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A B S T R A C T   

Digital elevation models (DEM) are one of the most fundamental inputs for hydrological modeling. It has been a 
common practice to remove all surface depressions in a DEM as they are assumed to be data errors. The emerging 
technology of unmanned aircraft systems (UAS) provides an opportunity to re-examine this assumption at the 
hyperspatial resolution. This study was the first attempt to characterize small surface depressions in urban en
vironments using UAS imagery. Using an urban area in south Texas as the study site, UAS flights were conducted 
to yield hybrid DEMs at the resolution of 8–14 cm, coupled with comprehensive ground truth collection. Surface 
depressions identified from the UAS DEMs were first corrected based on the vertical accuracy of DEMs and then 
validated through field surveys, with comparisons to two existing LiDAR DEMs (1-m and 10-m). The hydrological 
impacts of different DEM-derived estimates of catchment depression storage were examined using the Curve 
Number method across different design storms. Results show that the UAS DEMs outperformed the LiDAR DEMs 
in describing the microtopographic control of urban overland flow and associated hydrological connectivity 
across built and natural features. The 8-cm UAS DEM revealed 926% more depression storage than the 10-m 
LiDAR DEM. This demonstrates a compelling correlation between increasing DEM resolution and enhanced 
quantification of depression volume. Consequently, the increased depression storage reduced surface runoff by 
41% under a two-year design storm and 13% under a 200-year design storm. The results suggest a strong 
relationship between the DEM resolution and the derived depression estimates, aligning with the fractal nature of 
watershed systems. Also, the results indicate that the centimeter-level UAS DEMs were not immune from 
problems. They could yield fake depressions caused by factors such as vegetation, temporary street objects, and 
underground sewer pipes. The findings of this study suggest the need to quantify the relationships between DEM 
resolution and associated hydrological attributes and develop new digital drainage analysis algorithms that could 
effectively incorporate UAS data into urban hydrological modeling.   

1. Introduction 

The topography of a watershed has a major impact on its hydrolog
ical processes (Moore et al., 1991) and controls the movement of surface 
water and dissolved substances (Paton and Haacke, 2021; Wang et al., 
2018). Surface depressions are one of the most common topographic 
features that have important effects on watershed hydrology (Hu et al., 
2020). A surface depression (hereafter, depression) is a region that is 
lower in elevation than its surrounding areas (Jenson and Domingue, 
1988). This characteristic allows depressions to collect and store surface 
runoff, affecting runoff pathways, the time of concentration, and ulti
mately the amount of streamflow reaching the outlet (Abd Elbasit et al., 
2020; Callaghan and Wickert, 2019; Darboux et al., 2002; Hu et al., 
2020; Wang et al., 2021). Depressions have been recognized as a source 

of complexity in the analysis of rainfall-runoff relationships (Wang and 
Chu, 2020; Wang et al., 2021) and an important parameter of hydro
logical models (Dell et al., 2021; Zakizadeh et al., 2022), with important 
implications for stormwater management and flood mitigation. 

Small depressions are not presented in digital elevation models 
(DEMs) derived from conventional sources because their horizontal 
resolutions are insufficient. For instance, the horizontal resolutions of 
United States Geological Survey (USGS) national DEMs, such as the 
1990 USGS DEM, which has a resolution of 30 m, and the 2019 3D 
Elevation Program (3DEP), which has a resolution of 10 m. Such coarse 
DEM resolutions could eliminate important topographical features 
(Habtezion et al., 2016), including small depressions that are smaller 
than a DEM cell (Lindsay and Creed, 2006). These neglected depressions 
can consist of various natural components (e.g., ponds) and human- 
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made structures (e.g., roadside swales), all essential features of micro
topography in an urban area. This is particularly true for studies in ur
banized watersheds using coarse-resolution DEMs. 

DEM-derived depressions are assumed to be artifacts that result from 
input data errors and interpolation techniques (Cordonnier et al., 2019; 
Jenson and Domingue, 1988) and thus topographical features (Call
aghan and Wickert, 2019; Lindsay and Creed, 2005). It has been a 
common practice to remove all DEM-derived depressions in watershed 
hydrological analysis (Wang and Liu, 2006). However, this practice is 
implemented without assessing if some of the removed depressions are 
real depressions. The chance of mistakenly removing real depressions 
could be high when using a high-resolution DEM. Depressionless DEMs 
could depict faulty landscapes, resulting in unrealistic flow estimation 
(Habtezion et al., 2016) and misconceptions of surface hydrological 
patterns. 

This is particularly important in the emerging use of high-resolution 
imagery from unmanned aircraft systems (UAS). Throughout the recent 
decade, various UAS has been increasingly employed to obtain remote 

sensing data (Nex et al., 2022). Compared to satellites, UAS are operated 
at considerably lower altitudes and can lead to DEMs with unprece
dented spatial resolutions (Singh et al., 2022). Hydrological research has 
substantially benefited from the breakthrough of UAS technology and 
the derived DEM products (Abdelkarim et al., 2019; Abedini et al., 2006; 
Acharya et al., 2021; Deng et al., 2020; Escobar Villanueva et al., 2019; 
Leitao et al., 2016; McDonald, 2019; Schumann et al., 2019; Trepekli 
et al., 2022; Velez-Nicolas et al., 2021). In those studies, the spatial 
resolutions of UAS-generated DEMs vary from millimeters to meters, 
indicating that the UAS-generated DEMs could be better than 
spaceborne-generated DEMs in support of urban rainfall-runoff 
modeling and stormwater management studies. However, confirming 
the validity of DEMs in accurately representing real depressions is 
essential for obtaining reliable insights. This is especially pertinent for 
depressions associated with the intricacies and variations of the sur
rounding terrain. Thus, correctly identifying and distinguishing between 
real and fake depressions is necessary for producing precise and 
dependable data. 

Fig. 1. A conceptual diagram of depressions in urban microtopography. Blue arrows indicate the direction of surface runoff. (For interpretation of the references to 
color in this figure legend, the reader is referred to the web version of this article.) 
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Using a typical urban area in south Texas as the study area, the ob
jectives of this study are to: (i) to evaluate whether UAS-derived DEMs 
could provide an improved description of urban depressions than 
existing DEMs; and (ii) to explore the relationships between the DEM 
resolution and the derived hydrological attributes. In doing so, this 
study examines whether UAS-generated DEMs can accurately charac
terize and quantify small depressions in urban microtopography. The 
findings of this study could improve the applications of UAS for urban 
hydrology, provide insights into the uncertainties of different elevation 
datasets, and indicate the need for new methods for digital drainage 
analysis in the era of high-resolution geospatial big data. 

2. Materials and methods 

The analysis of urban microtopography based on DEMs inevitably 
involves the identification of real depressions and the exclusion of fake 
depressions (Fig. 1). Real depressions can include both built structures 
(e.g., street gutters and swimming pools) and natural features (e.g., 
small ponds). Fake depression can be caused by factors such as the 
techniques of DEM generation (e.g., the interpolation algorithm) or the 
disturbance of artificial objects (e.g., a car parked on the street). 
Regardless of the DEM resolution, there is always a mixture of real and 
fake depressions in DEMs of urban environments, which requires de
mands careful attention in DEM-based urban hydrological studies. 

2.1. Study area 

The study area is located on the western side of Corpus Christi, Texas, 

USA, covering an urban area of approximately 0.16 km2 (Fig. 2a and 
2b). Based on the zoning data of the City of Corpus Christi, this area has 
been developed as a low-density residential district (City of Corpus 
Christi GIS Services, 2018). It includes a total of 110 single-family 
houses with an average lot size of 830 m2. The southern part of the 
study area is less developed yet, dominated by vacant lots and a mixture 
of woods and grasslands. 

The topography follows a north–south gradient with elevation 
ranging between 3 m and 22 m above sea level and an average slope of 
4.25%. Consequently, surface runoff generally flows northward into the 
Nueces River, discharging into the Corpus Christi Bay, an estuary of the 
Gulf of Mexico. The study area is served by a municipal separate 
stormwater system, but only the northern region has underground 
stormwater sewers. The stormwater system is entirely gravity driven, 
and the outlet is located near the northwestern corner of the study area 
(Fig. 2c). 

2.2. Methods 

2.2.1. Overview 
The study (Fig. 3) was organized into four stages. The first stage, 

“Data acquisition and processing,” involved downloading open-source 
airborne LiDAR DEMs and generating DEMs from UAS- 
photogrammetry acquisition. The processed DEMs were analyzed in 
the second stage, “Digital drainage analysis,” using ArcGIS Pro tools to 
calculate hydrological properties such as depressions, catchment size, 
and depression storage arising from using different DEMs. These varia
tions could significantly affect the input dataset for hydrological 

Fig. 2. Study area: (a) data collection; (b) location of the study area; (c) elevation and drainage (blue lines indicating stormwater sewers); (d1, d2) examples of 
permanent and temporary features for GCP locations. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of 
this article.) 
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modeling, ultimately influencing the model’s accuracy and reliability. 
The third stage, “Topographic validation,” involved field observations 
using a real-time kinematic positioning (RTK) system and visual in
spection to verify the identified real and fake depressions. This stage 
ensured that the hydrological properties derived from the DEMs closely 
represented real-world conditions, enabling more accurate comparisons 
in the subsequent runoff estimation analysis. In the fourth stage, 
“Rainfall-runoff analysis,” the SCS-CN Method was applied along with 
initial abstraction and impervious surface estimation for each catchment 
to assess the runoff estimates derived from the various DEMs for 
different rainfall scenarios. The comparison aimed to determine the 
impact of DEM on hydrological modeling and to identify the suitable 
DEM for the study. 

2.2.2. Data acquisition and processing 
A small UAS (DJI Mavic 2 Pro) was used for aerial imaging. It was 

equipped with a 20-million-pixel RGB camera and was operated at 75, 
100, and 120 m above ground level (AGL), resulting in ground sampling 
distance (GSD) of 1.60, 2.22, and 2.72 cm, respectively. The frontal and 
side overlapping values were set at 80% in all three surveys. The 
weather conditions during all operations were sunny, with 15% cloud 
coverage. Pix4D Capture was employed for the design and imple
mentation of these aerial surveys. 

High-accuracy georeferencing was assured based on ground control 
points (GCPs) (Padro et al., 2019). A total of nine GCP were systemati
cally established across the study area (Fig. 2a). One GCP was placed in 
the middle of the study area, and the other eight were placed along the 
boundary with approximately equal spacing. This uniform distribution 
of GCPs provides a small error in the DEM (Tonkin and Midgley, 2016). 
All GCPs were measured using a handheld centimeter-level real-time 
kinematic positioning system (Trimble TDC 150). 

Also, checkpoints (CPs) were established to evaluate how the esti
mated elevation differs from the true elevation measured by TDC150. A 
total of 127 CPs were surveyed, covering both pervious and impervious 
surfaces. A stratified scheme was used to minimize spatial data collec
tion biases. For CPs on pervious surfaces (e.g., vegetation or bare soils), 
the study area was divided into approximately 54-m square grids, and 

one CP was established in the publicly accessible land (red dots in 
Fig. 2a). For impervious surfaces, CPs on were established along the 
streets or sidewalks at 25-m equal intervals (yellow dots in Fig. 2a). 

The UAS images were processed using the Structure from Motion 
(SfM) technique in Pix4D Mapper. Point cloud densification was set to 
the scale of the original image size with high point density. The DTM 
quality was enhanced using a point cloud classification algorithm with 
geometric and color features (Becker et al., 2018). The inverse distance 
weighting (IDW) method was used to interpolate the points to obtain the 
best DEM accuracy (Aguera-Vega et al., 2020). The processing resulted 
in a digital terrain model (DTM) and a digital surface model (DSM), all 
standard outputs from SfM analysis. 

However, neither the DTM nor DSM was sufficient for urban hy
drological analysis. To address this, a hybrid non-vegetated surface DEM 
(NVS DEM) was created by clipping building surfaces from the DSM and 
mosaicking them onto the DTM. This NVS DEM represented a compound 
natural-built surface, which allowed for more realistic modeling of 
runoff generation and routing across bare earth and building surfaces, as 
the representation of buildings can create depressions that affect the 
overland flow network (Leitao et al., 2009). Additionally, the USGS 
3DEP (hereafter, 10-m LiDAR DEM) and STX LiDAR DEM (hereafter, 1- 
m LiDAR DEM), with 10-m and 1-m resolutions, were included for 
comparison purposes. 

The UAS-generated DEMs provide unprecedented high spatial reso
lutions. However, regardless of their resolutions, the DEMs can still 
contain fake depressions (Lindsay and Creed, 2006) that should be 
removed. In this study, the DEMs were corrected by removing suspicious 
small depressions where the maximum depth was smaller than the 
DEM’s vertical accuracy, i.e., assuming they were too shallow to be true. 
This assumption on fake depressions concurred with the suggestions 
from existing studies (Wu et al., 2019; Zandbergen, 2010; Zhao et al., 
2022). The vertical accuracy of the DEM in this study was calculated as 
the root-mean-square error (RMSE) (Cuartero et al., 2005; Gao, 1997; 
Jiménez-Jiménez et al., 2021) based on the measurements of CPs. Then 
the calculated RMSE was used as a threshold for filtering fake de
pressions. This correction process was implemented using the Fill tool in 
ArcGIS Pro by assigning the value of RMSE to the Z-limit parameter - the 

Fig. 3. Research framework. DTM (digital terrain model); DSM (digital surface model).  
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minimum height difference between the lowest point in a depression 
and its pour point. If the height were less than the RMSE, the depression 
would be filled and flattened to its pour point. The resulting DEM was 
noted as “corrected DEM” hereafter. 

2.2.3. Digital drainage analysis 
ArcGIS Pro Hydrology tools were deployed for digital drainage 

analysis based on the corrected DEMs. They included: (i) the Flow Di
rection tool that determines pixelwise flow directions based on the D8 
flow algorithm (Jenson and Domingue, 1988); (ii) the Basin Tool that 
delineates the catchment areas. In this study, this hydrologic attribute 
refers to the runoff-contributing area; (iii) the Fill tool that removes all 
depressions in the elevation model by filling algorithm; and (iv) the Flow 
Accumulation tool that calculates cumulative flow on each cell and lo
cates the area of flow concentration. This attribute is used to access a 
network delineation to determine where runoff accumulates the most in 
a particular location. The threshold was set at 0.5 percent of the 
maximum flow accumulation using the same stream extraction pro
cedure (Zhang and Pan, 2014). The Fill tool was applied twice in this 
study. The first application was to create corrected DEMs by removing 
all small depressions that were shallower than the vertical accuracy. The 
second application was to create filled DEMs (i.e., depressionless DEMs). 

The depressions were identified by calculating the elevation differ
ence between the two DEMs, i.e., subtracting the corrected DEMs from 
the filled DEMs. In this raster of elevation difference, only the pixels of 
depressions had positive values, representing the elevation change that 
would be required to remove the depressions. This raster was further 
used to calculate depressions’ geometry, area, and volume. The iso
perimetric quotient equation calculated the geometry. This number in
dicates the circularity of the depressions. The area was calculated as the 
product between the number of depression pixels and the pixel size. The 
volume was calculated as the summation of the elevation change of each 
pixel multiplied by the pixel size. 

At this stage, a quantitative analysis of the depressions was per
formed better to understand the similarities and dissimilarities between 
the DEMs, providing their respective strengths and limitations in rep
resenting depression characteristics. The analysis focused on the distri
bution (PDF) of depression area, volume, and isoperimetric quotient, 
which helped evaluate the ability of each DEM to describe the variety of 
depression sizes, volumes, and shapes. This comparative assessment of 
the DEMs allowed for a comprehensive understanding of their perfor
mance in capturing depression characteristics, which is crucial for ac
curate hydrological modeling and runoff estimation. 

After this detailed quantitative analysis, the total volume of de
pressions was combined for each DEM in the study area to compare the 
total modified area and the modified volume referred to as depression 
storage. This comparison provided insights into the differences in 
depression storage capacity between the DEMs, further informing the 
selection of the most appropriate DEM for specific study objectives and 
requirements. Finally, the depression storage was calculated for each 
catchment area, ensuring accurate runoff estimates that account for the 
influence of depressions on runoff generation. 

2.2.4. Topographic validation 
The RMSE derived from CPs reflected the DEM’s vertical accuracy at 

the scale of individual pixels, but it could fully distinguish real and fake 
depressions at the level of features. Therefore, comprehensive validation 
efforts were conducted to verify a number of selected topographical 
features through two approaches. 

The first approach was rigid field measurements along selected 
transects using the handheld RTK system. The measurements validated 
selected depressions on non-vegetated and vegetated surfaces and urban 
topographical features such as street crowns, gutters, curbs, and side
walks. The field survey approach aimed to measure the actual topog
raphy using the RTK system and compare it to the UAS-derived 
topography at the centimeter scale. This would demonstrate the 

reliability of the UAS-generated DEM in accurately revealing urban 
topographical features. This was essential for confirming the real-world 
existence of the DEM-derived depressions and the derived hydrological 
parameters, such as flow direction, flow accumulation, and catchment 
area. 

The second approach was visual inspection after a representative 
rainfall event. This rainfall event had a duration of six hours and a total 
rainfall depth of 19.6 mm. The study site was visited immediately after 
this rainfall event, and the locations of ponding water along the streets 
were recorded to indicate the existence of true depressions. The visual 
observation was deemed useful because identifying depressions from a 
DEM relied on elevation and could not incorporate other unidentifiable 
factors in a DEM. Although not all true depressions could be visually 
observable timely because of infiltration and evaporation, it is reason
able to accept that the visible depressions are true depressions. 

The five DEM-generated depressions were evaluated as part of the 
validation process, and the results directly impacted each catchment’s 
depression storage estimation and subsequent runoff estimation. We 
were able to accurately identify the true depressions and ensure accurate 
hydrological analysis in the following stage by combining field mea
surements and visual observations. Additionally, contrasting each 
DEM’s capabilities and limitations revealed insights into their abilities 
to observe and capture various topographical features. This comparison 
enabled us to decide the suitable DEM for precisely estimating depres
sion storage, which ultimately improved our comprehension of the hy
drological processes taking place in the study area. 

2.2.5. Rainfall-runoff analysis 
To assess the impact of DEM-derived depression storage on runoff 

estimation in urban areas, we applied the standard Soil Conservation 
Service curve number (SCS-CN) method with DEM-derived depression 
storage as the initial abstraction (Ia): 

Q =
(P + Ia)

2

P − Ia + S  

S =
25400

CN
− 254 

where Q represents the runoff depth, P is the precipitation depth, S is 
the potential maximum retention based on the curve number (CN), and 
Ia is the initial abstraction. All units are in millimeters. 

We set Ia equal to the depression storage determined in Section 2.2.3. 
Therefore, the five DEMs in this study led to five different estimates of Ia 
for each catchment, allowing for a comprehensive evaluation of the 
hydrological implications of all DEMs in a consistent modeling frame
work. Two widely-used values of Ia (i.e., 5% and 20% of the maximum 
retention capacity S) were also included for comparison. The determi
nation of the composite CN of each catchment used the impervious 
surface percentage derived from the UAS imagery and the standard CN 
tables (USDA-SCS, 1986). For all catchments, we used the hydrological 
soil group C and the average antecedent soil moisture condition (AMC 
II). 

Rainfall data were a set of design storms rainfall intensi
ty–duration–frequency database for the Corpus Christi area, extracted 
from the National Oceanic and Atmospheric Administration (NOAA) 
Atlas 14. The 15-min rainfall duration was set based on the estimated 
time of concentration with consideration of catchment size, slope, and 
the longest flow path. Rainfall depth was determined for a set of return 
periods ranging from 2 to 200 years. 

We summed the calculated runoff volumes for each catchment to 
obtain the total runoff volume in the study area. Then, we divided these 
volumes by the total area to determine each scenario’s runoff depth 
(mm). This facilitated a comparison of runoff estimates from various 
DEMs, emphasizing the influence of depression storage and DEM quality 
on runoff calculations. 

Urban environments often contain many small depressions resulting 
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from human influences and natural processes, and these depressions can 
play a significant role in the initial abstraction and subsequent runoff 
generation. As the core component of many urban hydrological models, 
the SCS-CN method has proved to be an effective tool for addressing this 
unique aspect of urban landscapes in hydrology. The CN method is the 
core component for surface runoff in many widely used hydrological 
models such as the Soil and Water Assessment Tool (SWAT) and the 
Storm Water Management Model (SWMM). More importantly, it is 
essential to verify the initial abstraction ratio locally and determine the 
specific conditions under which the commonly recommended value of 
0.05 is appropriate (Krajewski et al., 2020). Here we used DEM-derived 
depression storage as the initial abstraction to examine deeper into de
pressions’ role in urban runoff generation. This approach highlights the 
importance of verifying the initial abstraction ratio locally and assessing 
its impact on runoff estimates. We assumed that interception storage 
might contribute less to the overall initial abstraction in such areas than 
depression storage. This approach emphasized the role of depression 
storage in controlling the initial abstraction and runoff generation, 
allowing us to precisely assess the sensitivity of runoff estimates to 
depression storage values obtained from different DEMs. Here, we have 
catchment-specific values of Ia, in contrast to a uniform fraction of S for 
all catchments. Our method assumes a negligible role of interception 
storage in the initial abstraction, which is deemed reasonable given the 
vegetation conditions in our study area. 

3. Results 

3.1. Digital elevation models 

The three UAS surveys at the altitudes of 120 m, 100 m, and 75 m 
resulted in three DSMs at resolutions of 2.72 cm, 2.22 cm, and 1.60 cm, 
respectively (Table 1). The resolution of the derived DTM was set to be 
five times the resolution of the DSM due to the smoothing algorithm of 
Pix4D Mapper. Therefore, the resolutions of the DTMs were 13.6 cm, 
11.1 cm, and 8.0 cm. 

Table 1 also shows the accuracies of the five DEMs (i.e., three UAS- 
derived DEMs and two existing LiDAR DEMs) based on the comparisons 
of DEM pixel values to field measurements at 127 checkpoints (Fig. 2a). 
These checkpoints have average horizontal and vertical accuracies of 2 
and 3 cm, respectively. The UAS-generated DEMs had vertical RMSEs in 
the range of 6–7 cm, much lower than that of the coarse-resolution 
DEMs. However, the resolution of the UAS DEMs did not appear to 
impact the RMSE. Whereas RMSEs of the 10-m LiDAR DEM had vertical 
RMSEs of 21.8 cm on a non-vegetated surface and 31.6 cm on a vege
tated surface, much higher than those DEMs. Regarding surface types, 
the non-vegetated surfaces tended to have lower RMSE than the vege
tated surfaces for all DEMs except for the 8-cm UAS DEM. The UAS DEMs 
performed better than the coarser resolution DEMs in describing built 
structures in an urban environment, particularly in identifying typical 
urban drainage structures such as street gutters, sidewalks, and storm
water ditches (Fig. 4). 

3.2. Results of digital drainage analysis 

The process of removing fake depressions altered the elevation 

values of DEM pixels. The elevation changes in terms of area and volume 
were fairly consistent among the three UAS DEMs (as shown in red bars 
in Fig. 5a and 5b). However, the results varied when it came to filling 
real depressions (indicated by blue bars in Fig. 5a and 5b). The total area 
of elevation changes in the 1-m LiDAR DEM, approximately 6,000 m2, 
was similar to that of the UAS DEMs. Conversely, the filling algorithms 
did not significantly affect the area and volume of the 10-m LiDAR DEM. 
In general, as the resolution increased, so did the filled volume. The 1-m 
LiDAR DEM differed from the UAS DEMs; for instance, the filled volume 
of the 8-cm UAS DEM was four times larger than that of the 1-m LiDAR 
DEM. Furthermore, the filled volumes among the three UAS DEMs were 
not identical. Invoking the fractal nature characterized by scale invari
ance (Abedini et al., 2006), our research provides new evidence to 
quantify the relationship between the DEM resolution and the estimated 
depression volume. 

The probability distribution function (PDF) and rug plot analysis 
(Fig. 5c, 5d, and 5e) of individual depressions revealed various 
depression characteristics, emphasizing the importance of understand
ing the variety of depression sizes, volumes, and geometries. The UAS 
DEMs and 1-m LiDAR had similar area and shape distributions. The 
similarity of shape distributions among UAS DEMs and 1-m LiDAR DEM 
indicated that the 1-meter resolution DEM can capture a variety of urban 
depressions, as centimeter resolution DEMs do. Additionally, the iso
perimetric quotient plot indicated that UAS DEMs and 1-m LiDAR DEM 
observed most shapes have a quotient of 0.78, representing square- 
shaped depression areas typically captured in one-pixel size de
pressions. However, 1-m LiDAR differed in volume, as it tended to 
capture fewer depressions larger than 1 m3. In contrast, the 10-m DEM 
cannot capture any small depressions. 

In the rug plot, the 1-m LiDAR DEM appeared to capture fewer va
rieties in depression sizes, which was limited by its cell size. As a result, 
the finer resolution DEMs, such as the UAS DEMs, could represent a 
greater variety of depression sizes. For elongated depressions with a 
smaller isoperimetric quotient, such as depression along street gutters, 
the 1-m LiDAR DEM performed similarly to the UAS DEMs. 

The number of depressions increased when the spatial resolution of 
DEM was finer, as shown in Table 2. Three DEMs generated from UAS 
provided different depression and catchment numbers. However, 1-m 
LiDAR DEM performance in capturing these hydrological attributes 
was similar to the UAS DEMs. In contrast, the 10-m LiDAR DEM pro
duced significantly fewer depressions and catchment areas, disregarding 
microtomographic features related to small depressions. Therefore, the 
1-m LiDAR DEM performed better than the 10-m LiDAR DEM, enabling 
it to produce more comparable data. 

All five DEMs were derived from the same study area, and despite 
their differing spatial resolutions, they collectively captured the primary 
hydrological features and represented similar drainage network struc
tures. However, the 10-m LiDAR DEM, due to its coarser resolution, may 
overlook some microtopographic features essential to depict drainage 
networks, particularly in urban environments such as engineered 
drainage systems. In contrast, the finer resolution DEMs, especially 
those derived from UAS, captured more intricate details of the micro
topography and associated catchment attributes. Consequently, these 
DEMs provided a more accurate representation of the drainage network, 
particularly in areas with complex topography. 

Table 1 
Specifications of different elevation and surface models in this study.  

Data Flight altitude AGL (m) Point cloud density Resolution (cm) Vertical RMSE (cm) 

GSD, DSM DTM NVS DEM Non-vegetated surface Vegetated surface 

8-cm UAS DEM 75 7581.19/ m3  1.60 8.0  8.0  6.4  5.5 
11-cm UAS DEM 100 1804.17/ m3  2.22 11.1  11.1  6.9  7.1 
14-cm UAS DEM 120 1394.74/ m3  2.72 13.6  13.6  5.6  7.1 
1-m LiDAR DEM 1,700–2,294 2.5/ m2  – 100  –  8.0  11.9 
10-m LiDAR DEM unknown unknown  – 1000  –  21.8  31.6  
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While all five DEMs presented similar drainage networks at a broader 
scale, the finer resolution DEMs (UAS DEMs and 1-m LiDAR DEM) 
offered improved detail and accuracy in representing hydrological at
tributes. The UAS DEMs and 1-m LiDAR DEM exhibited similarities in 
the orientation and location of flow accumulation, with high concen
trations appearing along the gutters on both sides of the streets. In 
contrast, the runoff from the 10-m LiDAR DEM did not exhibit flow 
along the streets and street gutters, which are the primary drainage 
system in the study area. Fig. 6 shows that, in comparison to the 10-m 
LiDAR DEM, the flow accumulation patterns in the UAS DEMs and 1- 
m LiDAR DEM were typically more precise and consistent with the 
real world. The 10-m LiDAR DEM exhibits less detailed flow accumu
lation patterns due to its coarser resolution. This discrepancy in accu
racy and detail showed the advantages of adopting finer resolution 
DEMs for hydrological modeling and analysis, such as UAS DEMs and 
the 1-m LiDAR DEM. 

The depression storage of each catchment was lower in the 1-m 
LiDAR DEM and 10-m LiDAR DEM due to the exclusion of human- 
made structures that could collect runoff, such as swimming pools, 
and horizontal and vertical detail in capturing depression extent and 
depth. Fig. 7 demonstrates the inconsistent results of all five DEMs in 
depression storage. Despite being acquired by the same UAS device at 
slightly different altitudes, the 8-cm UAS DEM still provided a larger 
depression storage capacity than the coarser-resolution DEMs. More
over, Fig. 7 demonstrates how the distribution of depression storage 
capacity varied amongst the DEMs. The depression storage capacity for 
the 1-m LiDAR DEM appeared to be distributed more evenly, with most 
catchments lying within the 0 to 5 mm range. In contrast, the finer- 
resolution DEMs exhibited a more diverse distribution of depression 

storage capacity across catchments. This variability in depression stor
age distribution could have implications for estimating catchment 
runoff. The diverse storage capacities may lead to different runoff pre
dictions depending on the resolution of the DEM used. 

3.3. Results of validation 

Here we show the results of three validations based on RTK mea
surements. The first validation focused on a street segment and involved 
gutters, street curbs, and sidewalks (Fig. 8). The longitudinal profile (A1- 
A2) revealed that the 10-m LiDAR DEM captured the overall northward 
inclination of this street section. However, this 10-m DEM presented the 
street surface as discrete steps. In contrast, the DEMs with higher reso
lutions were able to capture the subtle elevation variations, as confirmed 
by the RTK measurements. The transversal profiles (B1-B2, C1-C2, D1- 
D2) highlighted even smaller elevation variations. The 1-m LiDAR DEM 
generally concurred with the ground truth. The 1-m LiDAR DEM was 
able to indicate the shape of the street crown, but it could not capture the 
locations of street gutters. For example, there was a 1-m shift of the 
street gutter on the east side shifts in profile D1-D2. Such inaccurate 
delineation of street structures could lead to errors in the estimation of 
street width and associated hydrological responses. In both longitudinal 
and transversal profiles, the UAS DEMs appeared to perform better than 
coarse-resolution DEMs in describing the targeted features of urban 
microtopography. 

In the second validation, the 10-m LiDAR DEM was unable to accu
rately depict the non-vegetated depression and the slope, as shown in 
Fig. 9. The 1-m LiDAR DEM also did not perform well in capturing the 
depth of the depression, especially on the profiles G1-G2 and H1-H2. In 

Fig. 4. Comparison of a UAS DEM to existing DEMs. (a) 8-cm UAS DEM; (b) 1-m LiDAR DEM; (c) 10-m LiDAR DEM; (d) the hillshade map from 8-cm UAS DEM; and 
(e) the orthomosaic map from 8-cm UAS DEM. 
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comparison, the profiles of the 8.0-cm, 11.1-cm, and 13.6-cm DEMs 
mostly agreed with the ground truth. Only the profile adjacent to the 
curb (A1-A2) had lower reliability due to the obstructing images by the 
curb. 

In the third validation, the 10-m LiDAR DEM did not capture the 
vegetated depression, as shown in Fig. 10. In comparison, the 1-m LiDAR 
DEM provided false topography over the longitudinal profile (A1-A2). 

The 1-m LiDAR DEM depicted an uneven surface, but the ground truth 
did not. The lowest position of the depression was flattened (the distance 
between 2 and 4 m of the A1-A2 profile). In addition, the profiles B1-B2 
and C1-C2 showed that the depression was shallower than the ground 
truth and other UAS DEMs. While the UAS DEMs performed better than 
the coarse-resolution DEMs over the vegetated surface, the elevations 
from the DEMs were slightly higher than the ground truth. This may 

Fig. 5. The effects of the DEM sources on the depression characteristics: (a) modified area of DEMs; (b) modified volume of DEMs; (c) PDF of depression area; and (d) 
PDF of depression volume; (e) PDF of depression isoperimetric quotient. 

Table 2 
Depression and catchment area characteristics and network delineation.   

8-cm UAS 
DEM 

11-cm UAS 
DEM 

14-cm UAS 
DEM 

1-m LiDAR 
DEM 

10-m LiDAR 
DEM 

Depression and catchment area 
characteristics 

No. of depressions 4125 2457 1950 1385 3 
Largest depression area (m2) 663.63 653.48 373.15 489 961.34 
Average depression area (m2) 1.65 2.38 2.57 4 416.58 
No. of depressions 4123 2454 1948 1364 3 
Largest depression volume (m3) 160.22 133 86.02 35.26 77.87 
Average depression volume (m3) 0.22 0.27 0.27 0.16 30.44 
No. of catchments area 50 33 22 25 18 
Highest depression storage of catchment area 
(mm) 

24.99 23.24 16.98 12.92 1.92 

Network delineation Total length (m) 8101.53 8002.74 7841.72 10080.39 10273.53 
Average length of link (m) 30.8 28.9 30.16 26.25 30.49 
1st order links Average length of link 

(m) 
31.44 28.51 28.76 25.98 33.53 

Total length (m) 4717.29 4560.9 4314.06 5638.28 6873.99 
2nd order links Average length of link 

(m) 
36.4 33.54 35.34 26.55 23.81 

Total length (m) 1383.47 1207.61 1272.25 1380.74 1095.18 
Maximum Shreve 
order 

Order 55 54 58 53 38 
Average length of link 
(m) 

7.33 8.35 11.48 14.44 6.93 

Total length (m) 7.33 8.35 11.48 14.44 6.93 
Primary flow 
direction 

Orientation N N N N N 
Total length (m) 2762.09 2756.35 2581.65 3568 4397.42 

Secondary flow 
direction 

Orientation NE NE NE NE NE 
Total length (m) 1366.37 1360.41 1366.93 1687.16 1767.92  
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have been due to the challenge of classifying dense vegetation near the 
surface from the ground. 

Examples of several locations of standing water, identified through 
visual validation after a rainfall event, are shown in Fig. 11. The extent 
of the standing water reflected the shapes of the depressions, such as 
circular-shaped potholes on the streets or elongate-shaped depressions 
along the street gutters. As expected, all observed spots of standing 
water agreed with the depressions identified from the UAS DEMs. 
However, some small depressions filtered out during the DEM correction 
were confirmed to be true depressions in the field observation (e.g., the 
red-yellow areas in the results from 11-cm UAS DEM and 14-cm UAS 
DEM in Fig. 11). This indicates that removing fake depressions using 
RMSE could be improved by incorporating the spatial variations of the 
vertical accuracy. 

3.4. Impacts of surface depression on runoff 

Fig. 12 compares the runoff estimates from different DEMs across a 

range of design storms, highlighting the impact of depression storage on 
initial abstraction during runoff generation and routing. The 10-m 
LiDAR DEM has the lowest depression storage (with some catchments 
not having any storage), resulting in the highest direct runoff. More 
depressions are identified with a higher DEM resolution, leading to 
higher depression storage and, thus, reduced runoff. The effect of the 
DEM resolution on the runoff estimate is significant. For example, the 
runoff depth based on the 8-cm DEM was 41% lower than the 10-m 
LiDAR DEM estimation under a 2-year design storm. This effect, how
ever, tends to be smaller with rare events. For example, the runoff 
estimation difference was only 13% under the 200-year design storm. 

More importantly, runoff estimates based on UAS DEMs are within 
the range defined by standard Ia values (i.e., 5% and 20% of the 
maximum retention capacity S), while runoff estimates based on LiDAR 
DEMs are outside that range. This finding highlights the importance of 
carefully considering depressions in urban areas and their impact on 
runoff generation. More accurate runoff estimates can be obtained by 
choosing an appropriate initial abstraction value based on the specific 

Fig. 6. The spatial pattern of the identified depressions in different DEMs. Blue lines are the results of flow accumulation, and different colors indicate elevation 
changes during correction and filling. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 
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characteristics of the study area and DEM resolution. The results indi
cate a critical role of surface depressions in urban hydrological models. 
Moreover, our findings highlight the importance of selecting a locally 
appropriate initial abstraction value that closely corresponds to the 
depression storage in the study area. This can lead to more accurate 
runoff estimates in urban catchments with a high density of depressions, 
especially for frequent events. 

4. Discussion 

4.1. Performance of existing DEMs 

DEMs generated from manned aircraft, such as the 10-m LiDAR and 
1-m LiDAR DEMs, offer more extensive coverage but are captured at 
high altitudes. This affects their ability to capture small urban topo
graphical features. Our study indicates that the 10-m LiDAR DEM 
struggles to capture small depressions and depression storage capacity. 
Though it captures some large depressions, the estimates of their sizes 
and storage capacities are not reliable. Moreover, the 10-m LiDAR DEM 

cannot accurately describe street microtopography and produces unre
alistic flow paths across the street, gutters, and sidewalks. This could 
significantly affect the DEM-based calculation of runoff flow paths, 
leading to misrepresenting runoff behaviors and introducing consider
able uncertainty into hydrological modeling. 

The 1-m LiDAR DEM performed considerably better than the 10-m 
LiDAR DEM. This DEM captured more depressions and better illus
trated urban topographical features, such as the catchment divide along 
the street crown. However, the 1-m LiDAR DEM still cannot accurately 
reflect the actual size and depth of observed depressions shown in 
Fig. 11. The uncertainty of such depressions, especially on impervious 
surfaces, could be a significant cause of the miss-calibration of hydro
logical models (Zakizadeh et al., 2022). 

4.2. Performance of UAS-generated DEMs 

UAS DEMs have limited coverage. However, they are captured at low 
altitudes, allowing them to offer a more realistic description of urban 
watershed terrain than the manned aircraft DEMs. The UAS DEMs 

Fig. 7. Catchment depression storage.  
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detected more depressions than other DEMs. The detected depressions 
agreed well with the field measurements and observations (with a few 
exceptions explained in section 4.3). The fine-resolution DEMs also 
provided a higher estimate of the total volume of depression than the 
coarse-resolution DEMs. 

More importantly, the UAS DEMs captured small topographical 
features, such as street crowns, street gutters, and sidewalks, which can 
significantly impact surface flow pathways and hydrological connec
tivity at the local scale. For example, the improved representation of 
street gutters in UAS-generated DEMs can help to simulate stormwater 
accurately flow along these features, ultimately leading to a more pre
cise understanding of urban flooding patterns. Similarly, the ability of 
UAS DEMs to capture details like sidewalk elevations allows for better 
predictions of how stormwater runoff will interact with pedestrian 
infrastructure, providing valuable information for urban planners and 
stormwater management professionals. 

The enhanced resolution of UAS DEMs also enables the identification 
of small-scale catchment divides, such as those found between buildings 
or on rooftops. This information is critical for simulating stormwater 
flow in densely built environments, where numerous structures can 

create complex and interconnected flow patterns. By accurately repre
senting these catchment divides, researchers can better understand 
urban hydrological connectivity and develop targeted strategies for 
mitigating flood risks. 

4.3. Limitations of UAS-generated DEMs 

Despite the advantages of UAS-generated DEMs, caution is necessary 
for several reasons. First, the DEM-based drainage analysis cannot 
consider subsurface pathways (e.g., a stormwater sewer pipe) or over
head structures (e.g., a bridge). The filling procedure can create unre
alistic flow pathways in such locations. The calculated runoff pathway is 
based on an adjusted terrain after the depressions are filled and may not 
align with the actual runoff pathways. Notably, in this study, the 
calculated total volumes of depressions (Fig. 5b) included all de
pressions regardless of whether they were hydraulically connected to 
the underground drainage system or not. The depressions hydraulically 
connected to the stormwater inlets do not retain the runoff unless the 
inlet is flooded. Fig. 13a illustrates two large depressions connected to 
the street inlets. These two depressions could be excluded from the 

Fig. 8. Examples of street profiles. A1-A2 indicates the longitudinal section. B1-B2, C1-C2, and D1-D2 indicate the transversal sections. In each profile subplot, the 
values of RMSE are shown for all five DEMs. 
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depression storage calculation because they would not retain storm
water. Therefore, the total depression storage capacity could be classi
fied based on the presence of the underground drainage system. Filling 
without considering the three-dimensional structure and underground 
drainage system can overestimate runoff at the local scale and the total 

depression storage capacity at the watershed scale. Integrating the dual- 
drainage concept, sewer, and overland flow (Maksimovic et al., 2009) 
could improve urban drainage models and enhance urban runoff as
sessments, benefiting further research in this area. 

Second, trees may obstruct the visibility of UAS to capture street 

Fig. 9. Examples of the elevation profiles of non-vegetated depressions. In each profile subplot, the values of RMSE for this section are shown for all five DEMs.  
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gutters - the primary runoff pathway in an urban area, creating an un
realistic terrain. The areas under trees could create artifact depressions 
and incorrect flow routing. Moreover, other obstructive objects include 
cars and trash cans frequently seen on the streets over the street gutters. 
Even when some of these objects are eliminated during the construction 
of a DTM, the bare ground surface can still show the residues of some 
removed objects. Such residues are often hardly visible but could create 
artifact depressions and incorrect flow paths, as shown in Fig. 13b. The 
drainage analysis does not perform well in areas that are unclear of such 
obstructive objects. Therefore, UAS imaging missions should be 
designed to capture the study area comprehensively. 

Third, the UAS did not perform well over open water. In particular, 
the inconsistent delineation of swimming pools with water led to un
certainties about their remaining volume for stormwater. For example, 
Fig. 13c shows considerable disagreement in the depth of depression 
from three different DEMs, leading to an incorrect calculation of the 
swimming pool’s remaining storage capacity. The 8-cm UAS DEM gave a 
1–2 m depression depth, but the 14-cm UAS DEM gave a smaller depth. 
The observation of three DEMs generated by UAS with different oper
ational altitudes provided significant discrepancy in depression depth, i. 
e., 25–200 cm from 8-cm UAS DEM and 1–25 cm from 14-cm UAS DEM. 
This discrepancy affected the total depression volume in the study area, 

which is why the modified area required for filling is nearly equal, but 
the modified volume required for 8-cm UAS DEM is considerably higher 
than for 14-cm UAS DEM. 

Fourth, DEM-derived depressions that are close to the canopy are 
more likely to be fake because the extent of the canopy usually obstructs 
the view of the UAS to detect the ground surface. For example, the 
highlighted areas (the blue areas) in Fig. 13d were identified as true 
depressions in the UAS DEMs, but were all found fake in the field vali
dation. In contrast, LiDAR DEM did not create these fake depressions as 
significant as UAS-photogrammetry DEMs. However, efforts have been 
made to improve the accuracy of DEMs in densely vegetated areas, such 
as the proposed object-oriented classification ensemble algorithm for 
terrain correction (Meng et al., 2017) and the algorithm to assess flight 
mission settings for UAV-based photogrammetry using a custom-built 
simulator (Pessacg et al., 2022). These techniques could potentially be 
applied to urban runoff management to improve the accuracy of DEMs 
in areas with dense vegetation or other obstructive objects. Therefore, 
special attention should be given to densely vegetated areas when the 
UAS-photogrammetry DEMs for digital drainage analysis. 

Lastly, the artifact removal method using RMSE could be improved. 
In this study, the elevation differences between DEM estimations and 
ground truth from 127 checkpoints were averaged into a single value of 

Fig. 10. Examples of the elevation profiles of vegetated depressions. In each profile subplot, the values of RMSE for this section are shown for all five DEMs.  
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RMSE to represent the overall vertical accuracy of the entire study site. 
Some areas, e.g., pavements, may have relatively higher accuracy, so 
some corrected small depressions might be true features. These 

uncertainties in capturing depressions among UAS DEMs are from the 
performance of detecting features vertically. Although the results from 
127 checkpoints reveal that three UAS-generated DEMs had similar 

Fig. 11. Examples of the results from the visual inspections of DEM-derived depressions after a rainfall event.  

Fig. 12. Impacts of different DEM-derived estimates of depression storage on runoff across different design storms.  
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RMSEs, the 127 checkpoints may not fully address the spatial variation 
of the vertical accuracy, particularly at a small scale. In addition, fake 
depression removal using the filling method only removes fake depres
sion. However, it does not correct the geometry of the real depression 
presented on the DEMs to match the real-world topography. 

4.4. Selecting appropriate DEMs for runoff estimation 

Selecting the appropriate DEM for accurate runoff estimates is 
crucial and depends on various factors, including the study area’s 
characteristics, resource availability, the required accuracy, and the 
targeted design storm. Especially when estimating runoff from frequent 
events (e.g., 2- and 5-year design storms), the amount of runoff gener
ated is influenced by the topography and the capacity of depressions to 

Fig. 13. Examples of urban areas that could have overestimated depression volumes: (a) hydraulically connected to an underground drainage system; (b) cars and 
trash cans; (c) swimming pool; and (d) vegetation. 
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store rainfall. In these scenarios, runoff may not be generated if the rain 
does not exceed the depression storage capacity. Therefore, accurately 
accounting for depression storage is critical, as it helps determine the 
threshold at which runoff generation begins after depressions are filled. 
The UAS DEMs with centimeter resolutions are generally suitable for 
hydrological studies in urban areas with complex terrain and numerous 
small-scale features. 

However, the UAS DEMs may not be suitable for large catchments 
due to their limited coverage or extreme events with long return periods. 
The time and resources required to collect extensive high-resolution 
data may become prohibitive. The finer details captured by UAS DEMs 
may not significantly impact the overall runoff estimates for larger 
catchments or more extreme events. As the spatial extent of the study 
area increases or the focus shifts towards less frequent, high-magnitude 
events, the advantages of UAS DEMs in capturing small-scale topo
graphic features may become less critical to the overall accuracy of the 
hydrological modeling. In these scenarios, the hyperspatial resolution 
data provided by UAS DEMs may not justify the additional effort and 
cost required for data collection and processing. 

Moreover, UAS DEMs may not always guarantee the accurate rep
resentation of real depressions, as they can still generate fake de
pressions. While eliminating fake depressions in small study areas may 
be feasible, this becomes more challenging when applying UAS DEMs to 
large-scale areas. In these scenarios, it is not guaranteed that all de
pressions will be real, and the additional effort to identify and remove 
fake depressions may not be practical or efficient. 

Considering these limitations, researchers may opt for more effective 
DEMs, such as those generated by manned aircraft, which offer higher 
coverage and require fewer data collection and processing resources. 
These DEMs, such as 1-m LiDAR DEMs (for this study), strike a balance 
between resolution and coverage, making them suitable for a broader 
range of applications, including long recurrence period events where 
percentage estimates may not significantly differ between UAS and 
airborne DEMs. The choice of DEM should ultimately align with the 
specific objectives and requirements of the study. By recognizing the 
limitations and advantages of each DEM type, researchers can make 
informed decisions and enhance the accuracy of their runoff estimates, 
mainly when accounting for depression storage and its influence on 
runoff generation. 

5. Conclusions 

In this study, UAS-photogrammetry DEMs captured depressions 
more effectively than the existing DEMs acquired by manned aircrafts. 
The UAS DEMs led to higher estimates in both the number of depressions 
and their storage capacity compared to results from the existing DEMs. 
UAS DEMs were able to distinguish urban microtopographic features 
and described small depressions with good agreement with field vali
dations, but the results still included fake depressions, particularly in 
areas affected by vegetation, 3D structures, and temporary objects on 
the streets. Additionally, the DEM resolution affected the derived hy
drological attributes, including the flow direction, flow accumulation, 
and catchment boundaries. Our results suggest that existing DEMs are 
not the appropriate input for estimating urban runoff from frequent 
events with low rainfall amounts, as they tend to exclude small de
pressions storage. 

UAS has been widely applied worldwide in various urban stormwater 
management studies. It is essential to acknowledge that the high reso
lution of UAS photogrammetry data does not guarantee an accurate 
description of the complex terrain and landscape of an urban watershed 
and the derived hydrological attributes. Urban stormwater management 
studies should consider the reliability of DEM-derived depressions 
before further analysis. Future research should improve high-resolution 
depression classification methods, emphasizing filtering fake de
pressions in high-resolution DEM data. This includes an improved un
derstanding of the interconnectedness between DEM resolution, 

hydrological characteristics, and the fractal nature of surface topog
raphy. Such advances will contribute significantly to improving the 
precision of urban hydrological modeling and further expanding the 
utility of UAS in urban hydrology and water management. 
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