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ABSTRACT

Digital elevation models (DEM) are one of the most fundamental inputs for hydrological modeling. It has been a
common practice to remove all surface depressions in a DEM as they are assumed to be data errors. The emerging
technology of unmanned aircraft systems (UAS) provides an opportunity to re-examine this assumption at the
hyperspatial resolution. This study was the first attempt to characterize small surface depressions in urban en-
vironments using UAS imagery. Using an urban area in south Texas as the study site, UAS flights were conducted
to yield hybrid DEMs at the resolution of 8-14 cm, coupled with comprehensive ground truth collection. Surface
depressions identified from the UAS DEMs were first corrected based on the vertical accuracy of DEMs and then
validated through field surveys, with comparisons to two existing LIDAR DEMs (1-m and 10-m). The hydrological
impacts of different DEM-derived estimates of catchment depression storage were examined using the Curve
Number method across different design storms. Results show that the UAS DEMs outperformed the LiDAR DEMs
in describing the microtopographic control of urban overland flow and associated hydrological connectivity
across built and natural features. The 8-cm UAS DEM revealed 926% more depression storage than the 10-m
LiDAR DEM. This demonstrates a compelling correlation between increasing DEM resolution and enhanced
quantification of depression volume. Consequently, the increased depression storage reduced surface runoff by
41% under a two-year design storm and 13% under a 200-year design storm. The results suggest a strong
relationship between the DEM resolution and the derived depression estimates, aligning with the fractal nature of
watershed systems. Also, the results indicate that the centimeter-level UAS DEMs were not immune from
problems. They could yield fake depressions caused by factors such as vegetation, temporary street objects, and
underground sewer pipes. The findings of this study suggest the need to quantify the relationships between DEM
resolution and associated hydrological attributes and develop new digital drainage analysis algorithms that could
effectively incorporate UAS data into urban hydrological modeling.

1. Introduction

of complexity in the analysis of rainfall-runoff relationships (Wang and
Chu, 2020; Wang et al., 2021) and an important parameter of hydro-

The topography of a watershed has a major impact on its hydrolog-
ical processes (Moore et al., 1991) and controls the movement of surface
water and dissolved substances (Paton and Haacke, 2021; Wang et al.,
2018). Surface depressions are one of the most common topographic
features that have important effects on watershed hydrology (Hu et al.,
2020). A surface depression (hereafter, depression) is a region that is
lower in elevation than its surrounding areas (Jenson and Domingue,
1988). This characteristic allows depressions to collect and store surface
runoff, affecting runoff pathways, the time of concentration, and ulti-
mately the amount of streamflow reaching the outlet (Abd Elbasit et al.,
2020; Callaghan and Wickert, 2019; Darboux et al., 2002; Hu et al.,
2020; Wang et al., 2021). Depressions have been recognized as a source

logical models (Dell et al., 2021; Zakizadeh et al., 2022), with important
implications for stormwater management and flood mitigation.

Small depressions are not presented in digital elevation models
(DEMs) derived from conventional sources because their horizontal
resolutions are insufficient. For instance, the horizontal resolutions of
United States Geological Survey (USGS) national DEMs, such as the
1990 USGS DEM, which has a resolution of 30 m, and the 2019 3D
Elevation Program (3DEP), which has a resolution of 10 m. Such coarse
DEM resolutions could eliminate important topographical features
(Habtezion et al., 2016), including small depressions that are smaller
than a DEM cell (Lindsay and Creed, 2006). These neglected depressions
can consist of various natural components (e.g., ponds) and human-
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made structures (e.g., roadside swales), all essential features of micro-
topography in an urban area. This is particularly true for studies in ur-
banized watersheds using coarse-resolution DEMs.

DEM-derived depressions are assumed to be artifacts that result from
input data errors and interpolation techniques (Cordonnier et al., 2019;
Jenson and Domingue, 1988) and thus topographical features (Call-
aghan and Wickert, 2019; Lindsay and Creed, 2005). It has been a
common practice to remove all DEM-derived depressions in watershed
hydrological analysis (Wang and Liu, 2006). However, this practice is
implemented without assessing if some of the removed depressions are
real depressions. The chance of mistakenly removing real depressions
could be high when using a high-resolution DEM. Depressionless DEMs
could depict faulty landscapes, resulting in unrealistic flow estimation
(Habtezion et al., 2016) and misconceptions of surface hydrological
patterns.

This is particularly important in the emerging use of high-resolution
imagery from unmanned aircraft systems (UAS). Throughout the recent
decade, various UAS has been increasingly employed to obtain remote
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sensing data (Nex et al., 2022). Compared to satellites, UAS are operated
at considerably lower altitudes and can lead to DEMs with unprece-
dented spatial resolutions (Singh et al., 2022). Hydrological research has
substantially benefited from the breakthrough of UAS technology and
the derived DEM products (Abdelkarim et al., 2019; Abedini et al., 2006;
Acharya et al., 2021; Deng et al., 2020; Escobar Villanueva et al., 2019;
Leitao et al., 2016; McDonald, 2019; Schumann et al., 2019; Trepekli
et al., 2022; Velez-Nicolas et al., 2021). In those studies, the spatial
resolutions of UAS-generated DEMs vary from millimeters to meters,
indicating that the UAS-generated DEMs could be better than
spaceborne-generated DEMs in support of urban rainfall-runoff
modeling and stormwater management studies. However, confirming
the validity of DEMs in accurately representing real depressions is
essential for obtaining reliable insights. This is especially pertinent for
depressions associated with the intricacies and variations of the sur-
rounding terrain. Thus, correctly identifying and distinguishing between
real and fake depressions is necessary for producing precise and
dependable data.

Tempora objects,
such as cars and
trash cans.
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Inccurate ground 7
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Fig. 1. A conceptual diagram of depressions in urban microtopography. Blue arrows indicate the direction of surface runoff. (For interpretation of the references to

color in this figure legend, the reader is referred to the web version of this article.)
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Using a typical urban area in south Texas as the study area, the ob-
jectives of this study are to: (i) to evaluate whether UAS-derived DEMs
could provide an improved description of urban depressions than
existing DEMs; and (ii) to explore the relationships between the DEM
resolution and the derived hydrological attributes. In doing so, this
study examines whether UAS-generated DEMs can accurately charac-
terize and quantify small depressions in urban microtopography. The
findings of this study could improve the applications of UAS for urban
hydrology, provide insights into the uncertainties of different elevation
datasets, and indicate the need for new methods for digital drainage
analysis in the era of high-resolution geospatial big data.

2. Materials and methods

The analysis of urban microtopography based on DEMs inevitably
involves the identification of real depressions and the exclusion of fake
depressions (Fig. 1). Real depressions can include both built structures
(e.g., street gutters and swimming pools) and natural features (e.g.,
small ponds). Fake depression can be caused by factors such as the
techniques of DEM generation (e.g., the interpolation algorithm) or the
disturbance of artificial objects (e.g., a car parked on the street).
Regardless of the DEM resolution, there is always a mixture of real and
fake depressions in DEMs of urban environments, which requires de-
mands careful attention in DEM-based urban hydrological studies.

2.1. Study area

The study area is located on the western side of Corpus Christi, Texas,
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USA, covering an urban area of approximately 0.16 km? (Fig. 2a and
2b). Based on the zoning data of the City of Corpus Christi, this area has
been developed as a low-density residential district (City of Corpus
Christi GIS Services, 2018). It includes a total of 110 single-family
houses with an average lot size of 830 m2. The southern part of the
study area is less developed yet, dominated by vacant lots and a mixture
of woods and grasslands.

The topography follows a north-south gradient with elevation
ranging between 3 m and 22 m above sea level and an average slope of
4.25%. Consequently, surface runoff generally flows northward into the
Nueces River, discharging into the Corpus Christi Bay, an estuary of the
Gulf of Mexico. The study area is served by a municipal separate
stormwater system, but only the northern region has underground
stormwater sewers. The stormwater system is entirely gravity driven,
and the outlet is located near the northwestern corner of the study area
(Fig. 2¢).

2.2. Methods

2.2.1. Overview

The study (Fig. 3) was organized into four stages. The first stage,
“Data acquisition and processing,” involved downloading open-source
airborne LiDAR DEMs and generating DEMs from UAS-
photogrammetry acquisition. The processed DEMs were analyzed in
the second stage, “Digital drainage analysis,” using ArcGIS Pro tools to
calculate hydrological properties such as depressions, catchment size,
and depression storage arising from using different DEMs. These varia-
tions could significantly affect the input dataset for hydrological

—
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Fig. 2. Study area: (a) data collection; (b) location of the study area; (c) elevation and drainage (blue lines indicating stormwater sewers); (d1, d2) examples of
permanent and temporary features for GCP locations. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of

this article.)
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Fig. 3. Research framework. DTM (digital terrain model); DSM (digital surface model).

modeling, ultimately influencing the model’s accuracy and reliability.
The third stage, “Topographic validation,” involved field observations
using a real-time kinematic positioning (RTK) system and visual in-
spection to verify the identified real and fake depressions. This stage
ensured that the hydrological properties derived from the DEMs closely
represented real-world conditions, enabling more accurate comparisons
in the subsequent runoff estimation analysis. In the fourth stage,
“Rainfall-runoff analysis,” the SCS-CN Method was applied along with
initial abstraction and impervious surface estimation for each catchment
to assess the runoff estimates derived from the various DEMs for
different rainfall scenarios. The comparison aimed to determine the
impact of DEM on hydrological modeling and to identify the suitable
DEM for the study.

2.2.2. Data acquisition and processing

A small UAS (DJI Mavic 2 Pro) was used for aerial imaging. It was
equipped with a 20-million-pixel RGB camera and was operated at 75,
100, and 120 m above ground level (AGL), resulting in ground sampling
distance (GSD) of 1.60, 2.22, and 2.72 cm, respectively. The frontal and
side overlapping values were set at 80% in all three surveys. The
weather conditions during all operations were sunny, with 15% cloud
coverage. Pix4D Capture was employed for the design and imple-
mentation of these aerial surveys.

High-accuracy georeferencing was assured based on ground control
points (GCPs) (Padro et al., 2019). A total of nine GCP were systemati-
cally established across the study area (Fig. 2a). One GCP was placed in
the middle of the study area, and the other eight were placed along the
boundary with approximately equal spacing. This uniform distribution
of GCPs provides a small error in the DEM (Tonkin and Midgley, 2016).
All GCPs were measured using a handheld centimeter-level real-time
kinematic positioning system (Trimble TDC 150).

Also, checkpoints (CPs) were established to evaluate how the esti-
mated elevation differs from the true elevation measured by TDC150. A
total of 127 CPs were surveyed, covering both pervious and impervious
surfaces. A stratified scheme was used to minimize spatial data collec-
tion biases. For CPs on pervious surfaces (e.g., vegetation or bare soils),
the study area was divided into approximately 54-m square grids, and

one CP was established in the publicly accessible land (red dots in
Fig. 2a). For impervious surfaces, CPs on were established along the
streets or sidewalks at 25-m equal intervals (yellow dots in Fig. 2a).

The UAS images were processed using the Structure from Motion
(SfM) technique in Pix4D Mapper. Point cloud densification was set to
the scale of the original image size with high point density. The DTM
quality was enhanced using a point cloud classification algorithm with
geometric and color features (Becker et al., 2018). The inverse distance
weighting (IDW) method was used to interpolate the points to obtain the
best DEM accuracy (Aguera-Vega et al., 2020). The processing resulted
in a digital terrain model (DTM) and a digital surface model (DSM), all
standard outputs from SfM analysis.

However, neither the DTM nor DSM was sufficient for urban hy-
drological analysis. To address this, a hybrid non-vegetated surface DEM
(NVS DEM) was created by clipping building surfaces from the DSM and
mosaicking them onto the DTM. This NVS DEM represented a compound
natural-built surface, which allowed for more realistic modeling of
runoff generation and routing across bare earth and building surfaces, as
the representation of buildings can create depressions that affect the
overland flow network (Leitao et al., 2009). Additionally, the USGS
3DEP (hereafter, 10-m LiDAR DEM) and STX LiDAR DEM (hereafter, 1-
m LiDAR DEM), with 10-m and 1-m resolutions, were included for
comparison purposes.

The UAS-generated DEMs provide unprecedented high spatial reso-
lutions. However, regardless of their resolutions, the DEMs can still
contain fake depressions (Lindsay and Creed, 2006) that should be
removed. In this study, the DEMs were corrected by removing suspicious
small depressions where the maximum depth was smaller than the
DEM’s vertical accuracy, i.e., assuming they were too shallow to be true.
This assumption on fake depressions concurred with the suggestions
from existing studies (Wu et al., 2019; Zandbergen, 2010; Zhao et al.,
2022). The vertical accuracy of the DEM in this study was calculated as
the root-mean-square error (RMSE) (Cuartero et al., 2005; Gao, 1997;
Jiménez-Jiménez et al., 2021) based on the measurements of CPs. Then
the calculated RMSE was used as a threshold for filtering fake de-
pressions. This correction process was implemented using the Fill tool in
ArcGIS Pro by assigning the value of RMSE to the Z-limit parameter - the
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minimum height difference between the lowest point in a depression
and its pour point. If the height were less than the RMSE, the depression
would be filled and flattened to its pour point. The resulting DEM was
noted as “corrected DEM” hereafter.

2.2.3. Digital drainage analysis

ArcGIS Pro Hydrology tools were deployed for digital drainage
analysis based on the corrected DEMs. They included: (i) the Flow Di-
rection tool that determines pixelwise flow directions based on the D8
flow algorithm (Jenson and Domingue, 1988); (ii) the Basin Tool that
delineates the catchment areas. In this study, this hydrologic attribute
refers to the runoff-contributing area; (iii) the Fill tool that removes all
depressions in the elevation model by filling algorithm; and (iv) the Flow
Accumulation tool that calculates cumulative flow on each cell and lo-
cates the area of flow concentration. This attribute is used to access a
network delineation to determine where runoff accumulates the most in
a particular location. The threshold was set at 0.5 percent of the
maximum flow accumulation using the same stream extraction pro-
cedure (Zhang and Pan, 2014). The Fill tool was applied twice in this
study. The first application was to create corrected DEMs by removing
all small depressions that were shallower than the vertical accuracy. The
second application was to create filled DEMs (i.e., depressionless DEMs).

The depressions were identified by calculating the elevation differ-
ence between the two DEMs, i.e., subtracting the corrected DEMs from
the filled DEMs. In this raster of elevation difference, only the pixels of
depressions had positive values, representing the elevation change that
would be required to remove the depressions. This raster was further
used to calculate depressions’ geometry, area, and volume. The iso-
perimetric quotient equation calculated the geometry. This number in-
dicates the circularity of the depressions. The area was calculated as the
product between the number of depression pixels and the pixel size. The
volume was calculated as the summation of the elevation change of each
pixel multiplied by the pixel size.

At this stage, a quantitative analysis of the depressions was per-
formed better to understand the similarities and dissimilarities between
the DEMs, providing their respective strengths and limitations in rep-
resenting depression characteristics. The analysis focused on the distri-
bution (PDF) of depression area, volume, and isoperimetric quotient,
which helped evaluate the ability of each DEM to describe the variety of
depression sizes, volumes, and shapes. This comparative assessment of
the DEMs allowed for a comprehensive understanding of their perfor-
mance in capturing depression characteristics, which is crucial for ac-
curate hydrological modeling and runoff estimation.

After this detailed quantitative analysis, the total volume of de-
pressions was combined for each DEM in the study area to compare the
total modified area and the modified volume referred to as depression
storage. This comparison provided insights into the differences in
depression storage capacity between the DEMs, further informing the
selection of the most appropriate DEM for specific study objectives and
requirements. Finally, the depression storage was calculated for each
catchment area, ensuring accurate runoff estimates that account for the
influence of depressions on runoff generation.

2.2.4. Topographic validation

The RMSE derived from CPs reflected the DEM’s vertical accuracy at
the scale of individual pixels, but it could fully distinguish real and fake
depressions at the level of features. Therefore, comprehensive validation
efforts were conducted to verify a number of selected topographical
features through two approaches.

The first approach was rigid field measurements along selected
transects using the handheld RTK system. The measurements validated
selected depressions on non-vegetated and vegetated surfaces and urban
topographical features such as street crowns, gutters, curbs, and side-
walks. The field survey approach aimed to measure the actual topog-
raphy using the RTK system and compare it to the UAS-derived
topography at the centimeter scale. This would demonstrate the
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reliability of the UAS-generated DEM in accurately revealing urban
topographical features. This was essential for confirming the real-world
existence of the DEM-derived depressions and the derived hydrological
parameters, such as flow direction, flow accumulation, and catchment
area.

The second approach was visual inspection after a representative
rainfall event. This rainfall event had a duration of six hours and a total
rainfall depth of 19.6 mm. The study site was visited immediately after
this rainfall event, and the locations of ponding water along the streets
were recorded to indicate the existence of true depressions. The visual
observation was deemed useful because identifying depressions from a
DEM relied on elevation and could not incorporate other unidentifiable
factors in a DEM. Although not all true depressions could be visually
observable timely because of infiltration and evaporation, it is reason-
able to accept that the visible depressions are true depressions.

The five DEM-generated depressions were evaluated as part of the
validation process, and the results directly impacted each catchment’s
depression storage estimation and subsequent runoff estimation. We
were able to accurately identify the true depressions and ensure accurate
hydrological analysis in the following stage by combining field mea-
surements and visual observations. Additionally, contrasting each
DEM'’s capabilities and limitations revealed insights into their abilities
to observe and capture various topographical features. This comparison
enabled us to decide the suitable DEM for precisely estimating depres-
sion storage, which ultimately improved our comprehension of the hy-
drological processes taking place in the study area.

2.2.5. Rainfall-runoff analysis

To assess the impact of DEM-derived depression storage on runoff
estimation in urban areas, we applied the standard Soil Conservation
Service curve number (SCS-CN) method with DEM-derived depression
storage as the initial abstraction (I):

P+1,)°
Q:P( I :
- a+s
25400
S= "oy 24

where Q represents the runoff depth, P is the precipitation depth, S is
the potential maximum retention based on the curve number (CN), and
I, is the initial abstraction. All units are in millimeters.

We set I, equal to the depression storage determined in Section 2.2.3.
Therefore, the five DEMs in this study led to five different estimates of I,
for each catchment, allowing for a comprehensive evaluation of the
hydrological implications of all DEMs in a consistent modeling frame-
work. Two widely-used values of I, (i.e., 5% and 20% of the maximum
retention capacity S) were also included for comparison. The determi-
nation of the composite CN of each catchment used the impervious
surface percentage derived from the UAS imagery and the standard CN
tables (USDA-SCS, 1986). For all catchments, we used the hydrological
soil group C and the average antecedent soil moisture condition (AMC
10).

Rainfall data were a set of design storms rainfall intensi-
ty—duration—frequency database for the Corpus Christi area, extracted
from the National Oceanic and Atmospheric Administration (NOAA)
Atlas 14. The 15-min rainfall duration was set based on the estimated
time of concentration with consideration of catchment size, slope, and
the longest flow path. Rainfall depth was determined for a set of return
periods ranging from 2 to 200 years.

We summed the calculated runoff volumes for each catchment to
obtain the total runoff volume in the study area. Then, we divided these
volumes by the total area to determine each scenario’s runoff depth
(mm). This facilitated a comparison of runoff estimates from various
DEMs, emphasizing the influence of depression storage and DEM quality
on runoff calculations.

Urban environments often contain many small depressions resulting
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from human influences and natural processes, and these depressions can
play a significant role in the initial abstraction and subsequent runoff
generation. As the core component of many urban hydrological models,
the SCS-CN method has proved to be an effective tool for addressing this
unique aspect of urban landscapes in hydrology. The CN method is the
core component for surface runoff in many widely used hydrological
models such as the Soil and Water Assessment Tool (SWAT) and the
Storm Water Management Model (SWMM). More importantly, it is
essential to verify the initial abstraction ratio locally and determine the
specific conditions under which the commonly recommended value of
0.05 is appropriate (Krajewski et al., 2020). Here we used DEM-derived
depression storage as the initial abstraction to examine deeper into de-
pressions’ role in urban runoff generation. This approach highlights the
importance of verifying the initial abstraction ratio locally and assessing
its impact on runoff estimates. We assumed that interception storage
might contribute less to the overall initial abstraction in such areas than
depression storage. This approach emphasized the role of depression
storage in controlling the initial abstraction and runoff generation,
allowing us to precisely assess the sensitivity of runoff estimates to
depression storage values obtained from different DEMs. Here, we have
catchment-specific values of I, in contrast to a uniform fraction of S for
all catchments. Our method assumes a negligible role of interception
storage in the initial abstraction, which is deemed reasonable given the
vegetation conditions in our study area.

3. Results
3.1. Digital elevation models

The three UAS surveys at the altitudes of 120 m, 100 m, and 75 m
resulted in three DSMs at resolutions of 2.72 cm, 2.22 cm, and 1.60 cm,
respectively (Table 1). The resolution of the derived DTM was set to be
five times the resolution of the DSM due to the smoothing algorithm of
Pix4D Mapper. Therefore, the resolutions of the DTMs were 13.6 cm,
11.1 cm, and 8.0 cm.

Table 1 also shows the accuracies of the five DEMs (i.e., three UAS-
derived DEMs and two existing LiDAR DEMs) based on the comparisons
of DEM pixel values to field measurements at 127 checkpoints (Fig. 2a).
These checkpoints have average horizontal and vertical accuracies of 2
and 3 cm, respectively. The UAS-generated DEMs had vertical RMSEs in
the range of 6-7 cm, much lower than that of the coarse-resolution
DEMs. However, the resolution of the UAS DEMs did not appear to
impact the RMSE. Whereas RMSEs of the 10-m LiDAR DEM had vertical
RMSEs of 21.8 cm on a non-vegetated surface and 31.6 cm on a vege-
tated surface, much higher than those DEMs. Regarding surface types,
the non-vegetated surfaces tended to have lower RMSE than the vege-
tated surfaces for all DEMs except for the 8-cm UAS DEM. The UAS DEMs
performed better than the coarser resolution DEMs in describing built
structures in an urban environment, particularly in identifying typical
urban drainage structures such as street gutters, sidewalks, and storm-
water ditches (Fig. 4).

3.2. Results of digital drainage analysis

The process of removing fake depressions altered the elevation

Table 1
Specifications of different elevation and surface models in this study.
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values of DEM pixels. The elevation changes in terms of area and volume
were fairly consistent among the three UAS DEMs (as shown in red bars
in Fig. 5a and 5b). However, the results varied when it came to filling
real depressions (indicated by blue bars in Fig. 5a and 5b). The total area
of elevation changes in the 1-m LiDAR DEM, approximately 6,000 m?,
was similar to that of the UAS DEMs. Conversely, the filling algorithms
did not significantly affect the area and volume of the 10-m LiDAR DEM.
In general, as the resolution increased, so did the filled volume. The 1-m
LiDAR DEM differed from the UAS DEMs; for instance, the filled volume
of the 8-cm UAS DEM was four times larger than that of the 1-m LiDAR
DEM. Furthermore, the filled volumes among the three UAS DEMs were
not identical. Invoking the fractal nature characterized by scale invari-
ance (Abedini et al., 2006), our research provides new evidence to
quantify the relationship between the DEM resolution and the estimated
depression volume.

The probability distribution function (PDF) and rug plot analysis
(Fig. 5¢, 5d, and 5e) of individual depressions revealed various
depression characteristics, emphasizing the importance of understand-
ing the variety of depression sizes, volumes, and geometries. The UAS
DEMs and 1-m LiDAR had similar area and shape distributions. The
similarity of shape distributions among UAS DEMs and 1-m LiDAR DEM
indicated that the 1-meter resolution DEM can capture a variety of urban
depressions, as centimeter resolution DEMs do. Additionally, the iso-
perimetric quotient plot indicated that UAS DEMs and 1-m LiDAR DEM
observed most shapes have a quotient of 0.78, representing square-
shaped depression areas typically captured in one-pixel size de-
pressions. However, 1-m LiDAR differed in volume, as it tended to
capture fewer depressions larger than 1 m>. In contrast, the 10-m DEM
cannot capture any small depressions.

In the rug plot, the 1-m LiDAR DEM appeared to capture fewer va-
rieties in depression sizes, which was limited by its cell size. As a result,
the finer resolution DEMs, such as the UAS DEMs, could represent a
greater variety of depression sizes. For elongated depressions with a
smaller isoperimetric quotient, such as depression along street gutters,
the 1-m LiDAR DEM performed similarly to the UAS DEMs.

The number of depressions increased when the spatial resolution of
DEM was finer, as shown in Table 2. Three DEMs generated from UAS
provided different depression and catchment numbers. However, 1-m
LiDAR DEM performance in capturing these hydrological attributes
was similar to the UAS DEMs. In contrast, the 10-m LiDAR DEM pro-
duced significantly fewer depressions and catchment areas, disregarding
microtomographic features related to small depressions. Therefore, the
1-m LiDAR DEM performed better than the 10-m LiDAR DEM, enabling
it to produce more comparable data.

All five DEMs were derived from the same study area, and despite
their differing spatial resolutions, they collectively captured the primary
hydrological features and represented similar drainage network struc-
tures. However, the 10-m LiDAR DEM, due to its coarser resolution, may
overlook some microtopographic features essential to depict drainage
networks, particularly in urban environments such as engineered
drainage systems. In contrast, the finer resolution DEMs, especially
those derived from UAS, captured more intricate details of the micro-
topography and associated catchment attributes. Consequently, these
DEMs provided a more accurate representation of the drainage network,
particularly in areas with complex topography.

Data Flight altitude AGL (m) Point cloud density Resolution (cm) Vertical RMSE (cm)
GSD, DSM DTM NVS DEM Non-vegetated surface Vegetated surface
8-cm UAS DEM 75 7581.19/ m® 1.60 8.0 8.0 6.4 5.5
11-cm UAS DEM 100 1804.17/ m® 2.22 11.1 11.1 6.9 7.1
14-cm UAS DEM 120 1394.74/ m® 2.72 13.6 13.6 5.6 7.1
1-m LiDAR DEM 1,700-2,294 2.5/ m? - 100 - 8.0 11.9
10-m LiDAR DEM unknown unknown - 1000 - 21.8 31.6
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Fig. 4. Comparison of a UAS DEM to existing DEMs. (a) 8-cm UAS DEM; (b) 1-m LiDAR DEM,; (c¢) 10-m LiDAR DEM,; (d) the hillshade map from 8-cm UAS DEM; and

(e) the orthomosaic map from 8-cm UAS DEM.

While all five DEMs presented similar drainage networks at a broader
scale, the finer resolution DEMs (UAS DEMs and 1-m LiDAR DEM)
offered improved detail and accuracy in representing hydrological at-
tributes. The UAS DEMs and 1-m LiDAR DEM exhibited similarities in
the orientation and location of flow accumulation, with high concen-
trations appearing along the gutters on both sides of the streets. In
contrast, the runoff from the 10-m LiDAR DEM did not exhibit flow
along the streets and street gutters, which are the primary drainage
system in the study area. Fig. 6 shows that, in comparison to the 10-m
LiDAR DEM, the flow accumulation patterns in the UAS DEMs and 1-
m LiDAR DEM were typically more precise and consistent with the
real world. The 10-m LiDAR DEM exhibits less detailed flow accumu-
lation patterns due to its coarser resolution. This discrepancy in accu-
racy and detail showed the advantages of adopting finer resolution
DEMs for hydrological modeling and analysis, such as UAS DEMs and
the 1-m LiDAR DEM.

The depression storage of each catchment was lower in the 1-m
LiDAR DEM and 10-m LiDAR DEM due to the exclusion of human-
made structures that could collect runoff, such as swimming pools,
and horizontal and vertical detail in capturing depression extent and
depth. Fig. 7 demonstrates the inconsistent results of all five DEMs in
depression storage. Despite being acquired by the same UAS device at
slightly different altitudes, the 8-cm UAS DEM still provided a larger
depression storage capacity than the coarser-resolution DEMs. More-
over, Fig. 7 demonstrates how the distribution of depression storage
capacity varied amongst the DEMs. The depression storage capacity for
the 1-m LiDAR DEM appeared to be distributed more evenly, with most
catchments lying within the 0 to 5 mm range. In contrast, the finer-
resolution DEMs exhibited a more diverse distribution of depression

storage capacity across catchments. This variability in depression stor-
age distribution could have implications for estimating catchment
runoff. The diverse storage capacities may lead to different runoff pre-
dictions depending on the resolution of the DEM used.

3.3. Results of validation

Here we show the results of three validations based on RTK mea-
surements. The first validation focused on a street segment and involved
gutters, street curbs, and sidewalks (Fig. 8). The longitudinal profile (A1-
A2) revealed that the 10-m LiDAR DEM captured the overall northward
inclination of this street section. However, this 10-m DEM presented the
street surface as discrete steps. In contrast, the DEMs with higher reso-
lutions were able to capture the subtle elevation variations, as confirmed
by the RTK measurements. The transversal profiles (B1-B2, C1-C2, D1-
D2) highlighted even smaller elevation variations. The 1-m LiDAR DEM
generally concurred with the ground truth. The 1-m LiDAR DEM was
able to indicate the shape of the street crown, but it could not capture the
locations of street gutters. For example, there was a 1-m shift of the
street gutter on the east side shifts in profile D1-D2. Such inaccurate
delineation of street structures could lead to errors in the estimation of
street width and associated hydrological responses. In both longitudinal
and transversal profiles, the UAS DEMs appeared to perform better than
coarse-resolution DEMs in describing the targeted features of urban
microtopography.

In the second validation, the 10-m LiDAR DEM was unable to accu-
rately depict the non-vegetated depression and the slope, as shown in
Fig. 9. The 1-m LiDAR DEM also did not perform well in capturing the
depth of the depression, especially on the profiles G1-G2 and H1-H2. In
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Table 2
Depression and catchment area characteristics and network delineation.
8-cm UAS 11-cm UAS 14-cm UAS 1-m LiDAR 10-m LiDAR
DEM DEM DEM DEM DEM
Depression and catchment area No. of depressions 4125 2457 1950 1385 3
characteristics Largest depression area (m?) 663.63 653.48 373.15 489 961.34
Average depression area (m?) 1.65 2.38 2.57 4 416.58
No. of depressions 4123 2454 1948 1364 3
Largest depression volume (m%) 160.22 133 86.02 35.26 77.87
Average depression volume (m>) 0.22 0.27 0.27 0.16 30.44
No. of catchments area 50 33 22 25 18
Highest depression storage of catchment area 24.99 23.24 16.98 12.92 1.92
(mm)
Network delineation Total length (m) 8101.53 8002.74 7841.72 10080.39 10273.53
Average length of link (m) 30.8 28.9 30.16 26.25 30.49
1st order links Average length of link  31.44 28.51 28.76 25.98 33.53
(m)
Total length (m) 4717.29 4560.9 4314.06 5638.28 6873.99
2nd order links Average length of link ~ 36.4 33.54 35.34 26.55 23.81
(m)
Total length (m) 1383.47 1207.61 1272.25 1380.74 1095.18
Maximum Shreve Order 55 54 58 53 38
order Average length of link ~ 7.33 8.35 11.48 14.44 6.93
(m)
Total length (m) 7.33 8.35 11.48 14.44 6.93
Primary flow Orientation N N N N N
direction Total length (m) 2762.09 2756.35 2581.65 3568 4397.42
Secondary flow Orientation NE NE NE NE NE
direction Total length (m) 1366.37 1360.41 1366.93 1687.16 1767.92

comparison, the profiles of the 8.0-cm, 11.1-cm, and 13.6-cm DEMs
mostly agreed with the ground truth. Only the profile adjacent to the
curb (A1-A2) had lower reliability due to the obstructing images by the
curb.

In the third validation, the 10-m LiDAR DEM did not capture the
vegetated depression, as shown in Fig. 10. In comparison, the 1-m LiDAR
DEM provided false topography over the longitudinal profile (A1-A2).

The 1-m LiDAR DEM depicted an uneven surface, but the ground truth
did not. The lowest position of the depression was flattened (the distance
between 2 and 4 m of the A1-A2 profile). In addition, the profiles B1-B2
and C1-C2 showed that the depression was shallower than the ground
truth and other UAS DEMs. While the UAS DEMs performed better than
the coarse-resolution DEMs over the vegetated surface, the elevations
from the DEMs were slightly higher than the ground truth. This may
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Fig. 6. The spatial pattern of the identified depressions in different DEMs. Blue lines are the results of flow accumulation, and different colors indicate elevation
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have been due to the challenge of classifying dense vegetation near the
surface from the ground.

Examples of several locations of standing water, identified through
visual validation after a rainfall event, are shown in Fig. 11. The extent
of the standing water reflected the shapes of the depressions, such as
circular-shaped potholes on the streets or elongate-shaped depressions
along the street gutters. As expected, all observed spots of standing
water agreed with the depressions identified from the UAS DEMs.
However, some small depressions filtered out during the DEM correction
were confirmed to be true depressions in the field observation (e.g., the
red-yellow areas in the results from 11-cm UAS DEM and 14-cm UAS
DEM in Fig. 11). This indicates that removing fake depressions using
RMSE could be improved by incorporating the spatial variations of the
vertical accuracy.

3.4. Impacts of surface depression on runoff

Fig. 12 compares the runoff estimates from different DEMs across a

range of design storms, highlighting the impact of depression storage on
initial abstraction during runoff generation and routing. The 10-m
LiDAR DEM has the lowest depression storage (with some catchments
not having any storage), resulting in the highest direct runoff. More
depressions are identified with a higher DEM resolution, leading to
higher depression storage and, thus, reduced runoff. The effect of the
DEM resolution on the runoff estimate is significant. For example, the
runoff depth based on the 8-cm DEM was 41% lower than the 10-m
LiDAR DEM estimation under a 2-year design storm. This effect, how-
ever, tends to be smaller with rare events. For example, the runoff
estimation difference was only 13% under the 200-year design storm.
More importantly, runoff estimates based on UAS DEMs are within
the range defined by standard I, values (i.e., 5% and 20% of the
maximum retention capacity S), while runoff estimates based on LiDAR
DEMs are outside that range. This finding highlights the importance of
carefully considering depressions in urban areas and their impact on
runoff generation. More accurate runoff estimates can be obtained by
choosing an appropriate initial abstraction value based on the specific
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characteristics of the study area and DEM resolution. The results indi-
cate a critical role of surface depressions in urban hydrological models.
Moreover, our findings highlight the importance of selecting a locally
appropriate initial abstraction value that closely corresponds to the
depression storage in the study area. This can lead to more accurate
runoff estimates in urban catchments with a high density of depressions,
especially for frequent events.

4. Discussion
4.1. Performance of existing DEMs

DEMs generated from manned aircraft, such as the 10-m LiDAR and
1-m LiDAR DEMs, offer more extensive coverage but are captured at
high altitudes. This affects their ability to capture small urban topo-
graphical features. Our study indicates that the 10-m LiDAR DEM
struggles to capture small depressions and depression storage capacity.
Though it captures some large depressions, the estimates of their sizes
and storage capacities are not reliable. Moreover, the 10-m LiDAR DEM
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cannot accurately describe street microtopography and produces unre-
alistic flow paths across the street, gutters, and sidewalks. This could
significantly affect the DEM-based calculation of runoff flow paths,
leading to misrepresenting runoff behaviors and introducing consider-
able uncertainty into hydrological modeling.

The 1-m LiDAR DEM performed considerably better than the 10-m
LiDAR DEM. This DEM captured more depressions and better illus-
trated urban topographical features, such as the catchment divide along
the street crown. However, the 1-m LiDAR DEM still cannot accurately
reflect the actual size and depth of observed depressions shown in
Fig. 11. The uncertainty of such depressions, especially on impervious
surfaces, could be a significant cause of the miss-calibration of hydro-
logical models (Zakizadeh et al., 2022).

4.2. Performance of UAS-generated DEMs

UAS DEMs have limited coverage. However, they are captured at low
altitudes, allowing them to offer a more realistic description of urban
watershed terrain than the manned aircraft DEMs. The UAS DEMs
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values of RMSE are shown for all five DEMs.

detected more depressions than other DEMs. The detected depressions
agreed well with the field measurements and observations (with a few
exceptions explained in section 4.3). The fine-resolution DEMs also
provided a higher estimate of the total volume of depression than the
coarse-resolution DEMs.

More importantly, the UAS DEMs captured small topographical
features, such as street crowns, street gutters, and sidewalks, which can
significantly impact surface flow pathways and hydrological connec-
tivity at the local scale. For example, the improved representation of
street gutters in UAS-generated DEMs can help to simulate stormwater
accurately flow along these features, ultimately leading to a more pre-
cise understanding of urban flooding patterns. Similarly, the ability of
UAS DEMs to capture details like sidewalk elevations allows for better
predictions of how stormwater runoff will interact with pedestrian
infrastructure, providing valuable information for urban planners and
stormwater management professionals.

The enhanced resolution of UAS DEMs also enables the identification
of small-scale catchment divides, such as those found between buildings
or on rooftops. This information is critical for simulating stormwater
flow in densely built environments, where numerous structures can

11

create complex and interconnected flow patterns. By accurately repre-
senting these catchment divides, researchers can better understand
urban hydrological connectivity and develop targeted strategies for
mitigating flood risks.

4.3. Limitations of UAS-generated DEMs

Despite the advantages of UAS-generated DEMs, caution is necessary
for several reasons. First, the DEM-based drainage analysis cannot
consider subsurface pathways (e.g., a stormwater sewer pipe) or over-
head structures (e.g., a bridge). The filling procedure can create unre-
alistic flow pathways in such locations. The calculated runoff pathway is
based on an adjusted terrain after the depressions are filled and may not
align with the actual runoff pathways. Notably, in this study, the
calculated total volumes of depressions (Fig. 5b) included all de-
pressions regardless of whether they were hydraulically connected to
the underground drainage system or not. The depressions hydraulically
connected to the stormwater inlets do not retain the runoff unless the
inlet is flooded. Fig. 13a illustrates two large depressions connected to
the street inlets. These two depressions could be excluded from the
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Fig. 9. Examples of the elevation profiles of non-vegetated depressions. In each profile subplot, the values of RMSE for this section are shown for all five DEMs.

depression storage calculation because they would not retain storm-
water. Therefore, the total depression storage capacity could be classi-
fied based on the presence of the underground drainage system. Filling
without considering the three-dimensional structure and underground
drainage system can overestimate runoff at the local scale and the total

12

depression storage capacity at the watershed scale. Integrating the dual-
drainage concept, sewer, and overland flow (Maksimovic et al., 2009)
could improve urban drainage models and enhance urban runoff as-
sessments, benefiting further research in this area.

Second, trees may obstruct the visibility of UAS to capture street
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Fig. 10. Examples of the elevation profiles of vegetated depressions. In each profile subplot, the values of RMSE for this section are shown for all five DEMs.

gutters - the primary runoff pathway in an urban area, creating an un-
realistic terrain. The areas under trees could create artifact depressions
and incorrect flow routing. Moreover, other obstructive objects include
cars and trash cans frequently seen on the streets over the street gutters.
Even when some of these objects are eliminated during the construction
of a DTM, the bare ground surface can still show the residues of some
removed objects. Such residues are often hardly visible but could create
artifact depressions and incorrect flow paths, as shown in Fig. 13b. The
drainage analysis does not perform well in areas that are unclear of such
obstructive objects. Therefore, UAS imaging missions should be
designed to capture the study area comprehensively.

Third, the UAS did not perform well over open water. In particular,
the inconsistent delineation of swimming pools with water led to un-
certainties about their remaining volume for stormwater. For example,
Fig. 13c shows considerable disagreement in the depth of depression
from three different DEMs, leading to an incorrect calculation of the
swimming pool’s remaining storage capacity. The 8-cm UAS DEM gave a
1-2 m depression depth, but the 14-cm UAS DEM gave a smaller depth.
The observation of three DEMs generated by UAS with different oper-
ational altitudes provided significant discrepancy in depression depth, i.
e., 25-200 cm from 8-cm UAS DEM and 1-25 c¢cm from 14-cm UAS DEM.
This discrepancy affected the total depression volume in the study area,
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which is why the modified area required for filling is nearly equal, but
the modified volume required for 8-cm UAS DEM is considerably higher
than for 14-cm UAS DEM.

Fourth, DEM-derived depressions that are close to the canopy are
more likely to be fake because the extent of the canopy usually obstructs
the view of the UAS to detect the ground surface. For example, the
highlighted areas (the blue areas) in Fig. 13d were identified as true
depressions in the UAS DEMs, but were all found fake in the field vali-
dation. In contrast, LIDAR DEM did not create these fake depressions as
significant as UAS-photogrammetry DEMs. However, efforts have been
made to improve the accuracy of DEMs in densely vegetated areas, such
as the proposed object-oriented classification ensemble algorithm for
terrain correction (Meng et al., 2017) and the algorithm to assess flight
mission settings for UAV-based photogrammetry using a custom-built
simulator (Pessacg et al., 2022). These techniques could potentially be
applied to urban runoff management to improve the accuracy of DEMs
in areas with dense vegetation or other obstructive objects. Therefore,
special attention should be given to densely vegetated areas when the
UAS-photogrammetry DEMs for digital drainage analysis.

Lastly, the artifact removal method using RMSE could be improved.
In this study, the elevation differences between DEM estimations and
ground truth from 127 checkpoints were averaged into a single value of
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RMSE to represent the overall vertical accuracy of the entire study site. uncertainties in capturing depressions among UAS DEMs are from the
Some areas, e.g., pavements, may have relatively higher accuracy, so performance of detecting features vertically. Although the results from
some corrected small depressions might be true features. These 127 checkpoints reveal that three UAS-generated DEMs had similar
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Fig. 13. Examples of urban areas that could have overestimated depression volumes: (a) hydraulically connected to an underground drainage system; (b) cars and

trash cans; (c) swimming pool; and (d) vegetation.

RMSEs, the 127 checkpoints may not fully address the spatial variation
of the vertical accuracy, particularly at a small scale. In addition, fake
depression removal using the filling method only removes fake depres-
sion. However, it does not correct the geometry of the real depression
presented on the DEMs to match the real-world topography.
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4.4. Selecting appropriate DEMs for runoff estimation

Selecting the appropriate DEM for accurate runoff estimates is
crucial and depends on various factors, including the study area’s
characteristics, resource availability, the required accuracy, and the
targeted design storm. Especially when estimating runoff from frequent
events (e.g., 2- and 5-year design storms), the amount of runoff gener-
ated is influenced by the topography and the capacity of depressions to
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store rainfall. In these scenarios, runoff may not be generated if the rain
does not exceed the depression storage capacity. Therefore, accurately
accounting for depression storage is critical, as it helps determine the
threshold at which runoff generation begins after depressions are filled.
The UAS DEMs with centimeter resolutions are generally suitable for
hydrological studies in urban areas with complex terrain and numerous
small-scale features.

However, the UAS DEMs may not be suitable for large catchments
due to their limited coverage or extreme events with long return periods.
The time and resources required to collect extensive high-resolution
data may become prohibitive. The finer details captured by UAS DEMs
may not significantly impact the overall runoff estimates for larger
catchments or more extreme events. As the spatial extent of the study
area increases or the focus shifts towards less frequent, high-magnitude
events, the advantages of UAS DEMs in capturing small-scale topo-
graphic features may become less critical to the overall accuracy of the
hydrological modeling. In these scenarios, the hyperspatial resolution
data provided by UAS DEMs may not justify the additional effort and
cost required for data collection and processing.

Moreover, UAS DEMs may not always guarantee the accurate rep-
resentation of real depressions, as they can still generate fake de-
pressions. While eliminating fake depressions in small study areas may
be feasible, this becomes more challenging when applying UAS DEMs to
large-scale areas. In these scenarios, it is not guaranteed that all de-
pressions will be real, and the additional effort to identify and remove
fake depressions may not be practical or efficient.

Considering these limitations, researchers may opt for more effective
DEMSs, such as those generated by manned aircraft, which offer higher
coverage and require fewer data collection and processing resources.
These DEMs, such as 1-m LiDAR DEMs (for this study), strike a balance
between resolution and coverage, making them suitable for a broader
range of applications, including long recurrence period events where
percentage estimates may not significantly differ between UAS and
airborne DEMs. The choice of DEM should ultimately align with the
specific objectives and requirements of the study. By recognizing the
limitations and advantages of each DEM type, researchers can make
informed decisions and enhance the accuracy of their runoff estimates,
mainly when accounting for depression storage and its influence on
runoff generation.

5. Conclusions

In this study, UAS-photogrammetry DEMs captured depressions
more effectively than the existing DEMs acquired by manned aircrafts.
The UAS DEMs led to higher estimates in both the number of depressions
and their storage capacity compared to results from the existing DEMs.
UAS DEMs were able to distinguish urban microtopographic features
and described small depressions with good agreement with field vali-
dations, but the results still included fake depressions, particularly in
areas affected by vegetation, 3D structures, and temporary objects on
the streets. Additionally, the DEM resolution affected the derived hy-
drological attributes, including the flow direction, flow accumulation,
and catchment boundaries. Our results suggest that existing DEMs are
not the appropriate input for estimating urban runoff from frequent
events with low rainfall amounts, as they tend to exclude small de-
pressions storage.

UAS has been widely applied worldwide in various urban stormwater
management studies. It is essential to acknowledge that the high reso-
lution of UAS photogrammetry data does not guarantee an accurate
description of the complex terrain and landscape of an urban watershed
and the derived hydrological attributes. Urban stormwater management
studies should consider the reliability of DEM-derived depressions
before further analysis. Future research should improve high-resolution
depression classification methods, emphasizing filtering fake de-
pressions in high-resolution DEM data. This includes an improved un-
derstanding of the interconnectedness between DEM resolution,
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hydrological characteristics, and the fractal nature of surface topog-
raphy. Such advances will contribute significantly to improving the
precision of urban hydrological modeling and further expanding the
utility of UAS in urban hydrology and water management.
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