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Abstract

Large Language Models (LLMs) have a natural

role in answering complex queries about data

streams, but the high computational cost of LLM

inference makes them infeasible in many such

tasks. We propose online cascade learning as an

approach to address this challenge. The objective

here is to learn a ªcascadeº of models, starting

with lower-capacity models (such as logistic re-

gression) and ending with a powerful LLM, along

with a deferral policy that determines the model

to be used on a given input. We formulate the

task of learning cascades online as an imitation-

learning problem, where smaller models are up-

dated over time imitating the LLM expert demon-

strations, and give a no-regret algorithm for the

problem. Experimental results across four bench-

marks show that our method parallels LLMs in

accuracy while cutting down inference costs by

as much as 90% with strong robustness against

input distribution shifts, underscoring its efficacy

and adaptability in stream processing.

1. Introduction

Large language models (LLMs) (Bommasani et al., 2021;

Touvron et al., 2023b; Brown et al., 2020) hold great promise

as a means of one-pass query answering over text streams.

For example, suppose we have a stream of movie reviews

posted on the internet and would like to retrieve the ones

that are positive (Figure 1). To address this without human

annotations, we can create a prompt for the LLM to identify

the sentiment in a review. The LLM can then use this prompt

to process each statement in sequence.

However, LLM inference can be extremely expensive, es-

pecially in a streaming setup where queries arrive continu-

ously. Based on our benchmarking (Appendix B.1), a GPU

1The University of Texas at Austin 2Rice University. Correspon-
dence to: Lunyiu Nie <lynie@utexas.edu>, Swarat Chaudhuri
<swarat@cs.utexas.edu>.

Proceedings of the 41 st International Conference on Machine
Learning, Vienna, Austria. PMLR 235, 2024. Copyright 2024 by
the author(s).

update

This is the movie for 

those who believe cinema 

is the seventh art, not an 

entertainment business.

LR

BERT

-base

GPT-

3.5

It was so touching and 

beautiful. I strongly 

recommend seeing for all.

This film is interesting 

as an experiment but 

tells no cogent story.

😎

🤔

😵💫
Incoming Queries of 

Varying Complexi8es

Pos

Neg

Pos

update

Figure 1: A sentiment analysis task over a stream of IMDB

movie reviews (Maas et al., 2011). We use the cheapest

logistic regression model (green lines) to process simpler

queries and defer more complex queries to the larger models

(orange & red lines). When the cascade proceeds to the

LLM, the annotations are collected to update the smaller

models online (blue lines).

server with eight A100 GPUs takes 3.6 seconds to process a

document containing 8,192 tokens using the largest Llama

(Touvron et al., 2023a). To process one million such doc-

uments per hour would thus require 1,000 A100 servers.

Using Amazon Web Services, this computation would cost

more than 30,000 USD per hour, if it were even possible to

procure the machines required.

There are two popular ways to reduce the cost of LLM

inference. The first is to distill a large language model into

a smaller model that can process a document using less

computation (Hinton et al., 2015; Gu et al., 2023; Hsieh

et al., 2023). The second is to use a cascade of models that

use smaller models to process ªeasierº inputs and reserve

the largest models for the most difficult inputs (Varshney

& Baral, 2022; Chen et al., 2023). However, these existing

proposals assume a model of learning in which a labeled

training set is available beforehand, making them unsuitable

for a streaming setting. In contrast, the streaming setting

requires online learning (Hoi et al., 2021).

In this paper, we propose online cascade learning to bridge

this gap in the literature. Our goal here is to develop a cas-

cade of models, arrayed from the least to the most complex,

that can process queries in a data stream with optimal cost-

performance trade-offs. The critical difference from prior
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Figure 2: The proposed online cascade learning framework, where smaller models with monotonically increasing capacities

and costs (c1 < c2 < ... < cN ) can progressively learn from the ongoing outputs of an LLM (as denoted in red arrows).

Meanwhile, the deferral policy and corresponding confidence scores are also calibrated online (in green arrows).

work is that our cascades are trained in a fully online manner

and do not require any human-labeled training data. The

smaller models in the cascade would continuously evolve

and improve over time by imitating the LLM’s demonstra-

tions on the harder queries, enabling them to handle an

expanding range of queries with increasing proficiency.

A key component of our cascades is the deferral policy

that decides, given an input, the best ªlevelº of the cascade

that should handle the input (Figure 2). At startup, the

policy keeps its ªgatesº open, allowing all initial inputs

to flow through the cascade and be processed by the most

expensive model (an LLM). These processed inputs then

become training labels for updating the smaller models and

the deferral policy within the cascade. Over time, as the

model sees more data, the system stabilizes at a state where

the smaller, less expensive models can handle the majority

of the new inputs. The framework also incorporates a set of

learning hyperparameters that adjust the trade-off between

accuracy and cost based on user needs.

We formalize the problem of online cascade learning in

terms of an episodic Markov decision process (MDP) that

considers both prediction loss and computational costs for

co-optimization. We assume an expert policy Ð a high-

capacity LLM Ð for this MDP. We learn the various compo-

nents of the cascade through imitation learning (Ross et al.,

2011) based on the LLM demonstrations. We show that

our algorithm comes with a theoretical no-regret guarantee.

Our experimental results, on four tasks of various complex-

ity, show that our proposed method can achieve accuracy

comparable to LLM at a vastly reduced inference cost.

To summarize the main contributions of our work:

• We introduce online cascade learning, a new framework

for learning model cascades in resource-intensive stream-

ing analytics settings. The framework enables systematic

trade-offs between prediction accuracy and resource us-

age, and allows learning without any human annotations.

• We offer a formulation of the online learning of cascades

in terms of episodic MDPs and give a no-regret imitation

learning method for solving this problem.

• We present rigorous experiments showing that our pro-

posed algorithm can achieve comparable accuracy as

LLMs while saving up to 90% of the inference costs. Our

source code is available at https://github.com/

flitternie/online_cascade_learning.

2. Problem Formulation

Inference over Streams as an MDP Problem. We

consider stream processing scenarios that have as input a

fixed infinite stream X = ⟨x1, . . . , xt, . . . ⟩ of user queries.

The t-th query xt is associated with a ground-truth label

yt ∈ Y , where Y is a label set. Our goal is to predict the

label for each xt using an N -level model cascade.

We formulate our problem using an episodic Markov deci-

sion process (MDP) (S,A, T , C). Here:

• S is a set of states. A state in the t-th episode is either

a pair ⟨xt, i⟩, where i ∈ {1, ..., N} indicates the current

cascade level, or a special terminal state exit that ends

the episode. The initial state of the t-th episode is ⟨xt, 1⟩.
For clarity, we abbreviate ⟨xt, i⟩ by st,i.

• A is a set of actions, consisting of:

± The label set Y , representing the potential predictions

if the cascade chooses to output at the current state. For

instance, in a binary classification task, Y = {0, 1}.
± A special action defer that activates the next level of

the cascade.
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• T (st,i, a) is a deterministic transition function, consisting

of transitions of the form:

± T (st,i, a) = exit for a ∈ Y .

± T (st,i,defer) = st,i+1.

• C(st,i, a) is a cost function defined as:

C(st,i, a) =

{

L(a|yt) if a ∈ Y ,

µci+1 if a =defer.

Here, L(a|yt) is a prediction loss that measures the ac-

curacy of the cascade’s prediction. ci+1 represents the

penalty we pay for a deferral Ð intuitively, this penalty

captures the computational overheads of going one level

deeper into the cascade. The adjustable constant µ guides

the trade-off between computational cost and accuracy.

Online Cascade Learning. We now formulate online cas-

cade learning as the problem of solving the above episodic

MDP. Let a policy π be a stochastic map from states to ac-

tions. We use π(st,i,defer) to represent the probability

that π chooses to defer in state st,i, and π(st,i, y) to repre-

sent the probability that π chooses y ∈ Y , conditioned on

no deferral having occurred.

The probability of a policy π entering state st,i in episode

t is denoted as p
st,i
π . For i > 1, st,i can be reached if and

only if the policy chooses the defer action in all preceding

states st,1, ..., st,i−1 within the current episode. Thus,

pst,1π = 1, pst,iπ =

i−1
∏

j=1

π(st,j ,defer).

Then, the cost of executing π over T episodes is computed

by summing over all the episodes and cascade levels:

J(π, T ) =

T
∑

t=1

[

N
∑

i=1

pst,iπ Cπ(st,i)

]

(1)

Here, Cπ(st,i) is the expected, immediate cost of applying

policy π at state st,i. This is computed as:

Cπ(st,i) = π(st,i,defer) · µci+1

+ (1− π(st,i,defer)) ·
∑

y∈Y

π(st,i, y) · L(y|yt).

After having seen the first T queries in the input stream

X , our learning goal is to find a policy that minimizes

J(π, T ). When T is clear from the context, we often abbre-

viate J(π, T ) by J(π).

Policy Representations. We represent policies in a factor-

ized way using a set of classification models ⟨m1, . . . ,mN ⟩
that constitute the different levels of the cascade, and a set of

deferral functions ⟨f1, . . . , fN−1⟩ that decide whether the

current level can perform a high-confidence classification

or to defer. We assume each mi to produce a vector of prob-

abilities, with one probability for each label, and each fi to

produce a probability of deferral. Then the overall policy

has the form:

π(st,i,defer) = fi(mi(xt)),

π(st,i, y) = (mi(xt)) [y] for y ∈ Y.

We assume the two parameterized function representations

for each level i: the classification model mi and the deferral

function fi, are both characterized by a crucial property:

they guarantee uniform computational costs for evaluating

the functions, regardless of the specific function parameters

and function inputs. This means that for any instantiation

of the parameters in mi and fi, the inference costs remain

constant, irrespective of the specific input query. This as-

sumption is reasonable in the practical scenarios we target.

For example, the inference cost of a BERT-base model is

approximately the same, no matter how it is parameterized.

This uniform cost assumption also underpins the use of fixed

cost penalties ci in our MDPs.

3. Learning Algorithm

To learn cascades online without human annotations, we

propose an imitation learning algorithm that assumes an

expert policy (an LLM) that can demonstrate ground-truth

labels. The algorithm iteratively updates the classification

models and deferral functions in the cascade by imitating

the expert as in DAgger (Ross et al., 2011). However, unlike

traditional imitation learning, our goal here is to balance

computational efficiency and accuracy.

We incorporate such an expert into our cascades by assum-

ing that the final classification model mN is the expert LLM.

When invoked on a query xt, mN always outputs a vector

whose largest value is associated with ground-truth label

yt. However, it may not always be the case that choosing to

invoke mN leads to optimal cost. There may be a smaller

model mi for i < N that also produces the correct label yt,
without the cost of the additional defer actions. Indeed,

an optimal policy may occasionally incur prediction errors

to manage the cost of incurring defer actions. Designing

an algorithm that can train a policy in an online fashion to

manage those trade-offs is at the core of the paper.

Our overall algorithm is detailed in Algorithm 1. Here,

m1, ...,mN are the classification models (with mN being

the expert for imitation) and f1, ..., fN−1 are the deferral

functions. The smaller models m1, ...,mN−1 are initialized

either randomly or with their respective pretrained weights.

For each incoming query xt (outer loop), we sequentially uti-

lize the i-th model in the cascade to make a prediction (inner
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Algorithm 1 Online Cascade Learning.

Initialize models m1, ...,mN , deferral functions

f1, ..., fN−1, β1, D ← ∅
for xt in stream X do

for mi in m1 to mN do

At probability βt:

Jump to mN // like DAgger

predi = mi(xt) // probability vector

actioni ∼ fi(predi) // whether to defer

if mi is mN or actioni ̸= defer then

ŷt = argmax(predi) // discretization

D ← D ∪ {xt, ŷt} if mi is mN

Break

end if

end for

Output ŷt
Update m1 to mN−1 onD via OGD // imitating expert

Compute loss J(π, t) and update f1 to fN−1 via OGD

Decay βt+1

end for

loop). Specifically, the model generates a probability vector

predi, which is processed by the deferral function fi. This

yields a deferral probability score that can be discretized

into a binary actioni to determine whether the prediction at

the current cascade level is reliable.

If the action is defer, the query would be navigated to the

cascade’s next (i+ 1)-th model. Otherwise, it will make a

prediction ŷt = argmax(predi), and break the inner loop

(succeeding models will not be activated for current query

xt). If the query has been deferred to the LLM expert mN

at the last cascade level, its annotation ŷt is regarded as the

ground truth yt and aggregated to the dataset D.

Throughout the inner iteration, at cascade level i, it may

optionally skip the rest layers and jump to the LLM expert

mN at a non-zero decaying probability βi to directly obtain

its demonstration and aggregate it to dataset D, similar to

DAgger (Ross et al., 2011), for faster convergence.

After processing each query, the algorithm outputs the pre-

diction yt, then updates the small models m1, ...,mN−1 to

mimic the expert demonstrations on the collected trajecto-

ries D. Similarly, the deferral functions f1, ..., fN−1 are

also updated based on the loss computed by Equation (1).

The algorithm continuously collects annotations from the

LLM expert (e.g., at a decaying probability βt or when the

query is deferred to mN ) and updates the policy via online

gradient descent (OGD). Practically, the user can change

the cost weighting factor µ in the loss function J(π) and the

initial decaying factor β1 for adjusting cost budgets.

Theoretical Analysis. In online learning, a policy’s regret

over time T is its total cost minus the cost of the best fixed

policy in hindsight. In our setting, the regret of a learned

policy π is:

γ = J(π, T )−min
π∈Π

J(π, T ) (2)

=

T
∑

t=1

N
∑

i=1

pst,iπ Cπ(st,i)−min
π∈Π

T
∑

t=1

N
∑

i=1

pst,iπ Cπ(st,i),

(3)

where Π denotes the whole possible policy space. An al-

gorithm is defined to have no-regret if it can produce a

sequence of policies π1, . . . , πT such that the expected av-

erage regret γ/T goes to 0 as T →∞ (Ross et al., 2011).

To aid our no-regret analysis of online cascade learning, we

start by constructing a simplified online ensemble learning

algorithm under the same stream processing setting that

comprises the linear combination of a series of classification

models m1, ...,mN , each with a static operating probability
∑N

i=1 wi = 1, without any deferral functions. Let us denote

the model parameters of mi at time t by mt
i. Assuming

a convex, differentiable cost function ct for all t that can

evaluate mt
i, and bounded, closed, nonempty model spaces

||Mi|| for all mi, we analyze the regret of this algorithm.

Theorem 3.1. With online gradient descent and a learning

rate ηt = t−1/2, the total regret γ of the online ensemble

learning algorithm is bounded as follows:

γ =

T
∑

t=1

N
∑

i=1

wi · ct(mt
i)− min

mi∈Mi

T
∑

t=1

N
∑

i=1

wi · ct(mt
i)

≤ ||M ||
2
√
T

2
+ (
√
T − 1

2
)||∇c||2. (4)

Therefore, limT→∞ γ/T ≤ 0.

The proof of Theorem 3.1 can be constructed as an exten-

sion of Theorem 1 in Zinkevich (2003). Here, ||M || denotes

the maximum distance within model spaces, and ||∇c|| rep-

resents the largest gradient magnitude of the cost function

across models. We defer its proof to Appendix A.

Theorem 3.2. For online cascade learning with ηt =
t−1/2, the algorithm’s total regret is o(T ), implying

limT→∞ γ/T ≤ 0, i.e., the average regret approaches zero

as T grows∞.

Having established the no-regret property for online ensem-

ble learning, we extend this to our online cascade learn-

ing algorithm. By replacing the static probabilities wi in

Equation (4) with dynamic probabilities based on preced-

ing model actions, and demonstrating convergence of these

dynamic probabilities to optimal values as T →∞ (proof

in Appendix A, Lemma A.2), we mirror the total regret

of online cascade learning to that of the online ensemble

learning algorithm, completing the proof for Theorem 3.2.

Further details are in Appendix A.
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Confidence Calibration. A reliable deferral rule is cru-

cial for a cascade system to determine whether to invoke the

next model (i.e., to defer) or to output the predictions. Cur-

rently, most existing works make deferral decisions based

on a confidence score, typically measured either by the max-

imum predictive probability across all classes (Wang et al.,

2022; Varshney & Baral, 2022), or the Shannon entropy of

the predictive distribution (Stogiannidis et al., 2023).

However, for online cascade learning, where the model ca-

pabilities are dynamically updated, and the annotations from

LLMs may be noisy, confidence-based deferral rules have

been shown to be inadequate (Jitkrittum et al., 2023). To

aid the learning of deferral functions (i.e., f1, ..., fN−1),

we adopt a post-hoc approach to calibrate the confidence

estimate of a certain model’s prediction mi(xt). It is imple-

mented using a multi-layer perceptron (MLP) that takes the

corresponding model’s predictive probabilities as input, and

the functions can be updated with the following objective:

min
π′
i
:R|Y |→R

∑

xt∈X

N−1
∑

i=1

L(fi(mi(xt)), zi), (5)

where zi = 1[argmaxmi(xt) ̸= y∗t ] (i.e., zi = 1 if model

mi’s prediction is not equal to the annotation y∗t , otherwise

zi = 0) and L is the mean-squared error loss function.

Since we treat the expert LLM predictions (i.e.,

argmax(mN (xt))) as the ground truth labels yt, calibra-

tion is only performed on those input queries where the

expert LLM is invoked. During the calibration, the learn-

ing of fi would only optimize the parameters of the MLP,

not the models mi in the cascade. During inference time,

the post-hoc deferral function would choose to defer if

fi(mi(xt)) > 0.5. Otherwise, it would output the predic-

tion of the current model.

4. Experimental Setup

We construct a cascade system using three models: (i) a

logistic regression model, (ii) a pretrained BERT-base model

with 110M parameters (Kenton & Toutanova, 2019), and

(iii) GPT-3.5 Turbo1. This diverse set of models allows us

to evaluate the effectiveness and robustness of our approach

across various complexities and types of queries.

To further test the adaptability and scalability of our system,

we also conduct supplementary experiments where (a) a

Llama 2 70B Chat (Touvron et al., 2023b) is used as the al-

ternative LLM, and (b) a BERT-large with 340M parameters

is incorporated to create a larger cascade. These variations

aim to demonstrate the flexibility of our framework in ac-

commodating different cascade sizes and structures.

1https://platform.openai.com/docs/models/

gpt-3-5

Benchmarks. We evaluate our approach on four bench-

marks that reflect the demands of real-world streaming ap-

plications in a wide range of commercial services, from

customer feedback analysis to content moderation:

• IMDB. A binary sentiment classification benchmark

with 50,000 movie reviews (Maas et al., 2011). The

dataset has an even distribution of positive and

negative samples. We use the official training split

for our experiments, which contains 25,000 samples.

• HateSpeech. A binary classification dataset consisting

of posts from an online forum, annotated with hate and

noHate labels (de Gibert et al., 2018). After filtering,

the dataset contains 10,703 samples with a pronounced

class imbalance (1:7.95 ratio) between hatespeech and

non-hatespeech examples. This imbalance mirrors a

realistic challenge in streaming data environments, par-

ticularly in detecting harmful content. Our evaluation

on this benchmark focuses on both accuracy and recall.

• ISEAR. A multi-class emotion detection benchmark

encompassing 7,666 samples across seven categories

(Joy, Fear, Anger, Sadness, Disgust, Shame,

Guilt) (Shao et al., 2015). Each category is well-

represented, providing a balanced label distribution

across the dataset.

• FEVER. A fact-checking dataset with 6,512 claims

manually verified against Wikipedia, labeled as

Supported or Refuted (Thorne et al., 2018). It tests

our framework’s ability to perform complex reasoning

and information verification, a crucial aspect for real-

time truth assessment in streaming data applications.

Baselines. We compare online cascade learning against

several baselines to establish its effectiveness:

• LLMs in the Cascade: This includes GPT-3.5 Turbo

and Llama 2 70B Chat with zero-shot task prompting

(details in Appendix B.2). The LLM outputs are also

used as the annotations for online cascade learning and

distillation.

• Knowledge Distillation: We fine-tune smaller models

using different portions of LLM annotations. To ensure

fairness, datasets are split equally, with 50% prepared

for training (as distillation labels) and the remaining 50%

for testing. All methods are evaluated on the identical

test sets. In our experiments, the distilled smaller models

are used in isolation without any ensemble or cascade.

• Online Ensemble Learning: We employ all available

models in an ensemble with learned predetermined prob-

abilities. The smaller models are also continuously up-

dated based on LLM annotations. This serves as an

ablation of our method by excluding the deferral policy

learning component.
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IMDB HateSpeech (Accuracy | Recall) ISEAR FEVER

N=1300 N=3800 N=5200 N=600 N=2700 N=4900 N=1200 N=1500 N=2700 N=700 N=2000 N=2800

GPT-3.5 Turbo 94.15 83.34 | 83.28 70.34 79.98

Distilled LR 82.61 83.60 87.01 80.18 | 37.94 82.23 | 49.25 85.03 | 45.59 44.97 47.46 48.92 56.51 57.80 57.13

Distilled BERT-base 85.28 90.18 90.19 80.49 | 64.39 80.71 | 73.88 79.35 | 77.37 61.49 62.62 63.37 61.70 63.64 70.82

Online Ensemble Learning 86.73 88.80 89.95 82.61 | 76.75 77.48 | 76.89 81.55 | 80.30 56.56 60.42 61.78 61.69 69.78 76.67

Online Cascade Learning 87.95 92.48 93.01 82.66 | 82.36 85.35 | 77.20 83.26 | 81.03 60.78 65.34 69.75 61.95 71.86 78.49

Llama 2 70B Chat 93.33 77.81 | 82.19 68.23 77.15

Distilled LR 82.17 85.80 86.88 67.94 | 66.56 79.71 | 61.73 81.46 | 49.91 46.78 47.56 51.76 57.46 61.24 58.42

Distilled BERT-base 85.39 85.59 85.44 75.84 | 78.87 79.18 | 75.54 80.27 | 72.21 62.18 61.84 65.12 65.88 65.66 67.54

Online Ensemble Learning 87.14 88.66 89.61 75.99 | 60.36 70.79 | 79.16 76.82 | 81.84 54.74 57.35 60.19 63.48 71.27 76.46

Online Cascade Learning 87.58 92.14 92.63 78.30 | 63.06 78.32 | 76.54 78.32 | 82.03 59.24 63.34 67.25 63.81 72.47 77.73

Table 1: Comparison of accuracy (and recall for HateSpeech dataset) among different methods under various cost budgets.

The upper part of the table uses GPT-3.5 Turbo as the LLM in the cascade, while the lower part employs Llama 2 70B Chat.

To ensure fairness, the same annotation cost budgets (i.e., the maximum allowable LLM calls, denoted as N , controlled via

adjusting the cost weighting factor µ and decaying factor β for online cascade learning) are applied across all methods.
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Figure 3: Accuracy curve (and Recall curve for HateSpeech) with respect to costs, using GPT-3.5 Turbo as the LLM in a

cascade that also comprises logistic regression and BERT-base.
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Figure 4: Accuracy curve (and Recall curve for HateSpeech) with respect to costs, using Llama 2 70B Chat as the LLM in a

cascade that also comprises logistic regression and BERT-base.

5. Experimental Results

5.1. Overall Performance and Cost Trade-offs

IMDB. The results presented in Table 1, Figure 3 and 4

demonstrate that our proposed online cascade learning sys-

tem can consistently achieve higher accuracies compared to

knowledge distillation and online ensemble learning base-

lines on the IMDB dataset across different cost budgets,

regardless of whether using GPT-3.5 Turbo or Llama 2 70B

Chat in the cascade. Notably, Figure 4 highlights our sys-

tem’s ability to closely rival the performance of Llama 2

70B Chat while achieving a 60% reduction in inference

costs (i.e., calling LLM∼5200 times in processing a total of

12500 queries). This effectively demonstrates the system’s

efficiency in balancing cost with performance.

HateSpeech. The results on the HateSpeech dataset further

reveal the strengths of our online cascade learning system

in handling datasets with significant class imbalance. Most

models may face a trade-off between accuracy and recall

due to the imbalanced nature of HateSpeech. However,

the accuracy-cost and recall-cost trade-offs, respectively

depicted in the upper and lower subplots of Figure 3 and

4, demonstrate that our system effectively improves recall

with minimal impact on accuracy as the cost budget in-

creases. Although the recall rate of online cascade learning

is marginally lower than the baselines under certain budgets,

it can achieve a better balance between recall and preci-

sion, as evidenced by its consistently higher F1 scores in
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Appendix Figure 10. In particular, as demonstrated in Table

1 where Llama 2 70B Chat is the LLM and the cost budget

N = 4900, our system even outperforms the LLM with a

similar recall (ours: 82.03% vs. LLM: 82.19%) and a better

accuracy (78.32% vs. 77.81%), underlining its effectiveness

in handling imbalanced data streams.

ISEAR. On the ISEAR benchmark, our online cascade

learning system also effectively balances cost and accuracy

in complex multi-class classification. As indicated in Figure

3 and 4, the system’s performance gradually aligns with that

of GPT-3.5 Turbo and even surpasses Llama 2 70B Chat

as the cost budget increases. This success underscores the

advantages of smaller models in adapting to complex classi-

fications by learning from the LLM annotations, enabling

them to potentially outshine zero-shot LLMs. Moreover, the

notable performance gap between online ensemble learning

and online cascade learning also confirms the benefit of

co-optimizing model learning with deferral policy learning

for optimal cost-performance equilibrium.

FEVER. FEVER is a significantly more complex dataset

compared to the previous benchmarks. It demands models

to reason over the statements and validate their factuality

based on parametric knowledge. Therefore, small models

of limited capacities, such as logistic regression, struggle to

perform effectively on FEVER even after several iterations

of update, as evident in Table 1 where distilled LR can

perform only slightly better than random guess (i.e., 50%).

Recognizing these limitations, our online cascade learning

system smartly adapts by prioritizing more capable models,

such as BERT-base and the LLM, for processing most of

the queries, leading to a favorable accuracy-cost trade-off.

Remarkably, when using Llama 2 70B Chat as the LLM with

a cost budget ofN = 2800, our system slightly outperforms

the LLM in accuracy (77.73% vs. 77.15%), showcasing the

system’s proficiency at navigating intricate reasoning tasks

with enhanced cost-efficiency.

5.2. Case Analysis

To examine our approach’s online learning process more

closely, we run the online cascade learning at specific cost

budgets and conduct a detailed case analysis.

IMDB. Figure 5 illustrates the online cascade system per-

formance at a specific cost budget (N = 3671) throughout

the inference of the IMDB dataset. Initially, for the first 160

samples, all queries are processed exclusively by the LLM,

as indicated by the stacked plot in the background. However,

with the arrival of more queries over time, both the logistic

regression and BERT-base models, denoted by the green

and orange dashed lines, dynamically improve by learning

from the GPT-3.5 Turbo annotations and increasingly con-

tribute to query processing. When the incoming number

of samples approaches 4000, most queries are processed
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Figure 5: Inference results on IMDB when N = 3671.

Online cascade learning system performs similarly to GPT-

3.5 Turbo while saving ∼70% of the inference costs.
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Figure 6: Inference results on HateSpeech when N = 507.

Online cascade learning system performs similarly to GPT-

3.5 Turbo while saving ∼90% of the inference costs.

by BERT-base, leaving only 30% of the queries deferred

to GPT-3.5 Turbo. Meanwhile, the system can achieve an

overall accuracy consistently close to or even slightly higher

than the LLM (marked by the blue dashed line), which af-

firms the effectiveness of online cascade learning in saving

inference costs with minimum performance degradation.

HateSpeech. Similarly, on HateSpeech dataset, when

N = 507, as shown in Figure 6, as the number of samples

approaches 5000, 30.31% of the queries are handled by

logistic regression, while 60.24% are handled by BERT-

base, which altogether cut down the LLM inference costs

by more than 90%. At the same time, the online cascade

system can still achieve an overall accuracy of 82.66% and

recall of 82.36%, which aligns closely with the performance

of GPT-3.5 Turbo (Accuracy: 83.34%, Recall: 83.28%)

ISEAR. Our analysis of the ISEAR dataset under a spe-

cific cost budget (N = 2517) also confirms the dynamic

adaptability and cost-saving features of our online cascade

system. As the number of processed samples increases, the

system demonstrates an impressive ability to gradually shift

query processing from the expensive GPT-3.5 Turbo to the

more economical models. This transition is evident in the
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Figure 7: Inference results on ISEAR when N = 2517.

Online cascade learning system performs very close to GPT-

3.5 Turbo while saving ∼30% of the inference costs.
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Figure 8: Inference results on FEVER when N = 2635.

Online cascade learning system performs similarly to GPT-

3.5 Turbo while saving ∼20% of the inference costs.

increasing proportions of queries handled by BERT-base

over time, as shown in Figure 7. Most importantly, since

the proportion of queries handled by BERT-base is not yet

converged, the whole system can further cut inference costs

while sustaining high accuracy as more samples come in.

FEVER. On the FEVER dataset, our system’s performance

at a cost budget (N = 3671) further validates its usefulness

even under complex reasoning task settings. The system’s

learning curve, as depicted in Figure 8, illustrates a steady

increase in the number of queries processed by the BERT-

base models. Given logistic regression’s limited capability

in fact-checking, our online cascade learning system smartly

shifts its reliance towards more capable models, such as

BERT-base and the larger LLMs. The overall performance

in terms of accuracy aligns closely with that of the GPT-

3.5 Turbo, achieving significant cost savings (17%) without

compromising on the quality of the results.

5.3. Adaptability to Larger Cascade

To further validate the adaptability of our online cascade

learning system, we have also explored scaling up the cas-

cade system by further integrating a BERT-large model (4

models in total). The results of this integration are encourag-

ing, detailed in Appendix Figure 11. The expanded cascade

system, particularly when trained on Llama 2 70B Chat an-

notations, demonstrates equivalent or even superior results

compared to the standalone LLM in most cases, with the

exception of the HateSpeech dataset, a simpler task setting

where a larger cascade might complicate the deferral policy

learning and thus degrading overall performance. Therefore,

it is important to align cascade size with task complexity

to optimize performance and avoid overfitting. A more

detailed analysis is in Appendix C.2

The success of this larger cascade system signals the huge

potential in our work’s extensions. It showcases our sys-

tem’s inherent flexibility and scalability, enabling it to ac-

commodate and efficiently utilize more powerful models

as part of its architecture. Future investigations on online

cascade systems may further scale up the system by incorpo-

rating LLMs of different sizes and specialties, allowing for

refined tailoring of responses to the specific characteristics

of different queries. However, there are also several factors

worth noting when scaling up the cascade, as outlined in our

analysis in Appendix C.1 and C.3.

5.4. Robustness against Distributional Shifts

Distribution Shift in Input Length. Longer inputs typ-

ically involve more complex semantics. For example, on

IMDB, the average accuracy of GPT-3.5 Turbo is notably

lower on longer movie reviews, as evidenced in Appendix

Table 5. Therefore, to verify our method’s robustness against

input distribution shifts, we rearrange the IMDB benchmark

with length ascending order to simulate a distribution shift

over the inputs’ semantic complexity. The results are shown

in Figure 9 and Table 2. Despite the distribution shift in

input length, online cascade learning demonstrates good

performance with minimal accuracy drops across different

cost budgets, regardless of the LLM adopted in the cascade.

Distribution Shift in Input Category. We further val-

idate our approach with a distribution shift in input se-

mantic categories, by filtering all the input samples regard-

ing ªComedyº movies in the IMDB dataset (8,140 out of

25,000), and feeding them into the cascade as the last part

of the input stream. This means that the system had not

seen any comedy movie reviews in the first 2/3 of the inputs

before processing comedy movie reviews in the last 1/3 of

the inputs. As shown in Figure 9 and Table 2, our approach

also performs reliably under the distribution shift in input

categories, with a slight increase in average accuracy.

Based on the results, we conclude that our proposed ap-

proach can well utilize the advantages of online learning,

quickly adapt to unseen inputs, and perform robustly against

distribution shifts in the data streams.
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Figure 9: Cost-accuracy trade-off curves on two input distributional shift scenarios, respectively using GPT-3.5 Turbo

and Llama 2 70B Chat as the LLM with logistic regression and BERT-base in a cascade. ªOCLº refers to online cascade

learning, and ªOELº means online ensemble learning.

GPT-3.5 Turbo Llama 2 70B

Without Any Distribution Shift 90.77% 90.97%

With Distribution Shift in Input Length 90.23% 90.64%

⇒ Difference -0.54% -0.33%

With Distribution Shift in Input Category 90.85% 91.46%

⇒ Difference +0.08% +0.49%

Table 2: Average accuracy of our approach across different

cost budgets with distribution shifts in input length or input

category, compared to the default setting.

6. Related Work

6.1. Knowledge Distillation

Knowledge distillation, originally conceptualized by Hinton

et al. (2015), emerged as a technique to transfer knowledge

from a large, complex model (teacher) to a smaller, more ef-

ficient one (student), intending to retain performance while

reducing computational costs. Notable advancements in-

clude the works of Sanh et al. (2019), who demonstrated

the effectiveness of distilling the capabilities of BERT into

smaller models, and Gu et al. (2023) who successfully ap-

plied distillation to LLMs, achieving comparable perfor-

mance with significantly reduced model sizes. However, the

significant difference in capabilities between the teacher and

student model can lead to challenges, particularly when deal-

ing with complex queries that require advanced reasoning

or involve intricate subject matter (Cho & Hariharan, 2019;

Zhang et al., 2022), thereby highlighting a performance gap

that distillation alone cannot overcome (Rawat et al., 2021).

6.2. Boosting LLMs with Small Models

Recent advancements in combining LLMs with smaller

models have suggested promising avenues for improving

model performance and efficiency. For classification tasks,

SuperICL improves LLMs’ performance by utilizing the pre-

dictions of smaller models to enrich the prompting context

(Xu et al., 2023). For generative tasks, speculative decoding

techniques (Leviathan et al., 2023; Miao et al., 2023; Liu

et al., 2023) are proposed to accelerate LLM inference by

using smaller language models to predict token sequences.

Our work differs from these works in that small models are

separately trained as plugins, and the performance of LLMs

is prioritized. Instead, we focus on the overall performance

of the entire cascade.

6.3. Model Cascade

By orchestrating multiple models with varying complexities,

model cascade has been widely adopted in both CV and NLP

tasks to enhance system efficiency. An early theme in this

field is the early exiting from a neural network’s intermedi-

ate layers (Liu et al., 2020; Xin et al., 2020; Schwartz et al.,

2020). These works have later inspired the cascade of com-

plete models (Li et al., 2020; Khalili et al., 2022). Among

them, Varshney & Baral (2022) systematically examines the

trade-off between accuracy and cost in a cascade of variants

of BERT. Chen et al. (2023) further extends the cascade to

cover multiple LLM APIs by incorporating a scoring func-

tion. Compared to the previous works, our work expands

the model cascade by allowing small models to learn online

and improve rather than having fixed capabilities, similar to

the recent idea of ªneural cachingº (RamÂırez et al., 2023;

Stogiannidis et al., 2023). Moreover, by formulating the

model confidence as part of the learning objective, our work

eliminates the need to set confidence thresholds manually.

7. Conclusion

In this work, we address the challenge of managing stream-

ing queries with LLMs in a cost-efficient way. We propose

an online cascade learning framework that adapts to evolv-

ing queries by improving smaller models in the cascade

through imitation of LLM behaviors. Our theoretical analy-

sis provides a no-regret performance guarantee for the algo-

rithm. Extensive experiments confirmed the effectiveness

of our approach, showing that it can achieve performance

levels comparable to LLMs while significantly reducing

inference costs, with potential savings of up to 90%.
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A. Detailed Proofs and Theoretical Analysis

This appendix section provides detailed proofs and explanations for the theoretical analysis presented in the main paper

Section 3.

Preliminaries

To ensure clarity, we begin by defining the concept of regret in online learning.

Definition A.1. Given an online learning algorithm operating over time steps 1, ..., T , the regret γ is defined as the difference

between the total loss incurred by the algorithm and the loss of the best fixed policy in hindsight. For online cascade learning,

regret γ is formally expressed as:

γ = J(π, T )−min
π∈Π

J(π, T ) (6)

=

T
∑

t=1

N
∑

i=1

pst,iπ Cπ(st,i)−min
π∈Π

T
∑

t=1

N
∑

i=1

pst,iπ Cπ(st,i) (7)

As the value of t is clear from the context, we abbreviate states st,i = ⟨xt, i⟩ by si. We denote the best fixed policy as

π∗ = argminπ∈Π J(π, T ) and π(st,i,defer) as p(π, si)
′. Furthermore, since the prediction loss is computed as the

aggregation over a class probability distribution, we simplify
∑

y∈Y π(st,i, y) · L(y|yt) as L(ai|yt) by using ai to represent

the output probability vector, which leads to the following representation of regret:

γ =
T
∑

t=1

N
∑

i=1

psiπ Cπ(si)−
T
∑

t=1

N
∑

i=1

psiπ∗Cπ∗(si) (8)

=

T
∑

t=1

N
∑

i=1

i−1
∏

j=1

p(π, sj)
′ ·

(

(1− p(π, si)
′) · L(ai|yt) + p(π, si)

′ · µci+1

)

−
T
∑

t=1

N
∑

i=1

i−1
∏

j=1

p(π∗, sj)
′ ·

(

(1− p(π∗, si)
′) · L(a∗i |yt) + p(π∗, si)

′ · µci+1

)

. (9)

Online Ensemble Learning Analysis

To contextualize the no-regret analysis of our proposed online cascade learning algorithm, we first analyze a simplified

online ensemble learning algorithm under the same stream processing setting that comprises the linear combination of a

series of classification models m1, ...,mN , each with a static operating probability
∑N

i=1 wi = 1. Let us denote the model

parameters of mi at time t by mt
i. Assuming a convex, differentiable cost function ct for all t that can evaluate mt

i, and

bounded, closed, nonempty model spaces ||Mi|| for all mi, we define ||x|| = √x · x and d(x, y) = ||x− y|| to establish:

||M || = max
x,y∈Mi,i∈[1,N−1]

d(x, y)

||∇c|| = max
mi∈Mi,i∈[1,N−1],t∈[1,T ]

||∇ct(mi)||.

Theorem 3.1. With online gradient descent and a learning rate ηt = t−1/2, the total regret γ of the online ensemble

learning algorithm is bounded as follows:

γ =
T
∑

t=1

N
∑

i=1

wi · ct(mt
i)− min

mi∈Mi

T
∑

t=1

N
∑

i=1

wi · ct(mt
i)

≤ ||M ||
2
√
T

2
+ (
√
T − 1

2
)||∇c||2. (4)

Therefore, limT→∞ γ/T ≤ 0.

Proof. First, we show that, without loss of generality, for all t there exists a gti ∈ R
n such that for all models mi ∈ Mi,

ct(mi) = gti ·mi.
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By defining gti = ∇ct(mi), because ct(mi) is convex, for all mi ∈Mi:

ct(mi) ≥ (∇ct(mt
i)) · (mi −mt

i) + ct(mt
i). (10)

Set m∗
i to be the best-fixed model in hindsight. Then, because m∗

i ∈Mi : c
t(m∗

i ) ≥ gt · (m∗
i −mt) + ct(mt

i). Thus,

ct(mt
i)− ct(m∗

i ) ≤ ct(mt
i)−

(

gti · (m∗
i −mt

i) + ct(mt
i)
)

(11)

≤ gtim
t
i − gtim

∗
i (12)

Thus we show that for all mi, g
t
im

t
i − gtim

∗
i is the upper bound of ct(mt

i)− ct(m∗
i ):

γ =

T
∑

t=1

N
∑

i=1

wi · ct(mt
i)− min

mi∈Mi

T
∑

t=1

N
∑

i=1

wi · ct(mt
i) (13)

=

T
∑

t=1

N
∑

i=1

wi

(

ct(mt
i)− ct(m∗

i )
)

(14)

≤
T
∑

t=1

N
∑

i=1

wi

(

gtmt
i − gtm∗

i

)

. (15)

We define for all t, m̂i
t+1 = mt

i− ηtg
t
i (gradient descent). Note that mt+1

i = P (m̂i
t+1) = argmin

mi∈Mi

||mi− m̂i
t+1|| (greedy

projection). We will attempt to bound the regret of not playing action m∗
i on round t:

m̂i
t+1 −m∗

i = mt
i − ηtg

t
i −m∗

i (16)

(m̂i
t+1 −m∗

i )
2 = (mt

i −m∗
i )

2 − 2ηt(m
t
i −m∗

i ) · gti + η2t ||gti ||2 (17)

Since by definition, for all m̂i ∈ R
n, for all mi ∈Mi, (m̂i −mi)

2 ≥ (P (m̂i)−mi)
2. Also, ||gti || ≤ ||∇c||. So

(mt+1
i −m∗

i )
2 ≤ (m̂i

t+1 −m∗
i )

2 (18)

≤ (mt
i −m∗

i )
2 − 2ηt(m

t
i −m∗

i ) · gti + η2t ||∇c||2, (19)

which can be converted into:

gtim
t
i − gtim

∗
i ≤

1

2ηt

[

(mt
i −m∗

i )
2 − (mt+1

i −m∗
i )

2
]

+
ηt
2
||∇c||2. (20)

By summing Equation (15) and Equation (20) we get:

γ ≤
T
∑

t=1

N
∑

i=1

wi

(

gtmt
i − gtm∗

i ) (21)

≤
T
∑

t=1

N
∑

i=1

wi

[

1

2ηt

[

(mt
i −m∗

i )
2 − (mt+1

i −m∗
i )

2
]

+
ηt
2
||∇c||2

]

(22)

≤
N
∑

i=1

wi

2ηt
(m1

i −m∗
i )

2 −
N
∑

i=1

wi

2ηt
(mT+1

i −m∗
i )

2 (23)

+
1

2

T
∑

t=2

N
∑

i=1

wi(
1

ηt
− 1

ηt−1
)(mt

i −m∗
i )

2 +
||∇c||2

2

T
∑

t=1

N
∑

i=1

wi · ηt (24)

≤
N
∑

i=1

wi||M ||2
( 1

2η1
+

1

2

T
∑

t=2

(
1

ηt
− 1

ηt−1
)
)

+
||∇c||2

2

T
∑

t=1

N
∑

i=1

wi · ηt (25)

13
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Since
∑N

i=1 wi = 1,

γ ≤ ||M ||2
( 1

2η1
+

1

2

T
∑

t=2

(
1

ηt
− 1

ηt−1
)
)

+
||∇c||2

2

T
∑

t=1

ηt (26)

≤ ||M ||2 1

2ηT
+
||∇c||2

2

T
∑

t=1

ηt (27)

Now, if we define ηt =
1√
t
, then

T
∑

t=1

ηt =

T
∑

t=1

1√
t

(28)

≤ 1 +

∫ T

t=1

dt√
t

(29)

≤ 1 + [2
√
t]T1 (30)

≤ 2
√
T − 1 (31)

Plugging this into Equation (27) yields

γ ≤ ||M ||
2
√
T

2
+
||∇c||2

2
(2
√
T − 1) (32)

≤ ||M ||
2
√
T

2
+ (
√
T − 1

2
)||∇c||2 (33)

Therefore, when the number of iterations T approaches infinity, the average regret limT→∞ γ/T ≤ 0.

Extension to Online Cascade Learning

The above theorem establishes that the online ensemble learning algorithm achieves no regret as T →∞. Transitioning

to online cascade learning, we extend this analysis by substituting the fixed model probabilities wi in Equation (4) with

dynamic probabilities influenced by preceding model actions (i.e., psiπ =
∏i−1

j=1 p(π, sj)
′) in Equation (9). Thus, we now

analyze the convergence of the deferral policies psiπ .

Lemma A.2. For online cascade learning, for all i ∈ [1, N ], psiπ − psiπ∗
T→∞−−−−→ 0.

Proof. We begin by revisiting Equation (9), transforming its first term to facilitate our analysis:

T
∑

t=1

N
∑

i=1

i−1
∏

j=1

p(π, sj)
′ ·

(

(1− p(π, si)
′) · L(ai|yt) + p(π, si)

′ · µci+1

)

(34)

=

T
∑

t=1

N
∑

i=1

i−1
∏

j=1

p(π, sj)
′ ·

(

p(π, si)
′(µci+1 − L(ai|yt)) + L(ai|yt)

)

. (35)

Given that p(π, si)
′ lies within the range (0, 1) for all t and i, the coefficient preceding L(ai|yt), namely

∏i−1
j=1 p(π, sj)

′(1−
p(π, si)

′), also falls within (0, 1). Assuming L is convex, and following the convergence arguments in Li & Orabona (2019),

we establish that as T →∞, L(ai|yt) converges to a minimal loss value ϵi for each model.

Integrating this convergence into our transformed regret expression of Equation (35), we arrive at:

T
∑

t=1

N
∑

i=1

i−1
∏

j=1

p(π, sj)
′ ·

(

p(π, si)
′(µci+1 − ϵi) + ϵi

)

. (36)
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As discussed in Jitkrittum et al. (2023) Proposition 3.1, to minimize the aggregated costs, the optimal deferral rule p(π∗, si)
′

should be:

p(π∗, si)
′ =

{

0 if µci+1 − ϵi > 0,

1 otherwise.

With gradient descent, as T →∞, we can show that for all i, p(π, si)
′ gradually approaches p(π∗, si)

′ = 1[µci+1− ϵi ≤ 0]
by pointwise convergence. Therefore, in the base case of N = 2, we have ps1π − ps1π∗ = p(π, s1)

′ − p(π∗, s1)
′ =

0, ps2π − ps2π∗ = 1− 1 = 0.

Assuming the lemma holds for N = k, i.e., psiπ − psiπ∗ = 0 for all i ∈ [1, k], we extend this to N = k + 1:

p(π, sk+1)
′ − p(π∗, sk+1)

′ (37)

=

k
∏

j=1

p(π, sj)
′ −

k
∏

j=1

p(π∗, sj)
′ (38)

= pskπ · p(π, sk)′ − pskπ∗ · p(π∗, sk)
′ (39)

= pskπ∗

(

p(π, sk)
′ − p(π∗, sk)

′
)

= 0 (40)

Hence by mathematical induction, for online cascade learning, when T →∞, for all i ∈ [1, N ], psiπ − psiπ∗ = 0.

With the conclusions of Theorem 3.1 and Lemma A.2, we can now analyze the performance of our proposed online cascade

learning algorithm.

Theorem 3.2. For online cascade learning with ηt = t−1/2, the algorithm’s total regret is o(T ), implying limT→∞ γ/T ≤
0, i.e., the average regret approaches zero as T grows∞.

Proof. Leveraging the findings of Lemma A.2, assuming L is a convex function and T →∞, we can now reformulate the

regret expression in Equation (8) as:

γ =
T
∑

t=1

N
∑

i=1

psiπ Cπ(si)−
T
∑

t=1

N
∑

i=1

psiπ∗Cπ∗(si) (41)

=
T
∑

t=1

N
∑

i=1

psiπ∗Cπ(si)−
T
∑

t=1

N
∑

i=1

psiπ∗Cπ∗(si) (42)

The transformation of the regret expression to Equation (42) is significant as it bridges our understanding of the regret

in online cascade learning with the established results from online ensemble learning. Specifically, by treating psiπ∗ as

analogous to the fixed model probabilities wi and Cπ(si) as equivalent to the costs ct(mt
i) in the ensemble learning context,

we establish a parallel between the two regret formulations.

Therefore, following the conclusion of Theorem 3.1, we can infer that, with a learning rate ηt = t−1/2, the online cascade

learning algorithm is guaranteed can achieve no regret, i.e., limT→∞ γ/T ≤ 0.

B. Detailed Experimental Setups

B.1. A Simple Prefill Experiment

To determine time required to process a document-plus-prompt in a realistic scenario, we performed the following, simple

experiment. Using the 65B parameter LLaMA model (Touvron et al., 2023a) and PyTorch 2.1.2, on an Amazon Web

Services ‘m6in.16xlarge’ machine with eight, A100 GPUs, we prepare a sequence of 10 prompts each consisting of

8192 tokens, and perform ªfirst tokenº inference on each in sequence. That is, we process the prompt and obtain the first

output token, and record the total time taken, which is 36.2 seconds, for an average of 3.6 seconds per prompt.
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Figure 10: A more detailed cost-performance trade-off plot with accuracy, F1-score, recall, and precision curves, respectively

using GPT-3.5 Turbo and Llama 2 70B Chat as the LLM.

The reason we perform first-token inference is that relative to the first output tokenÐwhich requires a quadratic all-to-all

attention computationÐsubsequent tokens are relatively costless, taking a fraction of a second. For our application, where the

full response sequence is expected to be short, first token inference is by far the most costly step. Note that in our experiment,

inference is performed separately on each prompt, rather than as a batch. This is necessary to avoid out-of-memory errors

(there is not enough GPU memory to process more than one prompt at a time, due to the memory requirements of the

all-to-all attention computation).

B.2. LLM Prompts

IMDB

System Prompt: You are a helpful, respectful and honest assistant. The user has given you a movie review to help them

make their decision. You should read the review and tell the user whether the review overall shows a positive or negative

sentiment towards the movie. Return the answer in one word.

User Prompt: Here is the movie review: {REVIEW} \\Tell me whether the above review overall shows a positive or negative

sentiment towards the movie. Return the answer in one word.

HateSpeech

System Prompt: You are given a post from an online forum and you need to check whether the post contains any hate speech.

Return your answer in one word (yes or no) without any explanations.

User Prompt: Post: {POST}
ISEAR

System Prompt: In this task, you will be performing a classification exercise aimed at identifying the underlying emotion

conveyed by a given sentence. The emotions to consider are as follows:

Anger: Anger is a strong feeling of displeasure, hostility, or frustration.

Joy: Joy is a positive and uplifting emotion characterized by happiness, elation, and a sense of contentment.

Sadness: Sadness is a feeling of sorrow, unhappiness, or despondency.

Guilt: Guilt is a self-directed emotion that arises from a sense of wrongdoing or moral transgression.

Shame: Shame is a powerful emotion associated with feeling embarrassed, humiliated, or unworthy.
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Figure 11: Accuracy curve (and Recall curve for HateSpeech) with respect to costs, respectively using GPT-3.5 Turbo and

Llama 2 70B Chat as the LLM in a larger cascade that also comprises logistic regression, BERT-base, and BERT-large.

Fear: Fear is an emotion triggered by a perceived threat or danger.

Disgust: Disgust is an aversive emotion linked to feelings of revulsion, repulsion, or strong distaste. It arises in response to

things that are offensive or unpleasant.

Your task is to analyze each sentence provided and categorize it into one of these emotions based on the dominant feeling

conveyed by the text.

This classification will require an understanding of the nuances of human emotions and the context in which the sentences

are presented. Remember, you have to classify the sentences using only anger, joy, sadness, guilt, shame, fear or disgust.

Please respond with only the word and nothing else.

User Prompt: {SENTENCE} \\Classify the emotion of this hypothetical sentence. Respond in exactly one word in all

lowercase with a response in the exact format requested by the user. Do not acknowledge my request with ªsureº or in any

other way besides going straight to the answer. Only answer in exactly one word.

FEVER

System Prompt: You are a helpful, respectful and honest assistant. This is a fact-checking task. Use your knowledge to

determine whether a given claim is true or false. Answer only in ªtrueº or ªfalseº without providing any explanations.

User Prompt: In June 2017, the following claim was made: {CLAIM}.

B.3. Experimental Configurations

The experiments involved querying Llama 2 70B Chat utilized a single machine equipped with 8 NVIDIA A40 GPUs, each

with 48GB of memory, running CUDA 12.0. All the other experiments were conducted on a machine with 4 NVIDIA

Quadro RTX 8000 GPUs (48GB memory each) on CUDA 12.2.

The detailed hyperparameter settings for online cascade learning are listed in Table 3 and 4. We tuned the hyperparameters

using a grid search method on a separate validation set, which is a standard practice to avoid overfitting. In particular, we

used the training set prepared for the knowledge distillation (as mentioned in Section 4) as our online cascade learning

method’s validation set.

Specifically, for the hyperparameters β and µ, we observed that our experimental results are notably robust to variations in

β. Regarding µ, we tuned it specifically in the context of different cost budgets, which was essential for plotting Figure 3

and Figure 4 in our paper. By adjusting µ, we were able to effectively manage the cost budgets to evaluate our method’s

performance on cost-accuracy trade-offs, which is a critical aspect of our research objective.

Note that the ªlearning rateº in the table refers to the learning rates of the MLPs (in Section 3: Confidence Calibration), not

the models’. We used a consistent configuration for both online cascade learning and the distillation baselines by setting

BERT-base’s batch size to 8, the learning rate to 0.00001, and the number of epochs to 5.
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Table 3: Hyperparameter settings for online cascade learning experiments with GPT-3.5 Turbo as the LLM.

Model Cost Cache Size Batch Size Learning Rate Decaying Factor Calibration Factor

IMDB, Small Cascade

LR 1 8 8 0.0007 0.97 0.4

BERT-base 1182 16 8 0.0007 0.95 0.3

IMDB, Large Cascade

LR 1 8 8 0.0007 0.99 0.45

BERT-base 3 16 8 0.0007 0.97 0.4

BERT-large 1182 32 16 0.0007 0.95 0.4

HateSpeech, Small Cascade

LR 1 8 8 0.001 0.97 0.4

BERT-base 1182 16 8 0.0007 0.9 0.4

HateSpeech, Large Cascade

LR 1 8 8 0.001 0.99 0.45

BERT-base 3 16 8 0.0007 0.97 0.45

BERT-large 1182 32 16 0.0007 0.95 0.45

ISEAR, Small Cascade

LR 1 8 8 0.0007 0.8 0.15

BERT-base 1182 16 8 0.0007 0.9 0.45

ISEAR, Large Cascade

LR 1 8 8 0.0007 0.99 0.4

BERT-base 3 16 8 0.0007 0.97 0.35

BERT-large 1182 32 16 0.0007 0.95 0.3

FEVER, Small Cascade

LR 1 8 8 0.0007 0.97 0.4

BERT-base 1182 16 8 0.0007 0.95 0.3

FEVER, Large Cascade

LR 1 8 8 0.0007 0.97 0.4

BERT-base 3 16 8 0.001 0.95 0.4

BERT-large 1182 32 16 0.0001 0.93 0.4

C. Discussion

C.1. Analysis of Training & Inference Cost Equilibrium

We conduct a thorough analysis of the training overhead for the models involved in our cascade to quantify the computational

costs incurred in our approach. Below are the computation costs for training or inference over one sample (the computational

costs of the confidence calibration MLP in Section 3, inference: 897 Flops, training: 1794 Flops, are negligible):

• Logistic Regression training: 33.8× 104Flops (floating-point operations).

• Logistic Regression inference: 16.9× 104Flops.

• BERT-base training: 18.5× 107Flops.

• BERT-base inference: 9.2× 107Flops.

• BERT-large training: 55.5× 107Flops.

• BERT-large inference: 27.7× 107Flops.

Comparatively, Llama 2 70B’s inference costs for generating one token is approximately 39.86 × 1015Flops (we have

no access to GPT-3.5 Turbo’s running statistics). Even if all the small models are consistently updated per sample, the

per-sample training costs of a large cascade 33.8× 104
LR

+ 18.5× 107
BERT-base

+ 55.5× 107
BERT-large

≈ 7.4 × 108Flops is still 5.3 × 107

times smaller than the per-sample Llama 2 70B inference costs.

Therefore, the computational costs regarding the deferral policy’s inference and training are minimal when comparing

against the enormous LLM inference costs. In the real world, as the smaller models’ capabilities grow over time and the
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Table 4: Hyperparameter settings for online cascade learning experiments with Llama 2 70B Chat as the LLM.

Model Cost Cache Size Batch Size Learning Rate Decaying Factor Calibration Factor

IMDB, Small Cascade

LR 1 8 8 0.0007 0.97 0.4

BERT-base 636 16 8 0.0007 0.95 0.3

IMDB, Large Cascade

LR 1 8 8 0.0007 0.99 0.45

BERT-base 3 16 8 0.0007 0.97 0.4

BERT-large 636 32 16 0.0007 0.95 0.4

HateSpeech, Small Cascade

LR 1 8 8 0.001 0.97 0.4

BERT-base 636 16 8 0.0007 0.9 0.4

HateSpeech, Large Cascade

LR 1 8 8 0.001 0.99 0.45

BERT-base 3 16 8 0.0007 0.97 0.45

BERT-large 636 32 16 0.0007 0.95 0.45

ISEAR, Small Cascade

LR 1 8 8 0.0007 0.8 0.15

BERT-base 636 16 8 0.0007 0.9 0.45

ISEAR, Large Cascade

LR 1 8 8 0.0007 0.99 0.4

BERT-base 3 16 8 0.0007 0.97 0.35

BERT-large 636 32 16 0.0007 0.95 0.3

FEVER, Small Cascade

LR 1 8 8 0.0007 0.97 0.4

BERT-base 636 16 8 0.0007 0.95 0.3

FEVER, Large Cascade

LR 1 8 8 0.0007 0.97 0.4

BERT-base 3 16 8 0.001 0.95 0.4

BERT-large 636 32 16 0.0001 0.93 0.4

need for training decreases, the incurred model training overhead is also negligible compared to the tremendous LLM

inference costs saved with our approach.

More formally, we can formulate the theoretical cost equilibrium as follows:

100% · C = x ·M + (1− x) · (M + 2M + C),

where the LHS refers to the inference overheads for using the LLM to process all queries, and the RHS comprises the

maximum inference costs forusing the small models to handle x% of the queries (which are not deferred to the LLM), and

the LLM inference costs, plus the inference & training costs for updating the small models when handling the rest (1− x%)
queries. This equation can be further simplified to

M =
xC

3− 2x
,

where C represents the LLM inference cost, x is the proportion of queries handled by small models, and M indicates small

models’ aggregated inference costs.

For example, assuming C = 39.86× 1015Flops, x = 0.5, then M ≈ 9.95× 1015Flops,typically refers to a total number

of parameters around 17.5 Billion. That means, when using Llama 2 70B as the LLM, even if the smaller models can only

handle 50% of the input queries, as long as the smaller models’ total number of parameters does not exceed 17.5B, our

approach can still save costs.
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Length Count Average Length GPT-3.5 Turbo Accuracy

52-664 4975 481.92 95.54%

664-843 5018 745.86 95.08%

843-1160 5003 985.05 93.96%

1160-1852 5001 1453.49 93.74%

1852-13704 5002 2953.95 92.44%

Total 25000 1325.07 94.15%

Table 5: GPT-3.5 Turbo’s classification accuracy across different IMDB review lengths. Longer inputs are typically more

complex and thus have lower average accuracies.

C.2. Potential Overfitting in Larger Cascades

When scaling up the cascade, the task complexity may influence the appropriate cascade size, as suggested by the performance

dynamics observed in Section 5.3. There are several factors that may affect this:

Task Complexity vs. Cascade Size. The HateSpeech dataset, despite its class imbalance, represents arelatively simple

binary classification task where hate speech is often identifiable through specific keywords. Our findings, illustrated in

Figure 6, show that a basic cascade of logistic regression and BERT-base can already handle 90% of the queries effectively,

matching the performance of more complex models like GPT3.5 Turbo. This indicates that for simpler tasks, adding more

models to the cascade might introduce unnecessary noise, complicating the deferral policy learning and thus degrading

overall performance.

Capability Gap in Models. The performance impact of adding more models to a cascade also depends onthe capability

gap between these models. In our larger cascade setup, we incorporated BERT-large alongside BERT-base. However,

both models exhibit similar performance on the HateSpeech dataset, meaning the addition of BERT-large brought minimal

benefit. This redundancy shows that the effectiveness of a cascade does not solely rely on adding more models, but rather on

ensuring that each model contributes unique capabilities to the given task.

Improved Performance on More Complex Dataset. In contrast, for the more complex ISEAR dataset, the larger cascade

that includes BERT-large outperformed the smaller cascade, despite the ISEAR dataset’s smaller size (3833) compared

to HateSpeech (5352). This outcome supports the idea that as task complexity increases, a larger cascade can still better

balance the cost-performance trade-off, leveraging the distinct strengths of each model in the cascade.

C.3. Challenges in Scaling Up Cascade

Scaling up the cascade for more complex task processing is technically feasible and compatible with our proposed framework,

but can present notable challenges:

Confidence Measurement in Generative Tasks. For complex generative tasks, such as conversation, the measurement of

confidence scores is also challenging. For example, traditional confidence estimation methods may not be well-suited for

measuring LLMs’ token-by-token generation (Gupta et al., 2024). This difficulty in accurately assessing model confidence

complicates the deferral policy learning within cascades, potentially leading to suboptimal routing of queries and affecting

overall system efficiency.

Constraints with API-Based LLMs. More practically, many current LLMs, especially those accessible only via APIs, do

not support fine-tuning. This restriction hinders our ability to tailor each LLM in the cascade to specific tasks in an online

learning setting, presenting a significant limitation for customizing LLM-only cascades.

Computational Costs. The most important hurdle in a more complex cascade is the significant computational expense

associated with online learning. For example, in an LLM-only cascade, updating LLMs in real-time (even if using

efficient training techniques like LoRA) demands substantial resources, making it impractical for many applications. This

computational burden not only affects scalability but also limits the frequency and extent to which LLMs can be updated,

impacting the cascade’s adaptability and performance. As analyzed in Appendix C.1’s cost equilibrium, when the learnable

model space grows too large, the training costs would offset the saved inference costs, which is against our initial motivation

of enhancing cost-efficiency.
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