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ABSTRACT

Content caching is vital for enhancing web server efficiency and reducing network congestion,
particularly in platforms predicting user actions. Despite many studies conducted toimprove
cache replacement strategies, there remains space for improvement. This paper introduces
STRCacheML, a Machine Learning (ML) assisted Content Caching Policy. STRCacheML
leverages available attributes within a platform to make intelligent cache replacement decisions
offline. We have tested various Machine Learning and Deep Learning algorithms to adapt the
one with the highest accuracy, we have integrated that algorithm into our cache replacement
policy. This selected ML algorithm was employed to estimate the likelihood of cache objects
being requested again, an essential factor in cache eviction scenarios. The IMDb dataset,
constituting numerous videos with corresponding attributes, was utilized to conduct our
experiment. The experimental section highlights our models efficacy, presenting comparative
results compared to the established approaches based on raw cache hits and cache hit rates.
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1. INTRODUCTION

The rapidly evolving computing landscape has led to a significant efficiency mismatch between
processors and input/output (I/O) peripherals like hard drives, printers, and keyboards. This gap
has induced demand for advanced I/O architectures and efficient storage solutions to enhance
communication between CPUs and storage devices. This demand is high for a wide range of
applications, including real-time applications, gaming, high-performance computing, web
services, and, notably, streaming services. These services require a highly efficient cache
management mechanism to prevent performance bottlenecks due to frequent read-and-write calls,
an operational characteristic that is quite prevalent in streaming services.

Video streaming services operate in a realm where many users frequently and concurrently access
vast amounts of data. In such platforms, content caching serves as temporary data storage and has
become integral. This strategy involves holding copies of content near where it is frequently
requested, increasing data retrieval performance by reducing data access latency. Fast and
proficient storage mechanisms, such as Random Access Memory (RAM) and cache memory, are
essential to counteract the complexities brought about by these stringent prerequisites. RAM acts
as a transient principal memory during software execution, but the data it holds gets lost once the
device is powered off. On the other hand, cache memory, being a small and high-speed memory
segment, stores data that is accessed often, reducing the frequent need to access the hard disk.
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Efficient cache memory management is paramount due to cache memory’s limited size and the
performance penalty associated with cache misses. A cache hit is when the requested data is
available in the cache memory, assisting fast data retrieval. In contrast, a cache miss arises when
the system needs to identify and reallocate data by replacing existing stored information, a
comparatively slower process. Various cache replacement strategies strive to uphold a high cache
hit ratio, aiming to diminish the frequency of data replacements to the lowest possible extent.
Therefore, thorough planning and design are necessary to ensure high-efficiency performance in
devices equipped with cache memories.

Though efficient, established cache replacement policies, such as Most-Recently-Used (MRU),
LRU, and LFU, are not universally suitable due to their workload dependency and rigid design
[9]. Machine Learning (ML) and Deep Learning have proven to be versatile algorithms yielding
promising results in various domains, from in-depth biomedical data analysis [4] to financial
forecasting [5] and even complex tasks such as satellite image classification [19]. Given their
wide range of successful applications, ML and Deep Learning have also been employed in the
cache replacement domain to design proficient and effective policies. By leveraging prior data,
they can discover patterns hidden in workloads, leading to improved decision-making and
potentially a higher cache hit ratio. The rise of powerful computing devices, such as GPUs [22]
and Tensor Processor Units (TPUs) [11], has enabled better training and execution rates for ML
algorithms.

In this study, we present STRCacheML, an innovative, ML-driven cache replacement policy
designed specifically to increase the performance of content caching. STRCacheML harnesses the
power of Machine Learning to learn dynamicallyfrom access patterns,improving upon established
replacement policies. Our approach aims to enhance the performance of content caching,
specifically in the context of streaming services, underlining how a well-calibrated application of
Machine Learning can optimize and transform cache management efficiency. Our contributions
presented here are:

. We have developed a method for feature construction that takes full advantage of the
available parameters on the platform to construct feature vectors for Machine Learning
models.

. We have evaluated a variety of Machine Learning and deep learning methodologies on
initially constructed features and have selected the most effective model for our application.

. We propose and demonstrate STRCacheML, a new cache replacement policy. By integrating
the selected Machine Learning model, STRCacheML makes intelligent cache eviction
decisions, enhancing the overall performance of content caching in streaming services.

While ML-based policies promise improved performance, they also introduce new concerns,
including the computational complexity associated with the runtime of ML algorithms, the need
for training data, and, sometimes, the lack of interpretability of their decisions. Addressing these
challenges requires a balanced approach that optimizes cache management efficiency and
computational costs. To this end, our work focuses on the application of computationally less
expensive ML models such as Random Forest (RF), Decision Tree, K-Nearest Neighbors (KNN),
Support Vector Machine (SVM), and Multi-Layer Perceptron (MLP). While advanced deep
learning models can offer powerful predictive capabilities, they also typically require more
computational resources and larger datasets for effective training [14], which may not be feasible
or necessary in all application scenarios.

2. RELATED WORK

The evolution of cache replacement policies has spanned from standard methods like LRU, LFU,
MRU, etc., to advanced methodologies incorporating Machine Learning, Deep Learning, and
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Reinforcement Learning (RL) models. Our work, STRCacheML, builds upon these developments
to introduce an ML-guided content caching policy.

Established cache management strategies like LRU, MRU, and LFU form the foundation of cache
management methodologies, primarily based on recency and frequency of data requests. There
has been substantial exploration of these methods in literature. Simultaneously, attempts to apply
Machine Learning techniques to augment these strategies have gained momentum. For instance,
[3] enhanced the LRU policy using supervised ML Algorithms like SVM, naive Bayes Classifier,
and decision tree. Their work involved training ML models to predict data reusability, effectively
boosting the LRU policy’s performance. Popularity distribution has been a significant factor in
cache management. Empirical-theoretical findings in web caching have shaped the understanding
of content distribution based on popularity, essentially, the likelihood of being requested in cache
memory [8]. This research highlights the empirical data related to the distribution probabilities of
popularity events or demands, which are critical to effectively managing web caches. One such
practical law, Zipf’s, initially proposed for word frequency distribution in a language, states that
the n-th most popular item arises with a probability proportional to 1/n% where a >1 [34]. In our
work, STRCacheML, we leverage these empirical laws, specifically Zipf’s law, and synthesize
datasets for training and testing our model.

Deep learning techniques have been increasingly applied in cache management domains. For
example, Zhong et al. proposed an LSTM-based model designed to predict the properties of
objects to be stored in cache memory, which led to enhanced cache performance [33]. Following
a similar path, [25] also proposed an LSTM model named Glider to minimize the cache miss rate.

Moving beyond just predictive models, some researchers have combined various cache
replacement policies using ML techniques. One such example is [29], which utilized ML to
design a hybrid cache replacement method, effectively merging the advantages of both LFU and
LRU methodologies. Furthermore, RL algorithms for cache replacement have been explored in
recent literature. These techniques operate on the principle that an agent executes various actions
within a particular environment to refine its behavior for a specific task. [33] employed deep RL
to improve cache performance for web pages, creating a popularity-agnostic model that does not
require any information about popularity distribution. Despite these advancements, limitations
exist, including high training and execution costs, and the need for more consideration of
temporal aspects has been identified [15].

A significant concern is that these advanced approaches are designed for general-purpose caching
rather than specifically for content caching. They require substantial computation and need to
guarantee effective handling of user preference or performance in content caching platforms. One
advanced approach, Raven targets both in-memory and content caching [12]. It employs a
Mixture Density Network to learn the patterns of objects’ next-request arrival times and uses a
Gated-Recurrent Neural Network (GRU) to understand temporal dependencies in the data [12].
However, applying GRUs in the content caching platform can increase computational costs due to
their complexity and potential for gradient bursting during loss calculations [21].

In 2021, a content caching method was proposed for video streaming in a cloud-edge cooperative
platform [17]. This paper’s strategy includes two main steps: clustering edge servers using the k-
means algorithm and analyzing latency and caching costs to determine optimal content caching
policies. Though innovative, this strategy is edge-cloud-oriented and may not effectively handle
user preferences in streaming platforms like Netflix, Prime Videos, and so on, due to itsdesign
[17].Hence, to address the concerns mentioned above, we propose STRCacheML, a smart content
caching strategy suitable for streaming platforms that can handle users’ preferences with the help
of a ML model(for a high-level overview of the workflow, refer to Figure 1).
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Figure 1. Workflow Diagram of the STRCacheML Process.

3. PROPOSED APPROACH

We propose “STRCacheML”, an innovative content caching replacement policy guided by a
Machine Learning (ML) algorithm. Our primary objective is to enhance content caching in
streaming services by capitalizing on available attributes to construct feature vectors. The
constructed feature vectors guide our ML model during the training and testing phases to make
intelligent cache replacement decisions.

While STRCacheML is designed to operate in a broad range of environments, it is worth noting
that specific adaptations may be necessary to suit different datasets or settings. For instance,
during our experiment with the IMDDb dataset, we encountered a lack of real inquiry data. To
overcome this, we introduced a simulation using a probability distribution to mimic a real-world
environment. A detailed explanation of this adaptation and our experimental setup will be
provided in a subsequent section.

Our study examined a range of accessible and computationally efficient Machine Learning
algorithms, including the Multilayer Perceptron (MLP) from the deep learning domain. This
approach was motivated by our aim to explore and exploit the computational and performance
characteristics of these models, which are both accessible and less computationally intensive,
within a content caching platform.

The components of our approach are listed in the following subsections:
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3.1. Feature Vector Construction

We consider O = {04, 0,,03,...,0,}, the set of all objects available on the platform. We represent
all the objects, 0 € O, by a feature vector, F(0), including attributes such as one-hot encoding of
genres, the object’s popularity over a specific period, historical inquiry data, object’s size, etc. We
represent each object by a feature vector, F(0), which can be mathematically illustrated as
follows:
For every object oin the set of all objects O, let A = {ay,a,, as, ..., a,}be the set of all possible
attributes. The features vector is built as,

Flo)=a,®a, ® D ap (1)
where each a; represents an attribute of o written as a vector and @corresponds to vector
concatenation.

3.2. Cache Memory and Inquiry Simulation

Let Crepresent our cache with a limited size m, where each content, ¢ € C, is an object o from our
set 0. We simulate object requests using a probability distribution, P(0), defined on the setO
where the probability of being requested is proportional to the popularity of the given object o
(See Figure 2). The simulation is modeled as follows: For all contents, ¢ € C, where C € 0, draw
samples o to be processed on the cache C by “STRCacheML”.

Moreover, the cache has its probability distribution defined for the objects ¢ € C, which is kept
tracked during the execution let 7, denote the number of inquiries made to object ¢ until the
current date. The total number of inquiries for all objects is represented as Y. ec7, and the
probability distribution of requests is given by

PC(C) — 5 chr (2)

3.3. Training and Selection of ML Algorithm

A series of ML models, {Mi,M,,....M;}, (where k denotes the total number of ML algorithms
selected) are trained on these feature vectors, F(0), obtained from each o €0. After training, we
evaluate the models’ performance using both the training and testing datasets, focusing on the
accuracy metric. With this assessment, we identify the model that provides the highest accuracy,
which will be selected as our preferred ML model, M~* This procedure can be illustrated as
follows:
A set of ML models, {M;, M5, ..., M} }are trained using the feature vectorF (o), as constructed in
equation (1). Among all trained models, we identify the optimal ML model as M*for our cache
replacement policy. The selection criterion is given by the model’s accuracy, as formalized in the
following equation:

M* = argmaxy,em,,..m,) accuracy(M;) 3)

3.4. Cache Eviction

When cache C reaches its capacity (i.e., |C| = m) and a cache miss occurs, the ML model, M*,
is employed to determine the likelihood, L(0), of each object o in cache C being requested again.
The object with the least likelihood, L(0), as computed by M*(F(0)), is selected for eviction to
make space for new content in the cache.
Given a cache miss M and the cache memory is full, i.e., |C| = m, the likelihood of each object
being requested again is computed asL(0) = M*(F(o0))for each o € C. Finally, the object 6to be
evicted is expressed as:

0 = argmin ¢ L(0) 4)
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3.5. STRCacheML

By integrating equations (1), (2), (3), and (4), we formulate STRCacheML, our proposed cache
replacement policy. This policy can be outlined as follows:
Given an object inquiry (request) for any o € O:

1) If o € C(i.e., a cache hit), the inquired object is acquired from the cache without initiating
the cache replacement procedure.

2) If o € C(i.e., a cache miss) and |C| < m, the object is first fetched from the backend (main
memory in the platform) and added to the cache.

3) Ifo & C(i.e., a cache miss) and |C| = m(i.e., the cache is full), we calculate the likelihood
L(0")of each object 0’ € Cin the cache being requested again, as defined in equation (4)
above. The object 6 = argmin,, ¢ L(0")is evicted from the cache, and the requested object
o is accessed from the main memory and added to the cache.

Through these steps, we introduce STRCacheML, an ML-based cache replacement policy that
leverages rich feature vectors and predictive modeling to make intelligent content caching
decisions, potentially enhancing the cache replacement performance in streaming services.
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Figure 2. Video popularity distribution for the S00 most popular videos in IMDb. It is interesting how video
distribution follows Zipf’s law if they are sorted by some popularity attribute.

4. DATA PREPROCESSING, SIMULATION AND DATASET PREPARATION

Data preprocessing, a critical aspect of the Knowledge Discovery from Data (KDD) process,
involves a set of techniques employed before applying data mining methods. This technique
handles inconsistencies, redundancies, and other data imperfections, making the data suitable for
the chosen Machine Learning algorithm.

In our study, we used a dataset sourced from IMDb [13] for experimental purposes, potentially
showcasing the efficiency of our policy in a video streaming platform. Since the data obtained
from IMDb were raw and unprocessed, preprocessing steps were required to prepare the dataset
for Machine Learning applications. First, we utilized Python libraries such as pandas and NumPy
to handle null values, mostly deleting the data entries from the dataset. To remove discrepancies
in the dataset, we used the Scikit-learn library, specifically its preprocessing module, to maximize
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the normalization of the data as needed. Lastly, we decided to disregard specific attributes that
were deemed unsuitable for training our ML models, focusing on five attributes:“Primary
Title”,“Start Year”,Run Time”,“Genres”,“Average Rating,” and “Number of Votes”. In the
absence of direct information on video sizes within our dataset, we adapted the “Run Time”
attribute availableto act as a proxy. To the best of our knowledge, we believe this adaptation
presents a practical approximation for cache replacement policies often influenced by video
sizes. Therefore, even within the simplification and simulation, our model maintains a level of
accuracy to a certain valuable extent in representing the characteristics influential to real-world
caching scenarios.

We created a virtual cache with predetermined memory limits to simulate a realistic environment
for our cache replacement policy, STRCacheML.In the absence of real-world inquiry data, we
generated a series of 10000 cache inquiries based on a probability distribution derived from the
“Number of Votes” each video received on IMDb. These votes were taken as a proxy for the
videos' popularity, whichsuggested their likelihood of being requested (refer to Figure 2, which
illustrates the probability distribution across the videos). The outcome of each simulated inquiry
was determined by whether the requested video was present in our cache, resulting in either a
cache hit or miss.

From the initial simulation of inquiries using the IMDb dataset, we constructed a comprehensive
dataset comprising 19992 samples. Each sample was associated with a feature vector, denoted as
F (o), representing the attributes of the requested video,including genre, run time, and calculated
popularity. These feature vectors were then labeled with binary values, assigning “1” for a cache
hit and “0” for a cache miss. This labeling process was important for training the Machine
Learning models, enabling them to understand the feature vectors that contribute to cache hits or
misses. Such understanding is contributory in producing likelihood estimations that inform cache
eviction decisions in subsequent phases.Thus, our dataset comprised these feature vectors X =
[%1, %32, .., x,]along with their corresponding binary labels, forming the foundation for training
our Machine Learning models to learn from historical cache performance under conventional
policies and make predictive decisions for future cache management.

By integrating both staticattributes of videos and dynamic user interaction data in a simulated
environment, our dataset provides Machine Learning models with a comprehensive
understanding of video demand over time. By incorporating historical usage data along with
evolving trends in video popularity within a simulated environment, our methodology ensures
that STRCacheML adapts to changing user behaviors,enhancing the predictive accuracy and
practical applicability of our cache replacement policy.

4.1. Selection of ML Algorithms and Hyperparameter Tuning

Building upon the earlier discussion, feature selection and hyperparameter tuning play an
instrumental role in achieving accurate models [26]. The training parameters, model architecture,
and features can significantly determine model performance. During the selection of ML
algorithms, observing each algorithm’s performance on both the test and training sets is crucial to
recognize if the model is overfitting, which memorizes training features rather than learning the
underlying patterns. Overfitting can lead to increased computational complexity, reduced
accuracy, and false confidence in the model’s predictions [32].

In our study, we conducted experiments divided into two phases. First, we trained different
machine learning models as described in building a query dataset based on the probability of
being requested P(0) where the object to be queried next is predicted. For each model,80% of the
dataset was used as a training set, whereas the remaining 20% was used to test the model’s
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capabilities.It is worth mentioning that this dataset setupprovides a platform for training and
evaluating supervised ML algorithms.Second, we choose the best ML usingequation (3) tobuild
the cache replacement policy.We initially selected the Random Forest (RF) algorithm to
understand its potential usability in our mechanism. Random Forest, developed by Leo Breiman
and Adele Cutler, is a widely adopted ML algorithm. It traverses multiple decision trees, each
contributing to sub-decisions and aggregating their outcomes to make a final decision [35]. Due
to its effectiveness in classification and regression problems, we successfully tested RF within our
dataset's classification setup. Initially, we set the maximum number of features equal to the
number of extracted features, and the maximum depth was set to 70. This setting means that the
same number of features will be selected in each split, and the tree in the model will have, at
most, 70 levels of nodes. However, after initial training and testing, the maximum number of
features was adjusted to the square root of the extracted features, with the tree depth remaining
the same, to fine-tune the process and prevent overfitting.

Similarly, we adapted the Gradient Boosting Machine (GBM), a widely recognized ML algorithm
proficient inclassification and regression tasks. GBM operates by iteratively refining decisions
through ensemble models, typically decision trees, and focuses on correcting the errors of
previous iterations [36]. Given its successful application in areas such as web search engines, we
decided to implement the GBM model available in the sklearn library. In our experimentation
with various parameter settings, we observed minimal variations in accuracy for our binary
classification dataset. Consequently, we configured GBM with 100 estimators, a learning rate
0f0.1, anda maximum depth of 2, and we recorded both training and testing accuracies to
compare with other models. Next, the SVM algorithm was trained on the model, setting the
regularization parameter “C” to 100 and the gamma parameter for the Radial-Basis-Function
(RBF) kernel to “auto”, which means that it is computed from the data. Parameter “C” maintains
a trade-off between maximizing the decision boundary and minimizing the classification error,
while the gamma parameter helps to measure the similarity between two data points [7].
Likewise, the K-Nearest Neighbors (KNN) algorithm was trained on the dataset, initially
considering three nearest neighbors while predicting new values. For fine-tuning, the model was
adjusted to consider the five nearest neighbors contributing to the prediction with the inverse of
their respective distances from the query point.

Comparison of ML Models
1.0 1
0.8
Y
a 0.6
—~
=3
Q
(&}
< 0.4 A
0.2
0.0
forest gbm knn mlp
Model
EEl Training Bl Testing

Figure 3. Comparison of Training and Testing Accuracies Across All Evaluated Machine Learning Models
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Ultimately, we selected the Multi-Layer Perceptron (MLP) as our final ML model for
experimentalpurposes, assessing itspotential for integration into our cache management policy.
Initially, the MLP model was designed with two hidden layers comprising 128 and 64 nodes,
respectively. To enhance the model’s performance, we adopted an iterative approach using Scikit-
Learn’s GridSearchCV for automated hyperparameter tuning following the idea mentioned in [2].
The architecture of the hidden layers was systematically varied across multiple training iterations,
altering the number of layers and nodes within each layer.However, during this process, we
discovered a critical insight. Augmenting the number of layers did not necessarily enhance the
accuracy of our model. Instead, it only increased the time complexity of the model while the
accuracy plateaued. GridSearchCV allowed us to navigate through multiple combinations of
parameters and revealed that a model with two hidden layers of 256 and 128 nodes, respectively,
provided an optimal balance between accuracy and computational efficiency for our dataset.
Consequently, we decided to adhere to this model structure. Upon comparison of accuracy and
time complexities among above mentioned ML models, the MLP model concluded as the most
efficient with an impressive testing accuracy of 0.97 on the dataset, surpassing the accuracy
levels of SVM, GBM (around 0.60), and RF (around 0.84) and KNN (around 0.84)as shown in
Figure 3. Hence, MLP was chosen as the final ML model for our cache replacement policy.

5. SIMULATIONS, COMPARISONS, AND EVALUATION

We conducted our experiments ina Python 3.10.12 environment, utilizing the TensorFlow
frameworkfor machine learning computations. The computational workloadwas managed by an
NVIDIA T4 GPU with15GB of GPU RAM. Throughout our study, we conduct experiments using
a fundamental cache structure, divided into individual slots capable of storing one video each.
Our reference for cache capacity is its cache size, the number of slots. We evaluate the
performance of our proposed model, STRCacheML, by comparing it with established caching
policies like LRU, LFU, and Least Recently Frequently Used (LRFU). We utilize raw cache hit
and cache hit rate as our key computational and comparison metrics. The raw cache hit measures
the instances where the requested object is available in the cache. On the other hand, the cache hit
rate provides a more insightful metric, indicating the proportion of total requests resulting in a

cache hit. It is derived from the formula:

Cache Hits

Cache Hit Rate = i
ache HILRA% = Cache Hits + Cache Misses ©

For STRCacheML, we implement a predictive and adaptive approach assisted by a trained MLP
model, which sequentially updates based on inquiries and cache hits during the simulations. The
MLP model, trained on historical video access data, predicts the popularity trend of videos, aiding
dynamic cache management. When a video request occurs and the video is absent in the cache,
STRCacheML utilizes its core predictive principle and assigns each video in the cache a score
corresponding to its predicted future popularity. During the eviction procedure, the video least
likely to be requested again is removed from the cache to accommodate new content. This
approach inherently considers user preferences, as it is driven by user behavior and inquiry
patterns. Therefore, it allows STRCacheML to adapt to changing user preferences, an important
aspect in content caching.

We carefully applied STRCacheMLalong with the established cache policies to the final phase of
simulated cache inquires and virtual cache memory to accurately measure the cache hits and
cache hit rates. For established caching policies like LRU, LFU, and LRFU, we thoroughly
simulated their principle on the dataset. For LRU, we keep track of the timestamp for each video,
reflecting the time an inquiry was made for the given video. Also, for LFU, we applied its
principles by computing a frequency count for each video in the cache, recording the total
number of requests made, and evicting the video based on frequency. For LRFU, we designed a
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function to dynamically update each video’s Combined Recency and Frequency (CRF) value
upon each inquiry. Eviction from the cache was based on the CRF values calculated for each
video.

We conducted experiments on two different simulations, Simulationl and Simulation2, designed
to represent different usage scenarios. In Simulationl, we constructed a scheme that involved
10000 video queries and a cache size of 25 slots. This scenario was chosen to simulate a lower to
moderate level of user demand, where the cache size and number of queries were small compared
to Simulation2. The selected cache replacement policies, including LRU, LFU, LRFU, and
STRCacheML, were sequentially implemented and the count of cache hits along with the cache
hit rates were recorded

For the second simulation, Simulation2, we escalated the volume of video queries and cache size
to 20000 queries and 50 slots, respectively. This simulation was designed to represent a situation
of high demand, with significantly more queries and a larger cache size than the first simulation.
Just as in Simulationl, the same cache replacement strategies were utilized, the record of cache
hits was noted, and the cache hit rate was consequently computed.

By observing and comparing the results of both simulations, we gained valuable insights into the
performance of different cache replacement policies under two different conditions. Table I
illustrates how our proposed STRCacheML model performed well over other strategies in both
simulations when assessed based on raw cache hits and cache hit rates. The table delivers a
comparison among the cache replacement policies, presenting the number of cache hits and the
corresponding cache hit rates accomplished in both simulations. In addition, the cache hit rates of
each model were visualized in Figures 4 and 5, which provide a more detailed comparison of
each model's performance. These results highlight the better performance of our proposed
STRCacheML model in different scenarios.

TABLE I. CACHE HITS AND HIT RATES FOR DIFFERENT MODELS IN SIMULATION1 AND
SIMULATION2

Model Simulation1 Simulation2
Raw Cache Hits | Hit Rate (%) Raw Cache Hits | Hit Rate (%)

LRU 644 6.44 2484 12.42
LFU 675 6.75 2865 14.33
LRFU 758 7.58 3422 17.11

STRCacheML | 1078 10.78 3770 18.85
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6. CONCLUSIONS AND FUTURE WORK

In this study, we presented STRCacheML, an innovative ML-guided cache replacement policy to
enhance content caching in streaming services. Through experiments and simulations of real-
world scenarios, STRCacheML demonstrated better performance over established caching
policies such as LRU, LFU, and LRFU. A significant factor contributing to this enhanced
performance is STRCacheML’s ability to consider user preferences and adapt to evolving
popularity trends, a critical aspect in efficient content caching. By dynamically predicting and
managing the popularity trend of videos, STRCacheML improves cache hit rates. Specifically,
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STRCacheML achieved an increase of approximately 5%, 4%, and 3% in cache hit rate over
LRU, LFU, and LRFU, respectively, in Simulationl, as shown in Figure4. In Simulation2,
STRCacheML also exhibited a consistent enhancement in cache hit rates in comparison to other
models, as shown in Figure5. An interesting observation was that each model demonstrated a
sequential improvement in cache hits, validating their respective principles within a content
caching platform.However, integrating assisted cache policies introduces additional
computational overhead compared to their classical counterparts, which require minimal
information and straightforward implementation. The extent of this added overhead is contingent
on the size of the ML model, determined by the feature vector size and hyperparameters. With
fixed hyperparameters, strategic feature engineering or a projection algorithm mitigates high
computation overhead, maintaining a "positive" trade-off where the gain in cache hit ratio
outweighs the produced overhead. We don't address overhead during the training process, as this
computationally intensive phase can be conducted offline without impacting the user's
experience.

Streaming platforms handle large datasets. To design ML-assisted scalable cache policies,
integrating feature engineering techniques, as demonstrated in this work, is essential for
lightweight ML algorithms suitable for online execution. Successful implementation demands
properly integrating information obtained from clients engaging with diverse streaming services.
If integrated effectively, STRCacheMLcan decrease traffic congestion, as the requested data
could be efficiently fetched from cache memory. This approach could reduce energy consumption
and prevent overloading through improved data handling.Expanding beyond streaming, this
approach proves beneficial in various domains such as e-commerce, content delivery networks
(CDNs), and social media platforms. Thisis because our approach’s scalability relies on available
object parameters, a common aspect across different content delivery systems. In these contexts, a
cohesive interplay between user-generated data and the design, training, and development of ML
cache policies becomes helpful for improving content delivery and user experience. Another
notable concern ariseswith user data privacy. It is important to note that approaches relying on
training from user data involve learning patterns from potentially sensitive information. Various
established techniques, including anonymization and more robust cryptographic methods, such as
differential privacy or direct data encoding, can be utilized to address this issue. In the latter case,
methods like Multi-Party Computation can be integrated to enable computation on encrypted
data, ensuring that the data remains private. These alternatives present diverse options for
tackling the challenge of preserving privacy in our methodology, STRCacheML,whileextracting
learnablepatternsfrom user data.

In conclusion, STRCacheML, by integrating Machine Learning techniques with content caching,
demonstrates an advancement in the domain of Machine Learning Applications, particularly in
information retrieval and intelligent cache management systems, leading to improved efficiency
and adaptability in streaming services. With its potential to extend benefits to CDN platforms
beyond content caching in streaming services, STRCacheMLmay encounter some limitations
within specific scopes. These limitations can be addressed through broader experimentation and
dataset expansion, areas we identify as opportunities for future research.

Future work will explore more advanced ML and Deep Learning techniques, such as Recurrent
Neural Networks and Transformers, to be integrated into STRCacheML, also maintaining
computational efficiency and user privacy. There could be a potential benefit of incorporating a
hybrid method into the cache replacement policy. Additionally, investigating other possible
attributes and sophisticated feature engineering strategies by generalizing the applicability could
enhance model performance while maintaining computational efficiency.
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