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ABSTRACT. We discover a rigidity phenomenon within the volume-preserving partially
hyperbolic diffeomorphisms with 1-dimensional center. In particular, for smooth, ergodic
perturbations of certain algebraic systems — including the discretized geodesic flows over
hyperbolic manifolds and certain toral automorphisms with simple spectrum and exactly
one eigenvalue on the unit circle, the smooth centralizer is either virtually Z* or contains
a smooth flow.

At the heart of this work are two very different rigidity phenomena. The first was
discovered in [2] [3]: for a class of volume-preserving partially hyperbolic systems includ-
ing those studied here, the disintegration of volume along the center foliation is either
equivalent to Lebesgue or atomic. The second phenomenon is the rigidity associated to
several commuting partially hyperbolic diffeomorphisms with very different hyperbolic
behavior transverse to a common center foliation [25].

We employ a variety of techniques, among them a novel geometric approach to building
new partially hyperbolic elements in hyperbolic Weyl chambers using Pesin theory and
leafwise conjugacy, measure rigidity via thermodynamic formalism for circle extensions
of Anosov diffeomorphisms, partially hyperbolic Liv§ic theory, and nonstationary normal
forms.

To the memory of Anatole Katok.

CONTENTS

(1. Introduction |

|Discretized geodesic flows|

|Toral automorphisms|

[I'he secret sauce]

[Higher rank abelian actions|

|1.1.  Acknowledgements|

[1.2. Structure of this paper|
g i - ] T o

[2.1. The general formulations|

—

[2.2.  Partially hyperbolic difteomorphisms and center foliations|
1

— 0 0 0 00 I O = W N



2 DANIJELA DAMJANOVIC, AMIE WILKINSON, AND DISHENG XU

[2.3.  Lebesgue disintegration and large centralizer| 12
(2.4, Prior results 12
(3. Preliminaries| 13
[3.1. Regularity of maps and foliations| 13
[3.2.  Lyapunov exponents and the Oseledec splitting] 15
[3.3. Some useful properties of commuting maps| 16
[3.4. More on partial hyperbolicity| 17
[3.5.  Some Pesin theory| 26
[3.6. Normal forms for uniformly contracting foliations| 27
[3.7. Partially hyperbolic higher rank abelian actions| 30
4. Proofs of Theorems I3l and 15l 33
. Proof of Theorem 6] 38
[5.1. The groups G and G| 38
6. Proot of Proposition 43| 42
6.1. G, Gy have the same hyperbolic Weyl chamber picture] 43
16.2.  Estimates for elements in the same Weyl chamber| 44
|6.3.  Proot of Proposition |44] 45
|6.4.  Existence of partially hyperbolic elements and topological rigidity| 50
[6.5.  Absolute continuity of W5: volume and equilibrium states| 52

|6.6. Absolute continuity of Wi WH Jeafwise cocycle rigidity of higher rank |
partially hyperbolic actions| 53

[6.7.  Absolute continuity of WW}: uniqueness of the measure of maximal entropy| 54

[7._Proof of Theorem 4] 55
[Appendix A. Global rigidity ot conservative partially hyperbolic abelian actions |

on the torus 58
[References] 59

1. INTRODUCTION

The centralizer of a diffeomorphism f: M — M is the set of diffeomorphisms g that
commute with f under composition: fog = go f. Put another way, the centralizer of
f is the group of symmetries of f, where “symmetries” is meant in the classical sense:
coordinate changes that leave the dynamics of the system unchanged. The centralizer of
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f always contains the integer powers of f and typically not more, at least conjecturally
82 83]. By contrast, a diffeomorphism belonging to a smooth flow has large centralizer,
containing a 1-dimensional Lie group.

To date, the study of smooth centralizers has mainly focused in two directions: showing
that the typical map commutes only with its powers; and classifying the manifolds and/or
dynamics that can support abelian centralizers of sufficiently high rank. In this paper
we aim at describing the centralizers of all diffeomorphisms in a small neighborhood of a
given map, for specific classes of maps. This relates to one of the classical questions in
perturbation theory: if a diffeomorphism belongs to a smooth flow, which perturbations
also belong to a smooth flow? We answer this question fully for algebraic geodesic flows
in negative curvature in conservative setting.

More generally, we start with certain diffeomorphisms with ezceptionally large central-
izer — containing a 1-dimensional Lie group — and consider what happens when these
diffeomorphisms are perturbed. We find that for such perturbed systems, if the central-
izer gets large enough, as measured by the rank of its abelianization, then in fact it must
be exceptionally large.

To fix notation, let G be a group: our central example will be the space Diff" (M) of C”
diffeomorphisms of a closed manifold M under composition. For f € G, denote by Zg(f)
the centralizer of f in G:

Zo(f) = {9€G : of = fo}
We say that f € G has trivial centralizer in G if the centralizer of f consists of the iterates
of f:
Zg(f)=<f>={f" 1 nelt=1,
and virtually trivial centralizer if Zg(f) contains < f > as a finite index subgroupﬂ

For f € Diff" (M) and M fixed, we will use the shorthand notation Z,.(f) := Zpigr(ar)(f)-
If f € Diff}, (M) is a volume-preserving element of Dift" (M), then we denote Z, yo1(f) :=

vol

ZDiﬁ‘col(M)<f). It is not hard to see (see Lemma that if f € Diff7 (M) is ergodic
with respect to volume, then Z,.(f) = Z,yo(f). For r = 1 we drop r in the notation:

Diff! (M) = Diff(M).

Discretized geodesic flows. The context in which our main results are easiest to state
and prove is that of perturbations of discretized geodesic flows in negative curvature. Let
X be a closed, negatively curved, locally symmetric manifold, for example, a compact
hyperbolic manifold. Denote by T X the unit tangent bundle of X and by 1; the geodesic
flow 1y : T'X — T'X over X. The flow 9y preserves the canonical Liouville probability
measure on 7' X, which we denote by vol = volg1x. Any element ¢ of this flow commutes
with any other element, and thus

Zoo(r) 2 {5 : s € R} ZR.
Our first result concerns volume-preserving perturbations of the discretized flow: the time-

tp map y,, for a fixed ¢y # 0. Such a perturbation f € DiffS% (T X) will not necessarily

lif general, one says that a property holds virtually for a group G if G contains a finite index subgroup
H with that property.
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embed in a flow: for example, any perturbation with a hyperbolic periodic point cannot
embed in a flow, and such perturbations are plentiful. The upshot of this result is that if
such a perturbation does not embed in a flow, then it has virtually trivial centralizer.

Theorem 1. Let X be a closed, negatively curved, locally symmetric manifold, and let
e TYX — TX be the associated geodesic flow. Fiztg # 0, and suppose f € Diffoo (T1X)
is a Cl'—small perturbation of 1y,. Then either f has virtually trivial centralizer in
Diff (T X) or f embeds into a smooth, volume preserving flow (and thus Zs(f) 2 R).

Moreover, in the latter case, the centralizer Z.(f) is virtually R.

The conclusions of Theorem (I hold in considerably greater generality; see Theorem
and Remark [4] In particular, X can be any closed Riemannian manifold with pointwise
1/4-pinched negative curvature (such as a surface), or more generally any closed, negatively
curved manifold whose geodesic flow satisfies either a 2-bunched or narrow band spectrum
condition.

Thus for perturbations of these flows, up to finite index subgroups, the centralizer
is either Z or R. We do not know whether the same result holds for perturbations of
discretized Anosov flows in general.

Question 1. Do the same conclusions of Theorem [1] hold for the volume-preserving per-
turbations of the time-ty map of an arbitrary volume-preserving Anosov flow?

A partial answer to this question has recently been found in dimension 3 by Barthelmé
and Gogolev [4].

We remark that virtually trivial cannot be replaced by trivial in the conclusion of The-
orem (1, Indeed for any tp € R, Burslem shows in [16, Theorem 1.3] that the time-t(/2
map 1y, /o can be C° approximated by f € Diff( (T'X) with trivial centralizer. Then

vol
map f2 has virtually trivial, but not trivial, centralizer and C*°-approximates .

Toral automorphisms. Linear automorphisms of tori present a rich family of algebraic
systems with notable rigidity properties. Any orientation-preserving automorphism of
the torus T¢ = R%/Z? lifts to a linear automorphism of R¢ preserving Z?, which can
be represented by a matrix C' € SL(d,Z). For such a matrix C we write Tg: T¢ — T¢
to denote the associated toral automorphism. Since C' has determinant 1, the map T¢
preserves the Lebesgue-Haar measure on T¢, which we again denote by vol(= volya).

In the hyperbolic case where C' has no eigenvalues on the unit circle, the automor-
phism T¢ has a strong topological rigidity property known as structural stability: any
perturbation of T in Diff*(T¢) is topologically conjugate to Tc. The centralizer of a per-
turbation f € Diff!(T?) within Homeo™ (T¢) is thus isomorphic to the centralizer of T¢ in
Homeo™ (T4). It is well-known that when C is irreducible — meaning that its characteris-
tic polynomial is irreducible over Z — both Zy,..o+(1a)(Te) and Zsp(4,z)(C) are virtually
finitely generated free abelian groups (see Lemma or Proposition 3.7 in [45]). Of course
for a perturbation f € Diff”(T¢) of T, the centralizer Z,.(f) can be considerably smaller
than Zy 00+ (ray(f): in fact, Palis and Yoccoz showed that, among the smooth Anosov
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diffeomorphisms, there exists an open and dense subset of f € Diff>*(T?) such that the
centralizer Z.(f) is trivial [60, [61].

From a dynamical point of view, perturbations of the non-hyperbolic automorphisms
are considerably more interesting. When C' has no eigenvalues that are roots of unity,
then T is mixing with respect to vol, and in several cases of interest, stably mizing: any
sufficiently smooth, volume-preserving perturbation of T is mixing if d < 5 [70].

We consider a case in which both structural stability and ergodicity are violated in a
fairly dramatic fashion, where the generating matrix C' € SL(d,Z) has 1 as an eigenvalue,
with multiplicity 1E| By conjugating by a toral automorphism, we may assume without loss

of generality that C' = . For such A, the map T¢o = T4 X idr admits non-conjugate

1
affine perturbations of the form f = T4 x Ry, where Ry(z) = z + 0 is a rotation by § € T
in last factor in T¢ = T?"! x T, and so T¢ is not structurally stable, even within the
restricted class of affine transformations. By the same token, these affine perturbations

also have large centralizer, commuting with any affine map of the form Tp x Ry, with
B e ZSL(d—l,Z) (A), and 6 e T.

In the case that A is irreducible, the group Zgr,4—17)(4) is virtually abelian and its
rank is precisely the number ¢y = ¢y(A) which is defined as follows (see also Lemma |15 or
Proposition 3.7 in [45]).

Definition 1. For an irreducible element A in SL(d — 1,7Z) define ¢y(A) := r 4+ ¢ — 1,
where r is the number of real eigenvalues of A and c¢ is the number of pairs of complex
eigenvalues of A.

We obtain the following classification result for the centralizer of perturbations of T¢.

Theorem 2. Let f € Diff>%(T9) be a C'—small, ergodic perturbation of Ta x idr, where

A € SL(d — 1,7Z) is hyperbolic and irreducible. Let by = Lo(A). Then one of the following
holds:

(1) Zoo(f) is virtually Z* for some € € [1,4o]. Furthermore, £ < fo if £o > 1.
(2) Zo0(f) is virtually Z x T.
(3) Zoolf) is virtually Z x T, €y > 1 and f is C™ conjugate to Ty x Ry, 0 ¢ Q/Z.

Remark 1. Theorem[2 has a stronger formulation for perturbations of isometric extensions
of an irreducible toral automorphism, stated in Theorem [4]in the next section. For similar
problems on nilmanifolds, cf. our upcoming paper [23].

Remark 2. Consider the simplest non-ergodic example of f = T4 X id itself, for which
Z.o(f) is virtually Z% x Diff>(T). This example illustrates the a priori possibility that
the centralizer might not be virtually abelian, and thus part of the work in Theorem [2]
is to establish that for an ergodic perturbation, the centralizer is virtually abelian. In
particular, this shows that the ergodicity assumption in Theorem [2] is necessary. On
the other hand, the ergodicity assumption is satisfied generically: it is proved by Burns

2The case where C' € SL(d,Z) has exactly one eigenvalue of modulus 1 can be treated by similar
methods.
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and Wilkinson in [I3] and F. Rodriguez Hertz, M. A. Rodriguez Hertz and Ures in [72]
that ergodicity (indeed, mixing) holds open and densely among the partially hyperbolic
diffeomorphisms with 1-dimensional center in Diff>(T?) (for precise definitions and more

details, see Section . In particular, for any neighborhood U of T, there is a C'—open
set Uy C U such that every f € Uy is ergodic.

We conjecture that for any volume preserving (possibly non-ergodic) C'-small pertur-
bation f of T4 x id, the group Z,(f) is either virtually trivial or contains a nontrivial Lie

group.

Remark 3. We expect that the conclusions in Theorem [2| extend to the case when T4
is reducible hyperbolic toral automorphism as well. Moreover, we conjecture that for
general hyperbolic T4, the conclusion (1) should read: for every g € Z(f), and on any
< f, g >-invariant subtorus of T%, the action of < f, g > is virtually a Z-action.

Both Theorems [l] and [2| are consequences of more general results, which we state in
Section 2

The secret sauce. While it does not appear in the statements, there is a hidden concept
behind Theorems [l|and [2} pathological foliations. Both the discretized geodesic flows and
the toral automorphisms we discuss above preserve smooth, 1-dimensional foliations, in
the first case, the foliation by orbits of the flow, and in the second, the foliation by circles
tangent to the last factor in T9! x T.

Transverse to the leaves of these foliations, the dynamics is hyperbolic, and so the theory
of normally hyperbolic foliations developed in [35] applies. In particular, the perturbations
of these examples considered in Theorems [I] and [2] also preserve 1-dimensional foliations
with smooth leaves, homeomorphic as foliations to the unperturbed smooth foliations (see
Section for a detailed discussion). The measure-theoretic properties of these center
foliations are well-studied and play a key role in our proofs.

By a standard procedure, the volume vol can be locally disintegrated along the leaves of
a foliation F to obtain in each foliation chart a measurable family of measures, supported
on the local leaves (or plaques) Fi,. of the foliation. Each plaque Fj,.(x) of a foliation,
being a C' embedded disk, also carries a natural measure class volr, (») associated to
leafwise volume, or length in the case of 1-dimensional leaves. If the foliation is C! (i.e.
has C* foliation charts), then the disintegration of vol and leafwise volume are equivalent,
meaning they have the same sets of measure zero.

When, as is typically the case in our perturbed examples, the foliation is not C?,
anything goes, at least a priori. The two extremal cases are:

e Lebesgue disintegration, where the disintegrated and leafwise volume are equiva-
lent. A foliation F of M has Lebesgue disintegration if for every set Z C M:

vol(Z) =0 <= volg, (»(Z) =0, for vol-a.e. x € M.
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e atomic disintegration, where the disintegrated volume is atomic. A foliation F of
M has atomic disintegration if there exists a set Y C M and k > 1 such that

vol(M \Y) =0 and #{Y N Fic(x)} <k, for vol-a.e. z € M.

If a foliation fails to have Lebesgue disintegration with respect to volume, we call it
pathological, a concept first considered by Shub and Wilkinson in [81]. This concept plays
an important role in our paper. In brief, pathological disintegration is associated with
small centralizer and Lebesgue disintegration with large centralizer (at least in the group
of homeomorphisms).

Higher rank abelian actions. Another key role in our proofs is played by higher rank
abelian group actions with some hyperbolicity. A smooth Anosov action is a homomor-
phism a: G — Diff**(M), where G is a finitely generated abelian group, and «(a) is
an Anosov diffeomorphism, for some a € G (see Section for definitions of Anosov
and partially hyperbolic diffeomorphisms). For example, if f is Anosov, and the smooth
centralizer Z.(f) is finitely generated and abelian, then the action of Z.(f) on M is
Anosov. This is the case, for example, when M is the torus, and f is an irreducible
hyperbolic automorphism.

An Anosov action has higher rank if it contains an Anosov Z? subaction that does not
have a topological factor (possibly on a different manifold) which is virtually a Z-action.
Anosov higher-rank actions often display a range of rigidity properties (cf. [48], [50]), most
strikingly global rigidity. Katok and Spatzier conjectured that any higher rank Anosov Z*
action on a compact manifold is essentially algebraic, i.e. smoothly conjugate to an affine
action on a nilmanifold, up to a finite cover of M and up to a finite index subgroup in Z*.
(For more on the Katok-Spatzier conjecture, see for example [26] and references therein).
The conjecture was proved for Anosov actions on nilmanifolds by F. Rodriguez Hertz and
Wang [74] (for the statement on T¢, see Theorem [10]in Section .

In particular, if T is an irreducible, hyperbolic automorphism of the torus T¢, where
the centralizer of Ty is virtually Z¢, for some ¢ > 1, then the result of Rodriguez Hertz
and Wang implies the following dichotomy for the centralizer of every sufficiently small
perturbation f of T4, when ¢ > 2 (Corollary [33| in Section : either Zoo(f) is virtually
trivial, or Z5(f) is essentially algebraic, and its rank is the same as that of Z+(T4). This
has been the only existing situation where the smooth centralizer is completely locally
classified. Our results in Theorems|l| and [2| give classification of the centralizer for ergodic,
conservative perturbations of certain partially hyperbolic systems.

One of the main achievements in [74] is showing existence of many independent hyper-
bolic elements in an action given a single hyperbolic element. This is also one of the main
obstacles to proving the Katok-Spatzier conjecture in full generality. In [74] it is shown
that any higher-rank Anosov action on a nilmanifold has Anosov elements in every Weyl
chamber; together with [29], this proves the Katok—Spatzier conjecture on nilmanifolds,
and gives the dichotomy of the centralizer as mentioned above. The proof in [74] makes
use of the Franks—Manning conjugacy on nilmanifolds and fine analytic properties of the
dynamics of Anosov diffeomorphisms, in particular exponential rates of mixing.
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The actions considered here (as in the setting of Theorem, have a hyperbolic part and
a 1-dimensional nonhyperbolic, central part. The hyperbolic part is, on a topological level,
a maximal Anosov action — considerably simpler than the actions considered in [29, [74].
On the other hand, the methods in these works are not available to us: the central part
of our actions obstruct conjugacy to a linear system, and the dynamics of the systems
are potentially not even mixing. What is available instead is a leaf conjugacy to a linear
system, that is, a topological conjugacy modulo the center dynamics. Starting from the
leaf conjugacy, and using maximality of the action, we build up the partial hyperbolicity of
other elements in the action. Existence of many partially hyperbolic elements in the large
rank centralizer in the conservative setting forces Lebesgue disintegration of the volume
in the center direction.

Our arguments are geometric rather than analytic in nature and employ a range of
techniques, including the theory of normally hyperbolic foliations, rigidity of 1-dimensional
solvable group actions, Weyl chamber analysis, Pesin theory, normal forms, and Livsic
theory. One important idea, also employed in [I2], is to use Pesin theory and uniform
estimates to upgrade a uniformly expanded topological foliation W# to a foliation with
smooth leaves. To carry out such an argument requires precise control over the Holder
exponent of leaf conjugacies, something established relatively recently in [68].

1.1. Acknowledgements. We thank Sylvain Crovisier, Benson Farb, Federico Rodriguez
Hertz, Curtis McMullen, Yakov Pesin, Rafael Potrie and Zhiren Wang for useful discussions
and Andy Hammerlindl and Dennis Sullivan for corrections to an earlier manuscript.
We are grateful to Boris Kalinin for explaining to us the details of his recent results
in normal form theory, which are used in this paper. Damjanovi¢ was supported by
Swedish Research Council grant VR2015-04644. Wilkinson was supported by NSF Grant
DMS—1402852. This research was partially conducted during the period Xu served as a
Marie-Curie research fellow in Imperial College London.

1.2. Structure of this paper. In Section [2] we state our main results in the more general
context of partially hyperbolic diffeomorphisms with 1 dimensional center foliations and
discuss prior results. Section [3|contains background information and some new techniques
used in the proofs of our main results. In Section 4] we prove the main results about
discretized geodesic flows (Theorems |3| and . Theorem @ provides the disintegration
dichotomy which is the driver behind one of our main results, Theorem {4 The proof of
Theorem [6] occupies Section [5] Finally, in Section [7], we prove Theorem [4] The Appendix
contains the statement of a result from another work that we use in this paper.

2. STATEMENTS OF THE MAIN RESULTS AND DISCUSSION

2.1. The general formulations. In this section we state the following more general
versions of the rigidity results for centralizers, which immediately imply Theorems [I| and

2
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Theorem 3. Let X be a closed, negatively curved manifold, and let 1;: T'X — T'X be
the geodesic flow. Suppose that 11 satisfies either the 2-bunched or narrow band spectrum
condition given in Section Definition [§

Then there exists a real number ro = ro(X) > 1 such that for all r > 19, and any
to # 0, if f € Diff> (T X) is sufficiently C* close to 1y, then either Z.(f) = Zrvol(f)

is virtually trivial, or Z(f) = Zsvol(f) is virtually R for any s > 1. In the latter case f
embeds into a C*°, volume preserving flow.

Remark 4. The hypotheses of Theorem [3| are satisfied by a large class of negatively curved
manifolds X. In particular:

(1) The 2-bunched condition is satisfied if X has pointwise (strictly) 1/4-pinched cur-
vature: the minimum and maximum sectional curvatures K, (z) < Kpax(x) <0
at ¢ € X satisfy

1) ((X) i= inf Kol®)

> 1/4.
zeX Kpin () /

(See [51, Theorem 3.2.17] and the discussion following Definition [§). This holds
for example, if X is a surface. In this case ro(X) = \/{(X)~! € [1,2).
(2) The narrow band spectrum condition is satisfied by all locally symmetric X. If X

is a real hyperbolic manifold, then ro(X) = 1, and if X is locally symmetric but
not real hyperbolic, then ro(X) = 2 (Lemma [26)).

Let g: T¢! — T9~! be a diffeomorphism. An isometric (circle) extension of g is a map
f=9p: T4 x T — T x T of the form

9p(z,y) = (9(2),y + p(z)),

where p: T%!1 — T is a continuous map taking values in the circle T = T'. If p is
homotopic to a constant then it can be lifted to (and hence viewed as) a map taking
values in R. The map g, is a C" diffeomorphism if and only if g and p are C" and
preserves volume if and only if ¢ does.

The simplest examples of isometric extensions are products g x Ry, where Ry(y) := y+6
is a rotation. In this case p = 6 is a constant function. It is easy to check that there exists
B: T4t — T such that idgog, = (g x Ryg)oidg if and only if p satisfies the cohomological
equation

p=—Bog+pB+80.

In this case we say that p is cohomologous to a constant 6. If g € Diff%,ol(’]l‘dfl) is Anosov,
then g, is ergodic if and only if p is not cohomologous to a rational constant, and g, is

stably ergodic if and only if p is not cohomologous to a constant [14].

If T4 is an irreducible hyperbolic automorphism and (74), is ergodic, then for all s > 1,
the centralizer of (T4), in Diff*(T?) contains Z x T. In addition, it contains Z‘(4) x T if
p is C*° cohomologous to a constant, where £y(A) > 0 is as in Definition
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[ Our first result addresses perturbations of these maps.

Theorem 4. Suppose A € SL(d—1,7Z) is an irreducible hyperbolic matriz. Let £y := lo(A)
be as in Definition [1| . Then there exists rg > 1 such that for any r > 1o and any
C™ function po: T41 — R, if f € Diff%(T9) is a C'—small, ergodic perturbation of

vol
the isometric extension fo := (Ta), , then one of the following holds for the centralizer
Zs(f) = Zsyal(f):

(1) (Small centralizer) Z4(f) is virtually Z¢ for some £ € [1,4] and any s > r. Fur-
thermore, £ < £y if o > 1.

(2) (Isometric extension) Zs(f) is virtually Z x T for all s > r. In this case f is
smoothly conjugate to a smooth isometric extension g, of an Anosov diffeomor-
phism g € Diffggl(Td_l). Moreover, either g is not C*° conjugate to A, or pg is
not C*° cohomologous to a constant.

(3) (Rigidity) Z,(f) is virtually Z x T for all s > 1. In this case, f is C™ conjugate
to the product Ta x Ry with 0 ¢ Q/7Z.

po’

A% AY
MS’ M’U,
A%, 1®) are the top and bottom unstable (resp. stable) Lyapunov exponents of A.

Remark 5. The value ¢ in Theorem 4] is explicit: 79 = max( ), where A", u" (resp.

Remark 6. In the interests of space, Theorem [ treats only isometric extensions homotopic
to T4 x idp. For the general case where pg: T¢! — T is not null-homotopic, similar results
hold, up to finite factors. In particular, for an ergodic perturbation f of an arbitrary
isometric extension (T4), , conclusions (1) and (2) are the same, and in conclusion (3), f
is smoothly conjugate to an ergodic affine map isotopic to (T'4) po-

Remark 7. In the case £y > 1 the conclusion (1) gives that the rank of the centralizer
of a perturbation is strictly less than ¢y. We conjecture that conclusion (1) should be
much stronger: the centralizer should be virtually trivial. The main obstacle in obtaining
virtually trivial centralizer in this case is that several techniques we use apply currently
only to the mazimal actions H defined in Section as opposed to general higher rank
actions.

In sufficiently low dimension, Theorems[2]and [4]establish the truth of this conjecture and
give a dichotomy between virtually trivial centralizer and large centralizer. In particular,
if we assume in addition to the hypotheses of Theorem |4 that A € SL(d — 1,Z) satisfies
one of the following conditions:

e d=3or 4

e d =5 and A has at least one pair of complex roots;
e d =6 and A has two pairs of complex roots; or

e d =7 and A has three pairs of complex roots;

3In fact for s large enough, the centralizer is either virtually Z x T or virtually 7% % T, in the latter
case p is C*° cohomologous to a constant. This follows from Theorem [4] but also has a more elementary
proof using cocycle rigidity of the centralizer of T}4.

4or more generally, for totally non-symplectic (TNS) action (cf. Proposition .
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then ¢y(A) = 1 or 2, and the dichotomy in Theorem || reduces to the following: if f €
Diff> (T9) is a C'!' —small, ergodic perturbation of fy, then Z(f) is either virtually trivial,

vol

virtually Z x T for all s > r, or virtually Z2 x T for all s > 1.

Before stating the rest of the main results in this paper, we define partial hyperbolicity
and some related concepts.

2.2. Partially hyperbolic diffeomorphisms and center foliations. Let M be a com-
plete Riemannian manifold, and let h € Diff(M). A dominated splitting for h is a direct
sum decomposition of the tangent bundle

TM =E'©oE*a...0 EF
such that

e the bundles E° are Dh-invariant: for every i € {1,...,k} and * € M, we have
D,h(Ei(z)) = E¥(h(x)); and

o Dh|gi dominates Dh|gi+1: there exists N > 1 such that for any x € M and any
unit vectors u € B! | and v € E*:

1
1D (W)l < 5 DR (v)].

The property of a splitting being dominated is independent of choice of equivalent metric
(and independent of choice of metric in the case where M is compact). A dominated
splitting is always continuous. If M is compact and k' is C' close to h with a dominated
splitting, then A’ also has a dominated splitting, which varies continuously with A’ in the
C' topology.

A C' diffeomorphism f : M — M of a complete Riemannian manifold M is partially
hyperbolic if there is a dominated splitting TM = E* @ E°@® E° and N > 1 such that for
any € M, and any choice of unit vectors v* € E*(x) and v* € E"(x), we have

max{|| Dy f (0°) ||, [| Daf =N ()|} < 1/2-
We always assume the bundles £® and E* are nontrivial. If E¢ is trivial then f is Anosov.

A flow ¢: M xR — M is Anosov if for some tg # 0, the time-ty map ¢y, is partially
hyperbolic, with the center bundle E¢ = R¢ tangent to the orbits of the flow. If ¢ is
Anosov, then the time-t map ¢, is partially hyperbolic for every ¢ # 0. An example of an
Anosov flow is the geodesic flow over a closed, negatively curved manifold, such as those
considered in Theorem [3l

Isometric circle extensions of Anosov diffeomorphisms, such as the diffeomorphisms
considered in Theorem 4] are also partially hyperbolic, with E° tangent to the vertical
foliation by circles {{z} x T : x € T4} (see, e.g. [14]).

If M is a closed manifold, then partial hyperbolicity is open property in the C! topology
on Diff'(M). Thus the C'-small perturbations considered in Theorems [3| and |4 are also
partially hyperbolic.



12 DANIJELA DAMJANOVIC7 AMIE WILKINSON, AND DISHENG XU

If f is partially hyperbolic and C", 1 < r < 0o, then the bundles E® and E" are tangent
to foliations W* and W*", known respectively as the stable and the unstable foliations of
f. These foliations have C" leaves but are typically only Hoélder continuous. For a more
detailed discussion of foliation regularity, see Section [3.1

We say a D f—invariant distribution £ C T'M is integrable if there exists an f—invariant
foliation W = {W(z)}sem with C! leaves everywhere tangent to the bundle E, and
uniquely integrable if every O curve tangent to E lies in a single leaf of W.

The bundles E* and E° are thus integrable, and are in fact uniquely integrable. The
center bundle E€ is not always integrable (see [73]), but in many examples of interest,
such as the time-one map of an Anosov flow and its perturbations, or perturbations of an
isometric extension of Anosov map, the theory of normally hyperbolic foliations developed
in [35] implies that E° is integrable, as are the bundles F® = E‘® E® and E = E°® E".
In particular, for those f considered in this paper, E°¢ is integrable, and in fact uniquely
integrable, tangent to a center foliation W€, (see Theorem . Our main results can be
recast in terms of the measure theoretic properties of center foliations, as follows.

2.3. Lebesgue disintegration and large centralizer. As mentioned in the introduc-
tion, some of the key ingredients in proofs of Theorems [3|and [ are the following dichotomy
results which link the disintegration of volume along the center foliation with the structure
of the centralizer.

For volume-preserving perturbations of the discretized geodesic flow on any negatively
curved manifold, we have

Theorem 5. Let X be a closed, negatively curved Riemannian manifold, and let 1y : T X —
T'X be the geodesic flow. Fix ty # 0, and suppose f € Diff%,ol(TlX) is a C'—small per-
turbation of 1y,. Then either the volume vol has Lebesque disintegration along WJ‘i, or f

has virtually trivial centralizer in Diff(T1X).

For perturbations of an isometric extension of a hyperbolic toral automorphism, we
have

Theorem 6. Let fy : T¢ — T and ly be as in Theorem and let f € Diff2 |(T?) be a
C'—small, ergodic perturbation of fo. Then either the volume has Lebesgue disintegration

along W5, or Zo(f) is virtually Z* for some £ < £y. Moreover £ < Ly if £y > 1.

2.4. Prior results. As mentioned in the introduction, it is expected that the typical
diffeomorphism has small centralizer. Indeed, Smale asked [82] 83] whether the set of C”
diffeomorphisms with trivial centralizer is generic in Diff"(M). Several works have been
devoted to this question in various contexts, going back to Kopell’s solution [52] to the
question in the smooth case on the circle: those diffeomorphisms with trivial centralizer
contains a C* open and dense set in Diff>(T). The question has also been answered in
full generality by Bonatti-Crovisier-Wilkinson in the C! topology: trivial centralizer is
generic (but not open) in Diff!(M) and Diffl (M), for any closed manifold M [7, 8, 9].
See [7] for a discussion of the history of this problem.
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In the restricted context of partially hyperbolic systems, stronger results are known in
the smooth category: Palis—Yoccoz showed that the set of C*° diffeomorphisms with trivial
centralizer contains an open and dense subset of the set of Axiom A diffeomorphisms in
Diff > (M) possessing at least one periodic sink or source [60} [6I]. The conditions have
subsequently been relaxed [28] [69]. In another direction, Burslem showed [16] that for a
class of C*° partially hyperbolic systems, (including non-volume-preserving perturbations
of the systems considered in this paper), there is a residual subset whose centralizer is
trivial.

When it comes to (partially) hyperbolic diffeomorphisms whose centralizers contain
large rank abelian subgroups of (partially) hyperbolic diffeomorphisms, the general phi-
losophy has been that a rich variety of (partially) hyperbolic dynamics in an abelian group
action should be a rare occurrence. Classes of algebraic examples of such abelian actions
have been listed in [49] by Katok and Spatzier, who also proved in [50] that such Anosov
abelian actions are locally rigid: small perturbations of such an action are all smoothly
conjugate to unperturbed action. Further local rigidity results for classes of partially hy-
perbolic abelian actions are found in [2I], [86]. Moreover, for Anosov diffeomorphisms,
if the centralizer contains a Z? subgroup that does not factor onto a virtually Z-action,
Katok and Spatzier conjectured that f is then smoothly conjugate to a hyperbolic (in-
fra)nilmanifold automorphism, and in particular it has a full rank centralizer smoothly
conjugate to a group of automorphisms. We refer to [26], [85] and references therein for
the history and most recent results in the direction of this global rigidity conjecture.

In the case of volume preserving partially hyperbolic diffeomorphisms with compact cen-
ter foliation, it is found in [25] that a large rank centralizer with sufficiently many partial
hyperbolic elements also leads to global rigidity. In particular, it was first discovered in
[25] that the bad disintegration of volume along the leaves of the center foliation should
be the main obstacle to rigidity for higher rank partially hyperbolic actions. The forth-
coming paper [23] exploits this further by obtaining in some cases stronger global rigidity
results (see Appendix A). For the case of commuting isometric extensions over hyperbolic
toral automorphisms, local rigidity results have been obtained earlier under Diophantine
conditions, in [19].

Work of Avila, Viana and Wilkinson [2], 3] establishes a dichotomy for a class of partially
hyperbolic diffeomorphisms with 1-dimensional center foliation: either the disintegration
of Lebesgue is atomic on the center foliation or volume has Lebesgue disintegration on the
center. E| Moreover, for these maps, if volume has Lebesgue disintegration on the center,
then there is a continuous volume-preserving flow commuting with the map. These results
apply directly to the systems considered here, and we take them as a starting point.
Otherwise, our methods are almost entirely disjoint from those in [2], 3].

3. PRELIMINARIES

3.1. Regularity of maps and foliations. For r € (0,1), we say that map between
metric spaces is C" if it is Holder continuous of exponent r. For r > 1 we say that a map

SUnder an accessibility assumption. See Section
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between smooth manifolds is C if it is C'l and the [r]th-order derivatives are C"~ "], For
r >0, amap is C"" if it is C" ¢ for some ¢ > 0.

Let M be a manifold of dimension d > 2. A k—dimensional topological foliation F of
M is a decomposition of M into path-connected subsets

M = U F(x)

zeM

called leaves, where x € F(z), and two leaves F(z) and F(y) are either disjoint or equal,
and a covering of M by coordinate neighborhoods {U,} with local coordinates (z.,...,z%)
with the following property. For z € U,, denote by Fy,_ (x) the connected component of
F(x)NU, containing x. Then in coordinates on U, the local leaf Fy; () is given by a set
of equations of the form ¢! = ... = 2¢ = cst. If the local coordinates (z.,...,2%) can
be chosen unlformly C" along the local leaves (i.e., to have uniformly C" overlaps on the
sets zFtl = ... = 29 = cst) then we say that F has C"—leaves. If the (z),...,2%) can be

chosen C” on Ua then F is called a C" foliation.

Note that the leaves of a foliation with C" leaves are C", injectively immersed subman-
ifolds of M.

The next lemma follows from an application of C"—section theorem in [35]; for a precise
proof cf. Corollary 5.6 in [24] or [6§].

Lemma 8. Let f be a C"t! diffeomorphism of a closed Riemannian manifold M. Let W
be an f—invariant foliation with uniformly C"—leaves. For x € M, let o, 1= HDf\;]l/V(x)H
Let E' and E? be continuous, f—invariant distributions on M such that the distribution
E = E'® E? is uniformly C™ along W leaves and E* ® E? is a dominated splitting in the
sense that for any r € M,

MaXye g2(z), o) =1 | Df (V)]

ming,e g1 (g, |vlj=1 D ()]l

If supyeps kel < 1, then E' is uniformly C along the leaves of W. In particular if
ay <1 for all z € M then E' is uniformly C™ along the leaves of W.

ky =

Suppose F is a foliation of a closed manifold M with C' leaves, and u is a Borel
probability measure on M. Let B be a foliation box, and let up be normalized Lebesgue
measure on B. There is a unique family of conditional measures pu, defined for up—almost
every x in B with the following properties (see [75]). First, for almost every x, the measure
Lz is supported on the plaque Fp(z); second, for every pp-integrable function ¢: B — R,

we have
/ W (x) dup(x / /f 5 Y)dpa(y) dus ().

We say p has Lebesgue disintegration along F if for any foliation box B and pp—almost
every x, the conditional measure of g on Fp(z) is equivalent to the Riemannian measure
on Fp(x). The measure p has atomic disintegration (along F) if there exists k > 1 such
that for any foliation box B the conditional of up measure on Fp(z) is atomic, with at
most k atoms, for yp—almost every x.
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Lemma 9. Let F be an orientable topological foliation of a closed manifold M such that all
leaves are circles. Suppose that there exists a full volume set S C M and k € N such that
S meets almost every leaf of F in exactly k points. Let Gg (F) be the set of g € Diffy (M)
such that g preserves orientation on F, and g(F(x)) = F(x), for allx € M. Then Gg(F)
s a finite cyclic group.

Proof. Since the action of Gg,(F) fixes all the leaves of F and preserves the volume, on
almost every leaf F(z), any element g of Gs,(F) maps atoms to atoms, which means that
g induces a permutation on S N F(z). Moreover since g preserves the orientation of each
circle leaf of F it induces a cyclic permutation (with respect to the circle ordering) of the
atoms on almost every leaf.

Thus for every x € S, the restriction of ¢ € Gg(F) to F(x) has rotation number
K (g,x)/k (mod1), for some k € Z* and k' = k/(g,z) € Z/kZ, where k is the number of
atoms. Since the rotation number is a continuous function on diffeomorphisms, and S is
dense, k'(g, ) is independent of zz. Therefore on every center leaf, g has rotation number
K'(g)/k (mod1). Moreover for any other h € Ga.(F) such that k'(g) = k(h), and every
x € S, h induces the same permutation on SN JF(z) as g, which implies that g = h, by the
density of S. Therefore k£’ induces an injective homomorphism from Gg,(F) to Z/kZ. O

3.2. Lyapunov exponents and the Oseledec splitting. Suppose M is a smooth man-
ifold and f € Diff!(M) is a diffeomorphism preserving a probability measure u (for in-
stance, volume). In analogy with the Birkhoff ergodic theorem, one can inquire about the
asymptotic behavior of the composition of tangent maps of f

Dpfn = Df"(p)f ©---0 Dpf : TpM — Tfn(p)M,

for p-a.e. p € M. An answer is given by the Oseledets Multiplicative Ergodic theorem,
which we describe here in the setting of continuous cocycles.

Suppose X is a compact metric space and E — X is a (continuous) vector bundle. Let
T : X — X be homeomorphism. A continuous linear cocycle over T is a bundle map
F: E — FE covering T'. On the fibers, F' is given by linear maps F,: E, — Ep, that vary
continuously with x. For simplicity we assume that each F) is invertible, so that F' is a
bundle isomorphism.

Suppose that T' preserves an ergodic probability measure ¢ on X, and E is equipped
with a continuous Finsler structure {|| - || : © € X}. Then the Oseledec theorem gives
real numbers A\; > --- > A\ called Lyapunov exponents and a measurable, F'—invariant
splitting E = EM @ --- @ E™, such that for v € E, \ {0},

1
ve By <= lim —log||F"(v)|rn@) =\

n—=+o0o
The splitting £ = @E is called the Oseledets splitting for the cocycle.

The following well-known result allows one to deduce uniform growth of cocycles from
knowledge about exponents for every invariant measure. The proof is a corollary of a
classical result on subadditive sequences (cf. [80] or chapter 4 in [39].)
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Lemma 10. Let f : X — X be a continuous map of a compact metric space, and let
F: E — FE be a continuous linear cocycle over f, where p: E — X is a continuous vector
bundle over X.

(1) If for any f—invariant ergodic measure v, the top Lyapunov exponent \™**(F,v)
is < X, then for any € > 0, there exists n € Z such that

|F™ (@) < "9, vz € X.

(2) If for any f—invariant ergodic measure v, the bottom Lyapunov exponent \™"(F, v)
is > X, then for any e > 0, there exists n € Z such that

|F™(z)~ Y|~ > "™ 9, vz € X.

3.3. Some useful properties of commuting maps. A basic principle in the study of
abelian actions is the following: if f and g are commuting maps, and T is an f-invariant
object, then g,(T) is also f-invariant. For example, if f(p) = p, then f(g(p)) = g(f(p)) =
g(p). Thus ¢g(Fix(f)) C Fix(f); in other words, the set of f-periodic points of period k is
a g-invariant set. Similar results hold for invariant sets of commuting homeomorphisms,
such as the limit set and non-wandering set.

In the measurable context, if u is an f-invariant measure, then g,u is also f-invariant,
and so g, preserves the set of f-invariant measures. When further assumptions are added,
such as those in the present context, we get the following useful lemma.

Lemma 11. Let M be a closed manifold, and suppose that f,g € Diff (M) satisfy fg = gf.
If f is topologically transitive and preserves a volume with continuous density (for example,
if f is ergodic with respect to volume), then g is volume preserving as well.

Proof. The commutativity implies that voly; and g.(volys) are both f—invariant mea-

d(g«volys)
d(voln)
continuous function. Transitivity of f implies that this derivative is constant and equal

to the degree of g, which is 1. Thus g.(volys) = voly,. O

sures. Since g is C', the induced Radon-Nikodym derivative is an f—invariant

If f and ¢ are commuting diffeomorphisms, then their derivatives commute as well. It
follows that if f(p) = p, then the derivative of f at p is conjugate to its derivative at g(p),

and so D, f and D, f have the same eigenvalues. More generally:

Lemma 12. Let M be a closed manifold, and suppose that f,g € Dift (M) satisfy fg = gf.
If v is an ergodic invariant measure for f, then the Lyapunov exponents of . are the same
as the Lyapunov exponents of g .

Applying the same principle to the invariant subbundles in a dominated splitting, we
obtain the following lemma, whose proof is straightforward.

Lemma 13. Let M be a closed manifold, and suppose that f,g € Dift (M) satisfy fg = gf.
If | preserves a dominated splitting TM = El'g.-.-®Ef, then so does g. Moreover if, for
some i, E' is uniquely integrable, with integral foliation W', then g(WWV') = W".
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Sufficiently high regularity of a map plus some hyperbolicity can force high regularity
of its centralizer. A basic motivating example is a linear map on R. If f(x) = 2z and
fg =gf, then g(0) = 0, and the commutativity of f and g implies that for all z # 0 and
n:

g(@) _ fref (@) 2" (g) ~ 9(zw) —9(0))
x x 2n 5 ’

If g is differentiable at 0, then the right hand side converges as n — oo to ¢’(0). Thus
g(x) = ¢'(0)x is linear.

x

A more sophisticated illustration of this principle in the setting of linear Anosov diffeo-
morphisms is the following result, due to Adler and Palais:

Lemma 14. [[1]] Suppose A € SL(k,Z) does not have a root of unity as an eigenvalue,

and let Ty be the induced automorphism of T*. Suppose h : T* — T* is a homeomorphism
such that Tyh = hTa. Then h is affine and h(0) € QF/ZF.

For such toral automorphisms T4, we thus have
ZHomeo(’]I‘k)(TA) C {:E = Trr+b:Le ZGL(k,Z) (A)a be Qk/Zk}

When A is irreducible, the linear part of the right hand side can be computed using the
following lemma, which a corollary of the Dirichlet unit theorem (cf. Proposition 3.7 in
[45]).

Lemma 15. Let A € GL(k,Z) be a matriz with characteristic polynomial irreducible over
Z. Denote by Zqr,u,7)(A) and Zg1,4,7)(A) the centralizer of A in GL(k,Z) and SL(k,Z),
respectively. Then Zgyxz)(A) and Zsy,7)(A) are abelian, and both are virtually Zrre
where 1 is the number of real eigenvalues and c is the number of pairs of complex eigen-
values, r + 2c = k.

3.4. More on partial hyperbolicity. In this section we discuss fundamental concepts
in the study of partially hyperbolic diffeomorphisms: normal hyperbolicity, leaf conjugacy,
center bunching, and accessibility. We also discuss some results of Avila—Viana—Wilkinson
[2, B] that we use in this paper.

3.4.1. Normal hyperbolicity. Suppose M is closed manifold, and let fi, fo € Diff(M).
Assume that Fi, F, are foliations of M with C! leaves and that f; and f» respectively
preserve JF; and Fs.

Definition 2. A leaf conjugacy from (f1, F1) to (f2, F2) is a homeomorphism h : M — M
sending JF7 leaves diffeomorphically onto Fo leaves, equivariantly in the sense that

h(f1(Fi(p))) = f2(Fa(h(p))), Vp € M.

Definition 3. Suppose f € Diff(M) and F is an f—invariant foliation of M with C*
leaves. F is normally hyperbolic if there exists a D f—invariant dominated splitting TM =
EY® E°® E°, with at least two of the bundles nontrivial, such that D f uniformly expands
EY, uniformly contracts F*®, and such that TF = E°.
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Note that a diffeomorphism with a normally hyperbolic foliation is partially hyperbolic,
with £¢ =TF, but, as remarked above, the converse does not hold in general: the center
bundle of a partially hyperbolic diffeomorphism is not necessarily tangent to a foliation,
let alone an invariant foliation.

Definition 4. A partially hyperbolic diffeomorphism f is dynamically coherent if there
exist f—invariant center stable and center unstable foliations W and W€, tangent to
the bundles £ and E*, respectively; intersecting their leaves gives an invariant center
foliation W¥¢.

3.4.2. Fibered partially hyperbolic systems. In many of the cases of interest here, the center
foliation W€ of a partially hyperbolic diffeomorphism f has compact leaves that form a
fibration. We distinguish between several cases of such fibered systems.

Definition 5. Let f be a partially hyperbolic diffeomorphism of a closed manifold M.
Assume that there exists an f—invariant center foliation chc with compact leaves.

o If W5 is a topological fibration of M, i.e. the quotient space M / W is a topological
manifoldﬁ, then f is called a fibered partially hyperbolic system, and the map f :
M/W¢ — M/W*€ canonically induced by f is called the base map.

e A fibered partially hyperbolic system f is smoothly fibered (or C"—fibered, for
r > 1) if Wi is a O (respectively C") foliation, and f is C™ (resp. C™).

e A fibered partially hyperbolic system f is isometrically fibered if there is a contin-
uous Riemannian metric on E° such that D f| S is an isometry.

e An isometrically fibered partially hyperbolic system f is an isometric extension
(or smoothly isometrically fibered) if f is smoothly fibered.

3.4.3. Leafwise structural stability. A central result in [35] concerns perturbations of nor-
mally hyperbolic systems. It provides techniques to study integrability of the central
distribution and robustness of the central foliation for partially hyperbolic systems.

To study the precise smoothness of the leaves of a normally hyperbolic foliation, we
refine the definition of normal hyperbolicity. For r > 1 we say that (f, F) is r-normally
hyperbolic if there exists k£ > 1 such that

sup | Dpf* ||| - [|(Dpf*lrr) " < 1, and sup [(Dpf*|ge) M| - | Dpf*rr|l” < 1.
p P
Note that 1-normally hyperbolic = normally hyperbolic, and r-normal hyperbolicity is a
C'-open condition.

The proof of the following theorem can be found in [35, Theorems 7.5 and 7.6] (see also
Remark 4 on p. 117), [6, Theorem 1.26], and [18], [35, Theorem 7.1], and [68, Theorems
A and B]J. See the discussion in [68, Section 3].

Theorem 7 (Foliation Stability and Holder continuity of the leaf conjugacy). Let M be a
closed manifold, and let (f, F) be an r-normally hyperbolic foliation of M, for some r > 1,
with D f-invariant splitting E* @ (TF = E°)® E*. Then the leaves of F are uniformly C".

6Or, equivalently, if W} has trivial holonomy; see [6]
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The bundles E* and E® are uniquely integrable and the leaves of their integral foliations
WY and W* are as smooth as f.

Suppose in addition that one of the following holds:

(a) f is a fibered system, with 1-dimensional center fibration F, or
(b) the restriction D f|r is an isometry.

Then

(1) f is dynamically coherent, and the foliations W<, W and F = W N W are
r-normally hyperbolic and uniquely integrable.

(2) Every diffeomorphism g that C*-approxvimates f is dynamically coherent and the
foliations Wg*, Wt and F43 = Wg* N Wg* are r-normally hyperbolic near F.
Moreover, (f,F) is leaf conjugate to (g, F4) by a homeomorphism h: M — M
close to the identity.

(3) In case (a) the conjugacy in (2) is bi-Hélder continuous ( that is, Hélder contin-
uous with a Holder continuous inverse ).

By combining Theorem [7| with Lemma [13| gives the next proposition as an immediate
corollary.

Proposition 16. Let f: M — M satisfy one of the following conditions.

(a) M =T, and f is a C*—small perturbation of an isometric extension of an Anosov
diffeomorphism of T4~1;

(b) M =T'X, where X is a closed, negatively curved manifold, and f is a C'—small
perturbation of the discretized geodesic flow 1, for somety # 0 (or more generally
any Anosov flow).

Then f is dynamically coherent, and for any g € Z1(f) we have gWi = Wy, for x €
{c,s,u,cs,cu}.

Finally, we have a lemma that we will use in Section [}

Lemma 17. Let ¢y: M — M be an Anosov flow with the property that the lift ﬂ’t of Yy
to the universal cover M has no closed orbits, and let f be a C*-small perturbation of 1y,
for some tg # 0.

Then for any g € Z1(f) , and for any closed leaf WJ%(:E), there ewists k > 1 such that

9" Wi (@) = Wi(z).

Proof. Consider the lifts @t,f of vy, f respectively to M , where f is uniformly C'—close
to 17175, and ]7’ preserves the lift VV/]‘i of W]‘i On each W;—leaf, the action of f is uniformly
close to a translation by tp on R and thus is topologically conjugate to a translation.
Thus there exist 0 < Tmin < Tmae such that for every z € M and every N > 1, we have

d°(x, ]~‘N ()) € [NTmins NTmaz), where d¢ is the distance measured along W}? leaves.
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Let g € Zpig(ar)(f), and fix an arbitrary lift g: M — M. Fix an arbitrary & € M,
and let v: [0,7] — M be a unit-speed, C! path tangent to Wjﬁ(io) with (0) = Zp and
~(T) = j“N(:'fco), for some N > 1. Note that T € [N7Tmin, N Timaz]-

Proposition (16| implies that § preserves the foliation 17\//;, and so for any m > 0, g™ (v)

is a path tangent to W]? from g™ (Zo) to }N(§M(:EO)). It follows that the length of g™ ()
also lies in the interval [NTpin, NTmaz]. Now suppose that W]Cc(ac) is a closed center leaf

in M of length R € [N7pin, NTmaz|. Then there are lifts 21, 29 of x to M connected by a

unit-speed path in WJCC of length R. This path is contained in a unit-speed path connecting

21 to fNH(zl), whose length lies in [(N + 1)7pmin, (N + 1)Timae]. Thus, for all m > 1, the
distance between ¢""(z1) and ¢™(z2) is bounded by (N + 1)Tmaq-

Since g is a diffeomorphism preserving Wy, it permutes the closed leaves. Thus g™ (W§(z))
is a closed leaf whose length is at most CR, where C' does not depend on R or m. Since
f is a perturbation of 1/y,, its periodic center leaves of bounded length are isolated, and
there are only finitely many of length < C'R. If follows that every closed center leaf of 4%
is g-periodic. O

3.4.4. Bunching conditions. For r > 1, we say that a partially hyperbolic diffeomorphism
f of a Riemannian manifold M is center r—bunched if there exists £ > 1 such that:

sup {1 Dp £ | - (D 15e) ™ 17 Dy ) M- 1D M7} < 1,
p

sup | Dpf*| sl - [ (Dpf*lpe) | - Dy pell” < 1, and
p

sup [|(Dpf* 1) "M 1 Dpf el - 1(Dpf*[pe) HI" < 1.
p

When f is C" and dynamically coherent, the first of these three inequalities is r-normal
hyperbolicity and implies that the leaves of W¢ W W are C". If f is C™! and
dynamically coherent they also imply the stable and unstable holonomy and E®, E* are
C™ along W€, cf. [68,87]. We say that f is center bunched if it is center 1-bunched. If E¢
is 1-dimensional, then f is automatically center bunched. All systems we consider here
have 1-dimensional center and thus are center bunched.

Unfortunately, the term “bunching” is also used in a completely different way, to de-
scribe stable (and unstable) expansion rates for contracted (and expanded) subbundles.

Definition 6. Let f € Diff (M), and suppose that E C T'M is a continuous D f-invariant,
subbundle. For r > 0, we say that D f|g is r-bunched if there exists k > 1 such that:

sup max{ || Dpf*|gll. [|(Dpf*16) " | - |1Dpf*[6lI"} < 1.

peEM
The smaller r is, the harder it is to satisfy r-bunching (as opposed to center r-bunching,
which is easier to satisfy for small r) . If Df|g is conformal, then it is r-bunched, for all

r > 1. If f is partially hyperbolic, we say that the stable (resp unstable) spectrum of f is
r-bunched if D f| B3 (resp. Df~1| E}L) is r-bunched.
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3.4.5. Accessibility. The foliations Wy and 4% of a partially hyperbolic diffeomorphism
f: M — M induce an equivalence relation on M: we say that x,y € M are in the
same accessibility class if they can be joined by an su—path, that is, a piecewise C!
path such that every piece is contained in a single leaf of W; or a single leaf of W}‘
Then f is accessible if M consists of a single accessibility class. At the opposite extreme
of accessibility is joint integrability: E}L and EJ"’E are jointly integrable if there exists an
f—invariant foliation WH with C! leaves everywhere tangent to the bundle E* @ E*. In
this case, unique integrability of E*, E® implies that accessibility classes are the leaves of
the foliation WH.

Pugh and Shub conjectured that if f € Diff2 (M) is partially hyperbolic and accessible,
then f is ergodic. This was proved for center bunched f by Burns-Wilkinson [13]. In
particular, acessibility implies ergodicity for systems with 1-dimensional center bundle,
and stable accessibility — i.e., accessibility that persists under C''-small perturbations —

implies stable ergodicity.

Pugh and Shub also conjectured that stable accessibility is a dense property among
C" partially hyperbolic diffeomorphisms, volume-preserving or not. Dolgopyat—Wilkinson
[27] proved C! density of stable accessibility among all C" partially hyperbolic diffeomor-
phisms, and Hertz-Hertz-Ures [72] proved C” density (for any r) among the systems with
1-dimensional center foliation.

The next proposition will be used in the proofs of in Theorems [4 and [6]

Proposition 18. Let fo, A be as in Theorem and let f € Diff%,ol(Td) be a C'—small,
ergodic perturbation of fo. Then

(1) f is a fibered partially hyperbolic system. There is an equivariant fibration w :
— T such that mo f =Ty om. e fibers of m are the leaves of the center
T4 — T such that T The fib the 1 th t
oliation y circles, where is given by Theorem 7
liation W4 by circl here W5 is gi by Th
(2) One of the following holds:
(a) there exists a full volume set S C T¢ and k € N such that S meets every leaf
of W]‘i in exactly k points, i.e. volume has atomic disintegration along W]Cc;
is accessible, s absolutely continuous, and the disintegration of volra
b) f i ible, W€ is absolutel ti d the disintegrati f volp
has a continuous density function on the leaves of W¢;
(c) f is topologically conjugate to Ty X Ry, for some 8 ¢ Q/Z by a homeomorphism
that is C' along the leaves of W5

Proof of Proposition[18. (1) follows from Theorem

The proof of (2) involves an analysis of the accessibility classes of f. The first possibility
is that f has an open accessibility class U # ). Since f is an ergodic, fibered partially
hyperbolic system, with one dimensional fibers, [3, Theorem C (2)] implies that either f is
accessible and vol has absolutely continuous disintegration, or vol has atomic disintegration
along the leaves of W$. The conclusions follow immediately.
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The second possibility is that there is no open accessibility class; that is, the extreme
case of joint integrability holds [73]. Assume then that E° @ E" is integrable, tangent to
a foliation WH

Recall that f is a Cl-small perturbation of an isometric extension fy := (T) 0> Where

po : T4 — R. If pg is not cohomologous to a constant function, then it is stably accessible
[14]. Since we are assuming there is no open accessibility class, we may assume that pg is
cohomologous to a constant function. LivSic’s theorem implies that by conjugating by a
C*> diffeomorphism of T? covering the identity on T¢!, we may assume that py = 6y is
constant. This implies that E}O S5 E}LO is integrable, the leaves of the integral foliation Wj{g
are compact, and fy is conjugate to the product of T4 with a rotation. We show that the
same holds for f.

Lemma 19. If the distribution E% @& E} is integrable then the leaves of its integral foliation
WH are compact. Each leaf of WH intersects each leaf of W in exactly one point.

Proof of Lemma[14 We show that the monodromy representation on the circle bundle
T¢ — T4 induced by the foliation W, combined with the action of f on an invariant
VVJCc fiber, gives a C! action of an abelian-by-cyclic group. These actions have well-known
rigidity properties, which we exploit to show that the monodromy part of the representa-
tion must have finite image.

To this end, fix 29 € T? such that f <Wjﬁ(xo)> = W§(zy), and consider the map
H: m (T m(xg)) 2 2871 — Homeo™ (W$(0))

defined by W}q-holonomy along lifted paths: for y € W¢(zo) and v : [0,1] — T! in
the class [7y], consider the unique continuous lift 4¥ : [0,1] — T¢ such that ¥(0) = v,
7¥10,1] € WH(y), and m oY = . We then define

H([y)(y) :==~"(1).
Then H is a homomorphism, which we call the monodromy representation.

We remark that for f = fy, where the leaves of W/ are compact, the map H is trivial.

Lemma 20. For any [y] € m(T¢71):
H(Ta ) = foH(yD) o f 7"

Proof. (cf. [59]) Fix y € W¢(xo) and 7 : [0,1] — T9~! in the class [y]. Consider the lift
'yfil(y) of v starting at f~!(y). Note that the path f o fyffl(y) is a lift of T4 o v starting
at y and tangent to W (by f-invariance of WH). But (T4 o )Y is the unique such lift.

It follows that (T4 0 y)Y = fo~f _l(y); evaluating both paths at their endpoint gives the
desired conclusion. This completes the proof of Lemma O

Lemma 21. If Ey @ E} is integrable, then its integral foliation WH is a C' foliation.

Proof. Since E€ is 1-dimensional, f is center bunched. Then [67, Theorem B] implies that
the leaves of Wi and Wy uniformly C' subfoliate the leaves of W5 and W§", respectively.



PATHOLOGY AND ASYMMETRY 23

This implies that the stable and unstable holonomy maps between WJCC leaves is C'. The
holonomy maps along W¥H between W¢ leaves can be written as a composition of stable
and unstable holonomies, and thus are uniformly C!.

A foliation with unifomly C?! leaves and uniformly C! holonomy maps is C! (see [67]),
and thus WH is a C! foliation. O

Lemma 21| implies that the monodromy representation H above has C'! image:
H(mi (T, w(20))) C Diff! (W5 (o).

Note that the induced action of T4 on 7 (T% !, 7(z)) is just matrix multiplication by A
under the natural identification 71 (T4 !, 7(xg)) = Z%~!. Consider the abelian-by-cyclic
group I'y = Z x 4 Z%~1 defined by

= C s — pips P B 01 Qd—1,i
T'y:= <a,el,...,ed_1.ele]—e]el, aeja - =e; eyl >,

where A = (o ;). Lemmaimplies that we have a representation n: I' 4 — Diff? (W5 (z0))
defined by
1(a) := flwe(me) s nler) = H(lei))-
Such representations are quite rigid. In particular, we have
Theorem 22. [10, Theorems 1.3, 1.7 and 1.10] For any representation n: T 4 — Diff}(T),

either the image n(I"4) is abelian or there exists an integer m > 1, a real eigenvalue \ of
A, and a point x € T such that n(a™)(x) = z, and n(a™) (x) = A™.

Applying Theorem [22[ to the situation at hand, we obtain that either n(I"4) is abelian,
or there exists m > 1 such that n(a™) = fm|wj,g (o) Das fixed point with derivative A™, for

some real eigenvalue A of A. But since A is hyperbolic, the eigenvalues of A are bounded
in absolute value away from 1. Since fO\W; (0) is a rotation by 6y, whose derivative is
0
everywhere 1, if f is sufficiently C'-close to f, this is impossible.
Hence n(I"4) is abelian, which implies that
(2) n(aeia™) = nle;) = nler)* - -nleg-1)*14, fori =1,...,d - 1.
Since 1 is not an eigenvalue of A, it follows that A—id is invertible over @, and so equations
imply that the group generated by n(e1),...,n(eq) is finite, of order k < | det(A —id)|.
Thus the image of H is isomorphic to group of order k, and the leaves of W are
compact, meeting each leaf of WJ? in exactly k points. We claim that k = 1. As observed
above, for fy, the image of H is trivial, and the leaves of Wg are horizontal. Since f is
close to fy, the leaves of W]{{ are nearly horizontal; in particular if dei(fo, f) is sufficiently
small, either k =1 or all the orbits of H on W¥(zo) have arbitrarily small diameter (since

k is bounded by |det(A —id)|). Thus by the following theorem of Newman [58], we have
k=1

Theorem 8. Let N be a connected topological manifold endowed with a metric. Then
there is € > 0 such that any non-trivial action of a finite group on N has an orbit of
diameter larger than e.
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This completes the proof of Lemma O

To finish the proof of Proposition we construct a C'! projection Pr¢: T¢ — Ws (x0)
sending x to the unique point of intersection of W;{ (z) and W¥(zo). Let o: Wi(zo) = T
be a C' diffeomorphism and define ¢: T — T¢ by ¢(z) := (n(z),0 o Pre(z)). Then ¢
conjugates f to T4 X g, where g: T — T is a diffeomorphism preserving a smooth ergodic

measure. By a further C' change of coordinates, we may assume that ¢ is an irrational
rotation Ry. We are thus in case This completes the proof of Proposition O

3.4.6. Estimate of the Holder exponents of leaf conjugacies in the presence dominated split-

tings. Asin Theorems and@let fo € Diff2 (T?) be an isometric extension of an automor-

phism T4, on T-!, where A € SL(d — 1,Z) is hyperbolic (we do not need irreducibility
here). We denote by P : T — T¢~! the projection along the W}:O leaves, which is just
projection onto the first factor in T¢~! x T. Under the identification 7T% ! 22 Td~1 x R4,
the action of DTAf is just TAf x Ay, and TTd-1 = Td-1 x (EBVi) is the TAf—invariant
dominated splitting, where R*! = @V is the decomposition into Lyapunov subspaces of
Ay

There is a D fy-invariant dominated splitting TM = @E}O projecting to the dominated
splitting for T4, so that DpP(EY ) = {P(p)} x V", for each i. Moreover the Lyapunov
exponent of D fy| By is equal to Lyapunov exponent of Ag|y:.

As in Theorem @ we now assume that f € Diff2 (T?) is a C'-small perturbation of

fo. Then Df also preserves a dominated splitting TM = @E}. By Theorem |7 f is a
fibered partially hyperbolic system, and ( fo;WJ‘io) is leaf conjugate to (f ,W;) by a bi-
Hélder continuous homeomorphism h¢ : T — T9. The leaf conjugacy h° is canonical in
the sense that

(3) moh¢ =P,

where 7 is the equivariant fibration from Proposition whose fibers are the leaves of
the center foliation W§ . For the estimate of the bi-Hélder exponents of h°, cf. [68]. In
this context we can give a concrete description of how h¢ is constructed. Fixing a smooth
normal bundle N to E°, the map h® = h§, is defined by

he(z) = 7= (P(2)) N De(x),
where {D¢(z) : © € M} is the smooth family of embedded disks defined by
De(x) = exp, ({tv:t € [0,¢),v € N(z)}).

If f is sufficiently C' close to fy and € > 0 is sufficiently small, then h¢ is a well-defined
homeomorphism that is smooth along the leaves of W% (as smooth as the leaves of W;O)

It is easy to see that E}O, E}O @ Ef are integrable; we denote by W}o’ W}g their integral
manifolds respectively. In general, E} and E} &) Eji might not be integrable.
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Lemma 23. Suppose Ejf, E} @ EJ% are integrable and their integral manifolds are denoted
by W}, W}c respectively. Then for every o € (0,1), there exists € > 0 such that for every

smooth normal bundle N to E¢, if dea(f, fo) < € and the map h§, sends W}g to W}C, for
each i, then h§, and its inverse are a-Holder continuous.

Proof. Fix i and consider the foliation W}C. Its leaves are jointly foliated by W} and the
uniformly compact foliation W; By taking f~! if necessary, we may assume that the
leaves of W} are uniformly contracted by the dynamics. Let A; < 0 be the corresponding
Lyapunov exponent for Af|r,. Since fy is an isometric extension of a linear map, for any

€ > 0 we may choose a continuous adapted metric on T? such that for all f sufficiently
C'~close to fo, for all p € T% and all v € E%(p):

Xi— Ai
ol < [ Dpf ()]l < el

Let p; = M€ and v = elite, If f is sufficiently C'-close to fy, then for any w € M and
w' € Wi(w,loc), if f~7(w') € Wi(f~7/(w'),loc) for j =0,...n, then

v " d(w, w') < dyyi (f7"(w), 7 (") < " d(w, w).

(This is easily proved by induction on n).

Consider the restriction of h¢ to |_|W’§, whose image is | |[W¥, sending Wi leaves
smoothly to W]Cc leaves. Now h¢ does not necessarily send W}O leaves to W}, but we can

estimate the Holder exponent of h® restricted to W}O leaves via a standard argument,
which we now describe.

Fix n > 0 such that for all w,w’ € |_|W’§, with d(w,w’) < n, then for any 2 € Wi(w),
there is a unique point 2’ in W}(z,loc) NW¢(w') and the distance between z and 2’ is
uniformly comparable to the distance between z and z’ as measured along W}(z,loc).
This is possible because the foliation W$ has uniformly compact leaves. Next fix a small
constant 0 > 0 such that d(w,w’) < § implies d(h¢(w), h¢(w')) < 7.

Now let x € M and ' € W}O (). Let y = he(z) and 3/ = h¢(2’). We want to estimate
d(y,y’) in terms of d(x,2’). Let z = W}(y) NW$(y'). By the construction of h¢ using
the smooth normal bundle A, we have that d(y’, z) = O(d(y, z)), so it suffices to estimate
d(y, z) in terms of d(x,2).

We may assume that d(z,2') < 6. Fix n > 0 such that d(z,2) € [p*", 6pul). Since
x € W}O(:ﬂ,loc), we have d(fy"(z), fy "(«")) < p; "d(z,2’) < §. By our choice of 4,
we have that d(h°(f~"(z)), h°(f~™(z’))) < n. Since h° is a leaf conjugacy, h°(f;"(z)) €
WE(f " (y)) and he(f " (2')) € WE(f"(y') = Wi(f"(2)). Since f"(y) € W'(f7"(2), loc),
our choice of 7 implies that d(f~"y, f~"z) is comparable to the distance measured along
W}, which is at least v; "d(y, z). Thus d(y,z) = O(v; ™) = O(u; ") = O(d(z,z')?), where

7

logpui  Aite
Clogy; N—e€
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Since we may choose € > 0 arbitrarily small by setting dq1(fo, f) small enough, this shows
that we may choose § arbitrarily close to 1.

This shows that A€ is uniformly S-Holder continuous along W}S—leaves, for all ¢. It is
thus S-Hoélder continuous.

A similar argument (reversing the roles of fy and fy ') shows that (h¢)~! is S-Holder
continuous. O

3.5. Some Pesin theory. We will also use the following well-known corollaries of Pesin
theory. Let f be a C"(r > 1) diffeomorphism of a closed d—manifold M, let v be an
f—invariant ergodic probability measure, and let \™& = X\; > ... > \; > A™" be the
Lyapunov exponents of D f with respect to v.

For x € M, § > 0, and A < 0, we define the local stable set
W3z, A, 0) = {y € M : d(f"(x), f"(y)) < dexp(An), Vn > 0}.

The set of regular points for (f,v) in M (also called the Lyapunov—Perron regular points,
cf. [5]) have full v-measure in M and the following important property.

Proposition 24 (Stable manifold theorem). Fiz A < 0 such that Ag11 < A < A\ holds for
some k. Then for any regular point x, the local stable set W?*(x, \,6) is a C" embedded
disk in M for small enough 6. The dimension of the disk is d — k.

We call the set W#(x, \,0) defined by the Proposition the local Pesin stable manifold,
and we denote it by W*(z, \,loc) (cf. [63] for a concrete estimate on §). Suppose x

is a regular point and W?#(x, \,loc) is defined as above. The global Pesin manifold (of
W#(x, A\, loc)) is defined by

Ws(xv )‘) = U?:Of_n(ws<fn(x>v )‘7 ZOC)).

We also obtain the following criterion for a diffeomorphism to contract an invariant
bundle.

Lemma 25. Let f: M — M be a C'* diffeomorphism, and let W be an f-invariant
foliation with C'* leaves. Suppose there exist k1 < kg < 0 such that for all x € M, there
exist § > 0 and N € N such that for all y € W(zx):

d(z,y) <6 = ™" <d(f"(x), ["(y)) < ™",
for alln > N.

Then for all € > 0, there exists N' € N such that for all v € TW, and all n > N', we
have
17 o] < [Dfo| < e o).

Proof. Assume the hypotheses; we show how to establish the upper inequality ||D f"v]|| <
e(k2+97 19| (the lower inequality is similarly proved).

By Lemma it suffices to show that for every f-invariant, ergodic measure v, the top
Lyapunov exponent of the cocycle D f|p,, with respect to v is at most x2. To this end,
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fix v, and let ), < Br—1 < --- < 1 < 0 be the Lyapunov exponents of the cocycle D f|p,,
with respect to v. Let

be the corresponding Oseledec decomposition.

Using the graph transform argument in [66, Theorem 3.16] in restriction to the leaves
of W, one can construct for each i a measurable family of C'* disks D;(z), defined over
a full v-measure set S, € M, with the following properties, for all x € S,:

Dl(x) - W($),

TmDZ(x) = Ez(x),

f(Di(x)) C Di(f(x)), and

for every € > 0, there exists N = N, such that for all y € D;(x) and all n > N, we
have

I < (1 (@), 1 (y)) < el

Fix € > 0 and a Pesin regular point = for v, and consider D;(x). For n sufficiently
large, the action of f™ in restriction to Dj(x) is a uniform contraction by a factor bounded
below by e(P1=9n  On the other hand, the hypothesis implies that this contraction factor
is bounded above by e2". It follows that 1 < ko 4+ €. Since € > 0 was arbitrary, we
conclude that 87 < ko. O

3.6. Normal forms for uniformly contracting foliations. We will use non-stationary
normal form theory to upgrade the regularity of certain homeomorphisms in the centralizer
of the partially hyperbolic systems under consideration.

Let f be a diffeomorphism of a closed manifold M, and let W be an f—invariant foliation
of M with uniformly C! leaves. We assume that f uniformly contracts the leaves W. Let
E = TW be the tangent bundle to WW. We denote by F': E — E the bundle automorphism
induced by the derivative of f: F, = Df|raw: Ey — Efz. Then F induces a bounded
linear operator F* on the space of continuous sections of E by F*v(z) = F(v(f~'z)).
The spectrum of the complexification of F* is called the Mather spectrum of F. If the
non-periodic points of f are dense in M, then the Mather spectrum consists of finitely

many closed annuli 4;, i = 1,...,¢, centered at 0 and bounded by circles of radii e and
et with A\; = N\;(F) and p; = p;(F) satisfying

(4) A< <Aoo < < A <y <05

see [, 64].

The spectral intervals {[\;(F'), ui(F)] : @ = 1,...,¢} correspond to a splitting of the
bundle F into a direct sum
E=Flg...¢E*
of continuous, F'—invariant sub-bundles such that Mather spectrum of F|g: is contained
in the annulus A; (this splitting is thus dominated and invariant under perturbations of
F). This can be expressed using the Lyapunov metric [32]: for each i =1,...,¢ and € > 0,
there exists a continuous metric || - ||z on E? such that

AT ollze < NFo()llay.e < €5 0llae, Vo € By
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Definition 7. We say that the bundle automorphism F' has narrow band spectrum if
wi(F) + pe(F) < Ni(F), fori=1,..., ¢

For vector spaces E and E we say that a map P : E — E is polynomial if with respect
to some bases of E and E, each component of P is a polynomial. A polynomial map P
is homogeneous of degree n if P(av) = a™P(v) for all v € E and a € R. More generally,
for a given splitting £ = F' @ --- @ E’ we say that P: E — E has homogeneous type
s = (s1,...,8¢) if for any real numbers ay,...,a, and vectors t; € B, j = 1,...,4, we
have

P(altl—i-”-—i-agtg) :a‘il---asz(tl—i----—i—tg).

Suppose E = F' @ --- @ EY, E = El @ @B and P: E— Eisa polynomial map.
Split P into components P;: E — E" and write P = (P1,...,P;). Let A = (A\1,...,\)
and g = (p1,...,pe) with Ay < g < -+ < A < g < 0. We say that P is of (A, p)
sub-resonance type if for each i = 1,... ¢, there exists s = s(i) = (s1,..., s¢) satisfying
the sub-resonance relation

¢
N <D sy
i=1

such that P; has homogeneous type s.

We denote by S (E, E) the space of all polynomials £ — E of (A, u) sub-resonance
type. It follows from the definition that polynomials in S (E, E) have degree at most
d=d\p) = L;\TH If (A, p) satisfies the narrow band condition, they generate (under

composition) a finite-dimensional Lie group which we denote by GM(E). The maps in
GMH(E) are called sub-resonance generated and can be described by adding finitely many
relations to the set of sub-resonance ones.

Now we can state the main results in this section.

Theorem 9. [40, 41} (78] Let f be a C" diffeomorphism of a closed manifold M, and
let W be an f—invariant topological foliation of M with uniformly C" leaves. Suppose
that the leaves of W are contracted by f and that either: the spectrum of F' = D f|p, is

rw-bunched, for some ry < 2. (See Definition @; or F has narrow band spectrum (see
Definition @

Fixz r > 1y (in the bunched case) or r > M (F)/p(F), setting A = (M (F), ..., \e(F))
and i = (u1(F), ..., pue(F)) (in the narrow band case). Then there ezists a family { Hy }zenr
of C" diffeomorphisms Hy: W, — E, =T, VW such that

(1) P, = Hpz o fo Hy': E; — Eg, is a linear map (in the bunched case) or a
polynomial map of (A, p) sub-resonance type (in the narrow band case) for each
x e M;

(2) Hy(x) =0 and DyH, is the identity map for each x € M;

(8) H, depends continuously on x € M in the C" topology and is jointly C" in x and
y € Wy along the leaves of W;
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(4) Hy o H':E, — Ey is a linear map (in the bunched case) or a polynomial map
of (A, ) sub-resonance generated (in the narrow band case) for each x € M and
each y € Wy; and

(5) if g is a homeomorphism of M that commutes with f, preserves W, and is C*
along the leaves of W, with s > v (in the bunched case) or s > A\ (F)/we(F) (in
the narrow band case), then the maps H, bring g to a normal form as well, i.e.
the map Q. = Hy, ogo H ' is a linear map (in the bunched case) or a polynomial
of (A, ) sub-resonance type.

Definition 8. Let f be a (" partially hyperbolic diffeomorphism of a closed manifold
M. We say that f has r-bunched spectrum if the cocycles F'* = Df|E; and F* = Df~! ‘E“

f
are r-bunched. (see Definition [6]); we call the infimum of such r the critical regularity r(f)

of f.

We say that f has narrow band spectrum if the cocycles F® and F* have narrow band
spectrum. In this case, we define the critical reqularity r(f) of f by

(X M)
®) )= (uzs(f)’u}fu(f)>’

where pf(f) := pi(F*), Xi(f) == Ni(F¥), for i = 1,..., 4y, for x € {s,u}.

We remark that if f = ¢y,, where 1); is the geodesic flow over a negatively curved X,
then transverse symplecticity of the flow implies that it suffices to check that one of F*®
or F" has r-bunched (resp. narrow band) spectrum to verify that f itself has r-bunched
(resp. narrow band) spectrum in the sense of Definition

Hasselblatt [34] also defines an a-bunched condition for Anosov flows, for a € (0,2). For
a transversely symplectic Anosov flow 1), we have that 1, is a-bunched in the sense of [34]
if and only if 11 has 2/a-bunched spectrum, in the sense of Definition [8f The connection
between a-bunching and pointwise pinching of the curvature in is discussed in [34].

Lemma 26. If ¢, is the geodesic flow over a locally symmetric space X, then for any
to # 0, the partially hyperbolic map 1y, has narrow band spectrum. If X is a real hyperbolic
manifold, then r(¢y,) = 1, and if X is locally symmetric but not real hyperbolic, then

7"(7/%0) = 2.

Proof. The geodesic flow on a locally symmetric space has constant expansion and contrac-
tion factors on one or two invariant subbundles, depending on whether X is real hyperbolic
or not. In particular, the Mather spectrum of Dy, |gs and Dy, 1\ gu has either one or two

bands, and either \] = pj = —1 = A} = puf,. in the case where X is real hyperbolic, or

M=p==2=A=pu; N3 =pu3=-1=A = pug,
otherwise. Thus Dy, |gs and D@E)I\Eu have point Mather spectrum (i.e., /\?/8 = ,u?/s),
and the conclusions follow. 0

The following lemma follows immediately from the continuity of dominated splittings.
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Lemma 27. Suppose that fo € Diff' (M) is partially hyperbolic and has bunched spectrum,
(resp. marrow band spectrum) with critical regularity ro = r(fo). Then for any r > ro, if
f € DiffY(M) is sufficiently C*-close to fo, then f has r-bunched spectrum (resp. narrow
band spectrum), and r(f) < r.

Here is our central application of Theorem [9]

Proposition 28. Let f be a C* partially hyperbolic diffeomorphism of a closed manifold
M. Assume that f has a 1—dimensional center foliation W5 with C™> leaves. Suppose
that ¢ = @ : M x R = M s a flow generated by a continuous vector field X such that
pro f= fows, for allt. Assume that f, p:, and X satisfy the following conditions.

(1) f has 2-bunched spectrum, or f has narrow band spectrum.

(2) The vector field X is tangent to E% and uniformly C* along the leaves of Wy.

(3) There exists a dense set D C R such that for allt € D, ¢ € Dift" (M), for some
r>r(f).

Then ¢ is a C* flow.

Proof. Hypothesis (1) implies that for » > f(f), the cocycle Df |TW; satisfies the hy-
potheses of Theorem EL and so there exists a non-stationary normalization {H,,z € M}
for f ’ch such that for any g € Z,(f), the map Hy,0go H, ! is a sub-resonance polynomial
(with fixed type) as well.

Thus {H,} is also a normalization for ¢; on Wi, for all ¢t € D. Now consider the
homeomorphism ¢; for an arbitrary fixed ¢ € R. Pick ¢,k = 1,2,... in D such that
limg_, tx = t. Then the sequence

Hcptka: O Py, © Ha?l : Ej”(x> - E?(thk (l’))
uniformly converges to Hy,, 0 pp 0 Hy 1 : Ei(z) = Ef(pi(2)).

But each of Hy, ooy, o H, !'is a sub-resonance polynomial (with fixed type), so their
C%—limit is a sub-resonance polynomial as well. Thus Hy zopioHy 1 is uniformly smooth
along Ej‘i, which means ¢, is uniformly smooth along W}i A similar argument shows that
¢ is uniformly smooth along Wf

Assumption (2) of Proposition [28)implies that ¢; is uniformly smooth along W¢, and the
evaluation map ¢t — p(x),z € M is smooth, uniformly in 2. Applying Journé’s Lemma
as in [2], we obtain that {¢;} is a smooth flow and D = R. O

3.7. Partially hyperbolic higher rank abelian actions. A detailed ground treatment
of Anosov and partially hyperbolic abelian higher rank actions, including a variety of
techniques and examples, can be found in [47]. For a detailed discussion of smooth ergodic
theory of general abelian actions, see [11].

An action « : Z¥ — Diff(M) on a closed manifold M is partially hyperbolic if it contains
a partially hyperbolic diffeomorphism «a(a), for some a € Z*, and Anosov if it contains an
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Anosov diffeomorphism. Some basic questions and difficulties related to partially hyper-
bolic actions are described in [21], [22]. For background on partially hyperbolic abelian
actions with compact center foliation we refer to [25] and the references therein.

Oseledec’s theorem for a cocycle over an ergodic transformation has a version for abelian
actions [I1, Theorem 2.4]. Let E — M be a continuous vector bundle, and let A be a linear
ZF-cocycle on E over an ergodic, p-preserving action o of M, ie. A: ZF — Aut(E) is a
ZF-action by bundle isomorphisms projecting to the action of o on M. The higher-rank
Oseledec theorem implies the existence of finitely many linear functionals y: RF — R,
called (Lyapunov functionals for A), and an A- invariant measurable splitting @ F, of E,
called the (Oseledec decomposition for A), on a full y-measure set, such that for a € Z*
and v € E,(z):

o 102 14(@.2) ()] = x(a)

a0 lall

=0.

The hyperplanes ker, C R* are called Weyl chamber walls, and the connected com-
ponents of R¥ — U, ker, are the Weyl chambers for A (with respect to u). Even though
elements of the Weyl chambers are vectors in R*, we will often say that the diffeomorphism
a(a) is in the Weyl chamber C if a € C.

Two nonzero Lyapunov functionals x; and x; are coarsely equivalent if they are pos-
itively proportional: there exists ¢ > 0 such that x; = c- x;. This is an equivalence
relation on the set of Lyapunov functionals, and a coarse Lyapunov functional is an
equivalence class under this relation. Given a fixed ordering of non-zero coarse Lya-
punov functionals (xi,...,xr), each Weyl chamber C can be labelled by its signature:
(sgnxi(a),...,sgnx,(a)), where a is any element in C. The Weyl chambers of A in R¥
together with their assigned signatures we call the Weyl chamber picture of A over a. Two
ZF cocycles (over possibly two distinct Z* actions), have the same Weyl chamber picture
if the walls in R* coincide and the signatures of each Weyl chamber coincide. If for two
Lyapunov functionals x!, x2, we have ker xy! = ker x? and x'(a)x?(a) > 0 for some a, then
x!, x? are positively proportional. This implies the following:

Lemma 29. Suppose that the Lyapunov functionals {x'},{x"*} of two ergodic cocycles
A and A" have the same Weyl chambers, and suppose that for any i, there is an element
a € ZF such that x*(a)x"(a) > 0. Then A and A’ have the same the Weyl chamber picture.

For Anosov actions, the higher-rank Oseledec theorem is applied to the derivative cocy-
cle Do, and the Weyl chamber picture depends only on « and on the invariant measure. In
the presence of sufficiently many Anosov elements of the action (for example, one Anosov
element in each Weyl chamber), and an ergodic measure of full support, even the de-
pendence on the measure can be removed. Moreover, in this case the coarse Lyapunov
distributions are intersections of stable distributions for finitely many elements of the ac-
tion, they are well defined everywhere and tangent to foliations with smooth leaves. (For
more details see Section 2.2 in [43]) The same holds for actions that have many elements
normally hyperbolic to a common center foliation [22].
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Suppose « : ZF — Diﬁ?,ol(M ) is a conservative ergodic partially hyperbolic action on

a compact manifold M and let a(a) be a partially hyperbolic element. By the discussion
in Section the sum E := E% @ E$ of the stable and unstable distributions of a(a)
is a—invariant. We will apply the higher-rank Oseledec theorem to the cocycle Da|gu
and to stress this restriction of the derivative cocycle to the smaller bundle, we call the
corresponding picture the hyperbolic Weyl chamber picture for .

A ZF-action «a is mazimal if there are exactly k + 1 coarse Lyapunov functionals corre-
sponding to k + 1 distinct Lyapunov hyperspaces, and if the Lyapunov hyperspaces are in
general position, i.e. if no Lyapunov hyperspace contains a non-trivial intersection of two
other Lyapunov hyperspaces. Maximality implies a special property of Weyl chambers:
there is any combination of signs of Lyapunov functionals among the Weyl chambers, ex-
cept all positive, and all negative. Prime examples of maximal Anosov actions are actions
by toral automorphisms. Namely

Lemma 30. [[45]] Suppose A € SL(d,Z) is a hyperbolic irreducible matriz. Then Zgy,qz)(A)
induces a mazimal abelian Anosov action on T? if £o(A) > 1.

Results of Franks and Manning [30, 54] imply that every Anosov action a: ZF —
Diff(T%) is topologically conjugate to an action : Z* — Aff(T?) by affine automorphisms
of the torus. Such an action k is called a linearization of a. The linear part of k is the
action kg: Z*¥ — Aut(T?) that sends g to Ta,, where r(g) = T4, + v(g). The linear part
does not depend on the choice of linearization of .

An affine ZF-action k' on T% | is called an (algebraic) factor of an affine ZF-action s on
T9 if there exists a surjective homomorphism ¢ : T% — T such that pok=~r op. An
affine action k is said to have a rank one factor if its linear part k¢ has a nontrivial factor
K2 ZF — Aut(T?) such that the image x'(Z*) is virtually cyclic. A smooth ZF—action
on T¢ is higher rank if its linearizations have no rank one factor. In particular, when
one element of a linear action is an irreducible toral automorphism, the action is called
1rreducible and we have the following easy lemma:

Lemma 31. [ [45], Section 3.1.] Suppose A, B € GL(n,Z) satisfies AB = BA. Assume
that A is irreducible and the group generated by A and B is not virtually Z. Then the
action generated by < Ta, T > on T™ is a higher rank action.

One important feature of higher rank Anosov actions is cocycle rigidity, which has the
following application to isometric extensions:

Lemma 32. [[49], Theorem 2.9] Suppose A, B € GL(n,Z) commute and generate a higher
rank Anosov action < Ta,Tp > on T". Let pa, pp be Hélder functions on T™. Then the
isometric extensions (Ta)p,, (IB)py commute iff there exist a Hélder function B on T"
and 04,0p € R such that pg = —80Ta+ B+ 04, and pp=—LBoTp+ 5+ 0p.

We state the global rigidity result [74] and its corollaries concerning centralizers.

Theorem 10. [[74]] Let o : ZF — Diff>®(T%) be an Anosov action, and let k be a lin-
earization of a. If k is higher rank, then a is C'*° conjugate to k.
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As a corollary we have following result about centralizers:

Corollary 33. Let A € SL(d — 1,Z) and let vy be as in Theorem . Fiz r > rg. Suppose
g € Diff>°(T4 1) is a C'—small perturbation of Ty (or, more generally, has narrow band
spectrum). Then either g is C conjugate to Ta or Zpgs(ray(g) is virtually trivial for any
s>r.

Proof. Clearly T4 has narrow band spectrum. Fix 1’ € (rg,r); Lemma implies that
any g sufficiently close to T4 has narrow band spectrum, and r(g) < r’. Corollary |33|then
follows from the lemma that follows. O

Lemma 34. Let g: T" — T™ be a C*° Anosov diffeomorphism with narrow band spectrum,
let k(g) be a linearization of g, and let ko(g) € Aut(T™) be its linear part. If ko(g) is
irreducible, then either g is C*° conjugate to k(g) (equivalently, to ko(g)) or Zs(g) is
virtually trivial for any s > r(g).

Proof. The narrow band spectrum assumption and Theorem [9]imply that g preserves some
C* normal forms on Wy, * = s, u, which are also preserved by any h € Z;(g) for s > r(g).
Since h is smooth along the tranverse foliations Wy and W¢', Journé’s lemma implies that
h is smooth. Thus Zs(g) = Z0(9) C ZHomeo(T7)(9), Which has a finite index subgroup
G = 7!, by irreducibility of ko(g), and Lemmas |14 and

Suppose that g is not C* conjugate to k(g). Applying Theorem |10 to the action of G
gives a rank one factor for a linearization of G. By the irreducibility of x(g) and Lemma
the rank of G must be 1. Therefore Z5(g) = Z(g) is virtually trivial. O

4. PROOFS OF THEOREMS [3] AND

We begin with a general discussion of perturbations of discretized geodesic flows in
negative curvature. Let X be a closed, negatively curved Riemannian manifold of any
dimension, and let ¢;: T'X — T X be the geodesic flow on the unit tangent bundle 71X .

The centralizer of the flow ¢, (and hence any element of the flow) contains the flow itself.
If X admits an isometry h, then the derivative Dh preserves the unit tangent bundle 7' X
and commutes with the flow. While the flow fixes its own orbits, the derivative of a
nontrivial isometry permutes the orbits nontrivially.

Suppose g: T'X — T'X is an arbitrary continuous map, and let g,: m(T'X) —
m1(T'X) be the induced map on the fundamental group. We claim that g induces a
homomorphism g, : 71(X) — 71(X) such that g,p. = p«g«, where p: T'X — X is the
canonical projection. When dim(X) > 3, this is immediate, because the fibers of T'X
are simply connected. When X is a surface, this follows from the fact that m (T1X) is a
central extension of the simple group m(X).

Note that since v is isotopic to the identity, it induces a trivial map on 71 (X ), whereas
the derivative of a nontrivial isometry h induces a nontrivial automorphism Dh, of 71(X),
namely h, itself. The latter automorphism h, induces a nontrivial outer automorphism;
that is, it is not induced by a conjugacy on m(X). This is because, as we shall see,
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homeomorphisms of T'X that leave invariant the orbit foliation of 1; and that induce
inner automorphisms of 71 (X) must fix the leaves of the orbit foliation.

Proposition 35. Let X be a closed, negatively curved manifold, and suppose that g: T'X —
T'X is a homeomorphism that leaves invariant the orbit foliation of the geodesic flow ;.
The following are equivalent:

(1) there exists 5 € (X)) such that g,(v) = 4y, for every v € 71 (X).
(2) g leaves invariant each orbit of V.

Proof. (1): Since g preserves the orbits of the geodesic flow, the map g, has a simple dis-
cription: given v € 7 (X), represent v by a closed, unit-speed geodesic ¢y in X (here we
are using free homotopy equivalence): this representation is unique up to reparametriza-
tion, because X is negatively curved. The lift c’7 to T X is a closed orbit of ; and is taken
to a closed orbit ¢ by g; the projection of this orbit to X is a closed geodesic ¢ =
representing the class g, (7).

5. ()
Now suppose that there exists 4 € 71 (X) such that for every v € m(X), 7, (7) = 475 %
The group I' = 71 (X)) acts freely on the universal cover X on the left by isometries. Since
X is closed and negatively curved, each v € I' has a unique axis ., which is a geodesic
in X, invariant under v and on which v acts by translations.

Denote by 7 X — X the covering projection. It is easy to see that

= |_| oy = |_| Apyp—1

nel nel

Denote by g the action of g on lifted geodesics in X, which is well-defined up to deck
transformations. Then

g (77_1(07)) =71""(cgy) = |_| Ay (ny) =t = T (ey)-
nel’
Thus g(c/,(R)) = ¢, (R), for every closed 1-orbit ¢/, (R). Since X is closed and negatively
curved, vy-periodic orbits are dense in 7' X, and so g fixes all ¢-orbits.

(2) If g fixes all ¢4-orbits, then by the argument for (1), we obtain that g, preserves the
conjugacy classes in 71 (X) and thus must act by conjugation. O

Suppose that f € Diff"(T'X),r is a C'-small perturbation of ¢;,. By Theorem
f is dynamically coherent, and ( W ) is leaf conjugate to (¢, W¢t0>' Proposition

implies that for any g € Z1(f), gOWV*) = W*, for * € {u,c,s, cu, cs}.

Let ZF(f) be the subgroup of Z,.(f) consisting of the elements that preserve the ori-
entation of W¢. Clearly Z(f) has finite index in Z,(f). We denote by Z¢(f) the set of
g € ZF(f) fixing the leaves of W€(f). Observe that Z¢(f) is a normal subgroup of Z,7(f).

Proposition 36. Let vy, be the discretized geodesic flow over a closed, negatively curved
manifold X. There exists ¢ > 0 such that for any r > 1, if f € Diff"(T'X), and
den (fyhey) < €, then Z1(f)/ZE(f) is isomorphic to a subgroup of the outer automor-
phism group Out(m (X)).
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Proof. Consider the map that sends g € Z7(f) to [g,] € Out(m1(X)). It suffices to prove
that the kernel of this map is Z¢(f). Suppose then that g lies in the kernel, i.e. that there
exists 4 € m(X) such that g,(y) = 49571, for all v € 71 (X).

Let h: T'X — T'X be the leaf conjugacy between (W§,1y) and (Wacm(ywto)’ satisfying
h (Wi (v)) =Wy, (h(v)),

for all v € T' X, and let g; = ho go h™!, which is a homeomorphism preserving the orbit
foliation of ;. Since h is homotopic to the identity, the induced maps g, and g1, are the
same (i.e., conjugacy by ¥). Proposition [35[ implies that g; fixes the v, orbits, and so g
fixes the leaves of W€, i.e. g € ZS(f). Similarly, if g € ZS(f), then g lies in the kernel. [

Proposition 37. Let X be a closed, negatively curved manifold. There exists € > 0 such
that for any r > 1, if f € Diff" (T'X), and dea (f,04,) < €, then the quotient ZF (f)/ZS(f)
18 finite.

Proof. The argument splits into two cases according to the dimension of X. In the first
case, dim(X) > 3, the outer automorphism group of (X)) is finite, which immediately
gives the conclusion. In the second case, dim(X) = 2, the outer automorphism group is
infinite, isomorphic to the extended mapping class group Mod* (X)), which contains the
mapping class group Mod(X) as an index 2 subgroup. A further analysis of the dynamics
of centralizer is required.

The case dim(X) > 3. Work of Paulin and Sela [62], [79] shows that if X is closed and
negatively curved, of dimension at least 3, then Out (7 (X, p(v))) is finite: the fundamental
group of X is a torsion-free hyperbolic group that does not admit an essential small action
on a real tree (see [79), Corollary 0.2] and the discussion that follows). Thus Proposition
follows immediately from Proposition [36]

The case dim(X) = 2. If X is a closed, negatively curved surface, then Out (71 (X, p(v)))
is isomorphic to the extended mapping class group, which since X is a surface, is the
group of diffeomorphisms of X modulo homotopy equivalence. The following lemmas are
well-known; we sketch their proofs for completeness.

Lemma 38. Let X be a closed, negatively curved surface. Suppose that h € Modi(X) =
Out(m (X, p(v))) has the property that for every conjugacy class [y] of v € m1 (X, p(v)),
there exists k > 1 such that

Then h has finite order.

Proof. Represent h by a diffeomorphism h: X = X, and take a system of filling curves
Y, -+,Yn 0 X. (These are closed curves with minimal intersection that separate X into
a union of disks). Then some power of h fixes these curves (up to homotopy). Iterating

~ L
further, some power h~ leaves invariant the disks bounded by the curves (up to homotopy).
AL AL
But then by coning off h~ in each disk, we get that h is homotopic to the identity in
<L
each disk, and so b is homotopic to the identity. Thus A" is trivial. O
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Lemma 39. Let X be a closed, negatively curved surface, and let G be a subgroup of
Modi(X) with the property that every h € G has finite order. Then G is finite.

We remark that there is no assumption that G be finitely generated in Lemma [39]

Proof of Lemma[39 Since Mod(X) has index 2 in Mod*(X), it suffices to prove the state-
ment for G < Mod(X). The Torelli group Tor(X) is the set of g € Mod(X) that induce a
trivial action on first homology H'(X,Z). We have the short exact sequence

1 — Tor(X) — Mod(X) — Sp (H'(X,Z)) = Spy,(Z) — 1,
where g is the genus of X, and Spy,(Z) is the integer symplectic group.

It is well-known that Tor(X) is torsion-free. Thus if G < Mod(X) is a torsion group, it is
isomorphic to a subgroup of Spy,(Z). But Spy,(Z) is arithmetic and thus contains a finite
index torsion free normal subgroup H (for example, H = T'(3) = {A € Spy,(Z) : A =1
mod 3}). But this implies that G injects into Spy,(Z)/H, which is finite. Hence G is
finite. 0

We return to the proof of Proposition in the case dim(X) = 2. Suppose that
g € Diff'(T'X) commutes with f, a perturbation of the discretized geodesic flow Yty -
Lemma implies that every closed leaf of WY$ is periodic under g. Thus h = [g,] €
Out (71 (X)) satisfies the hypotheses of Lemma |38 and hence has finite order. The image
of the quotient Z7(f)/Z¢(f) in Out(m (X)) is thus a torsion group, and so by Lemma
is finite. 0

We remark that Proposition[36)and the discussion above also imply that for X negatively
curved and locally symmetric, of dimension at least 3,

2, (V1)) 27 (1) = Out(my(X))/ < +id >,

since by Mostow rigidity, every outer automorphism is represented by a unique isometry.
With a little more work (see, e.g., [38]), one can show that for any ¢y # 0 the centralizer
of 1y, in Diff!(T1X) is precisely the group generated by the flow itself and the isometry
group of X. The same holds for hyperbolic surfaces. Details are left to the reader.

Proof of Theorem[5 Let f be a diffeomorphism satisfying all the hypotheses of Theorem
By [46] and [72], /¢, in Theorem is stably accessible and hence stably ergodic (by, e.g.
[13]), and so we may assume that f is accessible and ergodic. Lemma then implies that
Z1(f) C Diffyq(M). Proposition [37 implies that Z;"(f), and hence Zi(f), is virtually
Zi(f)-

Assume that the disintegration of vol along WJ"Z leaves is not Lebesgue; we show that
Z¢(f) is virtually < f™ >, which will complete the proof of Theorem First, since
(f, WJ%) is leaf conjugate to 9y,, all but countably many W}—leaves are noncompact. For
any noncompact W;i—leaf, we consider the total order “ < ” induced by the canonical
orientation on W5. The action of f on every non-compact W}—leaf is uniformly close to
a translation by ¢ty on R, and therefore is topologically conjugate to a translation.
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Theorem F in [3] implies that the disintegration of vol along W5 leaves is atomic: there

is a full volume set S C T'X and k € Z* such that for almost every v € T* X, Wi(v) is
non-compact,

(6) SOWEW) = {wiy(v),i € 2,1 < j <k},
and

(7) fiv) < zi1(v) < xio(v) < -+ <zip(v) < i (w), f(zij(v)) = zip15(v).

Fix an arbitrary g € Z{(f). Lemma implies that g is volume preserving, which
implies that, modulo a zero set, gS = S. As a consequence, there is an f—invariant full
volume set 2 C T'X such that for any v € Q,

e W4 (v) is noncompact;

e S meets Wj(v) in exactly k orbits and (). hold, i.e. we can define z; j(v)
associated to v;

e g(SNW5(v)) = SNW§(v); and

o f(SNWf(v)) = SNWE(v).

Since g preserves the orientation on Wi —leaves, for any v € 2, the restriction of g to
Wi(v) N S(= {i;(v),i € Z,1 < j < k}) is an order preserving transformation. By .
for any v € Q, both g\W;(v)mS, f]W;(v)mg are conjugate to a translation on Z.

In particular, for any v € €, there exists k’(g,v) € Z such that on W§(v) NS, we
have g = f¥'(9v). Moreover by the construction of x; j, the fact that fg = gf implies
K'(g,v) is an f—invariant function on v. Ergodicity of f then implies that k'(g,v) is almost
everywhere a constant k’(g), and on a full measure subset of S, g% = f K(9). But any full
measure subset of S is dense in T'X, and hence g¥ = f¥'(9) on all of T'X. In addition,
any g1,92 € Z{(f) satisfying k'(g1) = k’(g2) must induce the same transformation on
SN W5(v) for almost every v € T 1 X, which implies that g; = g2. Therefore k" induces a
group embedding

K Z8(f) = Z,
and k'(< f" >) = kZ. Then Z{(f) is virtually < f™ >, proving Theorem [j O

Proof of Theorem[3. Returning to the proof of Theorem if the volume has singular
disintegration along WJCC, then Theorem [3|is just a corollary of Theorem

Suppose now the volume has Lebesgue disintegration along W}% Theorem F in [3]
implies that there is a continuous vector field Y tangent to WJ‘i such that the continuous
flow (a priori it might not be smooth) ¢; generated by Y satisfies the following:

® o1 = f,and
e Y and hence ¢y, is uniformly smooth along the leaves of W5

By assumption, /¢, has either 2-bunched or narrow band spectrum. Let ro = 7(¢4,) > 1.
Fix r > 79; we may assume, by Lemma that f has either 2-bunched or narrow band
spectrum, and 7(f) < r. Consider h € Z5(f).
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By ergodicity of f, h preserves the disintegration of volume along Wi Therefore h = ¢y
for some t € R. If follows that

(8) Z¢(f) = {¢s,t € D}, where D := {t € R : ¢; € Diff"(T*X)}.

Since f = ¢ is C*°, it follows that D is a non-empty subgroup of R, and by Proposi-
tion Z,(f) contains {¢; : t € D} as a finite index subgroup.

Case 1: D is discrete. Then, since f = ¢, it follows that < f > has finite index in
{¢¢ : t € D}, and hence in Z,(f). Thus f has virtually trivial centralizer in Diff" (7" X).

Case 2: D is dense in R. We use the normal form theory from Section to show that
the C'°° smoothness of the ¢; with ¢ € D extends to all t € R, as follows. Applying
Proposition [28| to the triple (f, ¢, Y), we obtain that D =R, Y is a C* vector field and
¢ is a C° flow. As a consequence, by for any s > r we have

Z(f) ={ee:t € Ry € Z((f) € ZX()),
which implies Z¢(f) = {¢: : t € R}. Thus by Proposition 37| for any s > 1, ZF(f) hence
Zs(f) = Zpiges, (1 x)(f) 18 virtually {¢; : t € R} = R. O

5. PROOF OF THEOREM

As mentioned in the introduction, the key idea in the proof of Theorem [f] is to show
existence of many partially hyperbolic elements commuting with f, an argument that we
now detail.

5.1. The groups G and Gj. Two central players in the proof of Theorem [f] are groups
G and Gg, which we define in this subsection. We start with an easy observation.

For fy asin Theorem@ we denote by A'(fo) > -+ > Xi(fg) > - -- the distinct Lyapunov
exponents of fy and the corresponding D fy—invariant Lyapunov splitting by

(9) TT! = ®E}, & EY,.

Since f is C'—close to fy, it follows that there is a corresponding D f —invariant dominated
splitting

(10) TT! = F} & Ef

and f-invariant foliations W?*, W* W W< and W°€.

Consider an arbitrary element g € Z5(f). Propositionimplies that g\ = We. Thus
/g induce homeomorphisms f, g on the topological manifold T¢/We such that fg = gf.
Moreover f is Holder conjugate to the hyperbolic automorphism 74 on T¢~!. By Lemma
g is conjugate to an affine map by the same conjugacy. For g € Z5(f), we denote the
linear part of this affine map by T4, , where A, € GL(d —1,Z). In particular we have
A=A

Let 7: T4 — T% ! be the fibration given by Proposition which satisfies mo f = T}y oT.

Then the center leaf 7=1(0) is invariant under f; denote it by Wi (o). We use this leaf to
define G and Gj.
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Definition 9. Let Gy be the group of all the elements g € Z5(f) such that g fixes Wi (o)

and preserves the orientation of W¢ and T¢/W¢°. Let G < SL(d — 1,Z) be the group
generated by {4y : g € Go}.

The next proposition lays out the properties of G and G that we will use here.
Proposition 40. Suppose f,ly satisfy the hypotheses of Theorem[6. Then

(1) Z5(f) is virtually Go.
(2) Go,G are abelian groups. If the disintegration of vol along W€ is not Lebesgue,
then Gg is finitely generated.
(8) One or both of the following cases holds:
I. G is virtually Z for some £ < £y, where { < Ly if Lo > 1.
I. G is a finite index subgroup of Zsi(4—1,2)(Af). In particular, G induces a
mazimal Anosov action on T if by > 1.

Proof of Proposition[{0 (1) Let Z be the group of all the elements g € Z5(f) such that g
preserves the orientation of W¢ and T¢/W¢. Clearly Z7 has finite index in Z5(f). Denote
by Z¢ the set of elements of Z1 which fix the leaves of the center foliation W°¢.

Consider the map from Z% to Zy, o+ (ra-1y(Ta, ), sending g to the map induced by g.
The kernel is Z¢, and so Z1/Z¢ is isomorphic to a subgroup of ZHomeoJr(Td*l)(TAf)‘ By
Lemmas (14| and the group Zyyqpeo+(ra-1)(La,) is virtually Z™, for some m, and hence
Z+/Z¢ is virtually Z™, for some m/.

Note that since there are finitely many center leaves fixed by f, and each element of ZT

permutes the fixed center leaves, there exists k& > 1 such that for every element g € Z* /Z¢,
we have g% € Go/Z¢. Thus the finitely generated, abelian quotient

Zt)ze
Go/Z¢
has the property that every element has order at most k, and is therefore finite. This

proves that Gy has finite index in Z7, as claimed.

(2) Since Ay is irreducible, Lemma |15|implies that Zgy,q—1,7)(Af) (hence G) is a finitely
generated abelian group.

~ ZT /Gy

To study the group Gy, first we consider the group Z¢ defined as in the proof of (1).
For any h € Z¢, the rotation number p(h, z) € T is well-defined for hlyye(,) for any x € T¢.
By commutativity, it is not hard to get p(h,z) = p(h, f(z)). Since the rotation number
is a continuous funtion on diffeomorphisms, the ergodicity of f implies p(h) = p(h,z) is
independent of . Moreover we have

Lemma 41. The map p: 2 — T, h+ p(h) is a group embedding. In particular for any
h € Z¢, if there exists x € T? such that p(h,z) = 0 then h = id.

Proof of Lemma[{1l By Proposition [I§ we have three possibilities:
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Case 1: The volume volyas has atomic disintegration along W€. Lemma [9] implies that
Z°¢ < Gsx(WF) is an abelian group, and therefore p : Z¢ — T is a group homomorphism.
Moreover for h € Z¢, if p(h) = 0, then by the proof of Lemma @ h fixes all the atoms,
which are dense in T?¢. Thus h = id.

Case 2: f is topologically conjugate to T'a, x Rp for some 0 ¢ Q/Z. Let ¢ be the conjugacy,
so that (“lo fo((z,y) = (Ta;(x),y+0). Fix h € Z¢. Since h is center-fixing, there exists
a continuous function R(z,y) = R(h,,y) such that ("' o ho ((x,y) = (x,y + R(x,9)).

Since h commutes with f, R(z,y) is Ta s X Rg-invariant. Transitivity of Ty ; X Ry implies
that R(x,y) is a constant function. Therefore for any h € Z¢, we have ( “loho( = idx R,
which implies Lemma

Case 3: f is accessible, and the disintegration of volta has a continuous density function
on the leaves of W¢. Then [3, Theorem C] implies that f is topologically conjugate to a
rotation extension over (T4, ), i.e. there exist a continuous function r(z) = r(z,y) and a

homeomorphism ¢ : T¢ — T¢ such that (1 o fo((z,y) = (Ta;(x),y +1r(z)).

For any h € Z¢, as in Case 2. we can assume that there exists a (TAf)T—invariant,
continuous function R(x,y) = Ry (x,y) such that (~toho((x,y) = (z,y+R(x,y)). Then by
transitivity of (T4, ), (which follows from transitivity of f), we have ¢ “loho¢ =idx R,mny,
for any h € Z¢, which implies Lemma [1]

0

Returning to the proof of item (2) of Proposition we obtain from Lemma 41| that
Z¢ is an abelian group. Observe that the map h — Aj is a surjective homomorphism
from Gy to G, with kernel Z¢, and therefore Gy is a group extension of G by Z¢. By
commutativity of Z¢ and G, we have that Gy is a solvable group and [Gy, Go] C Z°.

Now we claim that [Gp,Gp] is trivial, and so Gy is abelian. Suppose there exists
h € [Go,Go] C Z° h # id. Lemma [41] implies that h\W;(mO) has non-zero rotation
number, where W¥(zo) is the Go—fixed center leaf we defined in Section On the other

hand, G0|W}: ) is a solvable, orientation-preserving action on a circle. It is known (cf.

(zo
[57]) that rotation number induces a group homomorphism from any solvable subgroup of
Homeo™ (S1) to T!, and so the kernel contains [Gg, Go]. Thus h\W? (wo) MUst have rotation

number 0, which is a contradiction.

To show that Gy is finitely generated if the disintegration of voljs along W]‘i is not
Lebesgue, we only need to show the following lemma, since Gq is a group extension of G
by Z¢ and G is finitely generated.

Lemma 42. The group Z€ is finite if the disintegration of volya along Wi is not Lebesgue.

Proof. Proposition [L8| gives two possibilities.

If conclusion [2a] holds, i.e. the volume volyps has atomic disintegration along W€, then
the finiteness follows directly from Lemma [0
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If holds, then f is conjugate to T4, x Ry for some 6 ¢ Q/Z. In this case E} and

E% are jointly integrable. Let W be the compact foliation tangent to the distribution
u S
Ey @ £

Let ¢ be the conjugacy satisfying (1o fo( = T'a, X Ry. Then as in the proof of Lemma
for any h € Z¢, we have ("t oho( =id x R, ). Let

D:={peT:(o(idxR,)o( e 2.

If D is discrete, then Z€ is finite. If D is dense, we will prove that in this case volys has
Lebesgue disintegration along W¢, which contradicts our assumption above. By density of
D, any measure on T invariant under {R, : p € D} is the Lebesgue measure volr. Recall
that volps is Z°—invariant, therefore volpa has the form (. (v x volr), where v is some
probability measure on T4 1.

In particular, if we denote by Pr® the projection from T? to W¢(zq) along W and Prf
the canonical projection from T? to T?/W¢, we have that any Z°—invariant measure p
is the product of Pr¢(p) with Pr(u). In particular, for almost every z, the conditional
measure mS on W¢(x) of volpa has the following form

mg = Py ) (Pri(volya));
that is, mg is the pullback of Pr{(volpa) on We(z) by Pré|yye(y).-

By Lemma we have the key fact that W is a C! foliation. It follows that Prc is
C*, and so Prc\%c(w) (Pr{(volya)) has continuous density function for any x. This implies
that volpa has Lebesgue disintegration along W€ leaves. O

This completes the proof of item (2). Item (3) is a corollary of Lemma for more
details, see [T1]. The proof of Proposition [40|is complete. O

Having defined the groups G and G and established their essential properties, we return
to the proof of Theorem @ We are given f sufficiently C! close to fp and aim to prove
that either the vol Lebesgue disintegration along W;, or Zo(f) is virtually Z‘ for some
< ty, with £ < £y if £y > 1.

By Proposition item (3), there are two possibilities:

I. G is virtually Z¢ for some ¢ < ¢y, where £ < £y if £y > 1.
II. G is a finite index subgroup of Zgr,4—1,7)(Ay). In particular, G induces a maximal

Anosov action on T4 1 if ¢4 > 1.

Suppose that conclusion I. holds. Lemma implies that either volpa has Lebesgue
disintegration along W€ or volp« has singular disintegration along W¢ and Z° is finite.
In the former case, we are finished. In the latter case, item (2) of Proposition 40| implies
that Gg is a finitely generated abelian group and also a group extension of G by Z¢. As
we are assuming that G is virtually Z¢ for some £ < €y = lo(Ay) (£ < Lo if £y > 1), tt is
not hard to check that there is a subgroup G; of G isomorphic to the torsion free part of
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G, which is Z¢. Therefore by finiteness of Z¢, Gy is virtually Z¢. Thus Theorem |§| follows
from conclusion (1) of Proposition

Suppose on the other hand that conclusion IT of Proposition item (3), holds. The
case fp = 1 is contained in conclusion I, so we may assume that ¢y > 1. We have the
following key proposition.

Proposition 43. Suppose f is as in Theorem[t, and Gy, G are as in Definition[9 If G
induces a mazimal Anosov action on T¢1, then volra has Lebesgue disintegration along
WE.

f

Assuming this proposition, the proof of Theorem [f] is complete. The proof of Proposi-
tion [43|is lengthy and occupies the next section.

6. PROOF OF PROPOSITION [43]

This section is devoted to the proof of Proposition We continue to assume that
fo: T4 — T¢ and £ are as in Theorem @ and that f € Diff2 (T?) is a C!—small, ergodic
perturbation of fy. In addition, we assume the hypothesis of Proposition that G
induces a maximal Anosov action on T¢~!. Our goal is to show that volys has Lebesgue

disintegration along W5.

Without loss of generality we may assume that G and Gy are finitely generated abelian
groups (otherwise Proposition [43| follows from Proposition . Then there is a subgroup
G1 of Gy isomorphic to G, through the map g — A,. Replacing G with G, we may thus
assume that Gg is isomorphic to G through the map g — A,. Moreover we may assume
G, Gy are torsion free (otherwise we consider their free parts instead).

The following proposition is the key step in the proof of Proposition 43} Recall that by
linearity of the action of G, we can define the Lyapunov functionals and associated (hy-
perbolic) Weyl chamber picture as in Section independently of the invariant measure.
Consider the Go—invariant dominated splitting @; E* @ E°¢ given by , ordered in 7 by
decreasing values of the Lyapunov exponents.

Proposition 44. Assume that G induces a maximal Anosov action on T?~1. For every
i, we have the following.

(1) The bundle E} is uniquely integrable, tangent to an absolutely continuous foliation
W} with C? leaves.

(2) The restriction of m: T — T9=! to each leaf of W} s a bi-Holder homeomorphism
onto the leaf of the affine foliation tangent to Ef4f, with exponent &, where § — 1

as dei (f, fo) = 0. Consequently m itself is 6-Hélder continuous as well.
(3) For any h € Gy such that Ay, is not in any Weyl chamber wall of the action of G,
Dh uniformly contracts or expands E".

The rest of Section [f]is dedicated to the proofs of Propositions 3] and [44] The plan of
the proofs is as follows: in Section we prove the fundamental property of Gy, namely
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that G and G share the same Weyl chamber picture. Then in Sections [6.2] and we
prove Proposition[44] In Section[6.4 we derive from Proposition [#4] an important corollary:
the joint integrability of Efc and E}‘ In particular, this implies that f is Holder conjugate
to T4, x Ry for some 0 ¢ Q/Z; see Proposition

In Section we consider a partially hyperbolic generalization of a classical result of
thermodynamic formalism in the Anosov setting. Combining a cocycle rigidity result (see
Section over a partially hyperbolic abelian action, using Proposition |55 we complete
the proof of Proposition [43|in Section

6.1. G,Gp have the same hyperbolic Weyl chamber picture.

Lemma 45. Any Go—invariant ergodic measure v has the same hyperbolic Weyl chamber
picture as G.

Proof of Lemma[{3J First we prove that the action of (G, r) has the same Weyl chamber
walls as G. Proposition implies that the foliations Wy and WJ‘? are Gg—invariant.
Moreover T(W}) = Wi, , for x € {u, s}. Therefore to analyze the hyperbolic Weyl chamber
walls of Gy we need only consider the action of Gy on WY, Wi separately. We show this
for W"; the proof for W?* is analogous.

Recall that by Lemma to prove Lemma we only need to establish the fol-
lowing claim: for any Aj € G that is not in any Weyl chamber wall, if Ay has d“,d'{—
dimensional stable and unstable distributions respectively within W;‘flf, then h has d“, dYy—
dimensional stable and unstable topological foliations (with exponential contracting or
expanding speed) respectively within W}L

In fact if the claim holds, then Lemma [25]implies that for typical h € G, the map h and
the matrix Ap have the same number of positive (resp. negative) Lyapunov exponents
with respect to any Gp—invariant ergodic measure v. From this it follows that G and
(Go, v) have the same Weyl chamber walls.

Notice that for any = € M, the restriction 7 : W;f(s) () — WZE,S) (m(x)) is a homeomor-

phism. To finish the proof of the claim, we use the following classical bi-Holder estimate
on the projection 7, which we will use repeatedly to lift hyperbolicity of elements acting
in T%"! to hyperbolicity in T¢.

Lemma 46. There exist C,6 > 0 such that for any x € T¢ and y € W}L(s) (z,loc),

de_l (71'(56)7 ﬂ-(y)) < C- d']Td (fL‘, y)67 and de (.’L‘, y) < C- de—l(ﬂ'(QT), ﬂ-(y))a
Lemma [6] is a simple consequence of Theorem [7} This bi-Holderness of 7 implies that
the hyperbolicity of TAh|W%A lifts under 7 to uniform hyperbolicity of h|W}L. Conse-
quently, G and (Gp, v) have the same Weyl chamber walls.

Next consider the Lyapunov functionals {)\é’é(', v),i=1,...,dim E}} associated to the
action of Gy on W}‘ with respect to an ergodic measure v, and the Lyapunov functionals
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{Xéz(),z =1,...,dim E%Af} associated to the action of G on W%Af. By our discussion

above, without loss of generality we may assume that Weyl chamber wall ker )\“’i(-,y)
Go

coincides with that of )\ZZ() Moreover
AGL(f,v) >0, and A& (Ta,) > 0.
then by Lemma (identifying G, Go with Z* in the obvious way), the Weyl chamber

picture of the action of Gy on W}‘ with respect to v is the same as that of G on Wy, .

The same argument applied to the action of Gg on Wjﬁ gives that the Weyl chamber
picture of the action of Gy on WJ“Z’ with respect to u is the same as that of G on Wi, - In
f

conclusion, (G, v) has the same hyperbolic Weyl chamber picture as G. This completes
the proof of Lemma O

6.2. Estimates for elements in the same Weyl chamber. We continue our analysis
of the dynamics of G relative to the Weyl chamber picture.

Lemma 47. Suppose h € Go has the property that Ay and Ay lie in the same Weyl
chamber. Then

(1) there exists ¢ > 0 such that for any h—invariant ergodic measure v,
)\maX(Dh|EJ3-, v) < —c¢, and )\min(Dh|E}L,1/) > ¢

(2) for every i, Dh either uniformly contracts or uniformly expands E°.

Proof. (1): If Ay, is in the same Weyl chamber as Ay, then as in Lemma |45 we have that
T, uniformly contracts 7(W3) and uniformly expands 7(Wy). By Lemma for any

x € T and y € Wi(z,loc),

: 1 n n max
(11) limsup — log dyy; (" (x), A" (1)) < 6 - A"(T, | owp)) <0,

n—oo TN

where § is the Holder exponent of 7 in Lemma 46 Then for any h—invariant ergodic
measure v, Lemma and together imply that for v—almost every = € T"t!, the
Pesin stable manifold passing through x is W;Z(x, loc), and

N(Dh g3, v) < SN (T xows)) < 0.

Similarly, for any h—invariant ergodic measure v, we have
/\mi“(Dh\E}L,V) > 5/\mi“(TAh\W(W}L)) > 0.
Setting ¢ := min(|5)\max(TAh]7r(W;))|, 5)\mi“(TAh|7r(W}L))) completes the proof of (1).

(2): Since Dh\E;,Dh|E}L are continuous, item (1) of Lemma (47| implies that Dh]EJsc
and Dh)| py satisfy the conditions of Lemma Thus Dh| py and Dh™1 p; have uniform
exponential growth, which implies (2). O
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Thus we have shown that Proposition [44] holds in one case:

h and f lie in the same hyperbolic Weyl chamber
<= Ay and Ay lie in the same Weyl chamber.

6.3. Proof of Proposition In this section we will prove Proposition [44] for those h
for which A, and Ay lie in different Weyl chambers.

Recall that we have ordered the bundles E;c and E}O in ¢ by decreasing size of Lyapunov
exponents. Write

EY=E}®Ej®---oFf, andEj=E"e- . 0,
and for ¢ < j, let
[L.j] . pi 2 j
E{Y =EioEie--oF

An immediate application of the normally hyperbolic theory in [35] implies that for every
i € [1,k], E* @ E° is integrable, tangent to an f-invariant foliation W][f’k}c that projects

under 7 to the affine foliation WZ’fk] tangent to Eil ; SRR Eif. Further application of
[35] gives the following.

Lemma 48. For everyi C [1, k], there is an f-invariant foliation Wj[f’k] with the following
properties

(1) E][f’k} 15 uniquely integrable, tangent to Wj[f’k], and

(2) W][f’k] and W€ are jointly integrable, tangent to the foliation Wj[f’k]c; the restriction

of ™ to W][f’k} is a bi-Holder homeomorphism onto WI[X’fk] (m(x)).

Proof. For fixed i € [1,k| we apply the graph transform argument for f in restriction to
the disjoint union of the leaves of WJ[f’k]C: as the splitting Ej[f’k] &) EJS is dominated, and

since Ej[f’k] is uniformly expanded, it is uniquely integrable, tangent to a foliation Wj[c” !

By construction W][f I and W]Cc are jointly integrable. O

For j € [1, k], the bundle E][cl’j Vis a strong unstable bundle for f and therefore uniquely

integrable, tangent to a foliation W][cl’ﬂ. By intersecting foliations W][cl’j I and Wj[f K e

obtain f-invariant foliations W][f ] tangent to the uniquely integrable bundle E][c” ], for any
interval [¢,j] C [1,k]. We denote by W}" the foliation W}m’m}, which is tangent to EY".
Lemma (13| implies that the foliations Wj[f I are G-invariant.

Note that except in the case j = k, we do not know that W][ci’ﬂ projects to under 7

to Wz’j ] (and a priori for a single f this will not be the case). We will need to use the
maximality of the Gg-action to establish this.
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Set hg = f. Since G induces a maximal Anosov action on T4, Lemma implies that
there exists a Weyl chamber adjacent to that of Ay such that for any element h; € Gy
with Aj, in this chamber, the signs of all the exponents of Ay and Ay, are the same except
one exponent corresponding to E}O. By this process we produce elements hq, ..., hi € Gp.
We prove the following statement inductively, for i = 1,..., k.

Inductive hypotheses (i):

(Ai) W][f i absolutely continuous, with C? leaves,
(B;) W(Wj[f’k]) = K’fk], and Tr(W}) = W,iaxf- The restriction of 7 to W} leaves is a
bi-Holder homeomorphism onto Wf;‘f— leaves with Holder exponent 6 — 1 as

den (fo, f) — 0. |
(C;) Dh; uniformly contracts E} and expands Ej[fﬂ’k}.

The inductive hypothesis holds vacuously for ¢ = 0. Assume then that the hypothesis
holds for i — 1, for some i € {1,...,k}. We establish the hypothesis for ¢ in several steps.

Step 1: Show that Wj[f ks absolutely continuous, with C? leaves.
Step 2: Define a Gy-invariant topological foliation W#, subfoliating W][f’k], such that 7(W#) =

WY .

Step 3: Shofzv that for any h;—invariant ergodic measure v, W# coincides with the Pesin
stable manifold of hZ]WJ[f ’k}, v—almost everywhere. In particular TW# is well-
defined v—almost everywhere, and W# is absolutely continuous in W][cm’k].

Step 4: Show that TW# = E}, vol — a.e.. Consequently, there is a full volume set K such
that for any « € K, W#(z) is a C'! manifold tangent to E} everywhere.

Step 5: Using an approximation argument, show that W# = W} and W(W}) = Wilf'
Obtain integrability of E} & E° and the fact that T(W) = Wﬁff. Conclude that
the restriction of 7 to Wi leaves is § bi-Holder, with § close to 1.

Step 6: Using Lemma 25|, show that Dh; uniformly contracts E} and uniformly expands

[i+1,k]
E; .

Step 1. By the inductive hypothesis A;_1, the foliation W][f “LH g absolutely con-

tinuous, with C? leaves. Hypothesis C;_; implies that the derivative Dh;_; uniformly
contracts Ejfl and expands Ej[f’k]. It follows that Wj[f K is an absolutely continuous sub-
foliation of WJ[f_l’k] with C? leaves, and thus W/[f ki absolutely continuous. (Note that

for i = 1, the statement holds, because Wj[cl’k] = W}j)

Step 2. We define the Gy—invariant topological foliation WW# to be the lift of sz =

Wi, NWi, by 71 on W}f’k]—leaves.
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Henceforth to simplify notation, we write h = h;, W = W][f’k], E = E}, E = Ej[fﬂ’k],
and F = Ej[f’k} = E®E' = TW. By construction, the topological foliation W# subfoliates

the absolutely continuous foliation W, whose leaves are C2.

Step 3. Since 7 is bi-Holder when restricted to W}L leaves, the map h contracts distance
in the leaves of W# exponentially fast; i.e. for any z € T¢ and y € W# (z,loc),

1
(12) lim sup — log dyy= (h"™(x), h" (y)) < Ao < 0,

u
n—oo TN f

where W# (z,loc) is defined to be the lift of Wi, N Wg’fk} (m(x),loc) to W#(x).

Proposition [24] implies that for any Go—invariant ergodic measure v, the leaf W7 ()

coincides with the (global) Pesin stable manifold W,I;liv(a:, gl) of = (for the restricted dy-

namics h|W ), for v—almost every z, since globally h contracts W# exponentially fast.
Therefore W# (z, loc) is tangent to Ef N F(z) at x for v—almost every z, where E  is
the Oseledec stable space of (Dh,v).

Step 4. Restricting to the case v = volpa in Step 3, we then have

Proposition 49. The measurable distribution Ej ) NI coincides with E, vol—a.e.

Proof of Proposition[{9. We split the proof into two cases.

Case 1: dim (E,“; vol N F) (= dim F) = 1. The following lemma is easy to show.
Lemma 50. There exists E} such that Ej . N E C E;, vol—almost everywhere.

Proof of Lemma[50 Evidently E5  NF isavol—a.e. defined, one dimensional, D f—invariant
distribution within F, in particular we have Lyapunov exponents defined for (v,zx) for
vol—a.e. zandv € Ej NF.

For any regular point z and any v € T, T¢—{0}, the forward and the backward Lyapunov
exponents for v exist and coincide. Then v is contained in some Oseledec subspace, and

hence is contained in some EZ. Therefore T4 decomposes as a finite union of measurable
sets U; X such that for all m, f(X;) = X, and

Eist,vol NFEC Ej(ﬂ?),
for all z € X;. By ergodicity of f we have that one of the X; has full volume. O
Let V .= E}, where E} is the subbundle obtained from Lemma

Lemma 51. For a full volume set of x € T?, the leaf W (z) is a C' submanifold tangent
to V' everywhere.

Proof of Lemma[51 The absolute continuity of the foliation W from Step 1 implies that
any set of full volume meets almost every leaf of W in a set of full leaf volume. Hence
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there is a full volume, f-invariant set P C M of Pesin regular points for (f,vol) in M such
that for every p € P, the leaf YW meets P in a set of full leafwise volume.

Let N := [ |,c); W(p) be the disjoint union of unstable manifolds: it is a non-compact
C? Riemannian manifold. The maps induced by f and h on N are C?, with uniform
bounds on the derivatives. Applying the arguments in [66] to the (Pesin regular) points
in Py = |],cp P NW(p), we obtain that the Pesin local stable manifolds

Ploc = {Ploc(x) = W}ﬁ;\;(iﬁ, ZOC) T € P}

of h|N form an absolutely continuous family of disks. In particular, for every p € P, a set
B C W(p) has volyy-measure 0 in W(p) if and only if it has volp,_(,)-measure 0 in Pyo.(2),
for almost every z € W.

This implies in particular that for vol—a.e. € T¢, there is a dense subset of y € P, ()
such that y belongs to P. For such y, the smooth disk Pj,.(x) is tangent to E(y). Thus
for vol—a.e. 2 € T?, the submanifold P, (z) is tangent to E on a dense subset, and hence
by continuity of E, Pj,.(x) is tangent to V everywhere and is therefore a C'' submanifold.

Fix a positive volume, compact Pesin block A for h. By Pesin theory, for y € A, the size
of Pioc(y) is at least 79 > 0. Let x be an f-regular point in A. Then there exist infinitely
many n such that f~"(x),n > 0 intersects A infinitely many times (this property holds
for vol—almost every x, by Poincaré recurrence). Then the submanifold f"(Pjo.(f~"(x)))

e is contained in W# (x)
e is tangent to V everywhere.
e has length > rge’ for some A > 0, for all n with f~"(x) € A.

As n tends to infinity, we obtain that W# (2) = Up>0f™(Pioc(f ™(2))) is a O submanifold
tangent to V everywhere. Since the h-Pesin blocks exhaust the volume, we conclude that
for vol—a.e. x, W#(z) is a C' submanifold tangent to V. Let K be the set of such .
Then K is dense since it has full volume, completing the proof of Lemma O

Now we claim that j = ¢, and thus V = E. Suppose j # i. By Holder continuity
of 7, there exist positive constants e;,Cy such that for any z and any y € W# () with
dw(z,y) < €1, we have

(13) dpa—1(m(x), 7(y)) < Cq €.

Now we pick an arbitrary 2 € K and consider the C' submanifold W#(z). Since, by
Lemma W7 (z) is everywhere tangent to V = E}, f expands W7 at a rate slower
than e (7)1 for some n < M~1(fo) — M(fo) (by smallness of doi(f, fo)). Choose y €
W# (x,loc) such that dyy«(z,y) < e1. For n large, m(f(x)), m(f™(y)) can be connected by
a ngf—path with length less than O(C €; e”(’\j+77)). But since T4, expands Wqu leaves

at a constant rate e*' () the points 7(f™(x)), 7(f"(y)) cannot be linked by a W,iaxf path

with length o(e”)‘j(f 0)), a contradiction. Therefore j must be i. This completes the proof
of Proposition [49) in Case 1.
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Case 2: dim (Ef; volﬂF) (= dimE) > 1. Suppose that E} , N F does not coincide
vol—a.e. with EZ. Then we have

Lemma 52. The measurable distribution E} ) N F has non-trivial intersection (over a

positive volume set) with E' = EJ[fH’k].

Proof of Lemma[59 Suppose that Ej; o M F has trivial intersection with E', vol-almost
everywhere. Since EZ,VOI N F' does not coincide vol—a.e. with F/, Lusin’s theorem implies
that there is a compact set Ko with positive volume and a positive constant do such that
for any z € Ko,

(14> Z(EIfSL,vol N F(x)v E(JZ)) > 0.
Therefore for any n > 1 such that f"(z) € Ko,
(15) L(E}, v NF(f"(x)), E(f"(x))) > 2.

On the other hand since F = EF @ E’ is a dominated splitting, and Ej N F(x) is
D f—invariant and has trivial intersection with E’, we have that

Jim Z(Bj v N E(f"(2)), E(f*(2))) = Z(Df*(E} o1 N F(2)), Df*(E(x))) = 0.

If x € K5 is recurrent, then this contradicts . Since almost every x € Ky is recurrent,
this gives a contradiction, completing the proof of Lemma O

As in the proof of Lemma we thus obtain that W# is absolutely continuous and that
there is a full volume set K C T? such that for any z € K, W#(z) is a C' submanifold,
and TW? (z) has non-trivial intersection with E’ everywhere. This uses Lemma and
the continuity of E/ and TW# along the leaves of W#.

Moreover, by the Cauchy-Peano existence theorem, for € K, there exists a C' path
v : I — W¥(x) such that for any t € I, v'(t) € E' N TW#. Let 2o = v(0) and 2, = v(1).
As in Case 1, f™(zp) and f™(z1) can be linked by a C' path f"(vy) in W#(x) of length
O(e" 1 (Fo)+1)Y for some 17/ < NE(fo)— AL (fo); this implies that 7(f™(z0)) and 7(f™(21))
can be linked by a Wf;‘f —path of length O(e"™ " (fo)+1)) (since holds here). On the
other hand, since 7(f"(z;)) = T}, (m(2i)),i = 0,1, it follows that 7(f™(z0)) and 7w(f"(21))
cannot be connected by a sz —path of length o(e”)‘l(fo)), which is a contradiction. This
completes the proof of Proposition [49 O

Combining Proposition 49| from Step 3 with Lemma we obtain a full volume subset
K C T¢ such that for z € K, W#(z) is a C! manifold tangent to F everywhere and
coinciding with a global Pesin stable manifold. By the absolute continuity of the family
Pesin disks tangent to F and Fubini’s theorem, it follows that W# is absolutely continuous.

Step 5. If a topological foliation has almost every leaf coinciding with another topo-
logical foliations, the two foliations must coincide. It follows that W# = W} and in

particular W(W}) = Wf;lf. Observe that the leaves of 71 (Wi‘f) are jointly subfoliated
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by W§ and W}, both of which have C! leaves. Therefore E @ E° is integrable and tangent
to Wi, Integrability of E’ @ E¢ follows from normal hyperbolicity.

Note that any leaf conjugacy from (f, W}:) to (f07WJ€O) to close to the identity must
map W}g to W}C. Lemma ﬁ implies there is a leaf conjugacy h® to (fo,W}) that is
d-bi-Hélder along Wy~ leaves, where 6 — 1 as do1(f, fo) — 0. Then 7 = P o k¢, where
P: T¢ — T is the coordinate projection. It follows that that the restriction of 7 to W}
leaves has bi-Holder exponent § as well. This completes Step 5.

Step 6. Since T, exponentially contracts distances in Wif leaves and 7 is bi-Holder
between W} and Wi‘f leaves, we have that A" exponentially contracts distances in W}
leaves. Lemma [25( implies that Dh uniformly contracts T’ W} = E} =FE.

i+1,k _
WZ;F -l leaves, h™™ exponen-

Similarly, since T’ X: exponentially contracts distances in
tially contracts distances in W][f LR Joaves. Again, Lemma implies that DA uniformly
expands TW][f'H’k] = E][f+1’k] = E’. Note that he same argument holds for any h € G
such that A is not in a Weyl chamber wall.

This completes the induction, and so Proposition holds for the elements hq,...hg
and the bundles E}c, . ,E’]f. Working in the stable bundle W$ with f~! we obtain ele-
ments Ak ..., he satisfying the conclusions of Proposition for f~! and the bundles
E];Jrl, e ,Efi. The remark above shows that that the conclusions hold for any h € Gg
such that Ay, is not in a Weyl chamber wall. This completes the proof of Proposition [44]

6.4. Existence of partially hyperbolic elements and topological rigidity. We now
return to the proof of Proposition [43] The next step is to show that there is a partially
hyperbolic element in every hyperbolic Weyl chamber.

Proposition 53. Suppose f satisfies the hypotheses of Proposition [{3. Then in each
hyperbolic Weyl chamber of Gq, there exists a partially hyperbolic element h.
Proof of Proposition[53. Fix an h € G such that Aj, is not in any Weyl chamber wall.

Lemma 54. For any € > 0, there exists n € " such that for any j, log Jac|Dh"| ;| lies
¥

in the interval

16) (dim(Ej%) (TN (AR) — €) - n), dim(gg;) (BN (Ap) +€) - n), if M(Ap) <0;
(dim(E%) - (5N (Ap) — €) - n), dim(E4) - (571N (Ap) +€) - n), if M(Ap) >0,

where N (Ay,) is the Lyapunov exponent of Ah|Wilf, 6 =~ 1 is the Holder exponent given by

Proposz'tion and Jac(-| ;) is the leafwise Jacobian for the map restricted on Wi, .
¥

Proof. Without loss of generality, assume that M (A;) < 0. Lifting the action of Ty, to
h and using the §-Holder continuity of 7 restricted to WY, we obtain that that for each
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€ > 0, there exist n > 0 and N € N such that for all z € M, and y € W]]c(a:)

dla,y) <n = O NI < (pr(a), fr(y)) < 07N (A,

for all n > N. The conclusion follows easily from Lemma completing the proof of
Lemma [54] O

Lemma (11| implies that h is volume preserving. Since E}, E% are all continuous distri-

butions in TT%, there exists Cy > 1, depending only on the angles between E;, EJCC, such
that for any k € Z,

(17) Gyt < (H JaC(th!E;)) [DRF | el < Co;
J
since Ay, has determinant 1, we also have

(18) Zdim(Ej))\j (Ap) = 0.

Therefore by , and Lemma we have that for n large enough,
(19) |IDR" g || € [e™7", €],
where v is small if § is sufficiently close to 1 and € in is small.

Comparing with (16, for [A\(Ap)| > v (which holds for any f which is sufficiently
C! close to fp and any h that is not close to the Weyl chamber wall), we get h is in fact
a partially hyperbolic diffeomorphism, with E} © E}' = EB]-E;, and B} = E]‘i, completing
the proof of Proposition O

From the existence of partially hyperbolic elements in every chamber, we obtain topo-
logical rigidity of the action.

Proposition 55. If G induces a mazimal Anosov action on T, then

(1) there exists a Go—invariant continuous metric on E%; and

(2) f is Hélder conjugate to Ta, X Ry for some 0 ¢ Q/Z. Similarly, any h € G is
Hélder conjugate (by the same Hélder conjugacy) to a product of Ta, with a circle
rotation.

Proof. Proposition [53] implies that the Gg action is partially hyperbolic, with hyperbolic
subbundle FH := @jE}. The rigidity of such actions is studied in [24] 25]; in particular,

the proofs of Proposition 8.1 in [25] and Proposition 5.1 in [24] imply that E is tangent
to a C! foliation WH.
Denote by chc(l‘o) a Go—fixed center leaf. Since E' is integrable, there is no open

accessibility class for f. Proposition implies that T¢ has a product structure, i.e. T¢
is topologically the product of W§(xo) and T4=1/We. By Holder continuity of m and Wi
this product structure is Holder continuous as well.
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Consider the projection Pr¢ from T? to Wi (zo) along WH . Since W is a C? foliation,
Pr¢ is C! as well. Therefore Pr¢(volypq) is an f—invariant volume on W§(zo) with contin-
uous density function, and f|W}-(x0) is C'! conjugate to a circle rotation Rg. By ergodicity
of f, the rotation number # must be irrational.

The continuous density function mentioned above gives an f—invariant continuous met-
ric on TW$(zo), and this pulls back via DPr|ge to an f-invariant metric on E°. Since
the construction of this f—invariant continuous metric on E° only depends on the product
structure and the volume form on T¢, it must be Go—invariant. This proves (1).

For (2), we know that the action induced by f

e on ']I‘d/)/\/c is Holder conjugate to T4, on T4, and
e on T¢/WH is C'—conjugate to Ry.

Using the product structure of f, we obtain that f is Holder conjugate to the product of
Tx ; on T4 with an irrational rotation Rg. The same proof also works for any h € Gg
(although if A is not ergodic, the rotation number might not be irrational). Therefore, by
the same conjugacy, h is Holder conjugate to the product of T4, with a circle rotation. [

6.5. Absolute continuity of Wj?: volume and equilibrium states. The following
proposition is a partially hyperbolic version of Theorem 20.4.1. in [44].

Proposition 56. Let f: M — M be a C'*, volume preserving partially hyperbolic dif-
feomorphism. Suppose that for any f—invariant ergodic measure v, the central Lyapunov
exponents of f with respect to v are all zero. Then the volume volys is an equilibrium state
of the potential ¢ := —log J*(f) := —log|det D f|gu|.

Proof. The proof is basically contained in [36]. By the Pesin entropy formula [63] and the
vanishing of the central Lyapunov exponents, we have

heat(f) = /M log J*(f)(z)dvol(x).

Therefore Py (¢) = 0, where

PVOI(SO) = hvol(f) + / tpdvol.

is the free energy of ¢ with respect to vol. We need only show that that the pressure of ¢
vanishes:
P(p) == sup <hu(f)+/sodu> =0.
e frp=p

In [36], the authors introduce the concept of unstable pressure P“(f,v) = P"(1) for
any continuous ¢ and C! partially hyperbolic diffeomorphism f. Corollary A.2 and the
paragraph right after the statement of Corollary A.2 in [36] implies that P“(¢) < P(v)
for any continuous . Moreover if f is C'* and there is no positive Lyapunov exponent

in the center direction with respect to any f—invariant ergodic measure v, then equality
holds. Corollary C.1 in [36] implies that P"(¢) = 0. for the potential ¢ = —log J*(f).
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The assumptions of Proposition [56{ imply that for any ¢ € C(M,R), P“(¢) = P(v),
and it follows that P(p) = 0. This completes the proof of Proposition O

6.6. Absolute continuity of W: WH_ leafwise cocycle rigidity of higher rank
partially hyperbolic actions. Proposition implies that the action of Gy on T¢ is
Hoélder conjugate to an irrational rotation extension a over &, where & is the maximal
linear Anosov Z% 2 action on T?. Here a is a Z% ?—action on T? defined by a(a) =
a(a) x Ry(a) for a € 7472 where a Ry(a) is an action by circle rotations with at least
one f(a) irrational.

Recall that a continuous function § : Z%2 x T¢ — R is an (additive) cocycle over a
if B(a+ b,2) = B(a,ab) - z) + B(b,x) holds for all a,b € Z?2 and x € Z%. A cocycle
B1 is cohomologous to another cocycle B2 if there exists a continuous function (called the
transfer function) ¥ : T — R such that 8;(a,z) = B2(a, z) + ¥(a(a) - ) — ¥(z).

It is well known that for a maximal Z%%2—Anosov action & on T¢! (see Lemma ,
any Holder continuous cocycle over & is cohomologous to a constant cocycle.

We obtain here a corresponding result for the irrational rotation extension « over a.
A cocycle 8 on T4 ' x T is constant on T? ! if B(a,2) = B(a,y) whenever x,y have
the same T-component, i.e. they lie on the same leaf of the horizontal T¢ '-foliation
{To1 x {t}:t € T}

Proposition 57. Let a be an irrational rotation extension over a maximal, linear Anosov
Z%=2_qction & on T4 L. Then any Holder continuous cocycle over o is cohomologous to a
cocycle that is constant on T4 1.

This proposition is a direct corollary of the following more general result on partially
hyperbolic actions:

Proposition 58. Let « be a partially hyperbolic ZF action with coarse Lyapunov distri-
butions EJ and corresponding coarse Lyapunov foliations F7, j=1,...,r. Assume that:

(1) @;:1 E7 integrates to a Hélder foliation WH with compact smooth leaves.

(2) For any two i,7 € {1,...,r} there exists a Weyl chamber C and an action element
a € C such that a(a) is partially hyperbolic and uniformly contracts both E* and
EJ.

Then any Holder continuous cocycle over o is cohomologous to a cocycle that is constant
along the leaves of WH

Proof. The proof is an application of the periodic cycle functionals argument for higher
rank actions developed in [20, 46] (cf. [87] for the rank-1 case). The main idea is that
within each accessibility class of the action one can define a transfer map for the cocycle
along Lyapunov paths (these are broken paths with pieces completely contained in leaves
of foliations F!,..., F1), see |20, Definition 4]. Such a transfer map gives rise to a well-
defined global Holder map provided that its values along any two broken paths with same
endpoints are the same [20, Definition 5]. In other words, the value of the linear functional



54 DANIJELA DAMJANOVIC7 AMIE WILKINSON, AND DISHENG XU

thus defined (called the periodic cycle functional [20, Proposition 2]) should be trivial on
a closed Lyapunov path. This holds as in [20, Section 3.3] if the system of foliations
F' ..., F! satisfies the condition (2), which is also known as the totally non-symplectic
(TNS) condition. The actions considered in [20] are assumed to be accessible, so the whole
manifold is one accessibility class and the periodic cycle functionals argument implies in
the case of actions in [20] that any Holder cocycle is cohomologous to an everywhere
constant cocycle.

In the situation we have here the exact same argument applies along leaves of the WH
foliation, since within each leaf we have accessibility of the coarse Lyapunov foliations
and property (2). By the same argument as in [20, Section 3.3], this implies that any
Holder cocycle over « is cohomologous to a cocycle which is constant along the leaves of
the foliation WH.

g

6.7. Absolute continuity of Wi uniqueness of the measure of maximal entropy.

Consider the diffeomorphism T4 x Ry : T4 1 x T — T ! x T where Ry is an irrational
rotation on circle and A € SL(d — 1,Z) is hyperbolic.

Lemma 59. The volume volta on T x T is the unique measure of mazimal entropy of
TA X Rg.

Proof. This lemma is probably well-known; we sketch the proof. The projection of the
measure of maximal entropy v for T4 X Ry to T%! is the measure of maximal entropy for
T4, which is volume. On the other hand, the projection of v to the circle T is Ry-invariant,
and hence is Lebesgue measure. Therefore v must be volya, since zero entropy systems
are disjoint from Bernoulli systems (cf. [31]). O

The following proposition is a corollary of Proposition

Proposition 60. Let f satisfy the hypotheses of Theorem@ and let Go, G C Diff(T%) be
the finitely generated abelian groups defined in Section[5.1. If G defines a mazimal linear
Anosov action, then the volume volya is the unique measure of mazimal entropy of f.

Proof. By the discussion in Section and Proposition we know that volps is an
equilibrium state of the potential ¢ := —log JJ*(f) for f. We define the cocycle 8 :=
—log J* over the action of G as follows. For f; € Go,z € T?, we set

Bf1,x) := —log|det D f1| pu(a) -
Clearly f is a cocycle over the action of G, and S(f,z) = ¢(z), for all .

The action of G is Holder conjugate to the algebraic action « defined in Section
By Proposition [57| we know any Holder continuous cocycle over « is cohomologous to a
cocycle that is constant on T4~!. Therefore § must be cohomologous to a cocycle that

is constant on each horizontal WH —leaf. In particular, there exist continuous functions
¥, U : T4 - R, such that
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and v (x) = ¥ (y) whenever x,y lic in the same W —leaf.

As in the proof of Proposition we denote by chc(:co) a Go—fixed center leaf, and let
Pre: T¢ — Wi (x0) be the projection along the horizontal foliation W . Then 1/ defined
in induces a well-defined continuous function ¢ on W]Cc(acg) such that

(21) ¥ = ¥ o Pre.

Now we claim that for any f—invariant measure u, de @ dp is independent of p. Indeed
/ odu = / (Y4 To f—W)du (by (20)) = / Y dp (since p is f—invariant)
T T Td
= / YdPri(u) (since v is constant along each horizontal leaf).
W4 (%o)

But f|W; (xo) 18 uniquely ergodic, and Pr{(p) is f—invariant on W$(zo). Then the integral
fW;(a:o) Y¢dPrg(p) (and hence [ dpu) is independent of p. Write s(p) for the value
de wdp of this integral.

Since volya is an equilibrium state of the potential ¢, we have that

Pale) =  suwp  hu(f)+ / y
w

wis f—inv

= sup  hu(f)+ s(¢) (since /go = s(¢), which is independent of ).
I

wis f—inv
But PVOI(SO) = hvol(f) + fvol(p = hvol(f) + S(SD) Therefore hvol(f) = Sup,u is f—inv h#(f)a
which implies volya is a measure of maximal entropy of f. But by Proposition [55| we know

[ is conjugate to Ta, x Ry, for some ¢ ¢ Q, therefore by Lemma volpa is the unique
measure of maximal entropy of f. O

As a corollary, the conjugacy between f and T4, x Ry identifies the measure of maximal
entropy volpa of T4, X Ry with the measure of maximal entropy volya of f. Recall that

volpa, the measure of maximal entropy of T4, x Ry is the product of PrT (volpa) and
Prlrd_l(VOITd). Therefore volra, the measure of maximal entropy of f, is the product of

Pr¢(volpa) and Pr¥ (volpa), where Pri is the projection from T¢ to T¢/ W§ along W4.

In particular, since Pr§(volpa) is absolutely continuous with respect to the Lebesgue
measure on W§(zp) (since Pr is C1), it follows that volpa has Lebesgue disintegration
along W4. This completes the proof of Proposition which implies Theorem @

7. PROOF OF THEOREM [

Let fo be as in Theorem |4} Let f € Diff% (T?) be a C'—small ergodic perturbation of
fo. Denote by \'(fo) the distinct Lyapunov exponents of fy (ordered in i by decreasing
size) and by TT¢ = @E}O @E;ﬁo the corresponding D fo—invariant Lyapunov splitting. Let

TTY = @E} @® E% be the corresponding D f—invariant dominated splitting.
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Lemma 61. If dci(f, fo) is sufficiently small then the cocycles Df_1|E1ft,Df|E; satisfy
the narrow band condition defined in Section[3.6

Proof. It is clear that the cocycles D f 1\ E?o’D fol B}, have point Mather spectrums. If
dea (f, fo) is small then E} is close to E}O and therefore the Mather spectrum of D f]| B}

for each 7 is contained in an arbitrarily small narrow band, which implies Lemma [61] O

Since f is leaf conjugate to fo, there is an f—fixed center leaf W]?(aco). As in the proof
of Proposition 40} for any s > 1, Z4(f) is virtually Gy, where

Go :={h € Z5(f) : h preserves the orientation of W%, and h(W% (o)) = W5(zo)}.

By Proposition there is a Hélder continuous fiber bundle 7 : T¢ — T?~! such that
mo f = Ta, om, and the fibers of 7 are leaves of WJCc For any h € Gy, h preserves
the fiber bundle structure, and there is an automorphism T}y, : T4 — T9=! such that
moh = Ty, om. As in the proof of Proposition @, we consider the group Z¢ of center-fixing
elements in Gy and we let G = {A; : h € Gp}. Then Gy is a group extension of G by Z°.

In the case that Wi is a smooth foliation, the volume has a smooth disintegration along
Ws, and f is smoothly conjugate to an ergodic smooth isometric extension g, of g, where g
is the map on the base T¢~! and p is a function on the base (see the definition of isometric
extension in Section [2.1)) , such that p is homotopic to identity. We have the following
lemma for g and p:

Lemma 62. Let r be as in Theorem . If dea(f, fo) is sufficiently small and W5 is a
smooth foliation, then one of the following holds.

(1) Z5(f) is virtually Z x T for every s > r. In this case, either g is not C* conjugate
to Ta,, or p is not C°° cohomologous to a constant.

(2) Z4(f) is virtually Z0A9) x T for every s > 1, and gp s C° conjugate to Ta, X Ry.

Proof. Fix s > r. Let G(g,), Z2°(gp), and Go(g,) be the groups defined in Section for
Y9p-

The proof of Lemma [41] and ergodicity of g, imply that any A commuting with g, is an
isometric extension, Z(g,) is virtually Go(g,), and Go(g,) is a group extension of G(g,) by
Z(g,). Moreover, by the proof of Proposition {40, Z¢(g,) = {id x Ry, 6 € T}, and Go(g,)
is virtually Z¢ x Z¢, where £ is the rank of the finitely generated abelian group G(g,); to
see this, note that in any short exact sequence of abelian groups: 0 - H — Gog — G — 0,
with G finitely generated, the group G is virtually the product of H with the torsion free
part of G.

It is not hard too see that Dg,| B, Dgp_1 \ By, have narrow band spectrum if and only if

Dy g and Dg| gy do. Since f has narrow band spectrum, and f is smoothly conjugate
to g,, both g and g, have narrow band spectrum. By Corollary 33, Z,(g) is either virtually
trivial or g is smoothly conjugate to T'4. The former implies that G(g,) is virtually trivial,
hence ¢ = 1 and item (1) of Lemma [62| holds.
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If g is smoothly conjugate to T'a,, then without loss of generality we may assume that
g = Ta,. If pis smoothly cohomologous to a constant 6, then by ergodicity 0 ¢ Q/7Z, and
item (2) of Lemma [62| holds.

We claim now that if g = Tl4,, and p is not € cohomologous to a constant then £ =1
for any s > 1. Suppose £ > 1 for some s > 1. By taking a finite iterate if necessary, we
can assume that there is an isometric extension (1), (a priori C*) such that (1),
commutes with g, = (T'a f) p» and the group generated by Ay, B is not virtually trivial.
Using commutativity, by considering the induced action of (7)., (Ta,), on m1 (T%), we
get that pp is cohomologous to a constant, which can be viewed as a function on T4 1.
By Lemma , the group generated by T4, Ts on T" is a higher rank action, therefore by
Lemma p, pp are (simultaneously) cohomologous to constants. By Livsic’s theorem the
conjugacy is smooth, i.e. pis C*° cohomologous to a constant, which is a contradiction. [

Proof of Theorem [] If the disintegration of volume along W7 leaves is not Lebesgue, then
Theorem [ is a corollary of Theorem [6] Assume that volps has Lebesgue disintegration
along W;. Proposition 18 implies that one of the following cases holds:

Case 1: f is accessible, and the disintegration of volpa has a continuous density function
on the leaves of W}? By [2, Theorem EJ, there is a volume-preserving flow ¢; tangent to
and C*° along the leaves of W%, commuting with f and satisfying ¢; = id. Lemma
implies that h = ¢, for any h € Z¢, i.e. Z2°C {¢t}er.

Let D :={t € T: ¢; € Z°}. There are two possibilities:

(1) D < T is discrete. Then Z¢ is finite. By Lemma the group G is abelian with
rank £ < {g.

(a) £ < ly or £ =Ly = 1. Since Gy is abelian group extension of G by Z¢, by
finiteness of Z¢ we can construct a finite index subgroup of Gy isomorphic to
the torsion free part of G, which is Z*. By the same proof as in Proposition
we have that Z(f) is virtually Gg, therefore Theorem |4 holds in this case.

(b) £ =€y > 1. As in the proof of Theorem [6] we can construct partially hyper-
bolic elements in all the Weyl chambers of the action of Zy, which implies
that E;ﬁ @ E;} is jointly integrable, contradicting the accessiblity of f.

(2) D < T is dense. Lemma implies that the triple (f, @, X) satisfies the hypothe-
ses of Proposition 28 applying this result, we obtain that D = R, X is a C* vector
field and so ¢y is a C'*° flow. Therefore Wi is a smooth foliation, and f is smoothly
conjugate to an isometric extension g,. Then by Lemma @ and accessibility of f,
item (2) of Theorem (4] holds for f.

Case 2: f is topologically conjugate to Ta, x Ry for some 6 ¢ Q/Z. Then E} & E}

is integrable and tangent to the horizontal foliation W. By Lemma WH is a C!
foliation.
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For any 2 € T?, we denote by Pr¢ the projection from T? to WJ‘i(m) along WH and let
piz := Pr¢_(volpa). Then the family {u,,z € T?} is f—invariant, i.e.

(22) (flwe@)stta = p(a)-

The C'—ness of W implies that the family of measures {y,,r € T¢} along W}’—leaves
have continuous density functions. Therefore f is center r—bunched, for all r > 0, which
implies W€ has C*° leaves, and the stable and unstable holonomies between center leaves
are uniformly smooth. Since W" , W? have uniformly smooth leaves, Journé’s lemma
implies that WH has uniformly smooth leaves as well. In summary, W is a smooth
foliation.

Since W is absolutely continuous, [3, Theorem C (1)] implies that there exists a con-

tinuous, volume-preserving flow ¢; on T% commuting with f whose generating vector field
is tangent to the leaves of W{. Moreover, 1 = id and Z¢ C {ettter-

The rest of the proof for Case 2 is similar to that of Case 1. Again we take the set
D:={teT,p € Z°}, and consider the following cases.

(1) D < T is discrete. Then Z¢ is finite. As in Case 1, we consider the abelian group
G which is virtually Z¢, ¢ < 4.

(a) £ < £y, or £ = lyp = 1. then by exactly the same proof as in Case 1 we can
prove the conclusion of Theorem [

(b) £ ={y > 1. First we claim that the action of Z,(f) on T? is C* (a priori it is
only C®). For any g € Z5(f), g preserves the smooth density on W¢ (induced
by {pz, z € T4}). Since s > r > r9(A) = max(%, A%, Lemmaimplies that
if fis Cl—close to fy, then f preserves a C* normal form, and r(f) < r < s.
Theorem [J] then implies that g also preserves the smooth normal form on
Wy and Wi, which implies that g is uniformly smooth along W} and Wr.
Therefore by Journé’s lemma, g is uniformly smooth. So the action by Gy
is smooth and volume preserving on T¢. Since G has rank ¢y > 1, following
the proof of Theorem [, we can construct partially hyperbolic elements in all
the Weyl chambers of the action of Go. Then the global rigidity result in [23]
implies that the action of Gy is rigid (see Proposition in the the Appendix).
Thus f is smoothly conjugate to T4, x Ry for some 6 ¢ Q.

(2) D < T is dense. By the same proof as in Case 1, we obtain that f is smoothly
conjugate to an isometric extension. Then one of the two alternatives in Lemma

imply the alternatives (2) and (3) in Theorem
This completes the proof of Theorem [4] O

APPENDIX A. GLOBAL RIGIDITY OF CONSERVATIVE PARTIALLY HYPERBOLIC ABELIAN
ACTIONS ON THE TORUS

We state here the main result in [23], which plays a crucial role in the proof of Theorem
The setting is as follows. Suppose a : ZF — Diff>%(T?) is a smooth, volume preserving
ergodic abelian action. We assume that there exists at least one a € Z* such that a(a) is
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a fibered partially hyperbolic diffeomorphism and all the partially hyperbolic elements of
« preserve a common circle center foliation W¢€.

As explained in Section the distribution E¥ := E* @ E? for a partially hyper-
bolic element «(a) is a—invariant, and we consider the Lyapunov functionals y; and the
hyperbolic Weyl chamber picture induced by the cocycle Da|gr with respect to volya.

Theorem 11. [23] Assume that each hyperbolic Weyl chamber for a contains a partially
hyperbolic element. Suppose that there is no pair of Lyapunov functionals x;, x; and
¢ € (—oo, %] U [2,00) such that x; = cx;. Then o« is smoothly conjugate to the product of
an affine Anosov action on T4 1 with an action by rotations on T'.

We now verify that Theorem [11] applies to the action in the proof of Theorem [4

Proposition 63. The action of Gy in (1)(b) of Case 2 in Section [7 satisfies all the
conditions in Theorem 11l Therefore Gy is smoothly conjugate to a product of a linear
Anosov action on T and a rotation action on T'. In particular, in (1)(b) of Case 2 in
Section@ [ is smoothly conjugate to Ay X Ry for some 6 ¢ Q/Z.

Proof. Recall that in (1)(b) of Case 2 in Section we obtain that the action of G on T? is
abelian, C*° and volume preserving. Every element h in Gy preserves the common center
foliation W¢ and there is a Holder continuous fiber bundle 7 : T — T¢~! such that for
any h € Gy, there is a linear automorphism 7'y, : Té=1 — T4 satisfying moh = Ty, om.

Since G = {Ap, h € Gy} has rank ¢y > 1, by Lemma [30| G induces a maximal Anosov
affine action on T" 1. Therefore, the action of G is TNS (i.e., there are no negatively
proportional Lyapunov functionals) and conformal on each coarse Lyapunov foliation. By
the discussion in Section the Lyapunov functionals of the action of Gy are close to
that of G (see also Step 7. of Section ; therefore the action of Gy is TNS, and the
Lyapunov functionals satisfy the %—pinching condition. Moreover, by following the proof
of Theorem [6] we can construct partially hyperbolic elements in all the Weyl chambers of
the action of Gp. Thus the action of G in (2)(b) of Case 2 of Section |7 satisfies all the

conditions in Theorem and by Theorem [T1] it is globally rigid. O
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