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Abstract

There is growing interest in engineering uncon-
ventional computing devices that leverage the in-
trinsic dynamics of physical substrates to perform
fast and energy-efficient computations. Granu-
lar metamaterials are one such substrate that has
emerged as a promising platform for building
wave-based information processing devices with
the potential to integrate sensing, actuation, and
computation. Their high-dimensional and non-
linear dynamics result in nontrivial and some-
times counter-intuitive wave responses that can be
shaped by the material properties, geometry, and
configuration of individual grains. Such highly
tunable rich dynamics can be utilized for mechan-
ical computing in special-purpose applications.
However, there are currently no general frame-
works for the inverse design of large-scale granu-
lar materials. Here, we build upon the similarity
between the spatiotemporal dynamics of wave
propagation in material and the computational dy-
namics of Recurrent Neural Networks to develop
a gradient-based optimization framework for har-
monically driven granular crystals. We showcase
how our framework can be utilized to design basic
logic gates where mechanical vibrations carry the
information at predetermined frequencies. We
compare our design methodology with classic
gradient-free methods and find that our approach
discovers higher-performing configurations with
less computational effort. Our findings show that
a gradient-based optimization method can greatly
expand the design space of metamaterials and pro-
vide the opportunity to systematically traverse the
parameter space to find materials with the desired
functionalities.
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1. Introduction

The widespread adoption of Artificial Neural Networks in
Al applications can be traced back to the early *90s when
the seminal work of Hornik et al. proved them to be univer-
sal function approximators (1989). The efficient execution
of the backpropagation algorithm on Graphics Processing
Units enabled the training of large Deep Neural Networks
(DNNs) and initiated a new era where the focus was on the
development of data-intensive methodologies that leverage
available computing power (Krizhevsky et al., 2012). How-
ever, the unprecedented growth of power requirements and
the recent slowdown of Moore’s law have made it challeng-
ing for the semiconductor industry to keep up with comput-
ing demand (Lemme et al., 2022). This has motivated the
development of alternate information processing platforms
that relax the classic assumptions on the computing mod-
els, architectures, and substrate choices in favor of fast and
efficient execution of special-purpose computations.

Advances in physics, chemistry, and materials science, along
with revolutionary fabrication and manufacturing technolo-
gies, have provided the opportunity to explore unconven-
tional computing paradigms that abandon the notion of cen-
tralized processing units and harness the natural dynam-
ics of the physical system to perform the desired computa-
tion. With this perspective, any controllable physical system
with rich intrinsic dynamics can be exploited as a com-
putational resource. This has resulted in the development
of mechanical (Lee et al., 2022), optical (Anderson et al.,
2023), electromechanical (El Helou et al., 2022) and biolog-
ical (Roberts & Adamatzky, 2022) computing units. Such
physics-based computing devices offer potential advantages
for fast and efficient computation that avoids analog-to-
digital conversion and allows massively parallel operations
(Yasuda et al., 2021). However, finding the best hardware
setup is often a challenging task beyond the intuitive limits
of human experts and can benefit from automatic design
methodologies to tune various aspects of the system accord-
ing to the application (Finocchio et al., 2023).

This paper focuses on the inverse design methodologies for
computational metamaterials. Metamaterials are engineered
composite materials designed with particular spatial config-
urations that exhibit macroscopic behaviors different from
their constituent parts (Xia et al., 2022). They can possess
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non-natural static or dynamic properties such as negative
bulk moduli and mass density, non-reciprocity, and auxetic
behavior (Kadic et al., 2019; Jiao et al., 2023). Mechanical
metamaterials, especially those made of field-responsive
materials, have received immense attention for robotics ap-
plications where they can respond to various stimuli and
reconfigure to adapt to different environmental conditions
(Rafsanjani et al., 2019). They provide increased robustness
and reduced power consumption in the system and enable
the design of highly tunable multifunctional mechanisms
that integrate sensing, information processing, and actuation
in fully autonomous engineered systems (Pishvar & Harne,
2020). The ability to create metamaterials that can manipu-
late mechanical vibrations of varying frequencies has made
them an excellent platform for mechanical computation (Ya-
suda et al., 2021).

Here, we concentrate on a subset of metamaterials with par-
ticulate structures, namely granular crystals. These are com-
posite materials made of noncohesive particles with various
material properties and shapes, which are densely packed
in random or carefully designed configurations (Karuriya
& Barthelat, 2023). Due to their discrete nature and the
nonlinearity of interparticle contacts, granular materials ex-
hibit highly tunable dynamic responses, which are of great
interest to both the academic community and industrial orga-
nizations. They are utilized in a broad range of applications,
including energy localization and vibration absorption lay-
ers (Zhang et al., 2015; Taghizadeh et al., 2021), acoustic
computational units like switches and logic elements (Li
et al., 2014; Parsa et al., 2023), granular actuators (Eristoff
et al., 2022), acoustic filters (Boechler et al., 2011), and
sound focusing/scrambling devices (Porter et al., 2015). Be-
yond practical applications, granular assemblies are also
studied as simple test beds for investigating fundamental
phenomena in many disciplines, including materials science
and condensed-matter physics (Rodney et al., 2011; Jaeger
& Nagel, 1992).

Granular crystals are commonly studied in a confined struc-
ture subject to external vibrations. Their nonlinear dynamic
response is highly tunable by local changes to individual
particles’ properties. Therefore, they possess great poten-
tial for wave-based physical computation. However, with
such high-dimensional parameter space and strongly non-
linear discrete dynamics, tuning their vibrational response
is extremely challenging. Many studies are limited to ex-
perimental measurements (Boechler et al., 2011; Li et al.,
2014; Lawney & Luding, 2014; Cui et al., 2018) or nu-
merical integration of the equations of motion (Boechler
et al., 2011; Chong et al., 2017). Analytical methods for
such granular systems primarily focus on reduced-order lin-
earized approximations. In most such investigations, the
discrete nature of the system is ignored, and the system is
analyzed in the continuum limit. However, such analysis

fails to capture nonlinear phenomena that emerge from the
non-integrable discreteness in the system and the response
can diverge significantly from the predictions (Somfai et al.,
2005; Nesterenko et al., 2005). Therefore, there is currently
no general systematic methodology for studying the tem-
poral and spatial characteristics of the wave response in
disordered granular crystals and designing materials with
the desired dynamic response (Ganesh & Gonella, 2017).

In this paper, we develop a differentiable simulator for gran-
ular crystals that can be incorporated into an optimization
pipeline to find the best material properties to perform me-
chanical computations.

2. Related Work

Physical computing has been an active research topic in
recent years, and many attempts have been made to take
inspiration from deep learning concepts and incorporate ma-
chine learning techniques in designing novel computational
hardware. Physical Reservoir Computing (PRC) is one such
direction where a physical system is exploited for computa-
tion by applying the inputs to a physical substrate, collecting
the raw measurements, and only training a linear “readout”
layer to match the desired outputs (Nakajima, 2020). Re-
cently, Physical Neural Networks (PNNs) have been intro-
duced in which the hardware’s physical transformation is
trained in a similar manner to DNNs to perform the desired
computations. Here, unlike PRC, the system’s input-output
transformation is directly trained with an algorithm called
physics-aware training (PAT) that enables backpropagation
on physical input and output sequences (Wright et al., 2022).
Optical Neural Networks are an example of PNNGs, that pro-
pose running deep learning frameworks for any task, such as
classification or natural language processing, directly on an
optical hardware instead of a digital electronic one such as a
GPU (Anderson et al., 2023; Huo et al., 2023). In PNNSs, the
mechanical properties of the physical system do not change
during the training; instead, the applied physical input is
tuned with backpropagation using a differentiable model of
the system to achieve the desired input-output transforma-
tion. Training PNNs with BP has a couple of drawbacks
such as needing accurate knowledge of the physical system
and being unsuitable for online training. Direct feedback
alignment (DFA) was developed to address this by omitting
the need for layer-by-layer propagation of error. However,
it still requires modeling and simulation of the physical
system (Nakajima et al., 2022).

Mechanical Neural Networks (MNNs) are another type of
physical network that, unlike the previous works, tune the
mechanical properties of the physical system during training.
Lee et al. have developed a framework where the stiffness
values of interconnected beams in a lattice are tuned for
desired bulk properties like shear and Young’s modulus or
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mechanical behaviors such as shape morphing (2022). Simi-
lar works have been done for analog wave-based computing
where a differentiable model is developed based on the fi-
nite difference discretization of the dynamical equations
describing a scalar wave field in continuous elastic metama-
terials (Hughes et al., 2019; Jiang et al., 2023). The same
approach is utilized in (Papp et al., 2021) for designing com-
puting devices with spin waves propagating in a magnetic
thin film. Here, a magnetic field distribution is designed to
steer the spin waves in order to achieve the desired behavior.
However, the system is not trained in hardware; instead,
the material is discretized into cells with various material
properties, that are determined using an approximate dif-
ferentiable simulator. Such an approximate model will not
capture the full dynamical behavior in the strongly nonlin-
ear regime. Moreover, after manufacturing the optimized
design there are no methods for online adaptation of the
structural parameters and therefore such physical substrates
are more suitable for tasks where a system is trained once
and then used for inference many times.

Granular metamaterials are particulate systems where the
properties of the individual particles can be modified in-
dependently. Therefore they offer the opportunity to build
reconfigurable multifunctional materials. While gradient-
based optimization has been explored to a great extent in
designing continuous photonic materials (Tahersima et al.,
2019; Yao et al., 2019; Mao et al., 2021; Jiang et al., 2021),
designing granular crystals with desired dynamic responses
has not been explored. There exists an extensive body of
research on granular materials dating back over 200 years.
However, a general connection between their dynamic wave
response and their constituents’ shapes and material prop-
erties remains unknown. Moreover, analytical exploration
of the parameter space of granular materials is infeasible
without imposing simplifying assumptions and approxima-
tions. In this paper, we present a gradient-based optimiza-
tion framework for designing granular crystals with desired
dynamic wave responses. In summary, we make the follow-
ing contributions:

* Present a gradient-based optimization platform for de-
signing granular crystals with a desired dynamic re-
sponse without recourse to any continuum approxima-
tions of the physics model.

* Demonstrate the application of our proposed frame-
work for designing wave-based mechanical computing
devices.

* Compare the performance and computational effi-
ciency of our proposed method to gradient-free op-
timization methods incorporated in previous related
works.

3. Methods

Figure 1 shows an overview of our optimization framework.
A dense packing of circular particles with different material
properties is subjected to external mechanical vibrations by
displacing the selected input particle(s) with a predefined
oscillatory force indicated as X (¢). The system’s hidden
state (hy = (r,7),) can be described with the position ()
and velocity () of the particles in time. In the forward
pass, the system’s state evolves according to the dynamics
dictated by the physical system and depends on the state in
the previous time step (h;—1), physical parameters (¢), and
the input at time ¢ (X;). The physics model describes the
nonlinear relation between the state, input, and the parame-
ters as hy = f(0, hs—1, X¢). This is analogous to Recurrent
Neural Networks (RNNs), where the hidden state allows
the network to remember the past information fed into the
network and enables learning of the temporal structure and
long dependencies in the input.

The output is defined as the measurements of a physical
property of the system in time such as the displacement of
the chosen output particle(s) Y;. To train the physical net-
work, we need to update the trainable parameters ¢, which
are the material properties of the particles (equivalent to
weights of an RNN), to reduce the loss £ defined between
the real Y; and desired Y (£) outputs over 7' time steps.

An end-to-end differentiable simulator allows us to retain
the gradients of the loss function with respect to the trainable
parameters (V¢ L) to be used in backpropagation. Similar
to traditional RNNs, the gradients are obtained by taking
the partial derivatives and using the chain-rule as follows:
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Having the gradients of the loss function with respect to
the physical parameters of the network, a gradient-based
optimization method can be used to update the parameters
(0) at time step 7" and start the next forward pass. In the
next section, we first outline the differentiable simulator that
was developed for granular crystals. We then provide the
specifics of our optimization pipeline in Section 3.3.

3.1. Differentiable Simulator

Figure 2 shows an overview of the granular crystals we aim
to optimize in this work. Deformable spherical particles
with identical diameters and various elasticity are placed on
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Figure 1. Inverse design of computational granular crystals. When the granular crystal is vibrated at its boundary, the elastic compression
waves (indicated by the red shades in the panels) propagate in the material until they are scattered or attenuated by disorder, affected
by dispersion, or distorted by (self-)demodulation and frequency mixing at nonlinear interparticle contacts (Forward Pass). The waves
arriving at the output particle(s) are recorded and the difference between the desired (Y (¢)) and recorded response (Y (t)) is utilized in a
loss function (£) to adjust the trainable parameters (0). f relates the input X, parameters 6, and the hidden state of the system h¢_;
to the hidden state at the next time step h:. An end-to-end differentiable physics simulator allows us to track the partial derivatives in
the Backward Pass indicated by the pink arrows in the figure. The particles’ material properties can be optimized with a gradient-based

method to produce the desired nonlinear wave response.

a hexagonal lattice with fixed boundaries in both = and y
directions. In this system, the repulsive force between two
neighboring particles is nonlinear and can be described by
the Hertz law (Hertz, 1882). More details about the physics
model are provided in Appendix A.1.

the Discrete Element Method (DEM) (Cundall & Strack,
1979) can be used to numerically simulate the motion of the
interacting particles in a granular crystal. In this paper, we
developed a differentiable simulator with the same method
(see Appendix A.1.3 for more details) in the PyTorch frame-
work (Paszke et al., 2017).

3.2. Optimization Setup

When a disordered granular crystal, such as the one shown
in Figure 2, is vibrated at its boundaries, the produced elas-

tic waves propagate through the material and scatter at the
particle-particle interfaces. The material properties of the
individual particles (elasticity, density, etc.), their geome-
try (shapes and sizes), and their arrangement (neighboring
contact points) determine the distortion of the elastic waves
and their frequency and amplitude-dependent attenuation.
In this paper, we formulate the optimization problem as
finding the stiffness values of the particles in a hexagonal
granular crystal to achieve a desired wave response. There-
fore, the trainable parameters, as defined in Equation (1),
are 0 = k;,i € [0, N] where N is the total number of the
particles. The desired wave response is defined in terms of
the displacement of the selected output particles and formu-
lated into the loss function £. The details of the desired
output and the loss function will be provided in Section 4.
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Figure 2. A granular crystal is made of spherical particles with
identical size (diameter o) and various stiffnesses (represented in
different shades of grey) in a confined configuration with fixed
boundaries. Hertz’s law describes the relation between the parti-
cle’s overlap (§ = 055 — r;;) and applied force (F') as F' = ad?.
Here, (3 is a constant that depends on the particle geometry and
determines the nonlinearity of the contact forces. A commonly
used value for spherical contacts is 8 = %, which produces a cubic
nonlinearity in the equations of motion. r;; = |r; — r;]| is the
interparticle distance and o;; = UI;GJ' is the maximum distance,
after which the particles lose contact. As it is shown in the plot
on the right, the interparticle potential is one-sided, and unlike a
Hookean spring, the force becomes zero when the two particles
lose contact.

3.3. Gradient-based Optimization

To enable the gradient-based optimization of granular crys-
tals, we used PyTorch’s automatic differentiation (autod-
iff) engine to compute the gradients of the loss function
with respect to the trainable material properties (). We
implemented custom submodules for the granular crystal
simulation. Adam optimizer (Kingma & Ba, 2017) with
an adaptive learning rate is utilized for the training pro-
cess. The loss function and training parameters for each
experiment are indicated in Section 4

3.4. Gradient-free Optimization

Evolutionary algorithms are a class of population-based
gradient-free optimization methods that are well-suited for
searching the high-dimensional parameter spaces and tack-
ling multi-objective black-box design problems. They are
particularly powerful methods for problems with extremely
rugged landscapes where a gradient-based approach might
converge to the local optima. Such methods have been
successfully incorporated for designing reconfigurable or-
ganisms (Kriegman et al., 2020), autonomous machines
(Lipson & Pollack, 2000), and molecular generation for
drug discovery (Tripp & Herndndez-Lobato, 2023).

Previous work has explored the usage of gradient-free op-
timization methods for the design of granular materials.
Miskin et al. showed that an evolutionary approach can find
particle aggregates with the highest/lowest elastic modu-

lus (2013). In (Parsa et al., 2023), the authors have used a
multi-objective evolutionary algorithm to find granular ma-
terials that can compute two logic functions at two different
frequencies. Therefore, we apply a similar gradient-free
optimization method to the design problems explored in this
paper to compare their performance to the gradient-based
framework proposed here.

In this work, we use the Age-Fitness Pareto Optimization
(AFPO) method (Schmidt & Lipson, 2011). Evolutionary
algorithms generally start with a randomly generated set of
candidate solutions (population) and at each step of the opti-
mization (generation), the best solutions (or non-dominated
ones in a multi-objective problem) are selected, slightly
modified (with the mutation and cross-over operators) and
survived to the next generation. AFPO is a multi-objective
evolutionary algorithm that prevents premature convergence
and promotes diversity in the solutions by periodically in-
jecting random solutions and allowing newer instances to
survive before being dominated by the existing more fitted
solutions.

In the experiments in this paper, we employed a direct en-
coding scheme, defined as a real-valued vector indicating
the stiffness values of the particles. A Gaussian mutation
operator with a standard deviation of 0.1 was defined such
that it ensures the stiffness remains within the permitted up-
per and lower bounds. In all experiments, a population size
of 100 was used, and each evolutionary trial was conducted
for 1000 generations. 10 independent runs were performed
for each experiment, each starting with a different random
initial population with a uniform distribution. The objective
functions for each experiment are similar to the loss func-
tions defined for the gradient-based optimization setup and
will be introduced in the next section.

4. Experiments

To demonstrate the application of our gradient-based design
framework we considered three design problems, including
an acoustic waveguide, a mechanical AND gate, and a me-
chanical XOR gate. Table 1 includes the parameter values
for the physics model and numerical simulations used in the
experiments. The detailed description of the simulation and
model parameters is presented in Appendix A.1.

4.1. Acoustic Waveguide

Granular crystals have a discrete band structure with a high
cut-off frequency that depends on the particle properties
(size, Young modulus, and Poisson ratio), boundary con-
ditions, and the applied longitudinal static stress (Franklin
& Shattuck, 2016). In a harmonically driven system, only
waves with frequencies within the pass band can propagate,
and waves above the cut-off frequency are attenuated sig-
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Table 1. Simulation parameters.

PARAMETER VALUE
TotaL TIME (T) 3 x 10°
TIME STEP (At) 5x 1073
LATTICE SI1ZE (N = N; X Ny) 10 x 11
MASS (m) 1.0
STIFFNESS (k) € [1.0,10.0]
PACKING FRACTION (¢) 0.1
DIAMETER (o) 0.1
BACKGROUND DAMPING (B) 1.0
PARTICLE-PARTICLE DAMPING (Bpp) 0.0
PARTICLE-WALL DAMPING (Bpw) 0.0

nificantly. This phenomenon provides the opportunity to
design granular crystals with desired band gaps and tunable
filtering behavior that act as acoustic filters and waveguides
(Spadoni & Daraio, 2010), acoustic switches and logic gates
(Liet al., 2014). In an acoustic waveguide, the vibrational
energy is localized toward specific locations. In the first
experiment, we demonstrate how the dynamics of a granular
crystal can be tuned by changing the particles’ stiffnesses
to selectively direct acoustic waves toward one of the two
output particles based on the frequency content of the input
signal. Figure 3 presents the setup for this experiment. A
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Figure 3. Experimental setup for the acoustic waveguide. The
input particle (blue marker) is harmonically vibrated with the
amplitude A and one of the two predefined frequencies, f1 or
f2. The applied elastic vibrations propagate through the material
toward the output ports (red and gold markers). The existence
of the input frequency in the displacement signal of the output
particles indicates the computational response. Each of the two
output particles is expected to only respond to one of the two input
frequencies.

particle near the left boundary is selected as the input port
where the acoustic vibration is injected into the system. The
input vibration is in the form of a horizontal sinusoidal wave
that displaces particle 7 from its equilibrium position (dg ;,
see Appendix A.1) such that ¥ (t) = 6o ; + A sinwt, where
A is the amplitude of the input oscillation, and w = 27 f
is its frequency. Similar to the input port, two particles are
chosen near the right boundary as the output ports. The hor-

izontal displacements of these output particles are recorded
during the simulation, and the wave intensity is calculated
as follows:

(r?(t)? Liel,2 )

M=

-
t

Il
«N

where ¥ (¢) is the displacement of the particle in  direction
at time ¢, T' is the length of the simulation and ¢ indicates the
particle index which is 1 or 2, representing one of the two
output ports. To remove the effect of transient responses,
the first one-third of the simulation time is not included in
calculating the wave intensity. The predicted output of the
physical neural network is a vector with two scalar values
which are the normalized wave intcgsities at each of the
output ports as Y = [Y;:l_ 7L Yl"?%” ]. n indicates the
sample from the training dataset which has two entities
and is defined as D = {(X! = [Asin2rfit]L_,,Y! =
[0,1]), (X2 = ([Asin2rfot]l_,,Y? = [1,0])}. To tune
the material with a gradient-based optimization framework,
we defined a Cross-entropy (CE) loss as follows:

LS~ exp(Y,")

N =7 eap(Y]") + exp(Y3)
¢ =argmaz(Y™) 3)

Lop(Y,YV)=—

where N is the size of the minibatch and c is the port index
for the desired output for sample n from the minibatch.

epoch 0 epoch 40 epoch 80 epoch 120 epoch 200

Peeeb!
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Figure 4. Inverse design of an acoustic waveguide. The training
loss is plotted over 200 epochs. The mean and standard devia-
tion of 5 independent runs are shown with solid and dashed lines,
respectively. Snapshots of the granular crystal are shown at inter-
mediate stages during the training for one example trial.

In this experiment, we applied small-amplitude vibrations to
enforce the dynamics to stay in the weakly nonlinear regime
(A =10"2x ¢ = 10~3). The training dataset D consists of
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sinusoidal waves at two selected frequencies, f; = 7[H z],
and fo = 15[H z]. As mentioned before, one-hot encoding
is utilized to indicate the desired output according to the
truth table provided in Figure 4.

We initialized the stiffness profile (6y) with a stiffness value
of k£ = 5.0 for all the particles at epoch 0 (see Figure 4).
Adam optimizer is used with a fixed learning rate of 0.001
to train the network for 200 epochs. Figure 5 presents the
training loss, averaged over 5 independent runs.

- Wave Guide

Figure 5. The optimized acoustic waveguide. The stiffness pattern
enables the material to direct the vibration toward one of the output
ports according to its frequency. The plots on the left show the
horizontal displacement of the input (blue) and output particles
(red and gold) during the simulation time. The optimized material
directs the input vibration toward the top particle when the fre-
quency is f1 = 7[H z] and the bottom particle when the frequency
is fi = 15[Hz].

As it can be seen in the optimized design at epoch 200
in Figure 5, the stiffness pattern of the granular crystal is
tuned such that the low-frequency vibration is guided toward
the top particle. On the other hand, the softer particles
around the bottom port enable larger displacements around
the second output port when the input is at a high frequency.

4.2. Acoustic Logic Gate

To demonstrate the computational capabilities of new physi-
cal substrates as alternatives to traditional digital electronic
devices, many studies show designs for basic logic gates as
a reasonable benchmark (Yasuda et al., 2021). In this paper,
we first showed the design of an acoustic AND gate. To
showcase the exploitation of the nonlinear dynamics of gran-
ular crystals for mechanical computing, we also investigated
the design of an XOR gate as it performs a nonlinear input-
output transformation. Figure 6 shows our experimental
setup for the realization of acoustic logic gates.

The input and output signals are mechanical vibrations of
the selected particles in the granular crystals. To design
logic functions, we first need to define a representation rela-
tion that dictates how we encode the binary values. Here, we
measure the horizontal displacement of the particles from
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Figure 6. Experimental setup for the acoustic logic gates. The
granular crystal is made of circular particles with various stiffness
values represented in different shades of grey. The two particles on
the left (with green and blue markers) are selected as the input ports
where the external sinusoidal oscillations are applied to the system.
As noted in the truth table, the 0/1 values at the ports are encoded
as harmonic vibrations at a particular frequency f. The 00 case has
a trivial solution that is always correct: since there are no power
sources in the system, the lack of input vibrations means the output
is 0, which is true for both AND and XOR gates. For the other
three cases (01, 10, and 11) the horizontal displacement of the
output particle from its equilibrium position (r*(¢)) is measured
to infer the output of the logic function.

their equilibrium positions: using the amplitude of the input
vibration as the baseline, a significant periodic displacement
is interpreted as the binary 1 value, and a negligible one
is interpreted as 0. We apply sinusoidal vibrations as the
input and for the experiments in this section, we fixed the
operational frequency of the logic gate at a predetermined
frequency (f = 15[H z]), which was chosen according to
the material properties of the granular crystal and its fre-
quency spectrum. The amplitude of oscillations (A4) is 1073,
which is the same as the experiments in Section 4.1.

To tune the particles’ stiffness values, we define the L-1 loss
function (Mean Absolute Error, MAE) between the intensity
of the horizontal displacement of the output particle Y =
[rfjutput(t)]f:%) and the desired output (Y") as follows:

Larap(YV,Y) =Y =Y ||mar

1 < .
=y =y 4)

n=1

where N is the number of samples in the training dataset
D, and the superscript n represents the output for each
sample. When calculating the wave intensity, we only use
the last one-third of the simulation time ([2L, 7], where T
indicates the total simulation) to ignore the transient part of
the signals. In the following sections, we provide our results
for designing two basic logic gates, an AND gate, and an
XOR gate.
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Figure 7. Gradient-based design of an acoustic AND gate with
fixed-value initialization. The granular crystal is initialized as a
homogeneous assembly of particles with a stiftness value located
in the middle of the permitted range. Each light graph in the top
left panel shows the training loss for one of the 10 independent
trials over 500 epochs. One example of the optimized material
is shown on the right. The plots on the bottom show the inputs
and output of the logic gate, as the horizontal displacement of the
particles in time. Each row shows one of the three cases.

4.2.1. AND GATE

We start with designing an AND gate because, due to its
linear nature, we expect the design process to be straight-
forward. Although, due to the strong nonlinearity in the
system, it is theoretically capable of more complex com-
putations, the high-dimensional parameter space (10 x 11
real numbers in [1.0, 10.0]) can make the gradient-based
optimization challenging. The training dataset D is made
of 3 time series for the three cases defined in Figure 6 as
follows:

D ={

(X0 = [X; = Asin 27 ft, X5 = 0L, V' = [0]Z_)),
(X10 =[X;=0,X5 = Asin 27rft]tT:1,Y10 = [O]tT:l)’
(XM = [X, = Asin 27 ft, Xo = Asin 27 ft]L_,,

Y1 = [Asin 27 ft]_ )} ®)

We used the same simulation parameters as reported in Ta-
ble 1. In our preliminary investigations, we noticed that
the initial values of the trainable parameters (¢) affect the
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Figure 8. Gradient-based design of an acoustic AND gate with
random initialization. The granular crystal is initialized with ran-
dom stiffness values drawn uniformly from the permitted range
(€ [1.0,10.0]). The light blue graphs in the top left panel show
the training loss of the 10 independent trials. One of the optimized
materials is shown on the right. The plots on the bottom show the
inputs and output of the logic gate in each of the three cases 01,
10, and 11.

performance of the optimization when all other simulator
and optimization parameters are fixed. Therefore, we con-
ducted two experiments, one starting with a homogeneous
configuration of identical particles with a stiffness value
of £ = 0.5 and the other with randomly initialized values
in the range [1.0, 10.0]. Figure 7 and Figure 8 present the
training loss and an example of the optimized material from
one of the 10 independent trials in each of the two setups.
It should be noted that the sudden changes in the training
loss at specific instances are due to the incorporation of an
adaptive learning rate. We incorporated a multi-step adap-
tive learning rate with a decay rate of v = 0.1 and step sizes
at [150, 300, 400] epochs for the fixed-value initialization
and [100, 200, 300] epochs for the randomly initialized case.
The starting value of the learning rate is set to [r = 0.001
in both cases.

4.2.2. XOR GATE

We repeated the design problem for an XOR gate with the
same set of parameters for the simulator and the optimizer.
As in the previous section, a dataset containing the time
series of the inputs and the target is produced and incorpo-
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Figure 9. Gradient-based design of an acoustic XOR gate with
fixed-value initialization. The granular crystal is initialized as a
homogeneous assembly of particles with a stiffness value located
in the middle of the permitted range. Each light graph in the top
left panel shows the training loss for one of the 10 independent
trials over 500 epochs. One example of the optimized material
is shown on the right. The plots on the bottom show that, as we
expect, the output particle oscillates with a higher amplitude when
only one of the input ports is vibrated. This is consistent with the
desired functionality of an XOR gate.

rated for optimizing the stiffness values of the particles as
follows:

D ={

(X = [X; = Asin2r ft, Xo = 0]L_,,

VOl = [Asin 27 ft]L,),

(X0 = [X; =0, X, = Asin2nft]L,,

Y10 = [Asin 27 ft]]_ ),

(X" = [X, = Asin2rft, Xy = Asin 27 ft]]_,,
v = [0,)} ©

The optimization results for the two initial conditions, fixed-
value and random, are shown in Figure 9 and Figure 10.

5. Discussions

The results presented in the previous section show that our
gradient-based optimization framework can find granular
crystals with the desired dynamic wave responses. Compar-
ing the two experiments with different initialization of the
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Figure 10. Gradient-based design of an acoustic XOR gate with
random initialization. The granular crystal is initialized with ran-
dom stiffness values drawn uniformly from the permitted range
([1.0,10.0]). The light blue graphs in the top left panel show the
training loss of the 10 independent trials. One of the optimized
materials is shown on the right. The plots on the bottom show the
inputs and output of the logic gate in each of the three cases 01,
10, and 11.

stiffness values suggests that starting with a homogeneous
stiffness pattern promotes some degree of symmetry in the
y direction which is expected because the input ports are
placed at the same distance from the output port (see Fig-
ure 6) and the logic function is inherently symmetric with
respect to the two inputs.

As mentioned in Section 3, gradient-free optimization meth-
ods have been incorporated previously in similar design
problems for computational granular materials (Parsa et al.,
2023). To compare the efficiency and performance of our
proposed gradient-based framework, we applied a gradient-
free optimization method (Section 3.4) to the logic gate
design problems discussed above. The results of this ex-
periment are provided in Appendix C. Evaluating the best
solutions from this optimization method (Figure 14 and Fig-
ure 15) shows that they don’t exhibit the desired response
in all three cases. Since we have three different objectives
combined into one loss value (Equation (7)), the desired
solution will offer a tradeoff between them. However, the
gradient-free optimization method finds solutions that per-
form well in some cases while ignoring the others. For
example, for the AND gate in Figure 14, the material pro-
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duces the desired output in the 01 and 10 cases, but not in
the 11 case.

We can compare the computing resources needed for each
optimization method by the number of the simulations of
granular crystal needed during the optimization. In the
gradient-based approach, each epoch in the logic gate ex-
periment (Section 4.2) consists of 3 evaluations, so the op-
timization performs 1.5e2 simulations after 500 epochs to
find the best design. However, the population-based meth-
ods keep a set of 100 solutions at each step (population
size=100), therefore the optimization has performed 300
simulations of the physics model in each step and the total
number of simulations at the end of 103 optimization steps is
3eb. Thus, the material design space is explored efficiently
with the gradient-based optimization method. However, the
gradient-based method needs to retain the computational
graph for backpropagation of gradients of loss, therefore
the memory requirements are higher than the gradient-free
methods.

To gain an understanding of the shape of the design land-
scape shape and the complexity of the optimization problem,
we performed a random search by generating 10* random
configurations and evaluating them using the loss function
defined in Equation (7). The distributions of the random con-
figurations along with the optimized solutions are shown in
the space of the three loss values in Figure 11 and Figure 12.

Lrotar = Lo1 + Lio + L1
Loy =|| YU =Y || prap
Lo :|| Y10y ||MAE

Lin =l Y =Y arap ™
Using the total loss defined above, we computed p-values
to indicate the significance of the optimized configurations
compared to the random ones. We can see that the gradient-
based method has found better designs than the random
search and gradient-free method for both problems. The
distribution of the solutions from the gradient-free method
shows that this approach has prioritized some of the loss
terms over the others and thus is not able to find solutions
that are significantly better than the random search.

6. Conclusion

Motivated by the growing interest in unconventional com-
puting substrates, in this paper, we explored the application
of gradient-based optimization frameworks for the design of
computational granular crystals. We showed that by develop-
ing a differentiable simulator, we can employ gradient-based
optimization methods to tune the material properties of the
constituent particles of a granular crystal to allow for the
desired wave responses.
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Unlike previous work such as Mechanical Neural Networks
that train the physical system directly (Lee et al., 2022),
here we train the physics model in a differentiable simu-
lator. Therefore, transferring the designs to reality can be
challenging because of the discrepancies between the real
and simulated systems. In future work, we can address
this by including random amounts of reasonable noise to
the parameters and finding designs that tolerate reasonable
manufacturing errors. Despite this, our approach can still
provide valuable insights into the design space of granular
crystals. For example, using our design framework we can
investigate which physical properties of the physical sub-
strate offer more opportunities for a desired computational
task.

Similar to traditional RNNs, the size of the hidden state of
the network (the number of particles in the granular crystal)
determines its memory capacity and computational com-
plexity. Previous work has concluded that gradient-free
optimization methods are not scalable and cannot search
the parameter space of such large models effectively. Our
results prove the power of gradient-based optimization in
this problem but such methods can fail in non-convex land-
scapes. Moreover, unlike population-based techniques, our
framework cannot find a set of Pareto-optimal solutions to
problems with multiple objectives. Designing multifunc-
tional materials has attracted immense attention in recent
years and inverse design methods are needed that can find so-
lutions with various trade-offs between multiple objectives
and constraints. Therefore, it is possible that augmenting the
gradient-free methods with gradient-based approaches facil-
itate the design of such multifunctional granular machines
in the future.
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A. Appendix
A.1. Physics Model

The granular crystals discussed in this paper are finite-length two-dimensional configurations of spherical particles with
identical diameters and variable elasticity placed on a horizontal flat surface (Figure 2). The system is a macroscopic scale
granular system (particle sizes are in the millimeter-to-centimeter range), so the only forces acting on each particle are the
finite-range repulsive interparticle contact forces. On the scale of particle contacts, we consider normal forces resulting from
the adjacent particles’ overlaps and ignore the tangential forces and particle rotations. With these assumptions, the local
potential between each pair of particles ¢ and j can be written as:

€ Tij « Tij
Viglrag) = <(1 = 22)"0(1 - 1) ®)
R (0% O0ij 0ij
where e is the characteristic energy scale, 7;; is the particles’ separation, and o;; is the center-to-center separation at which
the particles are in contact without any deformation. In the case of spherical particles with diameters o; and o; we’ll have:
o = WTJJ O in this equation is the Heaviside function, which ensures that the potential field is one-sided, meaning that
the particles only affect their adjacent neighbors when they are overlapping:

0 Tij >1
Tij 04
O(l——*) = i ©)
Oij 1 <1
O'Z‘j

This is the simplest model for a granular crystal that neglects special aspects such as particles’ rotation and alignment, which
might be more important in higher dimensional experimental setups but are negligible in smaller scales. The separation
between two spherical particles is computed based on their Cartesian coordinates as follows:

rij| = 170 =77 = /2% + v (10)

In Equation (8), o determines the nonlinearity of the contact force. In this paper, we consider Hertzian (o = g) contacts to
provide enough nonlinearity in the physical substrate for performing the desired computations. Interparticle forces can be
obtained by taking the derivative of the potential (V;;) with respect to the displacement:

- 9Vi(ry)
* aT’ij
(11)
- i(l _ ﬁ)a_lg( _Tigy_ Oy
Oij Oij oi; O(xi; or yij5)

We assume that the particles have similar mass (/m) but can have different stiffness values. In this case, € can be calculated
using the effective stiffness as follows:

ki:kj :ifki:kj

Eij: kiXk'j . (12)
—ifk; £ k;

ki—f—kj if ki 7 J

Using the above notation, we can write Newton’s equations of motion as:

N
mif; = Fi= Y Fj+Fu (13)

j=1,j#i

where the first term is the total force from the neighboring particles, and the second term is the system’s external forces,
which include the interaction force from the walls (in case of a fixed boundary condition) and the excitation applied to the
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system in the form of harmonic vibrations. Using Equation (11), we can obtain the partial forces in a one-dimensional
system as:

€ x 1 Tij
Fo(ry) = 291 - 24 o1 — 24
)= =297 e - 25
€ T — Ty @71 Ti—x
:7) — 1_ 7 w @1_ 3 w 14
Pl B (19

where F}., is the force between particle ¢ and the wall placed at z,,. In a two-dimensional system, the forces are given by:

e -0 27 o2
Tij Oij Tij Oij

FY(ri;) = %(1 — Z;Z_)al % o1 — %)

RS- T e oty

A.1.1. DISSIPATION

To capture the dissipation effects in real granular crystals, we remove the Hamiltonian assumption and incorporate a dash-pot
form of dissipation with a velocity-dependent functional form and characteristic constants for background, particle-particle,
and particle-wall interactions. This adds extra terms to the equations of motion of each particle ¢ (Equation (13)), and we’ll
have:

N
m;i; = Fy = Z i + Z Fiy — Fyp + Fegt (16)

j=1,5#1 walls

where m; is the mass of particle ¢ and the dissipation Fjy is:

Fy = Bv;
Tos
Bppvi;0(1 — =
"’zj: ppVi O ( Uij)
+ 3 Bve -,
o
walls
or;
V; = 8’; 5 Vij = Vi — U5 (17)

The damping coefficients (B: background damping, 5, particle-particle damping, and B,,, particle-wall damping) are
usually determined by curve fitting in an experimental setup.

A.1.2. STRENGTH OF NONLINEARITY

The discrete nature of the granular crystals makes it possible to tune the degree of nonlinearity in the system’s dynamics.
As was mentioned in the introduction, we study the particles in a confined space and under an initial static compression,
which keeps the particles in place. By controlling the amount of precompression, the system can transition from a linear to a
strongly nonlinear regime. To study this effect, we introduce the packing fraction as follows:

_ Apart
(b B Asys (18)
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where A, is the sum of the area of the particles, and A, is the area of the system (the confining box). In this paper, we
assume that the unforced system is mechanically stable and above the jamming state (¢;, mechanical rigidity). Because of
the initial precompression, the system will have a nonzero initial energy that depends on the amount of overlap between
adjacent particles. To find the initial particle positions (d ;) and interparticle overlaps, an energy minimization algorithm is
used, which will be explained in the next subsection.

A.1.3. NUMERICAL SIMULATION

We use the Discrete Element Method (DEM) (Cundall & Strack, 1979) to simulate the motion of the interacting particles in
a granular crystal. The simulation starts with the initial configuration and updates the positions and velocities by numerically
integrating the equations of motion (Equation (13)). Since our granular packings are made of particles with various material
properties and are initially compressed with a uniform force, we need to ensure that the initial configuration is statically
stable (the ground state © = 0 and w = 0 is the minimum of energy). Here, we adopt a packing generation protocol that
applies successive compression/decompression by changing the particle sizes (Gao et al., 2009; Franklin & Shattuck, 2016).
An energy minimization technique, Fast Inertial Relaxation Engine (FIRE) (Echeverri Restrepo et al., 2013), is used to
relax the interparticle forces and reach equilibrium following the repetitive deformations. With this method, we can find
the particles’ initial positions for a mechanically stable configuration with a given boundary condition (Asenjo-Andrews,
2013). To integrate the equations of motion, we use the Velocity Verlet integration algorithm, which is derived by the Taylor
expansion of the particle positions at a small period At around time ¢ (Verlet, 1967).

B. Spectral Loss Function

Over the last decade, research in unconventional computing paradigms has progressed to a great extent. Many natural and
artificial substrates have been proposed to be capable of some degree of computation. Therefore, assessing the computational
capacity of various substrates and their intrinsic properties for expressive computation is of great importance.
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Figure 13. Gradient-based design of an acoustic XOR gate in a granular crystal with the spectral loss function Equation (19). The particles’
stiffness values are initialized randomly in the permitted range [1.0, 10.0]. (a): plot showing the training loss versus epochs for 10
independent runs, with the average and standard deviation shown in solid and dashed blue lines, respectively. (b): four best configurations
from four different trials. (b): evaluation of the designed logic gate in time domain. The displacement of the input particles (green and
blue) and output particle (red) is shown in each of the three cases (‘01°, ‘10, ‘11°) for one of the best solutions.

One of the key advantages of granular materials is their ability to exhibit different dynamical responses depending on the
frequency of the propagating waves. This property has been exploited for polycomputing in granular materials in recent
studies (Bongard & Levin, 2023; Parsa et al., 2023). So, defining the loss function in the frequency domain can enable
us to exploit the computational power of granular crystals to the full extent. To address this, we revised the loss function
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introduced in Section 3 by incorporating the Fast Fourier Transform (FFT) of the displacement signals. Since the encoding
of the logic gates is based on the harmonic vibrations at predefined frequencies (w), we calculate the systems’ gain (G™) in
each of the three input cases as follows:

Ol
BTN

where |f(Y™)|,, indicates the magnitude of the FFT of the output particle’s displacement in z direction (as defined in
Figure 6) at the driving frequency w = 27 f, and | f(X™)|,, = | f(X)|o + | f(X$)|., is the same quantity calculated for
the first and second input ports. We used Equation (19) to evaluate each granular assembly and calculate the loss in the
frequency domain. In order to obtain a better estimation of the gain, we removed the transient part of the displacement signal
and only used the last 10 time steps for computing the FFT. Figure 13 shows the results of the optimization with this setup.

G (w) = . ne{01,10,11} (19)

Comparing the functionality of the designed logic gate through the time-domain plots provided in Figure 13 with the
plots in Figure 9 and Figure 10, shows that through the spectral loss defined in Equation (19), we found materials with
more distinguishable ‘0‘/‘1‘ responses. Although this result is promising, further investigation is needed to make a valid
conclusion.

C. Gradient-free Optimization Results

In this section, we provide the results of the gradient-free optimization method discussed in Section 3.4. We considered
two cases with the loss function defined in the time domain (Equation (4)) and in the frequency domain (Equation (19)).
Figure 14 and Figure 15 show the results of each experiment. these results are discussed in the main text (Section 5).

(a) AND Gate - Gradient-free Optimization (b) XOR Gate - Gradient-free Optimization
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Figure 14. Gradient-free optimization of acoustic logic gates with the objective function defined in the time domain (Equation (4)). The
experimental setup and material properties are the same as the gradient-based optimization in Section 4.2. (a): acoustic AND gate. The
output resembles the AND functionality in the 01 and 10 cases but not in the 11 case. (b): acoustic XOR gate. The output in the 11 case
matches the output of an XOR function but the amplitude of vibration is negligible in the other two cases.
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(a) AND Gate - Gradient-free Optimization (b) XOR Gate - Gradient-free Optimization
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Figure 15. Gradient-free optimization of acoustic logic gates with the objective function defined in the frequency domain (Equation (19)).
The experimental setup and material properties are the same as the gradient-based optimization in Section 4.2. (a): acoustic AND gate.
(b): acoustic XOR gate.
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