (e.g., fluid dynamics and 
biology). One of the advantages of this method is that it can 
mimic system performance based on only local interactions 
governed by local update rules (transition rules). The transition 
rules can be divided into three categories: direct rules, multi-step 
rules (e.g., in plasma physics or multi-physics, the cell can be 
influenced by a particle velocity, electromagnetic fields), and 
probabilistic rules. The Lattice Boltzmann Method (LBM) is 
derived from the lattice gas automata or cellular automata 
methods. Fluid density on a lattice is simulated as a result of 
streaming and collision processes over a discrete lattice rather 
than solving the NS equations (FEM). As a result of the method, 

fluid behavior can be mimicked in controlled and complex 
environments, whereas other CFD methods are unable to do so. 
Additionally, the model can be parallelized due to its local 
dynamics feature obtained from the CA method, which is crucial 
to execute on the graphics processing unit (GPU). Combining or 
coupling it with other methods could be beneficial, such as using 
heat transfer in order to overcome its thermo-specific solution 
limitation and using the Galilean or Newtonian transformation 
technique to overcome its high-speed fluid flow limitation [25]. 
 
2.1.3 Particle-based Techniques 
 In CFD, the particle-based approach revolutionizes fluid 
dynamic equations by substituting fluid continuum with a 
discrete particle set. Its prowess lies in accurately modeling pure 
advection, facilitating solutions for multi-material challenges, 
and enabling seamless interface detection. Smoothed Particle 
Hydrodynamics (SPH) introduces a Lagrangian framework, 
allowing continuum equations' discretization directly at 
designated discrete points, bypassing the conventional spatial 
mesh systems like FEM. The fluid dynamics isn't spatially fixed 
but flows with the current. The variable values at each particle 
can be estimated by aggregating contributions from neighboring 
particles. Crucial determinants for fluid motion encompass 
external forces, fluid viscosity, and shifts in the pressure field. 
 
2.1.4 Particle-in-Cell (PIC) 
 Particle-in-cell (PIC) is a popular in plasma and laser 
dynamics as the method can use to solve plasma dynamics 
problem mainly by treating plasma as particles so that the plasma 
can consider as a continuum fluid and be able to apply Navier 
Stoke equation with the minimum assumptions [26] by treating 
all physical and chemical progress as the consequence of 
collisions. Therefore, it is obeying the statistical laws and gives 
the accurate kinetic information of plasma parameters [27–31]. 
The first micro-DC ion thruster PIC simulation developed by 
[5,32] is able to predict the performance of ion thruster and 
achieve 59% of total efficiency at low power consumption with 
the efficient miniature discharge configuration. Recently, there 
are studies that aim to design more efficient ion thruster by 
combining the PIC method with other approach such as the 
Monte Carlo, or develop the model so that it is parallelizable and 
could be run on high-performance computing clusters (HPCs) or 
cloud computing (e.g., Amazon Web Services, AWS) [33]. As a 
result, the method is able to predict similar outcomes compared 
to [5] with broader configuration (e.g., mass flow rates, 
discharge voltages.) 
 In addition, the embodiment of sparse-grid (SG) techniques 
in PIC has led to significant advancements in complex system 
simulations. These techniques optimize simulation models’ 
efficiency by employing coarser sub-grids to reduce the 
computational cost for high resolution models [34–36]. This 
approach aligns with the AutomataScales multilayers concept by 
using coarser grid resolution at low transition layer for 
calculation. These approaches represent a leap in computational 
physics, enabling more effective and accurate simulations of 
multi-scale and multi-physics scenarios. 



 

 4 © 2024 by ASME 

 
Figure 1: Discretization technique in physics simulations. a) Mesh-

based; b) Cell-based; c) Particle-based; d) Particle-in-cell 
  
2.2 Ring Cusp Discharge Type Ion Thruster  
      For mission and spacecraft designers, ion thrusters offer a 
significant and unique capability due to their ability to provide 
desired thrust levels, thrust control, propellant efficiency, and 
high total efficiency (up to 70%). In recent years, technologies 
and approaches used by spacecraft have evolved and improved 
in order to enhance their capabilities and efficiency. There are 
generally two types of successful ion thruster discharges, namely 
those generated by direct current electron bombardment (such as 
Kaufman or ring cusp) and those generated via electromagnetic 
fields, such as radio frequency (RF) or microwaves. In direct 
current discharges, electrons are typically discharged through a 
hollow cathode. It has been observed that ring-cusp discharges 
and thrusters are the most effective for conventionally sized ion 
thrusters [37]. An ion thruster working mechanism can be 
divided into three processes. First of all, a plasma is created in 
the discharge chamber, the ions are then accelerated through two 
(possibly three or four) ion optics grids, and then, a neutralizer 
emits electrons to provide system charge neutralization.  
 A discharge chamber model (DCM) that includes dynamic 
electromagnetic fields was developed by [5] in 2005. It proposed 
a two-dimensional hybrid diffusion model that treated ions, 
secondary electrons, neutrals, and primary electrons with 
diffusion models, zonal models, and particle tracking models to 
study the plasma inside the discharge chamber. However, it is not 
capable of capturing all aspects of the physics that occur inside 
the discharge chamber. To simulate the plasma inside the 
discharge chamber in a detailed manner, [38] developed an 
axisymmetric two-dimensional PIC with Monte Carlo Collisions 
(MCC) model that tracked the major particles in the chamber 
individually. It should be noted, however, that most numerical 
simulations of the ion thruster discharge chamber are based on 
the electrostatic model, which disregards the time-varying 
electromagnetic characteristics. Due to the time-varying 
electromagnetic characteristics of the discharge chamber, the 
model proposed by [39] may provide a more accurate and 
detailed description of the chamber. Rather than using the hybrid 
model [38], this method separates the physics model into three 
sub-models: Using the PIC method to track particles, 
electromagnetic fields are solving by Maxwell equations, and 
collision processes are described using MCC. In addition, high 
fidelity simulations using this method can require substantial 
computing resources ranging from 2.5 to 21 days with 32 to 448 
CPU cores, and 9 to 14 days with 1 to 2 graphics processing units 
(GPUs), depending on the complexity of the model [22]. 
Consequently, the amount of RAM needed depend on CPU core. 

For High-Performance Computing (HPC) systems, the system 
typically requires 8 GB of RAM per core [21]. This results in a 
total of 256 to 3,584 GB. Consequently, power consumption 
increases as 8 GB of RAM consumes approximately 1.5 watts 
[19,20]. Therefore, traditional PIC methods could consume 
between 87.1 and 145.2 MW, assuming the systems uses the 
same computing architecture and only varies the amount of 
RAM. 
 Due to the significant demands of computing resource, there 
is a clear need for innovative approaches to better handle 
complex system. Addressing these challenges is crucial for 
supporting researchers in exploring complex multiphysics 
interactions with wide range of design parameters, improving 
simulation accessibility, and reducing costs during the early 
development process. 
 
2.3 Physics-based Cellular Automata   
 Automata with probability is a generalization of finite 
automata with non-determinism. Only the probability is used to 
create the transition matrix for its transition function. Thus, all 
states have a weighted set of next states where the weights must 
sum to 1. These weights must also be reflected in the notions of 
states and acceptance. The state of the machine at a given step 
must now also be represented by a stochastic vector of states, and 
a state is accepted if its total probability of being in an acceptance 
state exceeds some cut-off. Phase or state transition of matter 
will be easier to inform the relevant calculations when the state 
of matter is explicitly defined by and appropriate state variable. 
An investigation by [40] illuminated the harmonization of CA 
with the Lattice Boltzmann method (LBM), elucidating accurate 
outcomes for multiphysics interactions during the solidification 
phase of forced convection processes. [41] proposed a multi-
physics interaction model by using the CA coupling with LBM 
to successfully determine energy transfer and state of matter such 
as solid, liquid, and gas. The state of matter also includes the 
mixture between each state such as solid and liquid, liquid and 
gas, or gas and solid. Building on the foundational work in multi-
physics modeling using the Cellular Automaton (CA) approach, 
as delineated by [42], the research presents a groundbreaking 
methodology tailored to simulate thermo-fluid dynamics within 
complex systems.  
 Traditional simulation methodologies often find themselves 
encumbered by computational inefficiencies and a lack of 
adaptability, especially when navigating systems marked by 
intricate geometries and nuanced boundary conditions. In 
contrast, the CA methodology, characterized by its grid-centric 
architecture and rule-driven evolution, emerges as a potent 
alternative. Its inherent streamlined nature, harmonized with an 
ability to depict complex behaviors, earmarks CA as an optimal 
tool for multi-physics simulations. Beyond mere computational 
efficiency, the CA framework offers unparalleled adaptability 
across diverse scenarios, positioning itself as a game-changer in 
the realm of complex physics simulations. The culmination of 
the author's research not only underscores this potential but also 
pioneers a method adept at handling intricate multi-physics 
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challenges encompassing diffusion, advection, reaction kinetics, 
and even external interactions such as gravity and tension forces. 
 
2.4 Multi-Resolution Simulation 
      Mechanical systems often exhibit intricate behaviors across 
multiple length and time scales. Such systems constitute a 
significant challenge for engineers and researchers to identify the 
increment and time step for each simulation model so that it 
satisfies the Courant-Friedrichs-Lewy (CFL) condition. Multi-
resolution or multi-scale simulation has emerged as a compelling 
approach to address these challenges by providing a unified 
framework for modeling diverse scales within a single 
simulation.  
      In this section, we will delve into three multi-resolution 
concepts from different areas: 1) the adaptive refinement from 
the finite element method, 2) the multi-scale techniques from 
machine learning, and 3) the multi-resolution concepts from 
computer graphics. 
 
2.4.1 Adaptive Refinement in the Finite Element Method 
      The Finite Element Method (FEM) is a fundamental method 
in engineering simulations. However, traditional FEM 
implementations often employ uniform mesh resolutions that 
usually become computationally intensive and inefficient when 
dealing with high fidelity models. To overcome this challenge, 
adaptive refinement in FEM presents a solution by adjusting 
mesh resolution based on local error estimations. This adaptive 
approach optimizes computational resources by allocating finer 
mesh at high transition or turbulence region [43]. While adaptive 
refinement offers a powerful tool for simulation, it may not be 
suitable for all problems. For instance, an airfoil modeling in 
often require mesh divisions into four distinct regions with 
different resolutions in order to capture different transitional 
areas and accurately predictions lift and drag coefficients [44]. 
These approaches require substantial effort during the pre-
processing stage which tailor the technique to specific scenarios 
and boundary conditions. 
 
2.4.2 Multi-Scale in Machine Learning  
      The advancement of machine learning in data-driven 
modeling allows researchers to gain insights from complex 
systems without knowing all variables encapsulated in the 
systems. Multi-scale machine learning takes this a step further 
by leveraging data generated at smaller scales to make 
predictions at larger scales while maintaining the same accuracy. 
Recently, there is studies that attempt to apply ML to various 
types of simulation domains such as NS fluid flow, stress 
analysis, electromagnetic, and grid interpolation (applied data 
generated from smaller-scale training grids to larger-scale grid 
resolution) [45]. The approach can precisely predict the 
outcomes of the four simulation models (The root-mean-squared 
error, RMSE varies between 0.00214 to 91.57) with minimal 
computational time (between 0.09-14.71 seconds). The idea of 
grid interpolation or multi-grid resolution has been shown to 
reduce the computational cost and but also reduce the predicted 
outcome errors between 20% and 70% [46]. 

2.4.3 Multi-Resolution Concepts in Computer Graphics 
      The field of computer graphics needs realistic simulations 
and visualizations particularly in control of light and texture. 
Multi-resolution concepts are pivotal in achieving these goals, 
enabling the rendering of immense complex scenes with varying 
levels of detail [47]. By hierarchically representing objects and 
textures at different resolutions [48], the techniques allocate 
computational resources accordingly and result in realistic and 
interactive experiences with the same precision. Understanding 
these principles in computer graphics provides valuable insights 
into visualizing the behavior of high-fidelity complex systems 
from lower fidelity data.  

 
3. METHODOLOGY 

The AutomataScales method transforms complex physics 
phenomena into a discrete computational model based on the 
Cellular Automata (CA) architecture. CA's cell-based structure 
also allows AutomataScales to encapsulate physical interactions 
within local or transition rules and enables the integration with 
other approaches, such as multi-resolution and multilayer 
strategies. These techniques significantly enhance the 
AutomataScales computational capability by modeling different 
physics interactions with varying detail levels that potentially 
reduce the computational cost for each time step while reduce 
the complex boundary conditions within the model.  

This section will elaborate on related theories and 
assumptions for the AutomataScales simulation model for 
electric propulsion applications. 
 
3.1 AutomataScales: Level of Reality 
      In the landscape of mechanical engineering simulations, 
selecting an appropriate scale (microscopic, mesoscopic, or 
macroscopic) is pivotal for accurately capturing the desired 
physics phenomena. Microscopic simulations illuminate the 
quantum behaviors foundational to material properties; 
mesoscopic simulations reveal the statistical behaviors of 
particle assemblies; macroscopic simulations encompass the 
global behavior of the large-scale system (e.g., averaged velocity 
of the particle trajectory in electric propulsion). 
      The AutomataScales approach, grounded in the mesoscopic 
perspective, adeptly captures the dynamics that need to be fully 
observable at the macroscopic level and as detailed as at the 
microscopic level. Within this intermediate domain, 
AutomataScales offers a versatile simulation platform. Each 
layer within the AutomataScales model can be tuned to a specific 
scale of reality, allowing for a granular approach to precision and 
time optimization in simulations. Thus, it facilitates the balance 
between detail and computational efficiency necessary for 
engineering design to determine a broad range of variables to be 
optimized, especially during the early stage of the design 
process. 
 
3.2 AutomataScales: Research Design  

In this study, AutomataScales and COMSOL Multiphysics 
software were utilized in parallel to simulate electric propulsion 
dynamics. Both platforms adhered to a standardized parameter 
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set: particle numbers, computational grid resolution, simulation 
geometry, and boundary conditions as illustrated in Table 1 and 
Fig. 2. The simulations conducted on a system with an Intel Xeon 
CPU (E3 1585L v5, 3.00 GHz) and 16 GB of RAM. The 
AutomataScales model was implemented using MATLAB. 

COMSOL was chosen as the benchmark for this study due to 
its established reputation as a leading commercial simulation 
software in both academia and industry field. COMSOL 
provides a comprehensive suite of tools for simulating various 

physics phenomena through its unique particle tracing 
approaches to solve for discrete trajectory instead of continuous 
field [49]. This unique method aligns with the foundational 
theories of AutomataScales, making COMSOL an ideal 
reference point for evaluating the performance of the 
AutomataScales simulation. 

 
   

 
Table 1: Simulation parameters 

 
The evaluation of performance metrics in this study 

encompassed computational time and accuracy in predicting 
physical phenomena. Specifically, for the AutomataScales 
method, in-depth analyses included grid convergence and layer 
resolution assessment. Our COMSOL model incorporated 
modules for electrostatics, charged particle trajectory analysis, 
and electric-particle interactions. 

The study of particle trajectory in electric propulsion is 
critical as it correlates with the probability of particle collisions 
and ionization events. Given the stochastic nature of particle 
trajectory, it is imperative to derive results from multiple 
simulations for reliability. In this context, data from COMSOL 
were derived from 10 simulation runs to calculate both the 
average and maximum particle velocities (primary electrons, 
secondary electron and ionized Xenon particles) at the engine 
exit (45-55 mm from the bottom), specifically 97 mm from the 
left, after 100 time steps (Fig. 3). Similarly, data from 
AutomataScales were obtained from 100 simulation runs at the 
same position and time steps as those in the COMSOL 
simulations. 
 

 

 
Figure 2: Electric propulsion model components: (1) anode, (2) 

screen grid, (3) accelerator grid, (4) ionization chamber, (5) 
discharge cathode 

Module Parameters Value Unit 

Mesh Mesh geometry Quadrilateral - 
Number of mesh 10,000 - 

 Computational grid resolution 0.1 mm 

Electrostatic field 

Anode 10,000 Voltage (V) 
Screen grid 10,000 Voltage (V) 

Accelerator grid voltage -10,000 Voltage (V) 
Discharge cathode -5,000 Voltage (V) 

Particle properties 

Particle mass 2.18 x 10-25 Kilogram (kg) 
Electron mass 9.109 x 10-31 Kilogram (kg) 
Particle charge 1.6022 x 10-19 Coulomb (C) 
Initial energy 1000 Electron volts (eV) 

Collision and 
ionization 

Cross sectional radius 3 x 10-19 m2 
Background number density 1 x 1020 m-3 
Background gas molar mass 0.131 kg/mol 

Avogadro constant 6.022 x 1023 mol-1 

Ionization energy of Xenon 1.943 x 10-19 Joules (J) 
 Maximum number of primary particles 20,000 - 
 Maximum number of secondary particles 20,000 - 

Time dependent 
study 

Initial time step 0 second 
Time step 10-10 second 

Final time step 10-8 second 
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Figure 3: Quadrilateral computational grids optimized for plasma 

physics simulations 
 
3.3 AutomataScales: Numerical Scheme 

The following section provides details of three numerical 
schemes for electric propulsion dynamics, including a fields 
solver, particle trajectory and collision, and ionization. 

 
3.3.1 Fields Solver 

The electromagnetic fields are divided into two parts: one is 
the initial electric field when the voltage first applied on the 
Anode wall (Fig. 2) and the initial magnetic field generated from 
the permanent magnets. The electrostatic field is obtained from 
the Poisson’s equation (Eq. 1) where 𝑉 is the electric potential, 
𝜌 is the charged density, 𝜀0 is the vacuum permittivity (𝜀0 =
8.854 × 10−12F ∙ m−1). The electric field (𝐸) is calculated from 
is the negative gradient of the potential from Eq. (1). 

∇2𝑉 = − 𝜌
𝜀0

                 (1) 

𝐸⃗ = −∇𝑉                   (2) 

      In this case study, each computational grid cell is assigned a 
single particle. Consequently, the estimated impact of ion and 
electron densities on each cell's potential is approximately 18.09 
µV. This value exerts a negligible influence on the overall 
electrostatic field of the model, particularly when contrasted with 
the boundary conditions at the walls or electrodes, which are set 
at -5,000 V, -10,000 V and 10,000 V, respectively. Given this 
minimal impact, it is reasonable to postulate that the charge 
density does not significantly alter the electrostatic field. 
Therefore, for the purposes of this study, Poisson's equation 
simplifies to Laplace's equation (Eq. 3). 

∇2𝑉 = 0                     (3) 

3.3.2 Particle Trajectory  
Particle trajectory of the model is driven by the Newton-

Lorentz equation of motion in Eq. (4), where 𝑣  is the particle 
velocity, 𝑞 is the electric charge of particle, 𝐸⃗  is the magnitude 
of electric field, and 𝐵⃗  is the magnitude of magnetic field. In 

addition, the velocity of each particle could be calculated based 
on Newton’s second law in Eq. (5).  

    𝐹𝐿 = 𝑞(𝐸⃗ + 𝑣 × 𝐵⃗ )         (4) 

∑𝐹 = 𝑑
𝑑𝑡

𝑚𝑣           (5) 

3.3.3 Collision and Ionization  
The collision model is driven by calculating the collision 

probability (𝑃𝑐𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛) in Eq. (6), where 𝜈 is the chance of 
collision which depends on the cross-sectional area of particle 
(𝜎), background particle density (𝑁𝑑) and corrected velocity in 
Eq. (7). For cold gas approximation collision, the relative 
background velocity (𝑔) is equal to the particle velocity, 𝑣.  

   𝑃𝑐𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛 = 1 − exp⁡(−𝜈∆𝑡)         (6) 

𝜈 = 𝑁𝑑𝜎(𝑣)|𝑔|                 (7) 

      The ionization process is initiated upon the occurrence of a 
collision, necessitating a specific energy input (∆𝐸) to ionize a 
Xenon atom, quantified as 12.13 eV. Subsequently, the velocity 
of the electron colliding with a neutral Xenon atom will be 
adjusted in accordance with Eq. (8) & (9), where 𝑔′ is the post-
collision relative velocity between a particle and background 
particles, 𝑚𝑝 is the mass of particle (primary electron), 𝑚𝑔 is the 
background mass, 𝑣′ is the post-collision velocity of a particle. 

|𝑔′| = √𝑔 ∙ 𝑔 − 2∆𝐸(𝑚𝑝−𝑚𝑔)
𝑚𝑝𝑚𝑔

         (8) 

𝑣′ = 𝑣 − 𝑚𝑔

𝑚𝑝+𝑚𝑔
(𝑔 − 𝑔′)         (9) 

3.4 AutomataScales: Structure 
      The following characteristics define the AutomataScales 
simulation architectures for the electric propulsion dynamics. 
 
3.4.1 Cell Types  

The AutomataScales model is typically structured in 2D or 
3D spatial simulations. Cell type will influence the type of 
cellular spaces, and computational intensity of the model 
including the interaction between layers and transition rules for 
each cell properties or states. In this research, 2D cell type was 
selected. 

 
3.4.2 Cell Spaces 

The model prioritizes a quadrilateral arrangement, as it is 
supported by MATLAB architecture, and aligns with 
COMSOL’s optimized meshing for plasma physics (Fig. 2 & 3). 
It is crucial for simulating the behavior of various particles in 
electric propulsion with the same cell or grid arrangement, where 
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the conservation of momentum might be changed based on 
different grid arrangements. 
  
3.4.3 Cell States 

In the AutomataScales framework, cell states are created to 
represent a spectrum of physical conditions such as kinetic 
behavior of particles. Primary states signal the presence or 
absence of physical quantities within a cell, while secondary 
states offer a detailed enumeration of these quantities (e.g., 
velocity and energy levels) necessary for portraying the 
thermodynamics of propulsion systems. The sub-states are 
meticulously formulated to capture the ionization stages of 
Xenon, a common propellant in electric propulsion. By 
employing a probabilistic CA approach [41], transitions between 
these states are modeled to reflect the stochastic nature of 
particle collisions and ionizations, thus providing a 
comprehensive representation of plasma behavior.  
 
3.4.4 Neighbor Types 

The neighbor type in the AutomataScales method is selected 
with a focus on computational efficiency and mesoscopic fidelity 
for electric propulsion problems. The Von Neumann neighbor 
type is employed due to its less dense configuration, which only 
requires four neighbors around each cell (8 neighbors for the 
Moore neighbor type). The number of neighbors becomes 
increasingly significant when the neighborhood radius extends 
beyond a single cell [44]. The approach allows for the detailed 
analysis of local interactions, particularly at chamber walls and 
electrodes (e.g., discharge cathode, screen, and accelerator grid), 
managing the overall behavior of the simulation. 

 
3.4.5 Layers 

The AutomataScales model consolidates a multi-layered 
architecture that is crucial for modeling multiphysics 
interactions. Each layer represents different physical quantities, 
such as voltage, velocity, energy (eV), or electric field. 
Alternatively, the layer could be created based on the associated 
simulation domains (e.g., fluid dynamics and electromagnetics). 
In this research, the way electric fields influence particle 
acceleration is modeled through these interactive layers to 
observe the exhaust velocity of the propulsion system. The 
innovation of this method is to maintain optimal resolution for 
calculation across layers while ensuring that simulations predict 
system behavior. 

 
3.4.6 Transformation or Transition Rules  

The AutomataScales model's transformation rules are the 
engines that drive the evolution of cell states over time based on 
their current state and the states of neighboring cells. These rules 
considering the type of neighborhood to ensure that each cell's 
behavior is accurately represented. The implications of these 
rules are vast such as determine the collision rate when ionized 
particles collide with the engine walls. The sophistication of 
these rules allows for simulations that can predict the operational 
performance of propulsion systems under a variety of conditions 
(e.g., power level, component, geometry). 

The transition rules for typical particle behavior in our 
simulation framework was implemented in this research where 
each particle has the same probability to advance in six 
directions. In addition, our study acknowledges that high-energy 
particles in electric propulsion systems exhibit complex 
behaviors, such as moving through multiple grid cells in one time 
step. We've established additional rules where these high-energy 
particles' movements are influenced by the average velocity of 
all particles.  

 
3.5 AutomataScales: Time Complexity 
      Time complexity, usually described as the big O notation, 
Ο(𝑁), is vital for evaluating and developing each simulation 
model, as it represents the computational cost of running a 
simulation relative to the total number of grid points.  
      When applied the AutomataScales simulation to electric 
propulsion models, we anticipated that a time complexity would 
be approximately equal to the cellular automata (CA) 
framework. For a CA with the total number of cells of 𝑁 and a 
fixed set of rules, the time complexity for a single update across 
the simulation domain is typically Ο(𝑁), as each cell's state is 
updated once per time step. Given 𝐿 layers where 𝐿 is the subset 
of all positive integers (𝐿 ⊆ ℤ+), each potentially operating at a 
different resolution, the time complexity for updating the entire 
multilayer system once can be classified as Ο(𝑁) if the layer are 
independent; Ο(𝐿 ∙ 𝑁), if the layers are updated sequentially; and 
Ο(𝐿2 ∙ 𝑁) if the layers are interdependent where the state update 
of each layer depends linearly on the states of all other layers. 

 

Time Complexity ≈ {
⁡⁡Ο(𝑁),⁡⁡⁡⁡⁡if layers are independent,⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡

Ο(𝐿 ∙ 𝑁),⁡⁡⁡⁡⁡if layers are updated sequentially,
Ο(𝐿2 ∙ 𝑁),⁡⁡⁡⁡if layers are interdependent.⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡

 

 
      In our model, we deal with 10 sequentially updated layers: 
electric field; particle force, particle acceleration, and particle 
velocity for primary electron, secondary electron and secondary 
ionized particles. Presumably, the time complexity can be 
estimated as Ο(10𝑁). However, constants are omitted from the 
notation due to their non-significant impact on scalability. 
Therefore, the overall time complexity of the AutomataScales 
model in our study is equal to Ο(𝑁). 
 
4. COMPUTATIONAL PERFORMANCE ANALYSIS 

This section delves into the computational performance of 
the AutomataScales method, focusing on its application in 
simulating electric propulsion systems. The objective of this 
section is to evaluate the model's efficiency, scalability, and 
accuracy through a series of comprehensive analyses. 

 
4.1 Grid Convergence Analysis  
      In this study, we assessed simulation accuracy across various 
refined computational grid sizes. The goal of this analysis was to 
verify the convergence of the model. Thus, ensuring model’s 
accuracy and reliability. 
      To facilitate this analysis, we employed three distinct grid 
resolutions with quadrilateral grid type: coarse (2 mm), medium 
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(1 mm), and fine (0.5 mm). These grids were utilized to evaluate 
the grid convergence index (GCI) using the AutomataScales 
method. The analysis was based on the average velocity of the 
primary electron particle, derived from an ensemble of 100 
simulation runs. The observed average velocities were 2.61 × 107 
m/s for the fine grid (𝜙1), 2.75 × 107 m/s for the medium grid 
(𝜙2), and 6.84 × 107 m/s for the coarse grid (𝜙3), derived from 
100 simulation runs, compared to the exact solution obtained 
from COMSOL (2.47 × 107 m/s). 
      The computation of the grid convergence index incorporated 
four parameters: the Quantity of Interest (𝜙), represented by the 
averaged velocity; the Relative Change in quality of interest (𝑒) 
obtained from Eq. (10); the grid refinement ratio (𝑟) calculated 
from Eq. (11); and the observed order of accuracy (𝑝) computed 
from Eq. (12). These factors and their interrelations are 
comprehensively detailed in Table 2. This methodical approach 
to grid convergence analysis in Eq. (13), where 𝐹𝑠 is equal to 1.25 
based on 3 grid point data, ensures that our numerical model 
accurately captures the intricate dynamics of the physical 
phenomena under investigation. [50–52] 
 

𝑒1,2 = |𝜙1−𝜙2|
𝜙1

, 𝑒2,3 = |𝜙2−𝜙3|
𝜙1

⁡     (10) 

𝑟1,2 = 𝑟2,3 = ℎ3
ℎ2

= ℎ2
ℎ1

               (11) 

𝑝 = ln(𝑒1,2/𝑒2,3)
ln(𝑟)

         (12) 

GCI𝑒1,2 = 𝐹𝑠×𝑒1,2
(𝑟𝑝−1)

           (13) 

Table 2: Grid convergence analysis results for different grid size 

Grid 
size 

(mm) 

Mean 
particle 
velocity 

(m/s) 

Percentage 
different 

from exact 
solution 

Total 
computed 

time 
GCI 

2 6.84 x 107 176.9 % 2.48 s - 
1 2.75 x 107 11.34 % 10.73 s 6.59 % 

0.5 2.61 x 107  5.67 % 121 s 0.24 % 
 
 
4.2 Layer Resolution Analysis 
      In our study, we analyzed various layers within the 
AutomataScales model to investigate their influence on the 
overall simulation resolution, explicitly focusing on the particle 
trajectory and electric field layers. This comprehensive analysis 
was crucial to optimizing resolution for each layer and verifying 
the multi-resolution approach for AutomataScales.          
       

 
Figure 4: Multi resolution of primary particle velocity with grid 

size 2 mm (top), 1 mm (middle), and 0.5 mm (bottom) 
 
Fig. 4 graphically depicts the particle velocities obtained at 
different grid resolutions: 2 mm, 1 mm, and 0.5 mm. The 
corresponding velocity data for each grid resolution combination 
are presented in Table 3. A remarkable observation is that the 
simulation model with a 1 mm grid size for the electrostatic field 
coupled with a 0.5 mm grid size with particle trajectory 
effectively demonstrates the efficacy of our multi-resolution 
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approach. Additionally, the averaged velocity from the 
AutomataScales converged to the solution obtained from 
COMSOL, and the results from finer resolution when both 
layers' resolution equal to 0.5 mm. 
 
Table 3: GCI results and particle velocity relative to different grid 

resolution. 
Particle 

trajectory 
grid size 

(mm) 

Electrostatic 
field grid 
size (m/s) 

Percentage 
different 

from exact 
solution 

Total 
computed 

time 
GCI 

2 5.77 x 107  133.6 % 2.22 s - 
1 2.75 x 107  11.34 % 10.73 s 1.87% 

0.5 2.71 x 107  9.72 % 48.89 s 0.02% 
 
4.3 Level of Reality, Time and Space Complexity  
      The model's ability to accurately capture the microscopic, 
mesoscopic, or macroscopic reality was scrutinized at the screen 
and accelerator grid region, the particle behavior at the exit 
including secondary electron and ionized Xenon particles was 
illustrated in Fig. 5 & 6. Additionally, we analyzed the time 
complexity of the AutomataScales method in various 
simulations to evaluate its scalability and performance in 
practical applications. The error between average computed 
particle velocity from COMSOL and AutomataScales equal to 
11.34% and 4.08% for the peak velocity (Table 4). 
 

Table 4: Comparative analysis of the proposed method and the 
COMSOL method for 100 time step 

Method COMSOL AutomataScales 
Total mesh 9,999 10,000 

Total particles 40,000 40,000 
Mean calculated peak 

velocity of primary 
particles (m/s) 

3.92 x 107 3.76 x 107 

Percentage variation in 
peak primary particle 

velocity 
4.08 % 

Mean calculated 
velocity of primary 

particles (m/s) 
2.47 x 107 2.75 x 107 

Percentage deviation in 
mean primary particle 

velocity 
11.34 % 

Total computed time (s) 161 – 394 10.73 
Relative performance 
(particles per second) 101 – 248 3,727 

Physical memory usage 
(GB) 2.18 – 3.88 1.84 

 
The time complexity analysis of our simulation model, which 
involves the manipulation of 10 matrices each of size N by N, 
demonstrated a more complex computational profile. In contrast 
to initial estimations of Ο(𝑁), empirical observations from our 
study pointed to a more sophisticate relationship within the 

simulation model. Notably, when the input size was doubled 
from N = 50 to N = 100, and then to N = 200, the increase in 
computation time did not adhere to the expected linear scaling of 
O(10𝑁) or quadratic scaling of Ο(10𝑁2). Instead, the observed 
ratios of time increase were significantly lower (4.33 and 11.28). 
Therefore, the ratios of time increase suggesting a computational 
demand growth that is less steep than quadratic but more than 
linear scaling. 

This outcome was further supported by our multi-resolution 
analysis, where the electrostatic field layer was kept constant at 
N = 100 (1 mm grid size) coupled with the particle trajectory 
layer varied from N = 50 (2 mm grid size) to N = 100, and then 
to N = 200 (0.5 mm grid size). The computation times recorded 
for these variations (2.22s, 10.73s, and 48.89s respectively) also 
did not conform to the Ο(10𝑁2) complexity model, further 
emphasizing a less than quadratic scaling. 
 

 
Figure 5: Particles behavior and velocity of secondary electron 

 

 
Figure 6: Particles behavior and velocity of ionized xenon particles 

 
5. DISCUSSION AND CONCLUSION 

The grid convergence analysis conducted in this study 
showed that a grid resolution of 1 mm is adequate for achieving 
stable results in our simulations as well as in our COMSOL 
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model. Specifically, this resolution yields an error margin below 
12% for the average particle velocity, and under 5% for the 
average peak velocity of particles. Furthermore, in our layer 
resolution analysis, it was determined that an electric field layer 
grid resolution of 1 mm, in conjunction with a particle trajectory 
layer grid resolution of 1 mm and 0.5 mm, resulted in a Grid 
Convergence Index (GCI) of less than 0.05% and an error margin 
below 10%. This configuration reduced the simulation time by 
approximately 2.47 times (48.89 seconds compared to 121 
seconds). 

Our comparative analysis with COMSOL Multiphysics 
software indicated that the AutomataScales method accurately 
models particle trajectories in electric propulsion systems. The 
AutomataScales simulation results not only align with the results 
from COMSOL, but also offer significant computational 
benefits, being up to 36.9 times faster and consuming up to 2.11 
times less physical memory. The faster computing time and 
reduced physical memory usage of the AutomataScales method 
offer significant benefit beyond computational efficiency. As 
detailed in the background section 2.2, these improvements 
could substantially decrease simulation durations from 2.5 to 21 
days to approximately 1.63 to 13.66 hours and the memory usage 
drop from 256-3,584 GB to 121.33-1,698.58 GB of RAM. If 
these reductions are achieved, power consumption could 
potentially drop from 87.1-148.2 MW to 0.133-15.66 MW. 
These potential enhancements would not only make 
AutomataScales simulation more feasible and accessible but also 
minimizing power consumption required to simulate each 
model. 

Our time complexity analysis initially suggested an Ο(𝑁)  
complexity for our model as linear time growth. However, the 
computational times reveal some influences of additional factors 
beyond simulation domains (e.g., total cells or grid points) and 
boundary conditions. Despite our initial time complexity 
assumptions, the data indicates a more complex computational 
behavior as the simulation time growth between linear and 
quadratic rate (being equal to 4.33 and 11.28). Still, our findings 
affirm the model's effectiveness in managing large-scale 
simulations efficiently. 

This study acknowledges several limitations. First of all, the 
particle trajectory model in our simulations is based on a 
stochastic process. This randomness is inherent in the nature of 
particle behavior in electric propulsion, where collisions occur 
unpredictably with probability from the Monte Carlo Collision 
method. As a result, both the direction and velocity of each 
particle may change with each simulation run. To counteract 
these stochastic variations and enhance the reliability of our 
results, it would be ideal to conduct a larger number of 
simulations (more than 100,000 runs) under the same boundary 
conditions. However, due to limited computational resources, we 
were unable to perform a sufficient number of simulations to 
thoroughly analyze the AutomataScales method and ensure 
statistical stability in the outcomes. Another limitation is the 
complexity of modeling high-energy particles in electric 
propulsion systems. In order to accurately capture the full 

spectrum of high-energy particle behavior requires the 
implementation of additional set of transition rules.  

Future research will focus on the integration of refined 
physics-based numerical schemes, aimed at enhancing the 
precision in predicting high-energy particle phenomena. A 
detailed sensitivity analysis is also planned to evaluate the 
influence of various transition rules on particle velocity at the 
exhaust and the ionization rate within the simulation domain. 
This analysis is expected to yield critical insights for refining 
particle dynamics modeling in electric propulsion. Moreover, the 
scope of future studies will include the formulation of a broader 
spectrum of simulation conditions, showcasing the flexibility 
and adaptability of the AutomataScales method across a range of 
designs.  

For researchers, these findings offer a comprehensive 
understanding of the AutomataScales method's computational 
capability. The analyses guide users in selecting appropriate grid 
resolutions, layer settings and resolution, and parameters for 
their specific simulation needs. Moreover, this research could 
support researchers, scientists, teachers and students who have 
limited computing resources to create and investigate their 
physics phenomena at the early stage of system design. 
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