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Input Video

Camera Trajectory & Human Meshes & Scene Point Cloud in One Global Coordinate

Figure 1. Our SynCHMR recovers metric-scale camera trajectories (color pyramids), human meshes, and scene point clouds in a global

coordinate from casual videos by joining forces of Human Mesh Recovery (HMR) and Simultaneous Localization and Mapping (SLAM).

Abstract

Remarkable strides have been made in reconstructing

static scenes or human bodies from monocular videos. Yet,

the two problems have largely been approached indepen-

dently, without much synergy. Most visual SLAM methods

can only reconstruct camera trajectories and scene struc-

tures up to scale, while most HMR methods reconstruct hu-

man meshes in metric scale but fall short in reasoning with

cameras and scenes. This work introduces Synergistic Cam-

era and Human Reconstruction (SynCHMR) to marry the

best of both worlds. Specifically, we design Human-aware

Metric SLAM to reconstruct metric-scale camera poses and

scene point clouds using camera-frame HMR as a strong

prior, addressing depth, scale, and dynamic ambiguities.

Conditioning on the dense scene recovered, we further learn

a Scene-aware SMPL Denoiser to enhance world-frame

HMR by incorporating spatio-temporal coherency and dy-

namic scene constraints. Together, they lead to consistent

reconstructions of camera trajectories, human meshes, and

dense scene point clouds in a common world frame.

*Part of this work was done when interned at Adobe Research.

1. Introduction

Physically plausible 3D human motion reconstruction from

monocular videos is a long-standing problem in computer

vision and graphics and has many applications in charac-

ter animation, VFX, video games, sports, and healthcare.

It requires estimating 3D humans across video frames in a

common coordinate even with a moving camera. While hu-

man mesh recovery (HMR) has made significant progress

recently [55], most existing methods typically estimate 3D

humans in the camera coordinate by one frame at a time and

fail to disambiguate camera motion. It calls for methods to

jointly reconstruct 3D human and camera motion in a con-

sistent global coordinate system from monocular videos. In

other words, taking a video captured by a moving camera as

input, the method should recover both temporally and spa-

tially coherent movements of human bodies and cameras.

Intuitively, if the accurate camera motion is given, one

can transform the bodies from individual camera frames to

a common world frame by multiplying the inverse of cam-

era extrinsic matrices. In practice, with humans moving

in the scene, estimating the camera motion of a video is

still an open challenge in monocular SLAM [1]. It not only

This CVPR paper is the Open Access version, provided by the Computer Vision Foundation.

Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.
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Figure 2. Illustration of three types of ambiguities in visual

SLAM. We show SLAM reconstruction results from DROID-

SLAM [54]. (a) Depth ambiguity occurs when there are only mi-

nor camera translations between different views. This can lead to

geometric failures in reconstruction such as the folded back corri-

dor in the side view. (b) Scale ambiguity is inherent in monocular

SLAM systems and requires additional reference for disambigua-

tion. (c) Dynamic ambiguity gets pronounced when moving fore-

grounds dominate frames. Over-reliance on foreground key points

will result in incorrect camera trajectories.

falls short in capturing accurate depths on views with small

camera translations but more crucially, only estimates scene

structures and camera trajectories up to scale. The human

motion also breaks the static key point assumption in the

bundle adjustment. As a result, one needs additional refer-

ence to disambiguate the depth, the scale, and the dynamic

as illustrated in Fig. 2.

To leverage SLAM results in HMR pipelines, current

world-frame HMR methods often refine camera poses by

integrating either partial camera parameters, such as a

global scale of the translation [62], or full extrinsic ma-

trices [15, 30, 46] in an optimization-based framework.

However, their optimization-based nature leads to complex

multi-stage schemes, making the overall pipeline unneces-

sarily slow and easy to break.

In this work, we explore a fundamentally different way

to marry the best of HMR and SLAM. A 2D object can first

be lifted from the image plane to the camera frame and then

transformed into a common 3D space. This two-step pro-

cess coincides with the combination of camera-frame HMR,

which brings imaged 2D humans to 3D camera frames, and

SLAM, which estimates the camera-to-world transforma-

tion. Noticing these correspondences, we leverage camera-

frame HMR as a strong prior to bridge from the image plane

to the camera frame for disambiguating SLAM, and utilize

SLAM reconstructions to constrain the transformation of

human meshes from individual camera frames to a common

global space. The overall pipeline thus results in a better

synergy of the two, which we dub Synergistic Camera and

Human Reconstruction (SynCHMR).

We design SynCHMR based on several insights. First,

despite camera-frame HMR methods cannot reconstruct hu-

mans in a coherent global frame, the estimated body di-

mension and location still provide cues to disambiguate

SLAM. Unlike SLAHMR [62] which applies SLAM out

of the box and corrects the scale afterward, we endow

the SLAM process with human meshes from camera-frame

HMR to address ambiguities. To this end, we capitalize

on estimated absolute depths to provide pseudo-RGB-D in-

puts for SLAM [54] and confine the bundle adjustment to

static backgrounds. Since current depth estimation meth-

ods [2, 43] predicts either relative depth maps or depths with

data biases, we propose to calibrate their outputs by align-

ing with estimated human bodies in the camera frame [9].

With these priors, SLAM knows the depth, scale, and dy-

namic information from HMR and consequently estimates

less ambiguous scene structures and camera poses.

Next, we place human meshes in the common coordi-

nate recovered by SLAM. The gap between human tracks

transformed from camera frames and their real plausible

world-frame motions stems from two sources of error: noise

induced by camera-frame HMR and by SLAM. Motion

prior models [14, 44, 68] can be used for denoising pur-

poses as they contribute to the temporal coherence of world-

frame human tracks. However, their exclusive focus on hu-

man modeling either leaves them agnostic to the underly-

ing scenes [14] or assumes the scene is a simple ground

plane [44, 68]. Our intuition is that when placing a human,

static elements of the scene, such as the ground, and dy-

namic components like moving objects are both possible to

be in contact with the human, thereby providing clues for

placing the body coherently and compatibly with the scene.

We hence introduce a Scene-aware SMPL Denoiser that

learns to denoise the transformed human tracks by consider-

ing both temporal consistencies of moving humans and im-

plicit constraints from dynamic scenes. This global aware-

ness makes it more flexible for in-the-wild videos.

Our contributions can be summed up as follows:

• We present a novel pipeline, SynCHMR, that takes a

monocular video as input and reconstructs human mo-

tions, camera trajectory and dense scene point clouds all

in one global coordinate, as shown in Fig. 1, whereas cur-

rent world-frame HMR methods [30, 62, 65] can recover

only an estimated or pre-defined ground plane.

• We propose a novel Human-aware Metric SLAM process

to robustly calibrate estimated depth with estimated hu-

man meshes, resulting in metric-scale camera pose esti-

mation and metric-scale scene reconstruction.
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• We present Scene-aware SMPL Denoising that enforces

spatiotemporal coherencies and applies dynamic scene

constraints on world-frame human meshes. Notably, this

is achieved without requiring extra annotations or heuris-

tic designs to decide which part of a human should be

interacting with the scene [49] and which region in the

scene is most likely to be in contact with humans [38, 62].

2. Related Work

There is considerable prior arts of HMR. We briefly dis-

cuss how they adopt different camera models and refer the

readers to [1] for a more comprehensive review.

HMR from a single image. State-of-the-art (SOTA) meth-

ods use parametric body models [21, 37, 41, 59] and esti-

mate the parameters either by fitting to detected image fea-

tures [3, 41, 58] or by regressing directly from pixels with

deep neural networks [9, 11, 19, 22, 23, 28, 31, 32, 35, 45,

50, 60, 66, 67]. These approaches assume weak perspec-

tive/orthographic projection or pre-define the focal length as

a large constant for all images. Kissos et al. [26] show that

replacing focal length with a constant closer to ground truth

alleviate the body tilting problem. SPEC [29] and Zolly

[57] estimate focal length to account for perspective distor-

tion. CLIFF [34] takes into account the location of humans

in images to regress better poses in the camera coordinates.

Many of these camera-frame HMR methods assume zero

camera rotation, which entangles body rotation and camera

rotation. When applied on video data, they fail to recon-

struct humans in a coherent global space since they operate

in a per-frame manner and hence cannot reason about how

the camera moves across frames.

HMR from videos aims to regress a series of body pa-

rameters from a temporal sequence. It opens up new prob-

lems such as whether the reconstructed bodies are in a com-

mon global coordinate or not. Some temporal methods con-

sider a static camera [38, 44, 68], which makes the camera

space a natural choice of the common coordinate. The chal-

lenge of coherent global space emerges when the camera

moves. Early methods [5, 24, 27] show promising results

on videos of dynamic cameras. Despite the reconstructed

human meshes look great when overlaid on images, they do

not share a common coordinate in 3D.

Recent HMR methods capitalize on human motion prior

to constrain the global trajectories in the world space,

which in turn implicitly disentangles human movement

from camera movement. GLAMR [65] consider a data-

driven prior models learned on large-scale MoCap database

e.g. AMASS [39], while D&D [33] and Yu [64] consider

physic-inspired prior. These world-frame HMR methods

often struggle on noise in local poses caused by partial oc-

clusions, which is very common in in-the-wild videos with

close-up shots and crowd scenes. Kaufmann et al. [25] and

BodySLAM++ [16] circumvent this problem by employing

IMU sensors to provide more robust body estimates but re-

quire extra sensory devices. To fully disentangle human and

camera motion, another line of work [15, 30, 36, 46] lever-

ages state-of-the-art SLAM techniques, e.g. [47, 54, 70], to

explicitly estimate camera motion from the input video and

infer the body parameters in the world coordinate of SLAM.

Closest to us is SLAHMR [62] which solves for a global

scale to connect the pre-computed SLAM results and body

trajectories. To carefully guide the optimization process,

these methods tend to have complex, multi-stage optimiza-

tion schemes, making the overall pipeline easy to break and

unnecessarily slow.

Note that in stark contrast to the methods above, which

either assume or estimate a simple ground plane as scene

representation, SynCHMR reconstructs dense scenes from

in-the-wild videos without pre-scanning with extra devices

a priori like in [6, 7, 12, 13, 17, 61, 69]. We provide detailed

comparisons with these world-frame HMR in Supp. Mat.

3. Method

Taking as input an RGB video {It * R
H×W×3}Tt=1 with

T frames and N people in the scene, we aim to recover

human meshes {Vw
nt * R

3×6890}N,T
n=1,t=1, dynamic scene

point clouds {Pwm
t * R

H×W×3}Tt=1, and corresponding

camera poses {Gm
t * SE(3)}Tt=1 in a common world coor-

dinate system. The superscripts w, c, and m denote the world

frame, the camera frame, and the metric scale, respectively.

To this aim, we propose a two-phase alternative condition-

ing pipeline as depicted in Fig. 3. In the first phase, we

calibrate camera motion by injecting a camera-frame hu-

man prior to SLAM. This resolves depth, scale, and dy-

namic ambiguities, yielding metric-scale camera poses and

dynamic point clouds. Subsequently, in the second phase,

we transform the camera-frame human tracks into the world

frame and utilize the dynamic point clouds obtained in the

first phase for conditional denoising.

3.1. Preliminaries

3.1.1 SLAM

Given a monocular RGB video {It}
T
t=1, DROID-

SLAM [54] solves a dense bundle adjustment for a set

of camera poses {Gt * SE(3)}Tt=1 and inverse depths

{dt * R
H×W
+ }Tt=1. To update these estimations, it first

computes a dense correspondence field pij * R
H×W×2

based on reprojection for each pair of frames (i, j):

pij = Π(Gij çΠ
21(pi,

1

di

)), (1)

where pi * R
H×W×2 is a grid of pixel coordinates in frame

i, Gij = Gj ç G21
i is the relative pose, and Π and Π21

are the camera projection and inverse projection functions.
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Figure 3. The architecture of SynCHMR. Our pipeline comprises two phases. The first phase, Human-aware Metric SLAM (Sec. 3.2), in-

fers metric-scale camera poses and metric-scale point clouds by exploiting the camera-frame human prior. The second phase, Scene-aware

SMPL Denoising (Sec. 3.3), involves the conditional denoising of world-frame noisy SMPL parameters. These parameters, initialized by

transforming from the camera frame, get refined through conditioning on the dynamic point clouds obtained in the first phase. The whole

pipeline thus reconstructs humans, scene point clouds, and cameras harmoniously in a common world frame.

Then with a learned neural network, the system predicts a

revision flow field rij * R
H×W×2 and associated confi-

dence map wij * R
H×W×2
+ to construct the cost function

EΣ =
∑

(i,j)

∥

∥

∥

∥

p7
ij 2Π(G2

ij çΠ
21(pi,

1

d2
i

))

∥

∥

∥

∥

2

Σij

, (2)

where p7
ij = rij+pij is the corrected correspondence, '·'Σ

is the Mahalanobis distance which weighs the error terms

with Σij = diagwij , and G2 and d2 are updated poses and

inverse depths. Upon this objective, DROID-SLAM con-

siders an additional term that penalizes the squared distance

between the measured and predicted depth if the input is

with an extra sensor depth channel {Dt}
T
t=1.

3.1.2 HMR

We employ 4DHumans [9] for reconstructing camera-frame

human meshes from an in-the-wild video. Specifically, it

performs per-frame human mesh recovery with an end-to-

end transformer architecture and associates them to form

human tracks. Each tracked human n in frame t is repre-

sented by SMPL [37] parameters as {Φnt,θnt,βnt,Γnt},

including global orientation Φnt * R
3×3, body pose θnt *

R
22×3×3, shape βnt * R

10, and root translation Γnt * R
3.

Then the parametric SMPL model can use these parameters

to recover a human mesh with vertices Vnt * R
3×6890 in

metric scale: Vnt = SMPL(Φnt,θnt,βnt) + Γnt.

3.2. Human­aware Metric SLAM

3.2.1 Preprocessing

To start off, we estimate per-frame depth maps {Dt}
with an off-the-shelf depth estimator, ZoeDepth [2] and

predict per-frame human instance segmentation masks

{Mnt} with an image instance segmentation network,

Mask2Former [4]. We adapt ZoeDepth for video-consistent

depth estimation by choosing a per-video metric head from

the majority vote of per-frame routers, for which we dub

ZoeDepth+. While ZoeDepth claims to estimate metric

depths, we observe a domain gap when inference on new

datasets. Consequently, we only treat its output as up-to-

affine depths that need to be further aligned with the met-

ric scale. To aid our optimization with human awareness,

we use camera-frame human meshes {Vc
nt} recovered by

4DHumans [9] to introduce a metric prior.

3.2.2 Calibrating Depth with Human Prior

We calibrate the per-frame depths with human meshes in

Human-aware Depth Calibration. This involves optimizing

two parameters, a world scale s and a world offset o, shared

across all frames. During optimization, we linearly trans-

form Dt to D2
t = sDt+o and unproject these depth maps to

camera-frame point clouds {Pc
t} with Pc

t = Π21(pt,D
2
t).

Our intuition is to align the human point cloud Pc
nt =

Mnt»Pc
t with the camera-frame human mesh vertices Vc

nt

in terms of absolute depth and size. To achieve pixel-wise

alignment, we use a depth term to pull points on the hu-

man point cloud toward their corresponding human mesh

vertices along the z-axis

Edepth =

∑

n,t 'Snt » [z(Vc
nt)2 z(Pc

nt)]'
2
2

∑

n,t 'Snt'0
, (3)

where Snt = ρ(Vc
nt)+Mnt is the intersection of the raster-

ized human mesh mask ρ(Vc
nt) and the instance segmenta-

tion mask Mnt, z(·) is the rasterized depth, and '·'0 is the
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Figure 4. The architecture of Scene-aware SMPL Denoiser.

World-frame noisy SMPL parameters {Φw
nt,θnt,βnt,Γ

w
nt}0 are

first projected by a linear layer and summed with temporal po-

sitional embeddings (TPE) to get initial latent humans {zSMPL
nt,0 }.

Per-frame point clouds are aggregated to xscene and encoded with

the point encoder E . Then we query the encoded scene E(xscene)
with latent humans {zSMPL

nt,0 } in the scene-conditioned denoiser D
and feed the result {zSMPL

nt,1 } to prediction heads {PΦ,Pθ,Pβ,PΓ}
to obtain denoised SMPL parameters {Φw

nt,θnt,βnt,Γ
w
nt}1.

0-norm indicating the number of non-zero pixels on a mask.

As the recovered human meshes can be noisy in depth

but still have a stable body dimension, we also adopt a size

term to leverage the relative position of mesh vertices

Edx =

∑

n,t '∆x(V
c
nt,Snt)2∆x(P

c
nt,Snt)'

2
2

NT
. (4)

We define Edy similarly as Edx, where

∆7(X,Y) =(max
7

2min
7

)
[

Π21(Y »Π(X), z(X))
]

(5)

and (max7 2min7) denotes the difference between the

maximum value and the minimum value on coordinate 7.

Then we have the calibrated depths with optimization

(sm, om) = argmins,o (Edepth + λEsize), (6)

Dm
t = smDt + om, (7)

where Esize = Edx + Edy, and λ is a hyperparameter to

balance two energy terms with a default value of 1.

3.2.3 Disambiguating SLAM with Calibrated Depth

While DROID-SLAM [54] originally supports RGB-D in-

put mode where the D channel stands for sensor depth,

one cannot trivially access sensor depths from in-the-wild

videos. Our insight is that an estimated absolute depth can

be utilized as a depth prior, albeit noisy. So we combine

the original RGB video and the calibrated depth as pseudo-

RGB-D inputs {It,D
m
t } to disambiguate depth and scale.

Furthermore, we modify the cost function Eq. (2) to re-

solve the dynamic ambiguity by masking out dynamic fore-

grounds in confidence maps

Σ2
ij = diagw2

ij = diag ((12 [Mi,Mj ])»wij) , (8)

where Mi =
⋃

n Mni and Mj =
⋃

n Mnj are the union

of all human instance masks on their corresponding frame,

and [·, ·] is the concatenation operation. As a result, we

obtain metric-scale camera poses {Gm
t } and metric-scale

point clouds {Pwm
t } by disambiguating SLAM with cali-

brated metric depths

{Gm
t ,d

m
t } = argmin{G2

ij
,d2

ij
} EΣ2 , (9)

Pwm
t = Gm

t çΠ21(pt,
1

dm
t

)). (10)

3.3. Scene­aware SMPL Denoising

3.3.1 Initializing Humans with Metric Cameras

To put humans properly in the scene recovered by SLAM,

we initialize them by transforming estimated camera-frame

SMPL parameters {Φc
nt,θnt,βnt,Γ

c
nt} to the world frame

with camera-to-world transforms {Gm
t = [Rt|t

m
t ]}. Given

the pelvis as the center of global orientation Φ, we have:

Φw
nt = RtΦ

c
nt, Γw

nt = Rt(Γ
c
nt + c) + tm

t 2 c, (11)

where c = c(βnt) is the pelvis location in the shape blend

body mesh. Note that we do not need to introduce an extra

camera scale as SLAHMR [62] since the camera poses have

already been in the metric scale. The root-relative poses θnt
and the shapes βnt stay unchanged as in the camera frame.

We denote the initialized and the denoised parameters with

a suffix 0 and 1 respectively, i.e. {Φw
nt,θnt,βnt,Γ

w
nt}0,1.

3.3.2 Constraining Humans with Dynamic Scenes

Different from existing works [30, 36, 62, 64] that incor-

porate energy terms in optimization to apply explicit scene

constraints, we propose to learn implicit scene constraints

with a Scene-aware SMPL denoiser shown in Fig. 4. The

noisy initial SMPL parameters {Φw
nt,θnt,βnt,Γ

w
nt}0 are

first projected to a latent space, where it gets further up-

dated by conditioning on implicit scene constraints

zSMPL
nt,0 = FC

(

[Φw
nt,0,θnt,0,βnt,0,Γ

w
nt,0]

)

+ TPE, (12)

{zSMPL
nt,1 }Tt=1 = D

(

{zSMPL
nt,0 }Tt=1, E(x

scene) + TPE
)

, (13)

where FC is a shared linear layer, TPE is shared tempo-

ral positional embeddings, {zSMPL
nt,7 }Tt=1 * R

T×D is the D-

dimensional latent for human n, and xscene * R
L×C is the

C-channel dynamic scene point clouds with a total number

of points L. E and D refer to the scene encoder and the

scene-conditioned denoiser, respectively. We set C = 7
which is the concatenation of point coordinates {Pwm

t },

colors {It}, and estimated human semantic segmentation

masks {Mt =
⋃

n Mnt}. Following [9], the updated latent
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are decoded with different prediction head P(·) to regress

the residual for each SMPL parameter:

Φw
nt,1 = PΦ(z

SMPL
nt,1 )Φw

nt,0, (14)

θnt,1 = Pθ(z
SMPL
nt,1 )θnt,0, (15)

βnt,1 = Pβ(z
SMPL
nt,1 ) + βnt,0, (16)

Γw
nt,1 = PΓ(z

SMPL
nt,1 ) + Γw

nt,0. (17)

We apply direct supervision on {Φw
nt,θnt,βnt,Γ

w
nt}1,

which is common in the literature. Please see Supp. Mat.

for the details of the full training objectives.

4. Experiments

4.1. Experimental Setting

Datasets. We assess the performance of SynCHMR primar-

ily for global human motion estimation but also report the

accuracy of estimated camera trajectories. Traditional video

datasets in HMR literature are typically captured by static

cameras, e.g. [13, 18, 20, 40, 63], hence not suitable for our

purpose. Standard SLAM benchmarks such as [48, 51] do

not meet our needs either as there is often no human moving

in the scene. We consider the following datasets.

3DPW [56] is an in-the-wild dataset captured with iPhones.

The ground truth bodies are not in coherent world frames so

we use it to supervise root relative poses and for evaluation.

EgoBody [69] has ground-truth poses captured by multiple

Kinects and egocentric-view sequences recorded by a head-

mounted device, whose trajectories are further registered

in the world space of Kinect array. We use it for training

the SMPL denoiser in Sec. 3.3 and for evaluation (on both

body and camera estimation). For HMR evaluation, unlike

[30, 62] considering only the validation set, we additionally

report results on its completely withheld test set.

EMDB [25] is a new dataset providing SMPL poses from

IMU sensors and global camera trajectories. We include it

for training the SMPL denoiser to enrich the diversity and

use the camera trajectories to evaluate the quality of SLAM.

Evaluation Metrics. For HMR evaluation, we report

common PA-MPJPE, which measures the quality of root-

relative poses. For datasets that have ground-truth poses in a

world coordinate, we follow [62] and consider WA-MPJPE

and FA-MPJPE. The former measures the error after align-

ing the entire trajectories of the prediction and ground truth

with Procrustes Alignment [10], while the latter aligns only

with the first frame. We also report acceleration errors.

For SLAM, we consider absolute trajectory error (ATE) for

camera trajectory evaluation as well as the threshold accu-

racy (δn), the absolute relative error (REL), and the root

mean squared error (RMSE) for scene depth evaluation [2].

Implementation Details. In Human-aware Depth Calibra-

tion, we use the L-BFGS algorithm with learning rate 1 to

Camera Model Human Model PA ↓

DROID-SLAM [54] SLAHMR [62] w/ PHALP+ 55.9

DROID-SLAM [54] SLAHMR [62] w/ 4DHumans [9] 57.4

Human-aware Metric SLAM (ours) 4DHumans [9] 52.9

Human-aware Metric SLAM (ours) Scene-aware SMPL Denoiser (ours) 52.4

Table 1. Comparison results on 3DPW-Test. The row in gray is

the full pipeline of SynCHMR. We abbreviate PA-MPJPE as PA,

with the same below for FA-MPJPE (FA) and WA-MPJPE (WA).

optimize for a maximum of 30 iterations. As for the Scene-

aware SMPL Denoiser, we train it on the union of 3DPW-

Train, EgoBody-Train, and EMDB for 100k steps with an

AdamW optimizer, a batch size of 16, and a learning rate of

1e-5. For camera-frame SMPL ground truths like in 3DPW,

we only incorporate body shapes β and poses θ in train-

ing. We train the denoising process by randomly sampling

a temporal window size T spanning 64 to 128 and inference

with T = 100. The scene-conditioned denoiser D is param-

eterized with a 6-layer Transformer Decoder. For the scene

encoder E , we consider ViT and SPVCNN in Tab. 4 and re-

port results for SPVCNN in Tabs. 1 and 2. Before inputting

the world-frame noisy SMPL parameters to the denoiser,

we first interpolate Φw
nt,0 and θnt,0 on SO(3), βnt,0 on R

10,

and Γw
nt,0 on R

3 when there are missing observations.

4.2. Comparison Results

We first evaluate the estimated local poses with PA-MPJPE

on 3DPW, which is common in the literature. In Tab. 1,

we show that placing the bodies from 4DHumans already

leads to lower error than SLAHMR. Passing them through

the denoiser further reduces the error. We note that PA-

MPJPE only measures local pose accuracy not the quality

of global trajectories. Since 3DPW does not support any

world metrics, Tab. 1 only aims to show that SynCHMR

produces reasonable local poses on a common dataset.

Next, we assess the quality of global motion estimation,

which is essentially a more challenging task. Tab. 2 shows

the results on EgoBody. Note that current optimization-

based methods [30, 62] report the error of the validation

set. For fairness and completeness, we report results on

both validation and test sets and run state-of-the-art meth-

ods on the test set when the code is available. In Tab. 2, we

see that the proposed SynCHMR has the overall lowest PA-

MPJPE, FA-MPJPE, and WA-MPJPE (gray rows). Com-

paring it with the row above (4DHumans) confirms the ben-

efit of our scene-conditioned denoiser. For a fair compari-

son, we also initialize the global optimization of SLAHMR

with 4DHumans, which is more accurate than PHALP+ in

SLAHMR, but we do not observe improvement. Notably,

despite the concurrent work PACE [30] has a tightly in-

tegrated SLAM and body fitting objective, it still uses na-

tive DROID-SLAM to initialize the camera parameters like

SLAHMR does. This is arguably sub-optimal as the initial-
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Subset Camera Model Human Model PA-MPJPE (mm) ↓ FA-MPJPE (mm) ↓ WA-MPJPE (mm) ↓ Acc Error (mm/frame2) ↓ Runtime/100 imgs

Val

- GLAMR [65] 114.3 416.1 239.0 173.5 4 min

DROID-SLAM [54] PACE [30] 66.5 147.9 101.0 6.7 1 min

DROID-SLAM [54] SLAHMR [62] w/ PHALP+ 79.1 141.1 101.2 25.8 40 min

DROID-SLAM [54] SLAHMR [62] w/ 4DHumans [9] 79.3 273.0 144.7 79.4 40 min

Human-aware Metric SLAM (ours) 4DHumans [9] 73.0 164.4 106.7 127.0 5 min

Human-aware Metric SLAM (ours) Scene-aware SMPL Denoiser (ours) 57.7 115.1 81.1 64.8 5 min

Test

- GLAMR [65] 112.8 351.4 216.3 105.9 4 min

DROID-SLAM [54] SLAHMR [62] w/ PHALP+ 63.1 163.9 99.4 31.7 40 min

DROID-SLAM [54] SLAHMR [62] w/ 4DHumans [9] 69.3 185.8 113.0 45.7 40 min

Human-aware Metric SLAM (ours) 4DHumans [9] 75.4 160.0 108.1 138.8 5 min

Human-aware Metric SLAM (ours) Scene-aware SMPL Denoiser (ours) 61.3 122.1 84.6 69.4 5 min

Table 2. Comparison results with state-of-the-art approaches on EgoBody. The row in gray is the full pipeline of SynCHMR.

RGB Depth Mask
EgoBody EMDB

ATE ↓ δ1 ↑ REL ↓ RMSE ↓ ATE ↓

7 7 7 80.9 0.085 14.590 1617.361 400.3

7 7 Mask2Former [4] 81.6 0.063 8.530 1009.127 385.8

7 ZoeDepth+ 7 35.0 0.562 0.308 15.360 456.8

7 ZoeDepth+ Mask2Former [4] 28.6 0.564 0.307 10.852 389.6

7 ZoeDepth+ + Cal. Mask2Former [4] 26.4 0.797 0.274 10.452 107.0

Table 3. Ablation study for SLAM configurations in terms of

optimized camera trajectories and scene depths. ZoeDepth+

denotes our video-adapted ZoeDepth [2].

Stage Backbone RGB XYZ Mask PA ↓ FA ↓ WA ↓ Acc Error ↓

Init. - 7 7 7 73.7 120.8 93.1 127.1

Pred. - 7 7 7 63.3 98.8 77.2 75.2

Pred. ViT [8] 7 7 7 63.9 94.9 76.7 43.3

Pred. ViT [8] 7 7 7 64.5 97.3 77.7 45.6

Pred. ViT [8] 7 7 7 66.8 96.5 78.6 44.7

Pred. ViT [8] 7 7 7 69.3 100.9 82.0 46.4

Pred. SPVCNN [53] 7 7 7 62.9 95.1 76.0 72.6

Pred. SPVCNN [53] 7 7 7 61.0 93.4 74.3 67.7

Pred. SPVCNN [53] 7 7 7 62.0 93.9 75.3 69.9

Pred. SPVCNN [53] 7 7 7 61.3 91.9 73.6 64.8

Table 4. Ablation study for different scene encoders and fea-

tures regarding world-frame HMR. Init. and Pred. refer to be-

fore and after SMPL denoising, respectively.

ization is not aware of body information, which can lead

to errors that cannot be corrected in the global optimization

stage. Consequently, it also has higher world-space errors.

Optimization methods often employ a zero velocity term to

smooth out human motion, which explains the lower accel-

eration error. However, we do not observe a big difference

in jittery between our results. Please refer to Supp. Mat. for

more details.

4.3. Ablation Study

We ablate the design choices in SynCHMR. In Tab. 3,

we evaluate SLAM-optimized camera trajectories and scene

depths with EgoBody and EMDB. We see that directly in-

cluding un-calibrated monocular depths does not guaran-

tee more accurate estimations (3rd vs. 1st and 4th vs. 2nd

row). Precluding the dynamic foreground pixels with

Mask2Former [4] generally improves performance. We em-

pirically find that our depth calibration with human prior

works the best when using it with foreground masking,

which has the lowest error in both datasets. More SLAM

evaluation and discussion can be found in Supp. Mat.

In Tab. 4, we verify the benefit of scene conditioning for

the SMPL denoiser. We train it with EgoBody-train in dif-

ferent conditioning schemes and report the T = 32 results

on EgoBody-val. First, placing the predicted bodies from

4DHuman in the global space directly with estimated cam-

era extrinsics has the highest error (1st row). When condi-

tioning on a constant zero tensor, the denoiser behaves like

a motion prior and reduces the error (2nd row). To encode

the appearance and geometry information of the scene, we

consider ViT [8] or SPVCNN [53] as the encoder E and try

varied combinations of appearance features (RGB), geome-

try features (XYZ) and aggregated subject masks (Mask).

When using ViT to encode the scene, adding XYZ fea-

tures or masks does not reduce the error. In contrast, when

using SPVCNN, adding RGB information or conditioning

on masks does improve performance. Overall, SPVCNN

yields lower errors than ViT and enabling all conditioning

leads to the lowest world-space error measure.

4.4. Qualitative Analysis and Discussion

In the first two rows of Fig. 5, we visualize the results of

3DPW and EgoBody in a global space. Despite occlusions,

our SynCHMR estimates human meshes reliably and places

them in a dense scene point cloud, whereas the scenes in

GLAMR [65] and SLAHMR [62] consist of only a sim-

ple ground plane. Applying scene constraints with such an

overly simplified scene can result in erroneous estimation,

e.g., incorrect human trajectories as shown in the top view

of the 1st row, and the vertically shortened human bodies in

the 4th row of (d). Note that since TRACE [52] is scene ag-

nostic, the ground plane in (c) is only for visualization, not

necessarily indicating scene penetration.

We also test on more in-the-wild DAVIS [42] videos con-

taining human subjects. Since DAVIS provides no ground-

truth human meshes nor camera trajectories, we show only

the visual comparison. The 3rd row shows that we can han-

dle multi-person cases as well as SLAHMR, while GLAMR

often fails when multiple humans and dynamic cameras

both occur. In a challenging scenario where the subject is

taking selfies (the 4th row), both GLAMR and SLAHMR are

confused by the foreground human dominating the frames

and reconstruct an almost static global trajectory, failing to
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Figure 5. Qualitative comparison among world-frame HMR approaches. We show (b) GLAMR [65] and (c) TRACE [52] results with

their pre-defined ground planes, (d) SLAHMR [62] outputs with its estimated ground plane, and (e) our SynCHMR outputs with dense

scenes. In the first row, we also demonstrate top-view human trajectories within circles. See supplementary for video results.

disentangle the camera and the human motions due to the

dynamic ambiguity. TRACE fails to produce results due to

severe frame truncation. In contrast, SynCHMR still suc-

cessfully provides reasonable trajectories.

5. Limitation Discussion

As SynCHMR focuses on disentangling camera and human

movements, we follow SLAHMR to approximate the fo-

cal length as W+H
2 . When the subject has a shape that the

body model cannot explain well, e.g., children or obese peo-

ple, calibrating depth with the estimated bodies is less ideal.

As we develop and validate SynCHMR on real videos, its

accuracy on composed or generated videos remains an open

question. Finally, since SynCHMR handles dynamic scenes

with moving subjects, it does not require an a priori scanned

static scene. This opens up new challenges, such as incor-

porating dynamic point clouds as scene constraints.

6. Conclusion

We present SynCHMR, a method that reconstructs camera

trajectories, human bodies, and dense scenes from in-the-

wild videos all in one global coordinate. SynCHMR has

two core innovations. First, it leverages monocular depth

estimation and uses the dimension and location of human

meshes to calibrate the range of depth. This allows SLAM

to better resolve the inherent scale ambiguity problem as

shown in the experiment. Second, we train a data-driven

motion denoiser and condition it with the scene in the same

global coordinate, which is the first such scene-conditioned

motion prior. Combining the two, the full SynCHMR

pipeline uses human bodies to improve SLAM, and the bet-

ter estimated scene and camera trajectory, in turn, provide

better constraints for feed-forward human motion denois-

ing. It achieves SOTA results on common benchmarks com-

pared with existing optimization-based approaches.
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Hilliges. EMDB: The Electromagnetic Database of Global

3D Human Pose and Shape in the Wild. In International

Conference on Computer Vision (ICCV), 2023. 3, 6

[26] Imry Kissos, Lior Fritz, Matan Goldman, Omer Meir, Ed-

uard Oks, and Mark Kliger. Beyond weak perspective for

1224



monocular 3d human pose estimation. In European Confer-

ence on Computer Vision Workshops (ECCVw), pages 541–

554, Cham, 2020. Springer International Publishing. 3

[27] Muhammed Kocabas, Nikos Athanasiou, and Michael J.

Black. Vibe: Video inference for human body pose and

shape estimation. In Computer Vision and Pattern Recog-

nition (CVPR), 2020. 3

[28] Muhammed Kocabas, Chun-Hao P. Huang, Otmar Hilliges,

and Michael J. Black. PARE: Part attention regressor for

3D human body estimation. In International Conference on

Computer Vision (ICCV). IEEE, 2021. 3

[29] Muhammed Kocabas, Chun-Hao P. Huang, Joachim Tesch,

Lea Müller, Otmar Hilliges, and Michael J. Black. SPEC:

Seeing people in the wild with an estimated camera. In In-

ternational Conference on Computer Vision (ICCV), pages

11035–11045, 2021. 3

[30] Muhammed Kocabas, Ye Yuan, Pavlo Molchanov, Yunrong

Guo, Michael J. Black, Otmar Hilliges, Jan Kautz, and Umar

Iqbal. PACE: Human and motion estimation from in-the-

wild videos. In International Conference on 3D Vision

(3DV), 2024. 2, 3, 5, 6, 7, 1

[31] Nikos Kolotouros, Georgios Pavlakos, Michael J. Black, and

Kostas Daniilidis. Learning to reconstruct 3D human pose

and shape via model-fitting in the loop. In International Con-

ference on Computer Vision (ICCV), 2019. 3

[32] Jiefeng Li, Chao Xu, Zhicun Chen, Siyuan Bian, Lixin Yang,

and Cewu Lu. Hybrik: A hybrid analytical-neural inverse

kinematics solution for 3d human pose and shape estimation.

In Computer Vision and Pattern Recognition (CVPR), pages

3383–3393, 2021. 3

[33] Jiefeng Li, Siyuan Bian, Chao Xu, Gang Liu, Gang Yu,

and Cewu Lu. D&D: Learning human dynamics from dy-

namic camera. In European Conference on Computer Vision

(ECCV), 2022. 3, 1, 2

[34] Zhihao Li, Jianzhuang Liu, Zhensong Zhang, Songcen Xu,

and Youliang Yan. CLIFF: Carrying location information in

full frames into human pose and shape estimation. In Euro-

pean Conference on Computer Vision (ECCV), pages 590–

606, 2022. 3

[35] Jing Lin, Ailing Zeng, Haoqian Wang, Lei Zhang, and Yu

Li. One-stage 3d whole-body mesh recovery with compo-

nent aware transformer. In Computer Vision and Pattern

Recognition (CVPR), pages 21159–21168, 2023. 3

[36] Miao Liu, Dexin Yang, Yan Zhang, Zhaopeng Cui, James M

Rehg, and Siyu Tang. 4D human body capture from egocen-

tric video via 3D scene grounding. In International Confer-

ence on 3D Vision (3DV), pages 930–939. IEEE, 2021. 3, 5,

1, 2

[37] Matthew Loper, Naureen Mahmood, Javier Romero, Gerard

Pons-Moll, and Michael J. Black. SMPL: A skinned multi-

person linear model. Transactions on Graphics (TOG), 34

(6):248:1–248:16, 2015. 3, 4

[38] Diogo Luvizon, Marc Habermann, Vladislav Golyanik,

Adam Kortylewski, and Christian Theobalt. Scene-Aware

3D Multi-Human Motion Capture from a Single Camera.

Computer Graphics Forum (CGF), 42(2):371–383, 2023. 3

[39] Naureen Mahmood, Nima Ghorbani, Nikolaus F. Troje, Ger-

ard Pons-Moll, and Michael J. Black. AMASS: Archive of

motion capture as surface shapes. In International Confer-

ence on Computer Vision (ICCV), pages 5441–5450, 2019.

3

[40] Dushyant Mehta, Oleksandr Sotnychenko, Franziska

Mueller, Weipeng Xu, Srinath Sridhar, Gerard Pons-Moll,

and Christian Theobalt. Single-shot multi-person 3D

pose estimation from monocular RGB. In International

Conference on 3D Vision (3DV), 2018. 6

[41] Georgios Pavlakos, Vasileios Choutas, Nima Ghorbani,

Timo Bolkart, Ahmed A. A. Osman, Dimitrios Tzionas, and

Michael J. Black. Expressive body capture: 3D hands, face,

and body from a single image. In Computer Vision and Pat-

tern Recognition (CVPR), 2019. 3

[42] F. Perazzi, J. Pont-Tuset, B. McWilliams, L. Van Gool, M.

Gross, and A. Sorkine-Hornung. A benchmark dataset and

evaluation methodology for video object segmentation. In

Computer Vision and Pattern Recognition (CVPR), 2016. 7,

2
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