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ABSTRACT

In this paper, we present a comprehensive study and
performance analysis on the AutomataScales simulations
method focusing on electric propulsion systems for deep space
missions. These applications require precise and time efficient
simulations. However, traditional simulation methods such as
Particle-In-Cell (PIC) method facing challenges from
computationally intensive (2.5-21 days), memory demands
(random-access memory or RAM and CPU), and steep learning
curve for researchers. These limitations reduce their
effectiveness in resource-constrained environments. For
instance, each GB of RAM consumes approximately 0.1875 watts
which resulting in more power consumption ranging from 87.1
to 145.2 MW per simulation run. The AutomataScales method
combines discretization techniques with cellular automata and a
multi-layer, multi-resolution approaches. This method offers a
powerful tool to model complex multiphysics interactions and
utilizing hybrid numerical scheme (discrete and continuous) with
lower computational time and memory usage. The method
depicts intricate and accurate behaviors in various types of
particle trajectory (ionized particles, primary and secondary
electrons) and plasma physics (particle collision and ionization,).
It provides a scalable and adaptable framework for multiphysics
simulations with almost real-time simulation (0.1 second per
time step). A key aspect of our research is the computational
efficiency of AutomataScales. Our results show that the method
can achieve up to 36.9 times faster, and 2.1 times less physical
memory (RAM) compared to commercial simulation tools such
as COMSOL Multiphysics® software. This substantial reduction
in computational resources make AutomataScales more efficient
and accessible for researchers to explore broader design
variables in their early design process with or without
computational constraints.

Keywords: AutomataScales, Cellular automata,
Multiphysics Simulations, Multi-Resolution Analysis.
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1. INTRODUCTION

The advancement of computational power has
revolutionized the way we approach the design of complex
engineering systems. Instead of relying solely on rapid
prototyping, we now heavily rely on physics-based simulations.
While some of these methods can be time-intensive, the
integration of machine learning with computer graphics offers a
promising horizon. This enhances user interaction and
visualization of data, while also increasing simulation speeds.

Physics-based dynamic simulation modeling in 2D or 3D is
essential in understanding and designing complex systems such
as electric propulsion thrusters. Types of electrical thrusters can
be classified as electrothermal systems for Resistojets and
Arcjets, electrostatic systems for ion thrusters, and
electromagnetic systems for Pulsed Plasma thrusters (PPT) or
Hall Effect thrusters (HET) [1]. Information about the 2D and
3D responses of engineering properties in electric propulsion
like temperature, density, viscosity, pressure, and velocity
enhances design by allowing lower-cost testing and flexible
inspection. The cost of experimental studies is high, and
traditional measurement techniques are limited in spatial or
temporal resolution, making comprehensive studies challenging.
For example, when attempting to develop an ion thruster,
experimentation is limited due to the size, equipment, and
conditions of the vacuum chamber, making it difficult to conduct
tests in a wide range of operating scenarios [2]. In addition, more
complicated systems are usually composed of several sub-
systems (e.g., hollow cathode, ionization chamber [3—5], anode,
magnetic properties, and neutralizer [6]) with multi-physics
interactions between each sub-system such as mechanical
interactions, electrical interactions (e.g., surface charging,
electric forces), magnetic interactions (e.g., magnetic
interactions [7]) and physical interactions (e.g., erosion [8],
particle-particle interactions and collision [9]). Thus,
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preliminary numerical simulations enable designers to study
accurate complex dynamical systems (e.g., nonequilibrium
plasma dynamics [2,10], plasma turbulence [11-13]) to obtain
the distributions of plasma parameters for various system
designs [14].

To analyze how fluids flow, most computational fluid
dynamics (CFD) software tools require a numerical method and
a mathematical model of the physical case; the underlying
equations can vary significantly by flow regime. The Navier-
Stokes (NS) equation is recognized as a mathematical
representation of the fluid-related physical model. In fluid
dynamics, gas dynamics, and thermodynamics, the method may
be applied to describe changes in all physical properties. This
includes mass transfer, phase change, heat transfer, and chemical
reactions. Because the Navier-Stokes equation can be used in
various fields, assumptions for each simulation model are
required to obtain accurate results such as conservation of mass,
conservation of momentum, inviscid fluids, and Newtonian
fluid. In a fluid that conducts electricity, there is a possibility that
an electric body force will occur, which can significantly alter
the trajectory of the fluid flow. Ionized gas is one such fluid. It
consists of free electrons, neutral components, and ionized
components. Therefore, addition equations are needed such as
the kinetic-energy balance equation for the streamlines, the
internal energy of a molecule, the matter-energy equation, the
Joule effect, caused by the flowing of a conduction current in the
electromagnetic field, and the electromagnetic energy equation
[15]. By using the modified NS equation for the hypersonic flow
with an electromagnetic field, complex phenomena can be
solved by keeping most of the parameters constant and varying
only a single variable of interest such as velocity of a particle.
The accuracy of numerical simulation studies focusing on a
single parameter of interest from a single subsystem must
therefore be balanced with the complexity of the model [16,17].
Therefore, it is extremely difficult to develop adequate
assumptions and equations for each subsystem and integrate
them to simulate multi-physics interactions for the whole
system.

While machine learning promises rapid predictions and
detailed insights into real-time users’ interactions such as those
between fluids and objects, its complex neural networks and data
dependency present significant challenges. It is often difficult to
comprehend and only capable to accurately model the physics
behavior within the range of available data [18]. Recent research
into Cellular Automata has shown the potential to integrate with
Multiphysics interaction simulation models, presenting a
revolutionary avenue to support early design decisions. This
integration promises to offer both depth and speed, enabling
designers to anticipate a multitude of physical phenomena at the
foundational stages of design.

Traditional simulation methods for particle trajectory in
electric propulsion such as the Particle-In-Cell (PIC) method
facing challenges due to its computational intensity and high
memory demands. The simulation using this method can take
substantial computing resources from 2.5 to 21 days to compete
for each model, varying by the complexity of each case.

Additionally, these methods have a steep learning curve for
researchers to adopt quickly and effectively. The high
computational demands also lead to increased power
consumption. For instance, gigabyte (GB) of RAM consumes
approximately 0.1875 watts. This translates to total power
consumption ranging from 87.1 to 145.2 megawatts per
simulation case [19-21]. These limitations from both computing
resource and time reduce their computational efficiency in
resource-constrained environment [22]. The AutomataScales
method addresses these issues by integrating discretization
techniques with cellular automata and utilizing a multi-layer,
multi-resolution approaches. This method models complex
multiphysics interactions using a hybrid numerical scheme that
combines discrete and continuous techniques, thereby reducing
computational time and memory usage while maintain the
simulation accuracy. AutomtaScales able to capture intricate
behavior in various particle trajectory (ionized particles and
primart and secondary electrons) by using transition rules from
the cellular automata framework as well as plasma physics
phenomena (particle collisions and ionization). It provides a
scalable and adaptable framework for multiphysics simulations
with almost real-time simulation (up to 0.1 second per time step).
Our research demonstrates that AutomataScales can perform up
to 36.9 time faster and use 2.1 times less memory (RAM)
compared to commercial tools such as COMSOL Multiphysics.
This significant reduction in computational resources enables
AutomataScales more efficient and accessible which allow
researchers to explore broader range of design spaces in the early
design process with or without computational constraints.

This research aims to comprehensively elaborate on the
theory behind the AutomataScales method (previously referred
to as Layered Automata [23]). Moreover, we conduct extensive
performance analysis based on the prior case study [23] to
validate the efficiency of the approach. This paper contributes to
three main areas as follows: 1) demonstrating the robustness of
the AutomataScales computational grid that ensure stable and
consistent simulations across various scenarios. 2) analyzing the
influence of different layer resolutions on simulation accuracy
and computational efficiency, and 3) evaluating the accuracy of
the AutomataScales method in modeling complex system with
lower computational costs. These contributions support
researchers by offering a low-fidelity simulation tool that can
promptly visualize complex physics phenomena. Additionally,
the AutomataScales method could accelerates the learning
process for researchers to set up higher fidelity simulations
accurately and efficiently.

The structure of this paper is delineated as follows: Section
2 delves into established computational meshing techniques,
electric propulsion models, cellular automata methodologies,
and multi-resolution theory for each field. Section 3 elaborates
on a novel Multiphysics interaction method, “AutomataScales:
Integrating Scales in Multiphysics Modeling.” Section 4
illustrates the research design underpinning this study.
Computational performance insights are elaborated upon in
Section 5 along with conclusions on the efficacy of the proposed
approach.
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2. BACKGROUND

This section provides a review of four main methodologies
and theoretical foundations that support AutomataScales
simulation as follows: 1) eclaborating on discretization
techniques used in physics simulation, 2) exploring the
applications and challenges of ring cusp discharge type ion
thrusters simulations, 3) examining the current development of
cellular automata in multiphysics simulations, and 4) discussing
the importance of multi-resolution techniques across various
fields to enhance simulation accuracy and efficiency.

2.1 Discretization Techniques in Physics Simulations

Discretization techniques are foundational in computational
physics simulations, serving as a bridge between the
mathematical underpinnings and their practical computational
applications. In areas like computational fluid dynamics (CFD)
and plasma physics, these techniques are indispensable. Both
fields often rely on complex differential equations to describe
fluid motions or plasma behaviors, but many real-world
scenarios and geometries elude exact analytical solutions.
Hence, an approximate yet precise solution is paramount, and
this is where discretization comes into play. By converting the
continuous mathematical descriptions into computable models,
discretization techniques ensure that simulations in CFD and
plasma physics are not only accurate but also computationally
efficient, capturing the intricate dynamics of fluids and plasmas.
The four main categories of discretization techniques are mesh-
based, cell-based, particle-based, and particle-in-cell or PIC
method (Fig. 1).

2.1.1  Mesh-based Techniques

Finite Element Method (FEM) stands out in the realm of
mesh-based methodologies for solving fields related equation
such as Maxwell’s equations (the electric and magnetic fields).
This technique is paramount for tackling boundary and initial
value problems described by PDEs. Two pivotal considerations
underpin CFD meshing: mesh density and mesh geometry, which
includes structured, unstructured, or hybrid meshing patterns.
With the evolution of CFD, adaptive meshing, which adjusts in
alignment with flow gradients and complex geometrical
nuances, has gained prominence [24].

2.1.2  Cell-based Techniques

Cellular Automata (CA) is known for using the cell-based
method to model complex systems (e.g., fluid dynamics and
biology). One of the advantages of this method is that it can
mimic system performance based on only local interactions
governed by local update rules (transition rules). The transition
rules can be divided into three categories: direct rules, multi-step
rules (e.g., in plasma physics or multi-physics, the cell can be
influenced by a particle velocity, electromagnetic fields), and
probabilistic rules. The Lattice Boltzmann Method (LBM) is
derived from the lattice gas automata or cellular automata
methods. Fluid density on a lattice is simulated as a result of
streaming and collision processes over a discrete lattice rather
than solving the NS equations (FEM). As a result of the method,

fluid behavior can be mimicked in controlled and complex
environments, whereas other CFD methods are unable to do so.
Additionally, the model can be parallelized due to its local
dynamics feature obtained from the CA method, which is crucial
to execute on the graphics processing unit (GPU). Combining or
coupling it with other methods could be beneficial, such as using
heat transfer in order to overcome its thermo-specific solution
limitation and using the Galilean or Newtonian transformation
technique to overcome its high-speed fluid flow limitation [25].

2.1.3  Particle-based Techniques

In CFD, the particle-based approach revolutionizes fluid
dynamic equations by substituting fluid continuum with a
discrete particle set. Its prowess lies in accurately modeling pure
advection, facilitating solutions for multi-material challenges,
and enabling seamless interface detection. Smoothed Particle
Hydrodynamics (SPH) introduces a Lagrangian framework,
allowing continuum equations' discretization directly at
designated discrete points, bypassing the conventional spatial
mesh systems like FEM. The fluid dynamics isn't spatially fixed
but flows with the current. The variable values at each particle
can be estimated by aggregating contributions from neighboring
particles. Crucial determinants for fluid motion encompass
external forces, fluid viscosity, and shifts in the pressure field.

2.1.4  Particle-in-Cell (PIC)

Particle-in-cell (PIC) is a popular in plasma and laser
dynamics as the method can use to solve plasma dynamics
problem mainly by treating plasma as particles so that the plasma
can consider as a continuum fluid and be able to apply Navier
Stoke equation with the minimum assumptions [26] by treating
all physical and chemical progress as the consequence of
collisions. Therefore, it is obeying the statistical laws and gives
the accurate kinetic information of plasma parameters [27-31].
The first micro-DC ion thruster PIC simulation developed by
[5,32] is able to predict the performance of ion thruster and
achieve 59% of total efficiency at low power consumption with
the efficient miniature discharge configuration. Recently, there
are studies that aim to design more efficient ion thruster by
combining the PIC method with other approach such as the
Monte Carlo, or develop the model so that it is parallelizable and
could be run on high-performance computing clusters (HPCs) or
cloud computing (e.g., Amazon Web Services, AWS) [33]. As a
result, the method is able to predict similar outcomes compared
to [5] with broader configuration (e.g., mass flow rates,
discharge voltages.)

In addition, the embodiment of sparse-grid (SG) techniques
in PIC has led to significant advancements in complex system
simulations. These techniques optimize simulation models’
efficiency by employing coarser sub-grids to reduce the
computational cost for high resolution models [34-36]. This
approach aligns with the AutomataScales multilayers concept by
using coarser grid resolution at low transition layer for
calculation. These approaches represent a leap in computational
physics, enabling more effective and accurate simulations of
multi-scale and multi-physics scenarios.
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Figure 1: Discretization technique in physics simulations. a) Mesh-
based; b) Cell-based; c) Particle-based; d) Particle-in-cell

2.2 Ring Cusp Discharge Type Ion Thruster

For mission and spacecraft designers, ion thrusters offer a
significant and unique capability due to their ability to provide
desired thrust levels, thrust control, propellant efficiency, and
high total efficiency (up to 70%). In recent years, technologies
and approaches used by spacecraft have evolved and improved
in order to enhance their capabilities and efficiency. There are
generally two types of successful ion thruster discharges, namely
those generated by direct current electron bombardment (such as
Kaufman or ring cusp) and those generated via electromagnetic
fields, such as radio frequency (RF) or microwaves. In direct
current discharges, electrons are typically discharged through a
hollow cathode. It has been observed that ring-cusp discharges
and thrusters are the most effective for conventionally sized ion
thrusters [37]. An ion thruster working mechanism can be
divided into three processes. First of all, a plasma is created in
the discharge chamber, the ions are then accelerated through two
(possibly three or four) ion optics grids, and then, a neutralizer
emits electrons to provide system charge neutralization.

A discharge chamber model (DCM) that includes dynamic
electromagnetic fields was developed by [5] in 2005. It proposed
a two-dimensional hybrid diffusion model that treated ions,
secondary electrons, neutrals, and primary electrons with
diffusion models, zonal models, and particle tracking models to
study the plasma inside the discharge chamber. However, it is not
capable of capturing all aspects of the physics that occur inside
the discharge chamber. To simulate the plasma inside the
discharge chamber in a detailed manner, [38] developed an
axisymmetric two-dimensional PIC with Monte Carlo Collisions
(MCC) model that tracked the major particles in the chamber
individually. It should be noted, however, that most numerical
simulations of the ion thruster discharge chamber are based on
the electrostatic model, which disregards the time-varying
electromagnetic characteristics. Due to the time-varying
electromagnetic characteristics of the discharge chamber, the
model proposed by [39] may provide a more accurate and
detailed description of the chamber. Rather than using the hybrid
model [38], this method separates the physics model into three
sub-models: Using the PIC method to track particles,
electromagnetic fields are solving by Maxwell equations, and
collision processes are described using MCC. In addition, high
fidelity simulations using this method can require substantial
computing resources ranging from 2.5 to 21 days with 32 to 448
CPU cores, and 9 to 14 days with 1 to 2 graphics processing units
(GPUs), depending on the complexity of the model [22].
Consequently, the amount of RAM needed depend on CPU core.

For High-Performance Computing (HPC) systems, the system
typically requires 8 GB of RAM per core [21]. This results in a
total of 256 to 3,584 GB. Consequently, power consumption
increases as 8 GB of RAM consumes approximately 1.5 watts
[19,20]. Therefore, traditional PIC methods could consume
between 87.1 and 145.2 MW, assuming the systems uses the
same computing architecture and only varies the amount of
RAM.

Due to the significant demands of computing resource, there
is a clear need for innovative approaches to better handle
complex system. Addressing these challenges is crucial for
supporting researchers in exploring complex multiphysics
interactions with wide range of design parameters, improving
simulation accessibility, and reducing costs during the early
development process.

2.3 Physics-based Cellular Automata

Automata with probability is a generalization of finite
automata with non-determinism. Only the probability is used to
create the transition matrix for its transition function. Thus, all
states have a weighted set of next states where the weights must
sum to 1. These weights must also be reflected in the notions of
states and acceptance. The state of the machine at a given step
must now also be represented by a stochastic vector of states, and
a state is accepted if its total probability of being in an acceptance
state exceeds some cut-off. Phase or state transition of matter
will be easier to inform the relevant calculations when the state
of matter is explicitly defined by and appropriate state variable.
An investigation by [40] illuminated the harmonization of CA
with the Lattice Boltzmann method (LBM), elucidating accurate
outcomes for multiphysics interactions during the solidification
phase of forced convection processes. [41] proposed a multi-
physics interaction model by using the CA coupling with LBM
to successfully determine energy transfer and state of matter such
as solid, liquid, and gas. The state of matter also includes the
mixture between each state such as solid and liquid, liquid and
gas, or gas and solid. Building on the foundational work in multi-
physics modeling using the Cellular Automaton (CA) approach,
as delineated by [42], the research presents a groundbreaking
methodology tailored to simulate thermo-fluid dynamics within
complex systems.

Traditional simulation methodologies often find themselves
encumbered by computational inefficiencies and a lack of
adaptability, especially when navigating systems marked by
intricate geometries and nuanced boundary conditions. In
contrast, the CA methodology, characterized by its grid-centric
architecture and rule-driven evolution, emerges as a potent
alternative. Its inherent streamlined nature, harmonized with an
ability to depict complex behaviors, earmarks CA as an optimal
tool for multi-physics simulations. Beyond mere computational
efficiency, the CA framework offers unparalleled adaptability
across diverse scenarios, positioning itself as a game-changer in
the realm of complex physics simulations. The culmination of
the author's research not only underscores this potential but also
pioneers a method adept at handling intricate multi-physics
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challenges encompassing diffusion, advection, reaction kinetics,
and even external interactions such as gravity and tension forces.

2.4 Multi-Resolution Simulation

Mechanical systems often exhibit intricate behaviors across
multiple length and time scales. Such systems constitute a
significant challenge for engineers and researchers to identify the
increment and time step for each simulation model so that it
satisfies the Courant-Friedrichs-Lewy (CFL) condition. Multi-
resolution or multi-scale simulation has emerged as a compelling
approach to address these challenges by providing a unified
framework for modeling diverse scales within a single
simulation.

In this section, we will delve into three multi-resolution
concepts from different areas: 1) the adaptive refinement from
the finite element method, 2) the multi-scale techniques from
machine learning, and 3) the multi-resolution concepts from
computer graphics.

2.4.1  Adaptive Refinement in the Finite Element Method

The Finite Element Method (FEM) is a fundamental method
in engineering simulations. However, traditional FEM
implementations often employ uniform mesh resolutions that
usually become computationally intensive and inefficient when
dealing with high fidelity models. To overcome this challenge,
adaptive refinement in FEM presents a solution by adjusting
mesh resolution based on local error estimations. This adaptive
approach optimizes computational resources by allocating finer
mesh at high transition or turbulence region [43]. While adaptive
refinement offers a powerful tool for simulation, it may not be
suitable for all problems. For instance, an airfoil modeling in
often require mesh divisions into four distinct regions with
different resolutions in order to capture different transitional
areas and accurately predictions lift and drag coefficients [44].
These approaches require substantial effort during the pre-
processing stage which tailor the technique to specific scenarios
and boundary conditions.

2.4.2  Multi-Scale in Machine Learning

The advancement of machine learning in data-driven
modeling allows researchers to gain insights from complex
systems without knowing all variables encapsulated in the
systems. Multi-scale machine learning takes this a step further
by leveraging data generated at smaller scales to make
predictions at larger scales while maintaining the same accuracy.
Recently, there is studies that attempt to apply ML to various
types of simulation domains such as NS fluid flow, stress
analysis, electromagnetic, and grid interpolation (applied data
generated from smaller-scale training grids to larger-scale grid
resolution) [45]. The approach can precisely predict the
outcomes of the four simulation models (The root-mean-squared
error, RMSE varies between 0.00214 to 91.57) with minimal
computational time (between 0.09-14.71 seconds). The idea of
grid interpolation or multi-grid resolution has been shown to
reduce the computational cost and but also reduce the predicted
outcome errors between 20% and 70% [46].

2.4.3  Multi-Resolution Concepts in Computer Graphics

The field of computer graphics needs realistic simulations
and visualizations particularly in control of light and texture.
Multi-resolution concepts are pivotal in achieving these goals,
enabling the rendering of immense complex scenes with varying
levels of detail [47]. By hierarchically representing objects and
textures at different resolutions [48], the techniques allocate
computational resources accordingly and result in realistic and
interactive experiences with the same precision. Understanding
these principles in computer graphics provides valuable insights
into visualizing the behavior of high-fidelity complex systems
from lower fidelity data.

3. METHODOLOGY

The AutomataScales method transforms complex physics
phenomena into a discrete computational model based on the
Cellular Automata (CA) architecture. CA's cell-based structure
also allows AutomataScales to encapsulate physical interactions
within local or transition rules and enables the integration with
other approaches, such as multi-resolution and multilayer
strategies. These techniques significantly enhance the
AutomataScales computational capability by modeling different
physics interactions with varying detail levels that potentially
reduce the computational cost for each time step while reduce
the complex boundary conditions within the model.

This section will elaborate on related theories and
assumptions for the AutomataScales simulation model for
electric propulsion applications.

3.1 AutomataScales: Level of Reality

In the landscape of mechanical engineering simulations,
selecting an appropriate scale (microscopic, mesoscopic, or
macroscopic) is pivotal for accurately capturing the desired
physics phenomena. Microscopic simulations illuminate the
quantum behaviors foundational to material properties;
mesoscopic simulations reveal the statistical behaviors of
particle assemblies; macroscopic simulations encompass the
global behavior of the large-scale system (e.g., averaged velocity
of the particle trajectory in electric propulsion).

The AutomataScales approach, grounded in the mesoscopic
perspective, adeptly captures the dynamics that need to be fully
observable at the macroscopic level and as detailed as at the
microscopic  level. Within this intermediate domain,
AutomataScales offers a versatile simulation platform. Each
layer within the AutomataScales model can be tuned to a specific
scale of reality, allowing for a granular approach to precision and
time optimization in simulations. Thus, it facilitates the balance
between detail and computational efficiency necessary for
engineering design to determine a broad range of variables to be
optimized, especially during the ecarly stage of the design
process.

3.2 AutomataScales: Research Design

In this study, AutomataScales and COMSOL Multiphysics®
software were utilized in parallel to simulate electric propulsion
dynamics. Both platforms adhered to a standardized parameter
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set: particle numbers, computational grid resolution, simulation
geometry, and boundary conditions as illustrated in Table 1 and
Fig. 2. The simulations conducted on a system with an Intel Xeon
CPU (E3 1585L v5, 3.00 GHz) and 16 GB of RAM. The
AutomataScales model was implemented using MATLAB.
COMSOL was chosen as the benchmark for this study due to

physics phenomena through its unique particle tracing
approaches to solve for discrete trajectory instead of continuous
field [49]. This unique method aligns with the foundational
theories of AutomataScales, making COMSOL an ideal
reference point for evaluating the performance of the
AutomataScales simulation.

its established reputation as a leading commercial simulation
software in both academia and industry field. COMSOL
provides a comprehensive suite of tools for simulating various

Table 1: Simulation parameters

Module Parameters Value Unit
Mesh Mesh geometry Quadrilateral -
Number of mesh 10,000 -
Computational grid resolution 0.1 mm
Anode 10,000 Voltage (V)
. Screen grid 10,000 Voltage (V)
Electrostatic field Accelerator gr%d voltage -10,000 Voltaie V)
Discharge cathode -5,000 Voltage (V)
Particle mass 2.18x 102 Kilogram (kg)
Particle properties Electron mass 9.109 x 103! Kilogram (kg)
Particle charge 1.6022 x 10°1° Coulomb (C)
Initial energy 1000 Electron volts (eV)
Cross sectional radius 3x10Y m?
. Background number density 1x10% m
Collision and
‘onization Background gas molar mass 0.131 kg/mol
Avogadro constant 6.022 x 10% mol!
Ionization energy of Xenon 1.943x 10" Joules (J)
Maximum number of primary particles 20,000 -
Maximum number of secondary particles 20,000 -
Time dependent Initia.ll time step 0 . second
study . Tlm.e step 10 second
Final time step 108 second
The evaluation of performance metrics in this study 1 3
encompassed computational time and accuracy in predicting 8
physical phenomena. Specifically, for the AutomataScales . ' <

method, in-depth analyses included grid convergence and layer

resolution assessment. Our COMSOL model incorporated 4
modules for electrostatics, charged particle trajectory analysis,
and electric-particle interactions.

The study of particle trajectory in electric propulsion is
critical as it correlates with the probability of particle collisions
and ionization events. Given the stochastic nature of particle
trajectory, it is imperative to derive results from multiple
simulations for reliability. In this context, data from COMSOL
were derived from 10 simulation runs to calculate both the
average and maximum particle velocities (primary electrons,
secondary electron and ionized Xenon particles) at the engine
exit (45-55 mm from the bottom), specifically 97 mm from the
left, after 100 time steps (Fig. 3). Similarly, data from
AutomataScales were obtained from 100 simulation runs at the
same position and time steps as those in the COMSOL
simulations.

5—i

Figure 2: Electric propulsion model components: (1) anode, (2)
screen grid, (3) accelerator grid, (4) ionization chamber, (5)
discharge cathode
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Figure 3: Quadrilateral computational grids optimized for plasma
physics simulations

3.3 AutomataScales: Numerical Scheme

The following section provides details of three numerical
schemes for electric propulsion dynamics, including a fields
solver, particle trajectory and collision, and ionization.

3.3.1  Fields Solver

The electromagnetic fields are divided into two parts: one is
the initial electric field when the voltage first applied on the
Anode wall (Fig. 2) and the initial magnetic field generated from
the permanent magnets. The electrostatic field is obtained from
the Poisson’s equation (Eq. 1) where V is the electric potential,
p is the charged density, &, is the vacuum permittivity (&, =
8.854 x 10712F - m™1). The electric field (E) is calculated from
is the negative gradient of the potential from Eq. (1).

vy =-£ (1)

€o
E=-v (2)

In this case study, each computational grid cell is assigned a
single particle. Consequently, the estimated impact of ion and
electron densities on each cell's potential is approximately 18.09
puV. This value exerts a negligible influence on the overall
electrostatic field of the model, particularly when contrasted with
the boundary conditions at the walls or electrodes, which are set
at -5,000 7, -10,000 V" and 10,000 V, respectively. Given this
minimal impact, it is reasonable to postulate that the charge
density does not significantly alter the electrostatic field.
Therefore, for the purposes of this study, Poisson's equation
simplifies to Laplace's equation (Eq. 3).

V2V =0 3)
3.3.2  Particle Trajectory

Particle trajectory of the model is driven by the Newton-
Lorentz equation of motion in Eq. (4), where ¥ is the particle

velocity, q is the electric charge of particle, E is the magnitude
of electric field, and B is the magnitude of magnetic field. In

addition, the velocity of each particle could be calculated based
on Newton’s second law in Eq. (5).

F,=q(E+7xB) (4)
YF=2mb (5)

3.3.3  Collision and Ionization

The collision model is driven by calculating the collision
probability (P.oyision) in Eq. (6), where v is the chance of
collision which depends on the cross-sectional area of particle
(0), background particle density (Ny) and corrected velocity in
Eq. (7). For cold gas approximation collision, the relative
background velocity (g) is equal to the particle velocity, v.

Peotision = 1 — exp (—VAt) (6)

v = Ngo(v)|g| (7

The ionization process is initiated upon the occurrence of a
collision, necessitating a specific energy input (AE) to ionize a
Xenon atom, quantified as 12.13 eV. Subsequently, the velocity
of the electron colliding with a neutral Xenon atom will be
adjusted in accordance with Eq. (8) & (9), where g’ is the post-
collision relative velocity between a particle and background
particles, m, is the mass of particle (primary electron), my is the
background mass, v’ is the post-collision velocity of a particle.

Ig’I=\/g-g—M (8)

mpmg

m
vV =p——12

g-9) )

myp +mg

3.4 AutomataScales: Structure
The following characteristics define the AutomataScales
simulation architectures for the electric propulsion dynamics.

3.4.1  Cell Types
The AutomataScales model is typically structured in 2D or

3D spatial simulations. Cell type will influence the type of
cellular spaces, and computational intensity of the model
including the interaction between layers and transition rules for
each cell properties or states. In this research, 2D cell type was
selected.

3.4.2  Cell Spaces
The model prioritizes a quadrilateral arrangement, as it is

supported by MATLAB architecture, and aligns with
COMSOL’s optimized meshing for plasma physics (Fig. 2 & 3).
It is crucial for simulating the behavior of various particles in
electric propulsion with the same cell or grid arrangement, where
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the conservation of momentum might be changed based on
different grid arrangements.

3.4.3  Cell States

In the AutomataScales framework, cell states are created to
represent a spectrum of physical conditions such as kinetic
behavior of particles. Primary states signal the presence or
absence of physical quantities within a cell, while secondary
states offer a detailed enumeration of these quantities (e.g.,
velocity and energy levels) necessary for portraying the
thermodynamics of propulsion systems. The sub-states are
meticulously formulated to capture the ionization stages of
Xenon, a common propellant in electric propulsion. By
employing a probabilistic CA approach [41], transitions between
these states are modeled to reflect the stochastic nature of
particle collisions and ionizations, thus providing a
comprehensive representation of plasma behavior.

3.4.4  Neighbor Tipes
The neighbor type in the AutomataScales method is selected

with a focus on computational efficiency and mesoscopic fidelity
for electric propulsion problems. The Von Neumann neighbor
type is employed due to its less dense configuration, which only
requires four neighbors around each cell (8 neighbors for the
Moore neighbor type). The number of neighbors becomes
increasingly significant when the neighborhood radius extends
beyond a single cell [44]. The approach allows for the detailed
analysis of local interactions, particularly at chamber walls and
electrodes (e.g., discharge cathode, screen, and accelerator grid),
managing the overall behavior of the simulation.

345 Layers

The AutomataScales model consolidates a multi-layered
architecture that is crucial for modeling multiphysics
interactions. Each layer represents different physical quantities,
such as voltage, velocity, energy (eV), or electric field.
Alternatively, the layer could be created based on the associated
simulation domains (e.g., fluid dynamics and electromagnetics).
In this research, the way electric fields influence particle
acceleration is modeled through these interactive layers to
observe the exhaust velocity of the propulsion system. The
innovation of this method is to maintain optimal resolution for
calculation across layers while ensuring that simulations predict
system behavior.

3.4.6  Transformation or Transition Rules

The AutomataScales model's transformation rules are the
engines that drive the evolution of cell states over time based on
their current state and the states of neighboring cells. These rules
considering the type of neighborhood to ensure that each cell's
behavior is accurately represented. The implications of these
rules are vast such as determine the collision rate when ionized
particles collide with the engine walls. The sophistication of
these rules allows for simulations that can predict the operational
performance of propulsion systems under a variety of conditions
(e.g., power level, component, geometry).

The transition rules for typical particle behavior in our
simulation framework was implemented in this research where
each particle has the same probability to advance in six
directions. In addition, our study acknowledges that high-energy
particles in electric propulsion systems exhibit complex
behaviors, such as moving through multiple grid cells in one time
step. We've established additional rules where these high-energy
particles' movements are influenced by the average velocity of
all particles.

3.5 AutomataScales: Time Complexity

Time complexity, usually described as the big O notation,
O(N), is vital for evaluating and developing each simulation
model, as it represents the computational cost of running a
simulation relative to the total number of grid points.

When applied the AutomataScales simulation to electric
propulsion models, we anticipated that a time complexity would
be approximately equal to the cellular automata (CA)
framework. For a CA with the total number of cells of N and a
fixed set of rules, the time complexity for a single update across
the simulation domain is typically O(N), as each cell's state is
updated once per time step. Given L layers where L is the subset
of all positive integers (L € Z*), each potentially operating at a
different resolution, the time complexity for updating the entire
multilayer system once can be classified as O(N) if the layer are
independent; O(L - N), if the layers are updated sequentially; and
O(L? - N) if the layers are interdependent where the state update
of each layer depends linearly on the states of all other layers.

O(N), iflayers are independent,
Time Complexity ~ { O(L- N), iflayers are updated sequentially,
O(L? - N), iflayers are interdependent.

In our model, we deal with 10 sequentially updated layers:
electric field; particle force, particle acceleration, and particle
velocity for primary electron, secondary electron and secondary
ionized particles. Presumably, the time complexity can be
estimated as O(10N). However, constants are omitted from the
notation due to their non-significant impact on scalability.
Therefore, the overall time complexity of the AutomataScales
model in our study is equal to O(N).

4, COMPUTATIONAL PERFORMANCE ANALYSIS

This section delves into the computational performance of
the AutomataScales method, focusing on its application in
simulating electric propulsion systems. The objective of this
section is to evaluate the model's efficiency, scalability, and
accuracy through a series of comprehensive analyses.

4.1 Grid Convergence Analysis

In this study, we assessed simulation accuracy across various
refined computational grid sizes. The goal of this analysis was to
verify the convergence of the model. Thus, ensuring model’s
accuracy and reliability.

To facilitate this analysis, we employed three distinct grid
resolutions with quadrilateral grid type: coarse (2 mm), medium
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(1 mm), and fine (0.5 mm). These grids were utilized to evaluate
the grid convergence index (GCI) using the AutomataScales
method. The analysis was based on the average velocity of the
primary electron particle, derived from an ensemble of 100
simulation runs. The observed average velocities were 2.61 x 107
m/s for the fine grid (¢,), 2.75 x 107 m/s for the medium grid
(¢2), and 6.84 x 107 m/s for the coarse grid (¢b3), derived from
100 simulation runs, compared to the exact solution obtained
from COMSOL (2.47 x 107 m/s).

The computation of the grid convergence index incorporated
four parameters: the Quantity of Interest (¢), represented by the
averaged velocity; the Relative Change in quality of interest (e)
obtained from Eq. (10); the grid refinement ratio (r) calculated
from Eq. (11); and the observed order of accuracy (p) computed
from Eq. (12). These factors and their interrelations are
comprehensively detailed in Table 2. This methodical approach
to grid convergence analysis in Eq. (13), where F; is equal to 1.25
based on 3 grid point data, ensures that our numerical model
accurately captures the intricate dynamics of the physical
phenomena under investigation. [50-52]

|¢p1—o2| |¢p2—sl
€12 = %: €3 = % (10)
h h
N2="13= h_z = h_i (11)
__In(eg2/e53)
- In(r) (12)
_ F.Xe 2
GCle,, = (s (13)

Table 2: Grid convergence analysis results for different grid size
Mean Percentage

irzlg particle different coﬁgﬁe d GCl
(mm) velocity from exact time
(m/s) solution
2 6.84 x 107 176.9 % 248 s -
1 2.75x 107 11.34 % 10.73 s 6.59 %
0.5 2.61x 107 5.67% 121's 0.24 %

4.2 Layer Resolution Analysis

In our study, we analyzed various layers within the
AutomataScales model to investigate their influence on the
overall simulation resolution, explicitly focusing on the particle
trajectory and electric field layers. This comprehensive analysis
was crucial to optimizing resolution for each layer and verifying
the multi-resolution approach for AutomataScales.

Primary electron velocity, v(i, j) m/s
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2
o "

[ 25 50 5 100
x (mm)
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Figure 4: Multi resolution of primary particle velocity with grid
size 2 mm (top), 1 mm (middle), and 0.5 mm (bottom)

Fig. 4 graphically depicts the particle velocities obtained at
different grid resolutions: 2 mm, 1 mm, and 0.5 mm. The
corresponding velocity data for each grid resolution combination
are presented in Table 3. A remarkable observation is that the
simulation model with a 1 mm grid size for the electrostatic field
coupled with a 0.5 mm grid size with particle trajectory
effectively demonstrates the efficacy of our multi-resolution
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approach. Additionally, the averaged velocity from the
AutomataScales converged to the solution obtained from
COMSOL, and the results from finer resolution when both
layers' resolution equal to 0.5 mm.

Table 3: GCI results and particle velocity relative to different grid

resolution.
ti?ggge Electrostatic Pzirt(‘:t?e I;Zi‘%e Total
JECTOIY  field grid computed  GCI
grid size . from exact .
size (m/s) . time
(mm) solution
2 5.77 x 107 133.6 % 2.22s -
1 2.75x 107 11.34 % 10.73 s 1.87%
0.5 2.71 x 107 9.72 % 48.89s  0.02%

4.3 Level of Reality, Time and Space Complexity

The model's ability to accurately capture the microscopic,
mesoscopic, or macroscopic reality was scrutinized at the screen
and accelerator grid region, the particle behavior at the exit
including secondary electron and ionized Xenon particles was
illustrated in Fig. 5 & 6. Additionally, we analyzed the time
complexity of the AutomataScales method in various
simulations to evaluate its scalability and performance in
practical applications. The error between average computed
particle velocity from COMSOL and AutomataScales equal to
11.34% and 4.08% for the peak velocity (Table 4).

Table 4: Comparative analysis of the proposed method and the
COMSOL method for 100 time step

Method COMSOL | AutomataScales
Total mesh 9,999 10,000
Total particles 40,000 40,000
Mean calculated peak
velocity of primary
particles (m/s)
Percentage variation in
peak primary particle
velocity
Mean calculated
velocity of primary
particles (m/s)
Percentage deviation in
mean primary particle
velocity
Total computed time (s)
Relative performance
(particles per second)
Physical memory usage
(GB)

3.92 x 107 3.76 x 107

4.08 %

2.47 x 107 2.75x 107

11.34 %

161 —394 10.73
101 —248 3,727

2.18-3.88 1.84

The time complexity analysis of our simulation model, which
involves the manipulation of 10 matrices each of size N by N,
demonstrated a more complex computational profile. In contrast
to initial estimations of O(N), empirical observations from our
study pointed to a more sophisticate relationship within the

simulation model. Notably, when the input size was doubled
from N = 50 to N = 100, and then to N = 200, the increase in
computation time did not adhere to the expected linear scaling of
O(10N) or quadratic scaling of O(10N?). Instead, the observed
ratios of time increase were significantly lower (4.33 and 11.28).
Therefore, the ratios of time increase suggesting a computational
demand growth that is less steep than quadratic but more than
linear scaling.

This outcome was further supported by our multi-resolution
analysis, where the electrostatic field layer was kept constant at
N =100 (1 mm grid size) coupled with the particle trajectory
layer varied from N = 50 (2 mm grid size) to N = 100, and then
to N =200 (0.5 mm grid size). The computation times recorded
for these variations (2.22s, 10.73s, and 48.89s respectively) also
did not conform to the O(10N?) complexity model, further
emphasizing a less than quadratic scaling.

75
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Figure 5: Particles behavior and velocity of secondary electron
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Figure 6: Particles behavior and velocity of ionized xenon particles
5. DISCUSSION AND CONCLUSION
The grid convergence analysis conducted in this study

showed that a grid resolution of 1 mm is adequate for achieving
stable results in our simulations as well as in our COMSOL
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model. Specifically, this resolution yields an error margin below
12% for the average particle velocity, and under 5% for the
average peak velocity of particles. Furthermore, in our layer
resolution analysis, it was determined that an electric field layer
grid resolution of 1 mm, in conjunction with a particle trajectory
layer grid resolution of 1 mm and 0.5 mm, resulted in a Grid
Convergence Index (GCI) of less than 0.05% and an error margin
below 10%. This configuration reduced the simulation time by
approximately 2.47 times (48.89 seconds compared to 121
seconds).

Our comparative analysis with COMSOL Multiphysics
software indicated that the AutomataScales method accurately
models particle trajectories in electric propulsion systems. The
AutomataScales simulation results not only align with the results
from COMSOL, but also offer significant computational
benefits, being up to 36.9 times faster and consuming up to 2.11
times less physical memory. The faster computing time and
reduced physical memory usage of the AutomataScales method
offer significant benefit beyond computational efficiency. As
detailed in the background section 2.2, these improvements
could substantially decrease simulation durations from 2.5 to 21
days to approximately 1.63 to 13.66 hours and the memory usage
drop from 256-3,584 GB to 121.33-1,698.58 GB of RAM. If
these reductions are achieved, power consumption could
potentially drop from 87.1-148.2 MW to 0.133-15.66 MW.
These potential enhancements would not only make
AutomataScales simulation more feasible and accessible but also
minimizing power consumption required to simulate each
model.

Our time complexity analysis initially suggested an O(N)
complexity for our model as linear time growth. However, the
computational times reveal some influences of additional factors
beyond simulation domains (e.g., total cells or grid points) and
boundary conditions. Despite our initial time complexity
assumptions, the data indicates a more complex computational
behavior as the simulation time growth between linear and
quadratic rate (being equal to 4.33 and 11.28). Still, our findings
affirm the model's effectiveness in managing large-scale
simulations efficiently.

This study acknowledges several limitations. First of all, the
particle trajectory model in our simulations is based on a
stochastic process. This randomness is inherent in the nature of
particle behavior in electric propulsion, where collisions occur
unpredictably with probability from the Monte Carlo Collision
method. As a result, both the direction and velocity of each
particle may change with each simulation run. To counteract
these stochastic variations and enhance the reliability of our
results, it would be ideal to conduct a larger number of
simulations (more than 100,000 runs) under the same boundary
conditions. However, due to limited computational resources, we
were unable to perform a sufficient number of simulations to
thoroughly analyze the AutomataScales method and ensure
statistical stability in the outcomes. Another limitation is the
complexity of modeling high-energy particles in electric
propulsion systems. In order to accurately capture the full

spectrum of high-energy particle behavior requires the
implementation of additional set of transition rules.

Future research will focus on the integration of refined
physics-based numerical schemes, aimed at enhancing the
precision in predicting high-energy particle phenomena. A
detailed sensitivity analysis is also planned to evaluate the
influence of various transition rules on particle velocity at the
exhaust and the ionization rate within the simulation domain.
This analysis is expected to yield critical insights for refining
particle dynamics modeling in electric propulsion. Moreover, the
scope of future studies will include the formulation of a broader
spectrum of simulation conditions, showcasing the flexibility
and adaptability of the AutomataScales method across a range of
designs.

For researchers, these findings offer a comprehensive
understanding of the AutomataScales method's computational
capability. The analyses guide users in selecting appropriate grid
resolutions, layer settings and resolution, and parameters for
their specific simulation needs. Moreover, this research could
support researchers, scientists, teachers and students who have
limited computing resources to create and investigate their
physics phenomena at the early stage of system design.
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