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Abstract

Video Anomaly Detection (VAD) automates the identifi-

cation of unusual events, such as security threats in surveil-

lance videos. In real-world applications, VAD models must

effectively operate in cross-domain settings, identifying rare

anomalies and scenarios not well-represented in the train-

ing data. However, existing cross-domain VAD methods fo-

cus on unsupervised learning, resulting in performance that

falls short of real-world expectations. Since acquiring weak

supervision, i.e., video-level labels, for the source domain

is cost-effective, we conjecture that combining it with exter-

nal unlabeled data has notable potential to enhance cross-

domain performance. To this end, we introduce a novel

weakly-supervised framework for Cross-Domain Learning

(CDL) in VAD that incorporates external data during train-

ing by estimating its prediction bias and adaptively mini-

mizing that using the predicted uncertainty. We demonstrate

the effectiveness of the proposed CDL framework through

comprehensive experiments conducted in various configu-

rations on two large-scale VAD datasets: UCF-Crime and

XD-Violence. Our method significantly surpasses the state-

of-the-art works in cross-domain evaluations, achieving an

average absolute improvement of 19.6% on UCF-Crime

and 12.87% on XD-Violence.

1. Introduction

Video anomaly detection (VAD) aims to locate anomalous

events in the videos [3, 10, 11, 15, 21, 25, 32, 33, 42, 47].

Unlike manual surveillance, which is costly and time-

consuming, video anomaly detection eliminates the need

for extensive human effort, saving resources and time. It

holds significant potential for playing a vital role in video

surveillance by identifying unusual behaviors and activities

such as accidents, burglaries, explosions, and other events

that signal security threats.

VAD has been extensively studied previously [11, 15, 21,

32, 33, 47]. Owing to the high costs and time associated
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Figure 1. Anomaly score comparison on a video of XD-Violence

dataset, with and without employing the proposed CDL frame-

work. The model trained without CDL on UCF-Crime as the

weakly labeled set consistently yields high anomaly scores. In

contrast, the model trained with CDL, using UCF-Crime as the

weakly labeled set and HACS as the unlabeled set, is better able to

localize the anomalous frames.

with obtaining frame-level labels, most approaches formu-

late the problem as either an unsupervised [10, 15, 21] or

weakly-supervised learning setup [11, 32, 33]. In the unsu-

pervised or one-class classification-based) learning setup,

only normal videos are used to model the underlying dis-

tribution of normal spatiotemporal patterns, and any devia-

tions from the modeled distribution are regarded as anoma-

lies. Despite the convenience of the unsupervised setup, the

lack of anomalous videos during training limits the model’s

ability to learn the specific characteristics of anomalies.

This results in limited performance which does not meet

real-world expectations. To address this issue, weakly-

supervised setup has attracted significant attention. In this

setup, merely video-level labels indicating the presence of

anomalies within the videos are incorporated as weak su-

pervision to train models capable of making frame-level

predictions at inference. Multiple Instance Learning (MIL)

[32] is a prominent technique in this domain. By treating

each video as a “bag” and each snippet as a “segment”,

MIL-based algorithms operate under the premise of a worst-

case scenario where the segment with the highest predicted

probability of being abnormal is considered as the candidate

to represent the whole video.

In real-world applications, it is inevitable to encounter

environments and scenarios not fully represented in the

model’s training set. However, it is essential that the model

makes correct predictions in such novel situations. For in-
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stance, when the training data lacks samples of rare events

like “riots” or accidents in novel scenes, the model should

be able to characterize such occurrences as anomalous when

they occur. Previous works study these novel situations un-

der the cross-domain problem definition [3, 13, 23].

Existing cross-domain VAD methods [3, 13, 23, 25] rely

on unsupervised techniques and consequently exhibit lim-

ited performance, as demonstrated later in our empirical

evaluations in Tables 2 and 3. A solution to this could

be the adoption of weakly-supervised techniques for cross-

domain VAD. While weakly-supervised approaches have

proven promising in single-domain scenarios [11, 32, 33],

their effectiveness in cross-domain scenarios has not been

extensively explored. Our evaluations in Tables 2 and 3

suggest that directly employing existing weakly-supervised

methods to address the cross-domain challenges results in

a significant performance drop when tested in scenarios of

even similar nature, such as surveillance videos. We argue

that this performance gap is due to the following reasons.

First, anomalous events, by their very nature, lack a spe-

cific pattern or predefined structure. Hence, the definition of

anomaly is context-dependent and a naive adaptation of the

previous method cannot capture the context-dependencies

in multiple domains. Second, anomalous events are rela-

tively infrequent, making VAD a class imbalance problem.

This issue becomes more severe when dealing with multiple

domains. Third, because of the limited amount of weakly

labeled training data, the model’s learning capacity to detect

novel (open-set) anomalies is also constrained. Due to these

challenges, weakly-supervised methods cannot be readily

applied to cross-domain or cross-dataset scenarios.

To overcome these challenges and develop a generalized

VAD model, substantial amounts of weakly-labeled data are

required. However, acquiring even video-level labels for

a large number of videos is inefficient and labor-intensive.

On the other hand, vast streams of unlabeled videos are

generally available. Utilizing the limited weakly-labeled

data alongside this abundant unlabeled data provides a no-

table opportunity to address the aforementioned challenges

in cross-domain VAD. Prudent utilization of the unlabeled

data can provide valuable insights into the underlying data

distribution, leading to improved decision-making and iden-

tification of anomalous events.

To this end, we propose a weakly-supervised Cross-

Domain Learning (CDL) framework for VAD that inte-

grates external, unlabeled data, from the wild with limited

weakly-labeled data to provide competitive generalization

across the domains. This is achieved by adaptively mini-

mizing the prediction bias over the external data using the

estimated prediction variance, which serves as an uncer-

tainty regularization score. In the proposed framework, we

first train fine-grained pseudo-label generation models on

the weakly-labeled data to obtain sets of segment-level pre-

Method(s) Sup. on D Target

Acsintoae et al. [1] unsupervised D

rGAN [23], MPN [25] unsupervised D′

zxVAD [3] unsupervised D ∪D′

Ours weakly-supervised D ∪D′

Table 1. Brief overview of the taxonomy of current works for VAD

using a source domain dataset (D) and a secondary domain dataset

(D′). All these methods do not utilize any labels for training on

(D′) and assume distinct distributions for D and D′.

dictions for the external dataset. Second, we compute the

variance of the predictions across multiple predictors as a

proxy to represent uncertainty associated with the segments

in the external data. Third, during the optimization process,

involving training on both labeled and external data, we

adaptively reweigh the bias on each external data using the

uncertainty regularization scores. This dynamic reweigh-

ing ensures that segments from the external dataset closer to

the source dataset are emphasized during the training, while

those with higher uncertainty are down-weighted. Finally,

we iteratively regenerate pseudo-labels using the models

trained on labeled and pseudo-labeled data, re-estimate the

uncertainties, and re-train the model on the union of labeled

and external datasets. This iterative process helps refine the

pseudo-labels as the training progresses. With this train-

ing process, the model learns to generalize to both source

and external data, given only supervision on the source data.

Figure 1 illustrates the effectiveness of the CDL framework.

To summarize, we make the following contributions:

• We present a practical CDL framework for weakly-

supervised VAD, in which unlabeled external videos are

employed to enhance the cross-domain generalization of

the model.

• We design a novel uncertainty quantification method that

enables the adaptive uncertainty-driven integration of ex-

ternal videos into the training set.

• Through extensive experiments and ablation studies

on benchmark datasets, we validate the proposed ap-

proach, demonstrating state-of-the-art performance in

cross-domain settings while retaining a competitive per-

formance on the in-domain data.

2. Related Works

Video Anomaly Detection (VAD). Video Anomaly De-

tection (VAD). VAD is a well-established problem, with

most works formulating it either as unsupervised learn-

ing [15, 21, 22, 41, 44] or weakly-supervised learning

[29, 32, 33, 43, 48] problem. In unsupervised setups, the

training data consists solely of normal videos, with the

majority of works encoding normal patterns through tech-

niques like frame reconstruction [15, 39], future frame pre-



diction [21], dictionary learning [22, 44], and one-class

classification [17, 24]. Any deviation from the encoded pat-

terns is considered anomalous. Since the model categorizes

anything beyond its learned representations as anomalous,

it can label novel video actions and scenarios encountered

during training but in altered environments as anomalous.

Weakly-supervised VAD methods help mitigate these is-

sues by incorporating video-level labels as weak supervi-

sion for the model, with the majority of methods utilizing

the Multiple Instance Ranking Loss [11, 32, 35, 47]. Given

that a VAD model is expected to encounter previously un-

seen scenarios during deployment, it is of paramount im-

portance for the model to have a high generalization across

domains. Previous works refer this as cross-domain [3] or

cross-dataset generalization [9]. We provide an overview

of the existing works employing external data in VAD in

Table 1. Previous works on cross-domain generalization

focus on unsupervised methods based on few-shot target-

domain scene adaptation. [23, 25] employ data from the

target domain via meta-learning to adapt to that specific do-

main. Aich et al. [3] proposed a zero-shot target domain

adaptation method that incorporates external data to gener-

ate pseudo-abnormal frames. Despite the intriguing setup,

these unsupervised cross-domain generalization methods

lack explicit knowledge about what constitutes an anomaly,

hindering the model’s ability to learn the specific charac-

teristics of anomalies. To this end, we propose the use

of weakly-supervised learning for cross-domain generaliza-

tion. We integrate external datasets from diverse domains to

enable the cross-domain generalization of a model trained

in a weakly-supervised fashion.

Pseudo-Labeling and Self-training. Pseudo-labeling [4,

28] is a common technique where the model trained on la-

beled data assigns labels to unlabeled data. Subsequently,

the model is trained on both the initially labeled data and

the pseudo-labeled data. This self-training strategy [26, 40]

operates iteratively, allowing the model to progressively

enhance its generalization. In VAD, several works lever-

age pseudo-labeling and self-training for generating fine-

grained pseudo-labels [11, 20, 42]. However, in contrast to

the previous methods, instead of generating pseudo-labels

for the weakly labeled data, we leverage pseudo-labels for

incorporating the external data.

Uncertainty Estimation. To address pseudo-label noise,

prior research in different contexts has explored uncertainty

estimation using various approaches, such as data aug-

mentation [5, 30], inference augmentation [12], and model

augmentation [46]. While data augmentation is effective

for images, it can disrupt temporal relationships in video

frames and is not efficient for training on high-cardinality

data like videos. On the other hand, inference augmen-

tation methods, such as MC Dropout [12, 42], introduce

perturbations during model inference to obtain slightly dif-

ferent predictions, but that is inefficient for training with

fixed backbones. In contrast, model augmentation uses dif-

ferent models. Since different models may have varying bi-

ases and receptive fields, this would result in diverse predic-

tions. This prediction discrepancy can help quantify uncer-

tainty, making model augmentation well-aligned with our

problem. To avoid any manual thresholding for learning

from pseudo-labels during training, following [16, 46] we

use adaptive reweighing of loss with uncertainty values. In

[46], Zheng et al. quantify uncertainty by estimating dis-

crepancies between predictions made by two classifiers us-

ing Kullback–Leibler (KL) divergence. However, given that

VAD is a binary classification task, the divergence based on

only two outcomes for the posterior probability is not opti-

mally informative. Hence, we propose a method to quantify

uncertainty in the high-dimensional feature space instead of

the probability space.

3. Method

3.1. Problem Definition

In this work, we address a real-world VAD problem, where

a weakly-labeled dataset Dl = {(Xi
l , Y

i
l )}

nl

i=1 and an ex-

ternal unlabeled dataset Du = {Xi
u}

nu

i=1 are available for

training. Here, nl and nu indicate the number of videos

in the two datasets, respectively, with nu k nl due to the

convenience of gathering unlabeled video data. The video-

level labels of Xl are denoted by Yl ∈ {0, 1}. We do not

make any assumption about distributions of Dl and Du, and

therefore, they can be drawn from different distributions.

We aim to find the model F (·|θ), parameterized by θ, that

provides accurate predictions on weakly-labeled data while

adaptively minimizing the prediction bias on the external

data using the uncertainty regularization scores. We illus-

trate the proposed framework in Figure 2.

3.2. Feature Extraction and Temporal Processing

The proposed uncertainty quantification method (Section

3.4) compares two diverse representations of each sample

to estimate the uncertainty associated with the segment-

level predictions on external data. To this aim, we employ

two different backbones for feature extraction from videos,

which are widely used for anomaly detection tasks. The first

one is the conventional I3D backbone [6], which extracts

segment-level features using 3D convolution, and the other

is the CLIP backbone [27], which extracts frame-level fea-

tures using the frozen CLIP Model’s ViT encoder. The con-

trasting inductive biases of the 3D convolution-based I3D

and the transformer-based CLIP help to effectively capture

the prediction variance. It is to be noted that only the CLIP

backbone is used during inference. We develop two predic-

tion heads, namely the main model, Pm, built on top of the

CLIP backbone, and the auxiliary model, Pa, built on top



Figure 2. Overview of the proposed CDL Framework. CDL Step 0: The Ranking Loss, Lrank (Supp Mat. §6), is employed to train two

pseudo-label generation models, Pm and Pa, §3.2, on weakly-labeled data, Dl. CDL Step k, k > 0: Pm and Pa are trained iteratively

on Dl ∪ Du, incorporating pseudo-labels for Du generated at the end of the previous CDL step. To deal with noise in pseudo-labels,

uncertainty regularization scores are estimated using the divergence between the predictions of the two models, §3.4. When optimizing on

Du, the prediction bias, Lbce (§3.3), for external data is reweighed using the computed uncertainty regularization scores, §3.5.

of the I3D backbone.

Video frames are highly correlated in the temporal di-

mension. To reduce the redundancy in frame-level features

extracted by the CLIP backbone, we pool the representa-

tions by bilinearly interpolating them to a fixed, empirically

determined length, ns. Each of the ns interpolated fea-

tures represents one segment. To ensure consistency, we

also fix the length of representations extracted by the I3D

backbone. Evaluation in Section 4.6 analyzes the role of ns

on the model’s performance. To capture long-range tempo-

ral information over the sequence, we employ a lightweight

temporal network, i.e., transformer encoder, to implement

Pm and Pa.

3.3. Bias Estimation for External Data

Similar to [46], we formulate the prediction bias on external

data as:

Bias(Du) = EXu
[F (Xu|θ)− Yu], (1)

where F (Xu|θ) represents a set of predicted probability dis-

tributions, each one corresponding to a distinct segment of

Xu, and Yu denotes the set of unknown segment-level la-

bels of Xu. Bias(Du) can be re-written as:

Bias(Du) = EXu
[F (Xu|θ)− Ŷu] +EXu

[Ŷu −Yu], (2)

where Ŷu denotes the set of segment-level pseudo-labels

for Xu. Ŷu can be generated by performing inference on

the model trained on Dl. The first term in Equation 2 de-

notes the difference between the predicted posterior proba-

bility and the pseudo-labels, while the second term denotes

the error between the pseudo-labels and the ground-truth

labels. While minimizing the prediction bias, due to the

lack of ground truth supervision, we employ a self-training

mechanism, considering Ŷu as the soft labels, thereby treat-

ing the second term as a constant and minimizing the first

term. Specifically, we use the binary cross-entropy (BCE)

loss, Lbce, given by:

Lbce = −Ŷu log(F (Xu|θ)) − (1−Ŷu) log(1−F (Xu|θ)),
(3)

to estimate the prediction bias associated with each video

segment, for both Pm and Pa.

3.4. Uncertainty Estimation

Since Du and Dl do not necessarily share the same distri-

bution, the generated pseudo-labels are noisy. This noise

can adversely affect the subsequent training process as it

causes bias to further magnify and propagate within the

model. This issue, known as Confirmation Bias [4], is of-

ten mitigated by quantifying the uncertainty associated with

pseudo-labels and then incorporating this uncertainty into

the training process to compensate for the noise. As dis-

cussed in Section 2, we opt to address the confirmation bias

by computing uncertainty using model augmentation. To

quantify uncertainty through model augmentation, follow-

ing [46], we estimate prediction variance, which is formu-

lated as:

V ar(Du) = EXu
[(F (Xu|θ)− Yu)

2]. (4)

Due to the lack of ground-truth labels, Equation 4 can be

approximated as:

V ar(Du) ≈ EXu
[(F (Xu|θ)− Ŷu)

2]. (5)

When optimizing the prediction bias in Equation 2, the vari-

ance in Equation 5 will also be minimized, potentially re-



sulting in inaccurate quantification of the true prediction

variance. To address this, we adopt an alternative approxi-

mation, expressed as:

V ar(Du) ≈ EXu
[
(

Pm(Xu|θPm
)− Pa(Xu|θPa

)
)2
]. (6)

Since VAD is a binary classification task, the probability

distributions corresponding to each segment have limited

support. Consequently, estimating prediction variance us-

ing only the predicted anomaly scores, as in Equation 6,

may not be robust. Hence, instead of measuring the di-

vergence between the predicted posterior probabilities for

the two classes, we propose quantifying pseudo-label un-

certainty in the high-dimensional space. To this end, we

compute the cosine similarity between the segments in each

set of the representations, Zm and Za, obtained from the

penultimate layer of Pm and Pa, respectively. Here, Zm =
{z1m, z

2
m, . . . , z

ns
m } and Za = {z1a, z

2
a, . . . , z

ns
a }.

To obtain a set of stabilized, segment-level uncertainty

regularization scores within a bounded range from the com-

puted cosine similarity, we introduce the following func-

tion. Let S = {s1, s2, . . . , sns} be the set of surrogate vari-

ances that we use as proxies for the uncertainty of segments.

The surrogate variance is computed as:

s
j = eτ(ïz

j
m,z

j
að−1), (7)

where s
j indicates the uncertainty regularization score for

the jth segment, ïzjm, zjað indicates the cosine similarity,

and τ denotes the temperature parameter.

Higher uncertainty regularization scores indicate the

similar encoding of data between the models, implying less

uncertainty in the predicted labels, while, lower scores im-

ply high uncertainty in the predicted labels. Empirical ev-

idence in Section 4.4 demonstrates a significant negative

correlation between uncertainty regularization scores and

Binary Cross-Entropy (BCE) loss between the predicted la-

bels and ground truths. This affirms that the proposed un-

certainty regularization score effectively serves as a proxy

for the quality of pseudo-labels.

3.5. Training Process

CDL Step 0. We initially train Pm and Pa separately on

the labeled set, optimizing both of them using the Ranking

Loss, Lrank, discussed in Supp. Mat. Sec. 6. We then per-

form inference on the trained models to generate the sets of

soft segment-level pseudo-labels for training on Du.

CDL Step > 0. Following the generation of the sets of

pseudo-labels for Du, we enter an iterative pseudo-label re-

finement phase, where we train Pm and Pa on Dl ∪ Du

for multiple CDL steps. Each CDL step comprises a fixed

number of epochs. In each epoch, we regenerate the sets

of segment-level uncertainty regularization scores. To en-

able the uncertainty-driven learning from external data, sim-

ilar to [46], we use the estimated uncertainty regularization

scores, S, as automatic thresholds as this dynamically ad-

justs learning from noisy labels by scaling the prediction

bias associated with external data based on S. This helps fil-

ter out unreliable predictions while prioritizing highly con-

fident predictions. To encourage lower prediction variance,

which would in turn lead to increased pseudo-label quality,

we explicitly add the prediction variance to the optimization

objective corresponding to the external data, Lext, as:

Lext = EXu
[

1

V ar(Du)
·Bias(Du) + V ar(Du)]. (8)

Equation 8 is rewritten with the approximated terms as:

Lext = EXu
[S · Lbce − λ3 · ïZm, Zað]. (9)

Alternatively, Equation 9 can be rewritten as:

Lext =
1

ns · nu

nu
∑

i=1

ns
∑

j=1

(

Si,j · Li,j
bce − λ3 · ïZ

i,j
m ,Zi,j

a ð
)

,

(10)

where λ3 is a hyper-parameter to balance the losses. Similar

to CDL step 0, to optimize the training on Dl, we use Lrank.

The total optimization objective for training on Dl∪Du can

be expressed as:

LTotal = Lrank + λ4 · Lext, (11)

where λ4 is a trade-off parameter for Lext. We employ the

optimization objective defined in Equation 11 during train-

ing on Dl ∪ Du for each epoch within every CDL step. Af-

ter each CDL step is completed, we re-generate the set of

soft segment-level pseudo-labels using the models trained

on Dl ∪ Du. This iterative refinement process repeats k

times, where k is a hyper-parameter determining the num-

ber of CDL steps. With each CDL step, the models’ per-

formance gets further refined as the pseudo-labels get itera-

tively improved.

3.6. Inference ­ Extending Segment­level Scores to
Frame­level Scores

During inference, we compute segment-level anomaly

scores for the videos using Pm. Since we encounter long-

untrimmed videos with varying numbers of frames, for ex-

tending the segment-level anomaly score to the frame level,

for each video, we divide the total number of frames nf

by the number of segments ns to obtain the number of

frames per segment, nfs. We assign the anomaly score of

each segment to its consecutive frames. The first segment

corresponds to the first nfs frames, and so forth until the

(ns − 1)
th

segment. For the last segment, its anomaly score

is assigned to any remaining frames, potentially exceeding

nfs, if there is a remainder.



4. Experiments

We evaluate the proposed method on the major video

anomaly datasets, UCF-Crime (UCF) [32] and XD-

Violence (XDV) [38]. Additionally, we use 11,000 videos

from the HACS [45] dataset as a source of external data.

We provide detailed information about the datasets in Supp.

Mat. §7. In §4.1, we discuss the implementation details.

In §4.2, we discuss the inherent noise in the test anno-

tations of benchmark datasets. We proceed to compare

the proposed framework with prior works in cross-domain

scenarios (§4.3.1) and open-set scenarios (§4.3.2). Subse-

quently, in §4.4, we demonstrate a strong correlation be-

tween the quality of pseudo labels and the computed uncer-

tainty scores. We then explore the evolution of these uncer-

tainty scores through the training process in §4.5. Finally,

in §4.6, we conduct ablation studies and hyper-parameter

analysis to analyze the impact of individual components of

the proposed framework.

4.1. Implementation Details

We implement the proposed method using PyTorch. We ex-

tract CLIP and I3D features at a fixed frame rate of 30 FPS.

CLIP features are extracted from the frozen CLIP model’s

image encoder (ViT-B/32). For the hyper-parameters, in the

open-set scenarios, we empirically set the value of ns to 64,

τ to 1.25, λ1 and λ2 to 5e− 4, λ3 to 1e− 3, and λ4 to 700.

Ablation studies for selecting ns and λ3 are included in Sec-

tion 4.6. We use the Adam optimizer with a weight decay

of 1e− 3, and we set a learning rate of 3e− 5 for the trans-

former encoder and 5e − 4 for the fully connected layers.

We use a batch size of 64. In both Pm and Pa, we explicitly

encode positional information in the segments using sinu-

soidal positional encodings [34]. We train on the weakly-

labeled source dataset for 200 epochs, followed by train-

ing on the union of weakly-labeled and external datasets for

40 CDL steps, each CDL step comprising 4 epochs. Addi-

tional information regarding hyper-parameters is provided

in Supp. Material Section 8.

Model Architecture. Both Pm and Pa consist of a trans-

former encoder layer with four heads, followed by four fully

connected layers, each consisting of 4096, 512, 32, and 1

neurons, respectively. In both the models, for all the layers

except the last, we use ReLU [2] activation while for the

last layer, we use Sigmoid activation.

Evaluation Setup. To reduce bias, we perform each ex-

periment three times with different seeds and average the

results. In open-set experiments, we repeat each experi-

ment three times, using different sets of anomaly classes

each time.

Evaluation Metric. Following previous works on UCF-

Crime [32], we adopt the frame-level area under the ROC

curve (AUC) to evaluate on UCF-Crime. In line with

previous works on XD-Violence [38], we use the frame-

Methods Features
UCF

AUC(%)

UCF-R

AUC(%)

XDV

AP(%)

Cross-Domain
(Unsup.)

rGAN [23] - 64.35∗ 65.19∗ 37.74∗

MPN [25] - 65.67∗ 67.98∗ 38.89∗

zxVAD [3] - 68.74† 69.39† 40.68†

Non
Cross-

Domain

Sultani et al.[32] I3D 80.70 84.63∗ 53.88∗

MIST [11] I3D 82.30 86.17∗ 50.33∗

RTFM [33] I3D 84.03 86.47∗ 37.30∗

S3R [37] I3D 85.99 87.11∗ 49.84∗

CU-Net [42] I3D 86.22 88.15∗ 37.98∗

MGFN [8] I3D 86.98 87.33∗ 32.16∗

SSRL [19] I3D 87.43 87.02∗ 51.60∗

CLIP-TSA [18] CLIP 87.58 73.20∗ 44.33∗

Ours (No ext. data) CLIP 84.49 89.96 58.13

Cross-Domain
(Weakly-Sup.)

Ours (UCF + HACS)CLIP 84.63 90.53 65.14

Ours (UCF + XDV) CLIP 84.73 90.26 68.37

Table 2. Comparison with prior works on XDV, considering UCF-

Crime as the source data. Asterisk (∗) indicates that evaluations

were conducted by us using the official code. Dagger (†) indicates

that evaluations were conducted by our implementation due to the

lack of an official implementation.

Methods Features XDV AP(%) UCF-R

AUC(%)

Cross-
Domain
(Unsup.)

rGAN [23] - 40.10∗ 59.82∗

MPN [25] - 44.79∗ 60.35∗

zxVAD [3] - 47.53† 63.61†

Non
Cross-

Domain

Sultani et al.[32] I3D 73.20 71.23∗

RTFM [33] I3D 77.81 70.46∗

MGFN [8] I3D 80.11 69.12∗

S3R [37] I3D 80.26 69.04∗

CLIP-TSA [18] CLIP 80.67 67.58∗

Ours (No ext. data) CLIP 75.13 76.39

Cross-Domain
(Weakly-Sup.)

Ours (XDV + UCF) CLIP 77.04 88.06

Ours (XDV + HACS) CLIP 78.61 88.50

Table 3. Comparison with prior works on UCF-Crime, considering

XDV as the source data. Asterisk (∗) indicates that evaluations

were conducted by us using the official code. Dagger (†) indicates

that evaluations were conducted by our implementation due to the

lack of an official implementation.

level area under the Precision-Recall curve (PRAUC), also

known as Average Precision (AP), to evaluate on XDV.

4.2. Noise in the Test Annotations of Benchmark
Datasets

Our manual inspection reveals that the frame-level test-

ing annotations of the UCF-Crime (UCF) [32] and XD-

Violence (XDV) [38] datasets, which are commonly used

for benchmarking VAD models, exhibit significant noise.

This noise largely stems from the fact that the original an-

notations do not consistently label the frames leading up to

the primary anomalous events and their subsequent conse-

quences as anomalous. For instance, in a video assigned

a label like “shooting”, we assert that frames showing the

person holding the gun and frames illustrating the injured

victim should also be marked as anomalous. This perspec-

tive aligns with the fundamental goal of VAD, which is to



UCF (AUC%) UCF-R (AUC%)

c Wu et al.[38] RTFM [33] Zhu et al. [49] Ours (w/o CDL) Ours (CDL) Ours (w/o CDL) Ours (CDL)

1 73.22 75.91 76.73 75.17 77.45 84.32 85.39

3 75.15 76.98 77.78 81.51 82.57 86.84 87.69

6 78.46 77.68 78.82 82.97 83.44 87.85 88.21

9 79.96 79.55 80.14 83.02 83.37 89.22 89.82

Table 4. Comparison with other methods in Open-set setting on UCF-Crime dataset; c denotes the no. of anomalous classes included for

weakly-supervised training.

identify all anomalous frames within a video, irrespective

of the video’s primary label. However, it should also be

noted that in the original annotations, for some videos, cer-

tain frames related to the video’s primary anomaly label are

also not marked anomalous.

To address this, we re-annotate the test set of UCF-Crime

by assigning each video to three independent annotators.

We then combine their annotations to generate more accu-

rate frame-level labels. Compared to the original annota-

tions where 7.58% of the total frames are labeled as anoma-

lous, the proposed annotations label 16.55% of the total

frames as anomalous. The proposed annotations are avail-

able here1. We provide a comparison of the proposed and

original annotations here2. For the remainder of this paper,

we refer the re-annotated test set of the UCF-Crime dataset

as UCF-R.

4.3. Comparison with Prior Works

4.3.1 Cross-Domain Scenarios

While the UCF-Crime [32] and XD-Violence [38] datasets

share similar definitions of what constitutes anomalies, that

definition differs from those of smaller datasets like Shang-

haiTech [21], CUHK-Avenue [22], UCSD Pedestrian [7],

UBnormal [1], where anomalies are more subtle. For in-

stance, running is considered anomalous in UBnormal but

not in XD-Violence. Due to these divergent notions of

anomalies across datasets, we conduct cross-domain exper-

iments by simultaneously evaluating on the UCF-Crime and

XD-Violence datasets, given their more aligned anomaly

definitions.

UCF-Crime as the Weakly-Labeled Source Set, XDV

as the Cross-Domain Set. Table 2 summarizes the re-

sults for this scenario. First, we observe that the proposed

method achieves state-of-the-art results on XDV and UCF-

R even without utilizing any external data (without CDL).

We believe this is due to the inductive bias of previous meth-

ods towards the noisy annotations of UCF-Crime. Next, we

observe that the addition of external data, HACS and XDV,

leads to a significant enhancement in the performance of

1https : / / drive . google . com / drive / folders /

1IVjQQFHXVcsaT63HUjpfk8C5KH6HsQ7t?usp=drive_link
2https://rb.gy/4vkr1r

the cross-domain dataset, XDV, by 11.26% and 14.49%, re-

spectively, compared to the previous state-of-the-art base-

line. Additionally, there is also a marginal improvement in

the performance of the source set upon integration of exter-

nal datasets.

XDV as the Weakly-Labeled Source Set, UCF-Crime as

the Cross-Domain Set. Table 3 summarizes the results for

this scenario. Notably, the proposed method achieves state-

of-the-art performance on the cross-domain dataset, UCF-

R, even without the utilization of any external data during

training. This is attributed to the simplicity of the proposed

architecture compared to other baselines. The proposed ar-

chitecture prevents overfitting to the source dataset, thereby

increasing its generalizability to the cross-domain dataset.

Additionally, integrating external data further enhances per-

formance on both the cross-domain and source sets. Specif-

ically, leveraging the CDL framework with UCF-Crime and

HACS as external datasets boosts UCF-R’s AUC by 18.94%

and 19.39% respectively, compared to previous state-of-the-

art baselines. We also observe that the proposed method’s

performance is inferior on XDV. We attribute this to the

noise in the annotations of XDV’s test set.

These results highlight that the proposed CDL frame-

work is capable of effectively exploiting external data with

vast domain gaps to achieve a significant cross-domain gen-

eralization. It’s noteworthy that the performance gain ob-

served with the proposed CDL framework remains consis-

tent across all tested datasets, suggesting that the perfor-

mance improvement is not dependent on any specific source

or external dataset.

4.3.2 Open-Set Scenarios

In Table 4, we evaluate the proposed framework’s per-

formance on the UCF-Crime dataset in a realistic open-

set scenario, where the model is evaluated on both, pre-

viously seen and unseen anomaly classes. To simulate

this scenario, we randomly include c anomalous classes

in the weakly-labeled set, while the remaining anomalous

classes are placed in the unlabeled set. In both the weakly-

supervised source set and the unlabeled set, the number of

normal videos equals the number of anomalous videos. We

evaluate two model configurations; one trained solely on



Figure 3. (a) Correlation between uncertainty scores and BCE loss computed between the estimated scores and ground truth. When

λ3 = 1e − 3, as expected, a consistently high negative correlation emerges, demonstrating the effectiveness of the proposed uncertainty

quantification method as a reliable proxy for pseudo-label quality. (b) Cumulative Distribution Function (CDF) plots illustrating the

progression of average uncertainty regularization scores for each video during training. CDL step 20 has a higher concentration of scores

around 1 compared to CDL step 2, while CDL step 2 has a higher concentration around 1 than CDL step 1. This suggests that, as training

progresses, there is a higher tendency for scores to have elevated values, indicating more confident pseudo-label predictions. (c) Ablation

study on the coefficient of the cosine similarity loss term, λ3. (d) Ablation study on the number of segments, ns.

the weakly-labeled set (without CDL) and the other on the

union of weakly-labeled and unlabeled sets using the CDL

Framework.

On UCF-Crime, the proposed model, without CDL, sur-

passes the state-of-the-art baselines for c > 1. This high-

lights its efficacy in open-set settings. While, with CDL,

the model surpasses the baselines across all values of c by a

considerable margin.

For both UCF-Crime and UCF-R, when unlabeled data

is incorporated, we observe a consistent performance gain

across all values of c, suggesting the effectiveness of the

CDL framework across varying amounts of weakly-labeled

and unlabeled data.

4.4. Correlation between Uncertainty Scores and
BCE Loss (Proxy to Label Quality)

To assess the efficacy of the proposed uncertainty quan-

tification method as a proxy for pseudo-label quality, we

compute the non-parametric Spearman correlation between

estimated uncertainty regularization scores and BCE loss

between the predicted pseudo-labels and the corresponding

ground truths. For this experiment, we consider UCF-Crime

as the weakly-labeled source set and XDV as the external

set. In Figure 3(a), with λ3 = 1e− 3, CDL step 1 onwards,

a consistently high negative correlation (-0.46 in CDL step

6, with a p-value < 1e-5) emerges, indicating the robust-

ness of the proposed uncertainty quantification framework.

Conversely, setting λ3 to 0 results in a sustained positive

correlation, signifying sub-optimal pseudo-labels in the ab-

sence of cosine similarity loss term.

4.5. Progression of Uncertainty Scores

To assess the evolution of uncertainty regularization scores

through the training process, in Figure 3(b), we plot the

Cumulative Distribution Function (CDF) of average uncer-

tainty regularization scores for external videos across the

first epoch of three different CDL steps. We conduct this

experiment considering UCF-Crime as the weakly-labeled

source set and XDV as the external set. We observe that in

CDL step 1, 16.65% of the uncertainty scores fall within the

range [0, 0.1]. As training progresses to CDL steps 2 and

20, this proportion decreases to 13.06% and 11.39%, re-

spectively. Meanwhile, the proportion of uncertainty scores

in the range [0.9, 1] increases from 35.11% in CDL step 1

to 56.70% in CDL step 2 and further to 57.68% in CDL step

20. This trend indicates a discernible shift towards higher

uncertainty scores as training progresses, suggesting an im-

provement in model confidence due to increased pseudo-

label quality.

4.6. Ablation Studies and Hyper­parameter Analy­
sis

For the sake of consistency, we conduct all ablation studies

on UCF-Crime in an open-set setting, with c = 1. However,

it should be noted that for different training setups, hyper-

parameters are tuned separately as well.

Impact of Various Components of the CDL Framework.

We assess the effectiveness of each component of the CDL

framework by adding them sequentially. The results are

summarized in Table 5. We consider training on c = 1
anomaly class in a weakly-supervised fashion as our base-

line. The remaining c − 1 anomalous classes are placed in

the external set. We first observe that integrating external

data into the source set without accounting for pseudo-label

uncertainty (Si,j = 1, ∀i, j) and without minimizing co-

sine similarity between representations (λ3 = 0) yields a

0.35% gain in AUC, highlighting the effectiveness of ex-

ternal data in improving the model’s performance. Next,

we study the impact of uncertainty-aware integration of ex-

ternal data, i.e., adaptively reweighing the prediction bias

of external data with the computed uncertainty values and

with λ3 set to 0. This results in a gain of 0.13% in AUC,



External data Uncertainty Coeff. Cos. Similarity Loss AUC(%)

: : : 84.32

6 : : 84.67

6 6 : 84.80

6 6 6 85.39

Table 5. Ablation study of various components on the UCF-R

dataset in an open-set setting (c = 1).

demonstrating the superiority of uncertainty-driven integra-

tion compared to the standard integration. Finally, we as-

sess the impact of adding the cosine similarity loss term

during uncertainty-aware training. This further leads to a

significant boost of 0.59%, validating its effectiveness.

Impact of Cosine Similarity Loss. In Figure 3(c), we ex-

plore the impact of varying the coefficient of the cosine sim-

ilarity loss on the model’s performance. We observe a grad-

ual increase in AUC as λ3 increases from 1e-9 to 1e-3. This

could be due to the effect of cosine similarity loss getting

more pronounced with higher values of λ3. However, be-

yond 1e-3, there is a rapid decline in AUC, likely due to the

dominance of the cosine similarity loss over other losses

when its coefficient is high. Therefore, we select 1e-3 as

the optimal choice for λ3.

Impact of Number of Segments. In Figure 3(d), we ob-

serve that the performance consistently improves as no. of

segments, ns, increases from 16 to 64, but it begins to de-

cline rapidly afterward. Therefore, we set ns as 64.

Impact of the Size of External Data. To determine the op-

timal number of unlabeled external videos from the HACS

dataset to integrate into the weakly-labeled training set of

UCF-Crime, we conduct an ablation study, depicted in Fig-

ure 4. We observe that increasing the size of the external set

increases the performance on XDV. However, this increase

tends to plateau after the inclusion of 11,000 videos. Con-

sequently, we do not include additional videos beyond the

11,000 threshold.

5. Conclusion

In this work, we demonstrated the effectiveness of inte-

grating external, unlabeled data with weakly-labeled source

data to enhance the cross-domain generalization of VAD

models. To enable this integration, we proposed a weakly-

supervised CDL (Cross-Domain Learning) framework that

adaptively minimizes the prediction bias on external data by

scaling it with the prediction variance, which serves as an

uncertainty regularization score. The proposed method out-

performs baseline models significantly in cross-domain and

open-set settings while retaining competitive performance

in in-domain settings.

Figure 4. Ablation study on the impact of the size of external data.
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6. Revisiting Multiple Instance Learning

Since acquiring frame-level labels requires significant time

and effort, following Sultani et al. [32], we use Mul-

tiple Instance Learning (MIL) to train the classifiers us-

ing weakly-supervised video-level labels. By dividing a

video (bag) into multiple temporal non-overlapping seg-

ments (instances) and encouraging anomalous video seg-

ments to have higher anomaly scores as compared to the

normal segments, they formulate anomaly detection as a re-

gression problem.

The multiple instance ranking objective function is given

by:

max
Xi∈Da

l

1≤j≤ns

F (Xi,j |θ) > max
Xi∈Dn

l

1≤j≤ns

F (Xi,j |θ), (12)

where Da
l = {(X,Y ) ∈ Dl : Y = 1} and Dn

l =
{(X,Y ) ∈ Dl : Y = 0} are the set of abnormal and nor-

mal videos, respectively and max is taken over all video

segments in a bag.

Instead of ranking every segment of the positive and neg-

ative bags, ranking is enforced on one segment from each

bag, having the highest anomaly score. The overall loss

function, Lrank, for a pair of abnormal and normal videos, is

given by:

Lrank =max(0, 1− max
Xi∈Da

l

1≤j≤ns

F (Xi,j |θ) + max
Xi∈Dn

l

1≤j≤ns

F (Xi,j |θ))

+ λ1LTs + λ2LSp,

(13)

where LTs is the temporal smoothness constraint, and LSp

is the sparsity constraint.

7. Datasets

UCF-Crime [32]: This is a large-scale VAD dataset hav-

ing a total duration of 128 hours. It contains long and

untrimmed real-world surveillance videos across 13 real-

istic anomaly categories that are specifically chosen due

to their significant impact on public safety. The dataset

comprises 1610 weakly-labeled training videos and 290 test

videos annotated at the frame level.

XD-Violence (XDV) [38]: This is a large-scale and multi-

scene audio-visual dataset for violence detection, having a

total duration of 217 hours. Its long and untrimmed videos

are collected from movies, games, and in-the-wild scenar-

ios, with anomalies spread over 6 categories. It comprises

3954 weakly-labeled training videos and 800 test videos an-

notated at the frame level.

HACS [45]: This is a large-scale dataset for human action

recognition, sourced from YouTube. It features 200 action

classes across 140K segments on 50K videos. Due to its

diverse range of actions, larger size, and longer video du-

rations compared to other video datasets such as UCF-101,

Kinetics, and ActivityNet, we use a subset of 11K videos

from HACS Segments as external, unlabeled data.

8. Implementation Details

To ensure consistency and gradient stability, while training

on Dl ∪ Du, each mini-batch consists of an equal num-

ber of samples from Dl and Du. Since the computation

of Lrank necessitates pairs of abnormal and normal videos,

each labeled sample within the mini-batch comprises a pair

of anomalous and normal videos. All the experiments were

conducted on an NVIDIA RTX A5000 24 GB GPU. For the

experiments using UCF-Crime as the weakly-labeled data,

we set the batch size to 64, and for the experiments using

XD-Violence as the weakly-labeled data, we set the batch

size to 32. In all our experiments except the open-set, we

set ns to 64, τ to 1.25, λ1 to 5e-3, λ2 to 1e-3, λ3 to 1e-3.

We set λ4 to 2000 for UCF+HACS and UCF+XDV, 1250

for XDV+HACS, and 700 for XDV+UCF. For all our ex-

periments, we use the Adam optimizer with a weight decay

of 1e-3. For the fully connected layers, we use a learning

rate of 5e-4 when UCF-Crime is used as the weakly-labeled

dataset and a learning rate of 1e-4 when XDV is used as the

weakly-labeled dataset. For the transformer encoder layers,

we use a learning rate of 3e-5 when UCF-Crime is used as

the weakly-labeled dataset and a learning rate of 5e-5 when

XDV is used as the weakly-labeled dataset. In all our exper-

iments, we explicitly encode positional information in the

segments using sinusoidal positional encodings [34]. We

train on the weakly-labeled source dataset for 200 epochs,

followed by training on the union of weakly-labeled and ex-

ternal datasets for 40 CDL steps, each CDL step comprising

4 epochs. Due to the finer granularity and semantic richness

inherent in CLIP features, we choose to use CLIP features

during inference.

9. Comparison with Unsupervised Baselines in

Open-Set Settings

Table 6 depicts that the proposed method outperforms all

the baselines in open-set settings on the UCF-Crime dataset

by a large margin. As expected, all the weakly-supervised

methods outperform the unsupervised methods, even when

a small subset of the data is used for weakly-supervised

training. This highlights the necessity of incorporating



Figure 5. A comparison between the original annotations (UCF) and the proposed annotations (UCF-R). The green region represents

frames labeled as anomalous by both the original and proposed annotations. The red region indicates frames labeled as anomalous by the

proposed annotations but not by the original annotations. The unshaded (white) region denotes normal frames. For instance, in the first

row, while the original annotations just label frames depicting arson (a person setting the Christmas tree on fire) as anomalous, UCF-R also

labels the frames depicting the fire and smoke following arson as anomalous.

weak labels during training. Since a direct comparison of

the proposed weakly-supervised framework with unsuper-

vised methods is not fair, we did not include unsupervised

baselines in Table 4.

10. Comparison of the Original and Proposed

Annotations for UCF-Crime Dataset

Figure 5 illustrates a subset of instances from the UCF-

Crime’s test set where the original annotations do not la-

bel frames as anomalous, despite their actual anomalous

nature. We also provide a comparison of the proposed and

original annotations superimposed on the videos at this link:



Table 6. Comparison with prior works in open-set setting on UCF-Crime dataset; c denotes the number of anomalous classes included for

weakly-supervised training. The values represent AUC (%).

c 0 1 3 6 9

Unsup.

Conv-AE [14] 50.60 - - - -

Sohrab et al. [31] 58.50 - - - -

Lu et al. [22] 65.51 - - - -

BODS [36] 68.26 - - - -

GODS [36] 70.46 - - - -

Weakly-Sup.

Wu et al. [38] (offline) - 73.22 75.15 78.46 79.96

Wu et al. [38] (online) - 73.78 74.64 77.84 79.11

RTFM [33] - 75.91 76.98 77.68 79.55

Zhu et al. [49] - 76.73 77.78 78.82 80.14

Ours (w/o CDL) - 75.17 81.51 82.97 83.02

Ours - 77.45 82.57 83.44 83.37

https://rb.gy/4vkr1r.

11. Limitations

Similar to some recent weakly-supervised VAD works [11,

20, 42], the training process of the proposed CDL frame-

work involves two stages. Consequently, the training does

not operate in an end-to-end manner. This incurs addi-

tional complexity and challenges for training the model

in real-world applications. However, since the generaliza-

tion obtained using this multi-stage training is significant,

the complex training setup of the multi-stage framework

is reasonable. Nonetheless, developing end-to-end training

frameworks would be an important direction for future re-

search. This can facilitate the advancement of anomaly de-

tection approaches for real-world applications, particularly

the ones with limited training budgets.

Additionally, the cross-domain performance in case of

drastic distribution shifts between the source and target do-

mains may be hindered. For instance, a model primarily

trained on videos from stationary surveillance cameras may

not effectively work on videos with rapidly evolving scenes

from car dashcams. This is mainly because the uncertainty-

based reweighing approach in our framework aims to select

samples from the external set that are similar to the source

domain. In case of drastic shifts between the two domains,

finding informative samples from the target domain would

not be trivial.
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