
A Competitive Algorithm for Agnostic Active

Learning

Eric Price
Department of Computer Science

University of Texas at Austin
ecprice@cs.utexas.edu

Yihan Zhou
Department of Computer Science

University of Texas at Austin
joeyzhou@cs.utexas.edu

Abstract

For some hypothesis classes and input distributions, active agnostic learning needs
exponentially fewer samples than passive learning; for other classes and distribu-
tions, it offers little to no improvement. The most popular algorithms for agnostic
active learning express their performance in terms of a parameter called the dis-
agreement coefficient, but it is known that these algorithms are inefficient on some
inputs.

We take a different approach to agnostic active learning, getting an algorithm that
is competitive with the optimal algorithm for any binary hypothesis class H and
distribution DX over X . In particular, if any algorithm can use m∗ queries to
get O(η) error, then our algorithm uses O(m∗ log |H|) queries to get O(η) error.
Our algorithm lies in the vein of the splitting-based approach of Dasgupta [2004],
which gets a similar result for the realizable (η = 0) setting.

We also show that it is NP-hard to do better than our algorithm’s O(log |H|) over-
head in general.

1 Introduction

Active learning is motivated by settings where unlabeled data is cheap but labeling it is expen-
sive. By carefully choosing which points to label, one can often achieve significant reductions in
label complexity [Cohn et al., 1994]. A canonical example with exponential improvement is one-
dimensional threshold functions hτ (x) := 1x≥τ : in the noiseless setting, an active learner can use

binary search to find an ε-approximation solution inO
(
log 1

ε

)
queries, while a passive learner needs

Θ
(
1
ε

)
samples [Cohn et al., 1994, Dasgupta, 2005, Nowak, 2011].

In this paper we are concerned with agnostic binary classification. We are given a hypothesis class
H of binary hypotheses h : X → {0, 1} such that some h∗ ∈ H has err(h∗) ≤ η, where the error

err(h) := Pr
(x,y)∼D

[h(x) ̸= y]

is measured with respect to an unknown distribution D over X ×{0, 1}. In our active setting, we
also know the marginal distributionDX of x, and can query any point x of our choosing to receive a

sample y ∼ (Y | X = x) for (X,Y) ∼ D. The goal is to output some ĥ with err(ĥ) ≤ η+ ε, using
as few queries as possible.

The first interesting results for agnostic active learning were shown by Balcan et al. [2006], who
gave an algorithm called Agnostic Active (A2) that gets logarithmic dependence on ε in some natural

settings: it needs Õ
(
log 1

ε

)
samples for the 1d linear threshold setting (binary search), as long as

as ε > 16η, and Õ
(
d2 log 1

ε

)
samples for d-dimensional linear thresholds when DX is the uniform

37th Conference on Neural Information Processing Systems (NeurIPS 2023).

ar
X

iv
:2

3
1
0
.1

8
7
8
6
v
3

[c

s.
L

G
]

 2
2
 M

ay
 2

0
2
4

sphere and ε >
√
dη. This stands in contrast to the polynomial dependence on ε necessary in

the passive setting. The bound’s requirement that ε ≳ η is quite natural given a lower bound

of Ω
(
dη2

ε2

)
due to [Kääriäinen, 2006, Beygelzimer et al., 2009], where d is the VC dimension.

Subsequent works have given new algorithms [Dasgupta et al., 2007, Beygelzimer et al., 2010] and
new analyses [Hanneke, 2007a] to get bounds for more general problems, parameterized by the
“disagreement coefficient” of the problem. But while these can give better bounds in specific cases,
they do not give a good competitive ratio to the optimum algorithm: see (Hanneke [2014], Section
8.2.5) for a realizable example where O

(
log 1

ε

)
queries are possible, but disagreement-coefficient

based bounds lead to Ω
(
1
ε

)
queries.

By contrast, in the realizable, identifiable setting (η = ε = 0), a simple greedy algorithm is com-
petitive with the optimal algorithm. In particular, Dasgupta [2004] shows that if any algorithm can
identify the true hypothesis in m queries, then the greedy algorithm that repeatedly queries the point
that splits the most hypotheses will identify the true hypothesis in O(m log |H|) queries. This ex-
tra factor of log |H| is computationally necessary: as we will show in Theorem 1.2, avoiding it is
NP-hard in general. This approach can extend [Dasgupta, 2005] to the PAC setting (so ε > 0, but
still η = 0), showing that if any algorithm gets error ε in m∗ queries, then this algorithm gets error

8ε in roughly Õ(m∗ · log |H|) queries (but see the discussion after Theorem 8.2 of Hanneke [2014],
which points out that one of the logarithmic factors is in an uncontrolled parameter τ , and states that
“Resolving the issue of this extra factor of log 1

τ remains an important open problem in the theory of
active learning.”).

The natural question is: can we find an agnostic active learning algorithm that is competitive with
the optimal one in the agnostic setting?

Our Results. Our main result is just such a competitive bound. We say an active agnostic learning
algorithm A solves an instance (H,DX , η, ε, δ) with m measurements if, for every distribution D
with marginal DX and for which some h∗ ∈ H has err(h∗) ≤ η, with probability 1 − δ, A uses at

most m queries and outputs ĥ ∈ H with err
(
ĥ
)
≤ η + ε. Let m∗(H,DX , η, ε, δ) be the optimal

number of queries for this problem, i.e., the smallest m for which any A can solve (H,DX , η, ε, δ).

Define N(H,DX , α) to be the size of the smallest α-cover over H , i.e., the smallest set S ⊆ H
such that for every h ∈ H there exists h′ ∈ S with Prx∼DX

[h(x) ̸= h′(x)] ≤ α. When the context
is clear, we drop the parameters and simply use N . Of course, N is at most |H|.
Theorem 1.1 (Competitive Bound). There exist some constants c1, c2 and c3 such that for any
instance (H,DX , η, ε, δ) with ε ≥ c1η, Algorithm 1 solves the instance with sample complexity

m(H,DX , η, ε, δ) ≲

(
m∗

(
H,DX , c2η, c3ε,

99

100

)
+ log

1

δ

)
· log N(H,DX , η)

δ

and polynomial time.

Even the case of η = 0 is interesting, given the discussion in [Hanneke, 2014] of the gap
in [Dasgupta, 2005]’s bound, but the main contribution is the ability to handle the agnostic setting
of η > 0. The requirement that ε ≥ O(η) is in line with prior work [Balcan et al., 2006, Dasgupta,
2005]. Up to constants in η and ε, Theorem 1.1 shows that our algorithm is within a logN ≤ log |H|
factor of the optimal query complexity.

We show that it NP-hard to avoid this logN factor, even in the realizable (η = ε = δ = 0) case:

Theorem 1.2 (Lower Bound). It is NP-hard to find a query strategy for every agnostic active learn-
ing instance within an c log |H| for some constant c > 0 factor of the optimal sample complexity.

This is a relatively simple reduction from the hardness of approximating SET-
COVER [Dinur and Steurer, 2014]. The lower bound instance has η = ε = δ = 0, although
these can be relaxed to being small polynomials (e.g., ε = η = 1

3|X| and δ = 1
3|H|).

Extension. We give an improved bound for our algorithm in the case of noisy binary search (i.e.,
H consists of 1d threshold functions). When η = Θ(ε), N(H,DX , ε) = Θ(1ε) and m∗(η, ε, .99) =

O(log 1
ε). Thus Theorem 1.1 immediately gives a bound of O(log2 1

εδ), which is nontrivial but not

2

ideal. (For η ≪ ε, the same bound holds since the problem is strictly easier when η is smaller.)
However, the bound in Theorem 1.1 is quite loose in this setting, and we can instead give a bound of

O

(
log

1

εδ
log

log 1
ε

δ

)

for the same algorithm, Algorithm 1. This matches the bound given by disagreement coefficient
based algorithms for constant δ. The proof of this improved dependence comes from bounding a
new parameter measuring the complexity of an H,Dx pair; this parameter is always at least Ω(1

m∗)
but may be much larger (and is constant for 1d threshold functions). See Theorem 2.3 for details.

1.1 Related Work

Active learning is a widely studied topic, taking many forms beyond the directly related work on
agnostic active learning discussed above [Settles, 2009]. Our algorithm can be viewed as similar
to “uncertainty sampling” [Lewis, 1995, Lewis and Catlett, 1994], a popular empirical approach to
active learning, though we need some modifications to tolerate adversarial noise.

One problem related to the one studied in this paper is noisy binary search, which corresponds
to active learning of 1d thresholds. This has been extensively studied in the setting of i.i.d.
noise [Burnashev and Zigangirov, 1974, Ben-Or and Hassidim, 2008, Dereniowski et al., 2021] as
well as monotonic queries [Karp and Kleinberg, 2007]. Some work in this vein has extended beyond
binary search to (essentially) active binary classification [Nowak, 2008, 2011]. These algorithms are
all fairly similar to ours, in that they do multiplicative weights/Bayesian updates, but they query the
single maximally informative point. This is fine in the i.i.d. noise setting, but in an agnostic set-
ting the adversary can corrupt that query. For this reason, our algorithm needs to find a set of
high-information points to query.

Another related problems is decision tree learning. The realizable, noiseless case η = ε = 0 of
our problem can be reduced to learning a binary decision tree with minimal depth. Hegedűs [1995]
studied this problem and gave basically the same upper and lower bound as in Dasgupta [2005].
Kosaraju et al. [2002] studied a split tree problem, which is a generalization of binary decision tree
learning, and also gave similar bounds. Azad et al. [2022] is a monograph focusing on decision tree
learning, in which many variations are studied, including learning with noise. However, this line
of work usually allows different forms of queries so their results are not directly comparable from
results in the active learning literature.

For much more work on the agnostic active binary classification problem, see Hanneke [2014] and
references therein. Many of these papers give bounds in terms of the disagreement coefficient, but
sometimes in terms of other parameters. For example, Katz-Samuels et al. [2021] has a query bound
that is always competitive with the disagreement coefficient-based methods, and sometimes much
better; still, it is not competitive with the optimum in all cases.

In terms of the lower bound, it is shown in Laurent and Rivest [1976] that the problem is NP-
complete, in the realizable and noiseless setting. To the best of our knowledge, our Theorem 1.2
showing hardness of approximation to within a O(log |H|) factor is new.

Minimax sample complexity bounds. Hanneke and Yang [2015] and Hanneke [2007b] have also
given “minimax” sample complexity bounds for their algorithms, also getting a sample complexity
within O(log |H|) of optimal. However, these results are optimal with respect to the sample com-
plexity for the worst-case distribution over y and x. But the unlabeled data x is given as input. So
one should hope for a bound with respect to optimal for the actual x and only worst-case over y;
this is our bound.

We give the following example to illustrate that our bound, and indeed our algorithm, can be much
better.

Example 1.3. Define a hypothesis class of N hypotheses h1, · · · , hN , and logN +N data points
x1, · · · , xlogN+N . For each hypothesis hj , the labels of the first N points express j in unary and
the labels of the last logN points express j in binary. We set η = ε = 0 and consider the realizable
case.

In the above example, the binary region is far more informative than the unary region, but disagree-
ment coefficient-based algorithms just note that every point has disagreement. Our algorithm will

3

query the binary encoding region and take O(logN) queries. Disagreement coefficient based algo-
rithms, including those in Hanneke and Yang [2015] and Hanneke [2007b], will rely on essentially
uniform sampling for the first Ω(N/ logN) queries. These algorithms are “minimax” over x, in the
sense that if you didn’t see any x from the binary region, you would need almost as many samples
as they use. But you do see x from the binary region, so the algorithm should make use of it to get
exponential improvement.

Future Work. Our upper bound assumes full knowledge of DX and the ability to query arbitrary
points x. Often in active learning, the algorithm receives a large but not infinite set of unlabeled
sample points x, and can only query the labels of those points. How well our results adapt to this
setting we leave as an open question.

Similarly, our bound is polynomial in the number of hypotheses and the domain size. This is hard
to avoid in full generality—if you don’t evaluate most hypotheses on most data points, you might be
missing the most informative points—but perhaps it can be avoided in structured examples.

2 Algorithm Overview

Our algorithm is based on a Bayesian/multiplicative weights type approach to the problem, and is
along the lines of the splitting-based approach of Dasgupta [2004].

We maintain a set of weights w(h) for each h ∈ H , starting at 1; these induce a distribution λ(h) :=
w(h)∑
h w(h) which we can think of as our posterior over the “true” h∗.

Realizable setting. As initial intuition, consider the realizable case of η = ε = 0 where we want
to find the true h∗. If h∗ really were drawn from our prior λ, and we query a point x, we will see
a 1 with probability Eh∼λ h(x). Then the most informative point to query is the one we are least
confident in, i.e., the point x∗ maximizing

r(x) := min

{
E

h∼λ
[h(x)], 1− E

h∼λ
[h(x)]

}
.

Suppose an algorithm queries x1, . . . , xm and receives the majority label under h ∼ λ each time.
Then the fraction of h ∼ λ that agree with all the queries is at least 1−∑m

i=1 r(xi) ≥ 1−mr(x∗).
This suggests that, if r(x∗)≪ 1

m , it will be hard to uniquely identify h∗. It is not hard to formalize
this, showing that: if no single hypothesis has 75% probability under λ, and any algorithm exists
with sample complexity m and 90% success probability at finding h∗, we must have r(x∗) ≥ 1

10m .

This immediately gives an algorithm for the η = ε = 0 setting: query the point x maximizing r(x),
set w(h) = 0 for all hypotheses h that disagree, and repeat. As long as at least two hypotheses
remain, the maximum probability will be 50% < 90% and each iteration will remove an Ω(1

m)
fraction of the remaining hypotheses; thus after O(m logH) rounds, only h∗ will remain. This is
the basis for Dasgupta [2004].

Handling noise: initial attempt. There are two obvious problems with the above algorithm in
the agnostic setting, where a (possibly adversarial) η fraction of locations x will not match h∗.
First, a single error will cause the algorithm to forever reject the true hypothesis; and second, the
algorithm makes deterministic queries, which means adversarial noise could be placed precisely on
the locations queried to make the algorithm learn nothing.

To fix the first problem, we can adjust the algorithm to perform multiplicative weights: if in round i
we query a point xi and see yi, we set

wi+1(h) =

{
wi(h) if h(xi) = yi
e−αwi(h) if h(xi) ̸= yi

for a small constant α = 1
5 . To fix the second problem, we don’t query the single x∗ of maximum

r(x∗), but instead choose x according to distribution q over many points x with large r(x).

To understand this algorithm, consider how log λi(h
∗) evolves in expectation in each step. This

increases if the query is correct, and decreases if it has an error. A correct query increases λi in

4

λ(h) Values h(x)
h1 0.9 1111 1111

h2 0.1− 10−6 1111 0000

h3 10−6 0000 1110

y 0000 1111

Figure 1: An example demonstrating that the weight of the true hypothesis can decrease if λ is concentrated on the wrong ball. In this example,

the true labels y are closest to h3. But if the prior λ on hypotheses puts far more weight on h1 and h2, the algorithm will query uniformly

over where h1 and h2 disagree: the second half of points. Over this query distribution, h1 is more correct than h3, so the weight of h3 can

actually decrease if λ(h1) is very large.

proportion to the fraction of λ placed on hypotheses that get the query wrong, which is at least r(x);

and the probability of an error is at most ηmaxx
q(x)
Dx(x)

. If at iteration i the algorithm uses query

distribution q, some calculation gives that

E
q
[log λi+1(h

∗)− log λi(h
∗)] ≥ 0.9α

(
E

x∼q
[r(x)]− 2.3ηmax

x

q(x)

Dx(x)

)
. (1)

The algorithm can choose q to maximize this bound on the potential gain. There’s a tradeoff between
concentrating the samples over the x of largest r(x), and spreading out the samples so the adversary
can’t raise the error probability too high. We show that if learning is possible by any algorithm (for
a constant factor larger η), then there exists a q for which this potential gain is significant.

Lemma 2.1 (Connection to OPT). Define ∥h− h′∥ = Prx∼Dx
[h(x) ̸= h′(x)]. Let λ be a distribu-

tion over H such that no radius-(2η + ε) ball B centered on h ∈ H has probability at least 80%.

Let m∗ = m∗
(
H,DX , η, ε,

99
100

)
. Then there exists a query distribution q over X with

E
x∼q

[r(x)]− 1

10
ηmax

x

q(x)

DX(x)
≥ 9

100m∗
.

At a very high level, the proof is: imagine h∗ ∼ λ. If the algorithm only sees the majority label y

on every query it performs, then its output ĥ is independent of h∗ and cannot be valid for more than
80% of inputs by the ball assumption; hence a 99% successful algorithm must have a 19% chance
of seeing a minority label. But for m∗ queries x drawn with marginal distribution q, without noise
the expected number of minority labels seen is m∗

E[r(x)], so E[r(x)] ≳ 1/m∗. With noise, the
adversary can corrupt the minority labels in h∗ back toward the majority, leading to the given bound.

The query distribution optimizing (1) has a simple structure: take a threshold τ for r(x), sample
fromDx conditioned on r(x) > τ , and possibly sample x with r(x) = τ at a lower rate. This means
the algorithm can efficiently find the optimal q.

Except for the caveat about λ not already concentrating in a small ball, applying Lemma 2.1 com-
bined with (1) shows that log λ(h∗) grows by Ω(1

m∗) in expectation for each query. It starts out at
log λ(h∗) = − logH , so after O(m∗ logH) queries we would have λ(h∗) being a large constant in
expectation (and with high probability, by Freedman’s inequality for concentration of martingales).
Of course λ(h∗) can’t grow past 1, which features in this argument in that once λ(h∗) > 80%, a
small ball will have large probability and Lemma 2.1 no longer applies, but at that point we can just
output any hypothesis in the heavy ball.

Handling noise: the challenge. There is one omission in the above argument that is surprisingly
challenging to fix, and ends up requiring significant changes to the algorithm: if at an intermediate
step λi concentrates in the wrong small ball, the algorithm will not necessarily make progress. It is
entirely possible that λi concentrates in a small ball, even in the first iteration—perhaps 99% of the
hypotheses in H are close to each other. And if that happens, then we will have r(x) ≤ 0.01 for
most x, which could make the RHS of (1) negative for all q.

In fact, it seems like a reasonable Bayesian-inspired algorithm really must allow λ(h∗) to decrease
in some situations. Consider the setting of Figure 1. We have three hypotheses, h1, h2, and h3, and a
prior λ = (0.9, 0.099999, 10−6). Because λ(h3) is so tiny, the algorithm presumably should ignore
h3 and query essentially uniformly from the locations where h1 and h2 disagree. In this example,
h3 agrees with h1 on all but an η mass in those locations, so even if h∗ = h3, the query distribution
can match h1 perfectly and not h3. Then w(h1) stays constant while w(h3) shrinks. w(h2) shrinks

5

much faster, of course, but since the denominator is dominated by w(h1) , λ(h3) will still shrink.
However, despite λ(h3) shrinking, the algorithm is still making progress in this example: λ(h2) is
shrinking fast, and once it becomes small relative to λ(h3) then the algorithm will start querying
points to distinguish h3 from h1, at which point λ(h3) will start an inexorable rise.

Our solution is to “cap” the large density balls in λ, dividing their probability by two, when applying
Lemma 2.1. Our algorithm maintains a set S ⊆ H of the “high-density region,” such that the capped
distribution:

λ(h) :=

{
1
2λ(h) h ∈ S
λ(h) · 1−

1
2 Pr[h∈S]

1−Pr[h∈S] h /∈ S
has no large ball. Then Lemma 2.1 applies to λ, giving the existence of a query distribution q so that
the corresponding r(x) is large. We then define the potential function

φi(h
∗) := log λi(h

∗) + log
λi(h

∗)∑
h/∈Si

λi(h)
(2)

for h∗ /∈ Si, and φi = 0 for h∗ ∈ Si. We show that φi grows by Ω(1
m∗) in expectation in

each iteration. Thus, as in the example of Figure 1, either λ(h∗) grows as a fraction of the whole
distribution, or as a fraction of the “low-density” region.

If at any iteration we find that λ has some heavy ball B(µ, 2η + ε) so Lemma 2.1 would not apply,
we addB (µ′, 6η + 3ε) to S, whereB (µ′, 2η + ε) is the heaviest ball before capping. We show that

this ensures that no small heavy ball exists in the capped distribution λ. Expanding S only increases
the potential function, and then the lack of heavy ball implies the potential will continue to grow.

Thus the potential (2) starts at−2 log |H|, and grows by Ω(1
m∗) in each iteration. AfterO(m∗ logH)

iterations, we will have φi ≥ 0 in expectation (and with high probability by Freedman’s inequality).
This is only possible if h∗ ∈ S, which means that one of the centers µ of the balls added to S is a
valid answer.

In fact, with some careful analysis we can show that with 1 − δ probability that one of the first
O(log H

δ) balls added to S is a valid answer. The algorithm can then check all the centers of these
balls, using the following active agnostic learning algorithm:

Theorem 2.2. Active agnostic learning can be solved for ε = 3η with O
(
|H| log |H|

δ

)
samples.

Proof. The algorithm is the following. Take any pair h, h′ with ∥h−h′∥ ≥ 3η. SampleO
(
log |H|

δ

)

observations randomly from (x ∼ Dx | h(x) ̸= h′(x)). One of h, h′ is wrong on at least half the
queries; remove it from H and repeat. At the end, return any remaining h.

To analyze this, let h∗ ∈ H be the hypothesis with error η. If h∗ is chosen in a round, the other h′

must have error at least 2η. Therefore the chance we remove h∗ is at most δ/ |H|. In each round
we remove a hypothesis, so there are at most |H| rounds and at most δ probability of ever crossing
off h∗. If we never cross off h∗, at the end we output some h with ∥h − h∗∥ ≤ 3η, which gives
ε = 3η.

The linear dependence on |H| makes the Theorem 2.2 algorithm quite bad in most circumstances,
but the dependence only on |H| makes it perfect for our second stage (where we have reduced to
O(log |H|) candidate hypotheses).

Overall, this argument gives an O
(
m∗ log |H|

δ + log |H|
δ log log|H|

δ

)
sample algorithm for agnostic

active learning. One can simplify this bound by observing that the set of centers C added by our
algorithm form a packing, and must therefore all be distinguishable by the optimal algorithm, so
m∗ ≥ logC. This gives a bound of

O

(
(m∗ + log

1

δ
) log

|H|
δ

)
.

By starting with an η-net of size N , we can reduce |H| to N with a constant factor increase in η.

With some properly chosen constants c4 and c5, the entire algorithm is formally described in Algo-
rithm 1.

6

Remark 1: As stated, the algorithm requires knowing m∗ to set the target sample complexity /
number of rounds k. This restriction could be removed with the following idea. m∗ only enters
the analysis through the fact that O

(
1

m∗

)
is a lower bound on the expected increase of the potential

function in each iteration. However, the algorithm knows a bound on its expected increase in each
round i; it is the value

τi = max
q

E
x∼q

[ri,Si
(x)]− c4

20
ηmax

x

q(x)

DX(x)
.

optimized in the algorithm. Therefore, we could use an adaptive termination criterion that stops at

iteration k if
∑k

i=1 τi ≥ O(log |H|
δ). This will guarantee that when terminating, the potential will

be above 0 with high probability so our analysis holds.

Remark 2: The algorithm’s running time is polynomial in |H|. This is in general not avoidable,
since the input is a truth table for H . The bottleneck of the computation is the step where the
algorithm checks if the heaviest ball has mass greater than 80%. This step could be accelerated by
randomly sampling hypothesis and points to estimate and find heavy balls; this would improve the
dependence to nearly linear in |H|. If the hypothesis class has some structure, like the binary search
example, the algorithm can be implemented more efficiently.

Algorithm 1 Competitive Algorithm for Active Agnostic Learning

Compute a 2η maximal packing H ′

Let w0 = 1 for every h ∈ H ′.
S0 ← ∅
C ← ∅
for i = 1, . . . , k = O

(
m∗ log |H′|

δ

)
do

Compute λi(h) =
wi−1(h)∑

h∈H wi−1(h)
for every h ∈ H

if there exists c4η + c5ε ball with probability > 80% over λi,Si−1
then

Si ← Si ∪B (µ′, 3c4η + 3c5ε) where B (µ′, c4η + c5ε) is the heaviest radius c4η + c5ε
ball over λi
C ← C ∪ {µ′}

else
Si ← Si−1

Compute λi,Si
=

{
1
2λi(h) h ∈ Si

λi(h) · 1−
1
2 Prh∼λi

[h∈Si]

1−Prh∼λi
[h∈Si]

h /∈ Si

Compute ri,Si
(x) = min

{
Eh∼λi,Si

[h(x)], 1− Eh∼λi,Si
[h(x)]

}
for every x ∈ X

Find a query distribution by solving

q∗ = max
q

E
x∼q

[ri,Si
(x)]− c4

20
ηmax

x

q(x)

DX(x)
(3)

Query x ∼ q∗, getting label y

Set wi(h) =

{
wi−1(h) if h(x) = y

e−αwi−1(h) if h(x) ̸= y
for every h ∈ H ′

Find the best hypothesis ĥ in C using the stage two algorithm in Theorem 2.2

return ĥ

Generalization for Better Bounds. To get a better dependence for 1d threshold functions, we
separate out the Lemma 2.1 bound on (1) from the analysis of the algorithm given a bound on (1).
Then for particular instances like 1d threshold functions, we get a better bound on the algorithm by
giving a larger bound on (1).

Theorem 2.3. Suppose that Dx and H are such that, for any distribution λ over H such that no
radius-(c4η + c5ε) ball has probability more than 80%, there exists a distribution q over X such
that

E
x∼q

[r(x)]− c4
20
ηmax

x

q(x)

Dx(x)
≥ β

7

for some β > 0. Then for ε ≥ c1η, c4 ≥ 300, c5 = 1
10 and c1 ≥ 90c4, let N = N(H,Dx, η)

be the size of an η-cover of H . Algorithm 1 solves (η, ε, δ) active agnostic learning with

O
(

1
β log N

δ + log N
δ log logN

δ

)
samples.

Corollary 2.4. There exists a constant c1 > 1 such that, for 1d threshold functions and ε > c1η,

Algorithm 1 solves (η, ε, δ) active agnostic learning with O
(
log 1

εδ log
log 1

ε

δ

)
samples.

Proof. Because the problem is only harder if η is larger, we can raise η to be η = ε/C, where
C > 1 is a sufficiently large constant that Theorem 2.3 applies. Then 1d threshold functions have
an η-cover of size N = O(1/ε). To get the result by Theorem 2.3, it suffices to show β = Θ(1).

Each hypothesis is of the form h(x) = 1x≥τ , and corresponds to a threshold τ . So we can consider
λ to be a distribution over τ .

Let λ be any distribution for which no radius-R with probability greater than 80% ball exists, for
R = c4η + c5ε. For any percent p between 0 and 100, let τp denote the pth percentile of τ under λ
(i.e., the smallest t such that Pr[τ ≤ t] ≥ p/100). By the ball assumption, τ10 and τ90 do not lie in
the same radius-R ball. Hence ∥hτ10 − hτ90∥ > R, or

Pr
x
[τ10 ≤ x < τ90] > R.

We let q denote (Dx | τ10 ≤ x < τ90). Then for all x ∈ supp(q) we have r(x) ≥ 0.1 and

q(x)

Dx(x)
=

1

Prx∼Dx
[x ∈ supp(q)]

<
1

R
.

Therefore we can set

β = E
x∼q

[r(x)]− c4
20
ηmax

x

q(x)

Dx(x)
≥ 0.1− c4η

20(c4η + c5ε)
≳ 1,

as needed.

3 Proof of Lemma 2.1

Lemma 2.1 (Connection to OPT). Define ∥h− h′∥ = Prx∼Dx
[h(x) ̸= h′(x)]. Let λ be a distribu-

tion over H such that no radius-(2η + ε) ball B centered on h ∈ H has probability at least 80%.

Let m∗ = m∗
(
H,DX , η, ε,

99
100

)
. Then there exists a query distribution q over X with

E
x∼q

[r(x)]− 1

10
ηmax

x

q(x)

DX(x)
≥ 9

100m∗
.

Proof. WLOG, we assume that Prh∼λ [h(x) = 0] ≥ Prh∼λ [h(x) = 1] for every x ∈ X . This
means r(x) = Eh∼λ[h(x)]. This can be achieved by flipping all h(x) and observations y for all x
not satisfying this property; such an operation doesn’t affect the lemma statement.

We will consider an adversary defined by a function g : X → [0, 1]. The adversary takes a hy-
pothesis h ∈ H and outputs a distribution over y ∈ {0, 1}X such that 0 ≤ y(x) ≤ h(x) always,
and err(h) = Ex,y[h(x) − y(x)] ≤ η always. For a hypothesis h, the adversary sets y(x) = 0
for all x with h(x) = 0, and y(x) = 0 independently with probability g(x) if h(x) = 1—unless
Ex[h(x)g(x)] > η, in which case the adversary instead simply outputs y = h to ensure the expected
error is at most η always.

We consider the agnostic learning instance where x ∼ Dx, h ∼ λ, and y is given by this adversary.
LetA be an (η, ε) algorithm which uses m measurements and succeeds with 99% probability. Then
it must also succeed with 99% probability over this distribution. For the algorithm to succeed on a

sample h, its output ĥ must have ∥h− ĥ∥ ≤ 2η+ ε. By the bounded ball assumption, for any choice
of adversary, no fixed output succeeds with more than 80% probability over h ∼ λ.

Now, let A0 be the behavior of A if it observes y = 0 for all its queries, rather than the truth; A0

is independent of the input. A0 has some distribution over m queries, outputs some distribution of

8

answers ĥ. Let q(x) = 1
m Pr[A0 queries x], so q is a distribution over X . Since A0 outputs a fixed

distribution, by the bounded ball assumption, for h ∼ λ and arbitrary adversary function g,

Pr
h∼λ

[A0 succeeds] ≤ 80%.

But A behaves identically to A0 until it sees its first nonzero y. Thus,

99% ≤ Pr[A succeeds] ≤ Pr[A0 succeeds] + Pr[A sees a non-zero y]

and so
Pr[A sees a non-zero y] ≥ 19%.

Since A behaves like A0 until the first nonzero, we have

19% ≤ Pr[A sees a non-zero y]

= Pr[A0 makes a query x with y(x) = 1]

≤ E[Number queries x by A0 with y(x) = 1]

= m E
h∼λ

E
y

E
x∼q

[y(x)].

As an initial note, observe that Eh,y[y(x)] ≤ Eh[h(x)] = r(x) so

E
x∼q

[r(x)] ≥ 0.19

m
.

Thus the lemma statement holds for η = 0.

Handling η > 0. Consider the behavior when the adversary’s function g : X → [0, 1] satisfies
Ex∼Dx

[g(x)r(x)] ≤ η/10. We denote the class of all adversary satisfying this condition as G. We
have that

E
h∼λ

[
E

x∼Dx

[g(x)h(x)]

]
= E

x∼Dx

[g(x)r(x)] ≤ η/10.

Let Eh denote the event that Ex∼Dx
[g(x)h(x)] ≤ η, so Pr[Eh] ≤ 10%. Furthermore, the adversary

is designed such that under Eh, Ey[y(x)] = h(x)(1− g(x)) for every x. Therefore:

0.19 ≤ Pr[A0 makes a query x with y(x) = 1]

≤ Pr[Eh] + Pr[A0 makes a query x with y(x) = 1 ∩ Eh]

≤ 0.1 + E[Number queries x by A0 with y(x) = 1 and Eh]

= 0.1 +mE
h

[
1Eh

E
x∼q

[E
y
y(x)]

]

= 0.1 +mE
h

[
1Eh

E
x∼q

[h(x)(1− g(x))]
]

≤ 0.1 +m E
x∼q

[E
h
[h(x)](1− g(x))]

= 0.1 +m E
x∼q

[r(x)(1− g(x))].

Thus

max
q

min
g∈G

E
x∼q

[r(x)(1− g(x))] ≥ 9

100m
(4)

over all distributions q and functions g : X → [0, 1] satisfying Ex∼Dx
[g(x)r(x)] ≤ η/10. We now

try to understand the structure of the q, g optimizing the LHS of (4).

Let g∗ denote an optimizer of the objective. First, we show that the constraint is tight, i.e.,
Ex∼Dx

[g∗(x)r(x)] = η/10. Since increasing g improves the constraint, the only way this could
not happen is if the maximum possible function, g(x) = 1 for all x, lies in G. But for this function,
the LHS of (4) would be 0, which is a contradiction; hence we know increasing g to improve the
objective at some point hits the constraint, and hence Ex∼Dx

[g∗(x)r(x)] = η/10.

For any q, define τq ≥ 0 to be the minimum threshold such that

E
x∼Dx

[
r(x) · 1 q(x)

DX (x)
>τq

]
< η/10.

9

and define gq by

gq(x) :=





1 q(x)
DX(x) > τq

α q(x)
DX(x) = τq

0 q(x)
DX(x) < τq

where α ∈ [0, 1] is chosen such that Ex∼Dx
[r(x)gq(x)] = η/10; such an α always exists by the

choice of τq .

For any q, we claim that the optimal g∗ in the LHS of (4) is gq . It needs to maximize

E
x∼DX

[
q(x)

DX(x)
r(x)g(x)

]

subject to a constraint on Ex∼DX
[r(x)g(x)]; therefore moving mass to points of larger

q(x)
DX(x) is

always an improvement, and gq is optimal.

We now claim that the q maximizing (4) has max q(x)
DX(x) = τq . If not, some x′ has

q(x′)
DX(x′) > τq .

Then gq(x
′) = 1, so the x′ entry contributes nothing to Ex∼q[r(x)(1−gq(x))]; thus decreasing q(x)

halfway towards τq (which wouldn’t change gq), and adding the savings uniformly across all q(x)
(which also doesn’t change gq) would increase the objective.

So there exists a q satisfying (4) for which Pr
[

q(x)
DX(x) > τq

]
= 0, and therefore the set T =

{
x | q(x)

DX(x) = τq

}
satisfies EDX

[r(x)1x∈T] ≥ η/10 and a gq minimizing (4) is

gq(x) =
η

10

1x∈T

EDX
[r(x)1x∈T]

.

Therefore

E
x∼q

[r(x)gq(x)] = E
x∼DX

[
q(x)

DX(x)
r(x)

η

10

1x∈T

EDX
[r(x)1x∈T]

]

=
η

10
max

x

q(x)

DX(x)

and so by (4),

E
x∼q

[r(x)]− η

10
max

x

q(x)

DX(x)
≥ 9

100m

as desired.

4 Conclusion

We have given an algorithm that solves agnostic active learning with (for constant δ) at most an
O(log |H|) factor more queries than the optimal algorithm. It is NP-hard to improve upon this
O(log |H|) factor in general, but for specific cases it can be avoided. We have shown that 1d thresh-
old functions, i.e. binary search with adversarial noise, is one such example where our algorithm
matches the performance of disagreement coefficient-based methods and is within a log log 1

ε factor
of optimal.

5 Acknowledgments

Yihan Zhou and Eric Price were supported by NSF awards CCF-2008868, CCF-1751040 (CA-
REER), and the NSF AI Institute for Foundations of Machine Learning (IFML).

References

Mohammad Azad, Igor Chikalov, Shahid Hussain, Mikhail Moshkov, and Beata Zielosko. De-
cision Trees with Hypotheses. Springer International Publishing, 2022. doi: 10.1007/
978-3-031-08585-7. URL https://doi.org/10.1007/978-3-031-08585-7.

10

Maria-Florina Balcan, Alina Beygelzimer, and John Langford. Agnostic active learning. In Pro-
ceedings of the 23rd international conference on Machine learning, pages 65–72, 2006.

Michael Ben-Or and Avinatan Hassidim. The bayesian learner is optimal for noisy binary search
(and pretty good for quantum as well). In 2008 49th Annual IEEE Symposium on Foundations of
Computer Science, pages 221–230, 2008. doi: 10.1109/FOCS.2008.58.

Alina Beygelzimer, Sanjoy Dasgupta, and John Langford. Importance weighted active learning. In
Proceedings of the 26th annual international conference on machine learning, pages 49–56, 2009.

Alina Beygelzimer, Daniel J Hsu, John Langford, and Tong Zhang. Agnostic active learning without
constraints. Advances in neural information processing systems, 23, 2010.

Marat Valievich Burnashev and Kamil’Shamil’evich Zigangirov. An interval estimation problem for
controlled observations. Problemy Peredachi Informatsii, 10(3):51–61, 1974.

David Cohn, Les Atlas, and Richard Ladner. Improving generalization with active learning. Machine
learning, 15:201–221, 1994.

Sanjoy Dasgupta. Analysis of a greedy active learning strategy. Advances in neural information
processing systems, 17, 2004.

Sanjoy Dasgupta. Coarse sample complexity bounds for active learning. Advances in neural infor-
mation processing systems, 18, 2005.

Sanjoy Dasgupta, Daniel J Hsu, and Claire Monteleoni. A general agnostic active learning algorithm.
Advances in neural information processing systems, 20, 2007.

Dariusz Dereniowski, Aleksander Lukasiewicz, and Przemyslaw Uznanski. Noisy
searching: simple, fast and correct. CoRR, abs/2107.05753, 2021. URL
https://arxiv.org/abs/2107.05753.

Irit Dinur and David Steurer. Analytical approach to parallel repetition. In Proceedings of the
forty-sixth annual ACM symposium on Theory of computing, pages 624–633, 2014.

Steve Hanneke. A bound on the label complexity of agnostic active learning. In Proceedings of the
24th international conference on Machine learning, pages 353–360, 2007a.

Steve Hanneke. Teaching dimension and the complexity of active learning. In International confer-
ence on computational learning theory, pages 66–81. Springer, 2007b.

Steve Hanneke. Theory of disagreement-based active learning. Foundations and Trends® in Ma-
chine Learning, 7(2-3):131–309, 2014.

Steve Hanneke and Liu Yang. Minimax analysis of active learning. J. Mach. Learn. Res., 16(1):
3487–3602, 2015.

Tibor Hegedűs. Generalized teaching dimensions and the query complexity of learning. In Proceed-
ings of the eighth annual conference on Computational learning theory, pages 108–117, 1995.

Matti Kääriäinen. Active learning in the non-realizable case. In Algorithmic Learning Theory:
17th International Conference, ALT 2006, Barcelona, Spain, October 7-10, 2006. Proceedings
17, pages 63–77. Springer, 2006.

Richard M. Karp and Robert Kleinberg. Noisy binary search and its applications. In Proceedings of
the Eighteenth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA ’07, page 881–890,
USA, 2007. Society for Industrial and Applied Mathematics. ISBN 9780898716245.

Julian Katz-Samuels, Jifan Zhang, Lalit Jain, and Kevin Jamieson. Improved algorithms for agnostic
pool-based active classification. In International Conference on Machine Learning, pages 5334–
5344. PMLR, 2021.

S Rao Kosaraju, Teresa M Przytycka, and Ryan Borgstrom. On an optimal split tree problem.
In Algorithms and Data Structures: 6th International Workshop, WADS’99 Vancouver, Canada,
August 11–14, 1999 Proceedings, pages 157–168. Springer, 2002.

11

Hyafil Laurent and Ronald L Rivest. Constructing optimal binary decision trees is np-complete.
Information processing letters, 5(1):15–17, 1976.

David D Lewis. A sequential algorithm for training text classifiers: Corrigendum and additional
data. In Acm Sigir Forum, volume 29, pages 13–19. ACM New York, NY, USA, 1995.

David D Lewis and Jason Catlett. Heterogeneous uncertainty sampling for supervised learning. In
Machine learning proceedings 1994, pages 148–156. Elsevier, 1994.

Robert Nowak. Generalized binary search. In 2008 46th Annual Allerton Conference on Communi-
cation, Control, and Computing, pages 568–574. IEEE, 2008.

Robert D Nowak. The geometry of generalized binary search. IEEE Transactions on Information
Theory, 57(12):7893–7906, 2011.

Burr Settles. Active learning literature survey. Computer Sciences Technical Report 1648, Univer-
sity of Wisconsin–Madison, 2009.

Joel Tropp. Freedman’s inequality for matrix martingales. 2011.

Roman Vershynin. High-dimensional probability: An introduction with applications in data science,
volume 47. Cambridge university press, 2018.

12

A Query Complexity Upper Bound

In this section we present the whole proof of the query complexity upper bound of Algorithm 1, as
stated in Theorem 1.1.

A.1 Notation

We remind the readers about some definitions first. Remember that wi(h) denote the weight of

hypothesis h in iteration i and λi,S(h) =
wi(h)∑

h′∈S wi(h′) for some S ⊆ H denote the proportion of h

in S. We view λi,S as a distribution of hypotheses in S so for h /∈ S, λi,S(h) = 0. For a set S ⊆ H
of hypotheses, we define wi(S) :=

∑
h∈S w(h) and λi(h) = λi,H(h).

Define rλ,h∗(x) := Prh∼λ[h(x) ̸= h∗(x)], and rλ(x) = miny∈{0,1} Prh∼λ[h(x) ̸= y], so rλ(x) =
min(rλ,h∗(x), 1− rλ,h∗(x)).

Define

λi,S(h) :=
1

2
λi(h) +

1

2
λi,H\S(h) =

{
1
2λi(h) h ∈ S
λi(h) · 1−

1
2 Prh∼λi

[h∈S]

1−Prh∼λi
[h∈S] h /∈ S (5)

as the "capped" distribution in iteration i.

Finally, for notational convenience define ri,S := rλi,S
, ri,S,h := rλi,S ,h and ri,S := rλi,S

.

The main focus of our proof would be analyzing the potential function

φi(h
∗) =

{
log λi(h

∗) + log λi,H\Si
(h∗) h∗ /∈ Si

0 h∗ ∈ Si,

where h∗ is the best hypothesis in H . We would like to show that φi+1(h
∗) − φi(h∗) is growing

at a proper rate in each iteration. We pick Si to be an expanding series of sets, i.e., Si ⊆ Si+1 for
any i ≥ 1. However, the change of the "capped" set Si makes this task challenging. Therefore, we
instead analyze the following quantity defined as

∆i(h
∗) :=

{
log λi+1(h

∗)
λi(h∗) + log

λi+1,H\Si
(h∗)

λi,H\Si
(h∗) h∗ /∈ Si

0 h∗ ∈ Si,

and φi+1(h
∗)−φi(h∗) = ∆i(h

∗)+log
λi+1,H\Si+1

(h∗)

λi+1,H\Si
(h∗) if h∗ /∈ Si+1. Further, we define ψk(h

∗) :=
∑

i<k ∆i(h
∗) so by definition φk(h

∗) = φ0(h
∗)+ψk(h

∗)+
∑

i<k log
λi+1,H\Si+1

(h∗)

λi+1,H\Si
(h∗) if h∗ /∈ Si+1.

In the following text, we will drop the parameter h∗ when the context is clear and just use φi, ∆i

and ψi instead. We use Fi to denote the σ-algebra of all information including queried points and
their labels up to iteration i.

A.2 Potential Growth

We will lower bound the conditional per iteration potential increase by first introducing a lemma that
relates the potential change to the optimization problem (3).

Lemma A.1. Assume that err(h∗) ≤ η, then for any set S of hypotheses containing h∗ and query
distribution q, we have

E

[
log

λi+1,S(h
∗)

λi,S(h∗)

∣∣∣∣Fi

]
≥ 0.9α

(
E

x∼q
[ri,S,h(x)]− 2.3ηmax

x

q(x)

DX(x)

)

for α ≤ 0.2. Moreover,

E

[
max

{
0, log

λi+1,S(h
∗)

λi,S(h∗)

} ∣∣∣∣Fi

]
≤ α E

x∼q
[ri,S,h∗(x)].

Proof. For notational convenience, define r̃(x) := ri,S,h∗(x).

13

Observe that

λi,S(h
∗)

λi+1,S(h∗)
=

wi(h
∗)

wi+1(h∗)

∑
h∈S wi+1,S(h)∑
h∈S wi,S(h)

=
wi(h

∗)

wi+1(h∗)
E

h∼λi,S

[
wi+1,S(h)

wi,S(h)

]
.

Let p(x) = Pry∼(Y |X)[y ̸= h∗(x)] denote the probability of error if we query x, so

E
x∼DX

[p(x)] ≤ η.

Suppose we query a point x and do not get an error. Then the hypotheses that disagree with h∗ are
downweighted by an e−α factor, so

λi,S(h
∗)

λi+1,S(h∗)
= E

h∼λi,S

[1 + (e−α − 1)1h(x) ̸=h∗(x)] = 1− (1− e−α)r̃(x).

On the other hand, if we do get an error then the disagreeing hypotheses are effectively upweighted
by eα:

λi,S(h
∗)

λi+1,S(h∗)
= 1 + (eα − 1)r̃(x).

Therefore

E
y|x

[
log

λi+1,S(h
∗)

λi,S(h∗)

∣∣∣∣Fi

]

= −(1− p(x)) log
(
1− (1− e−α)r̃(x)

)
− p(x) log (1 + (eα − 1)r̃(x)) (6)

≥ (1− p(x))(1− e−α)r̃(x)− p(x)(eα − 1)r̃(x)

= (1− e−α)r̃(x)− p(x)r̃(x)(eα − e−α).

Using that r̃(x) ≤ 1, we have

E

[
log

λi+1,S(h
∗)

λi,S(h∗)

∣∣∣∣Fi

]
≥ (1− e−α) E

x∼q
[r̃(x)]− (eα − e−α) E

x∼q
[p(x)]

≥ 0.9α E
x∼q

[r̃(x)− 2.3p(x)],

where the last step uses α ≤ 0.2. Finally,

E
x∼q

[p(x)] = E
x∼DX

[
p(x)

q(x)

DX(x)

]
≤ ηmax

x

q(x)

DX(x)
.

This proves the first desired result. For the second, note that if we query x, then conditioned on Fi

max

{
0, log

λi+1,S(h
∗)

λi,S(h∗)

}
=

{
0 with probability p(x),

log(1 + (1− e−α)r̃(x)) otherwise.

Since log(1 + (1 − e−α)r̃(x)) ≤ (1 − e−α)r̃(x) ≤ αr̃(x), taking the expectation over x gives the
result.

The above lemma, combined with Lemma 2.1, proves the potential will grow at desired rate at each
iteration. But remember that Lemma 2.1 requires the condition that no ball has probability greater
than 80%, so we need to check this condition is satisfied. The following lemma shows that if we cap
the set Si, then the probability is not concentrated on any small balls.

Lemma A.2. In Algorithm 1, for every iteration i, Si is such that no radius c4η+ c5ε ball has more

than 80% probability under λi,Si
.

Proof. If Si = Si−1, then by the construction of Si, there are no radius c4η + c5ε balls have

probability greater than 80% under λi,Si−1
= λi,Si

. Otherwise, we have Si−1 ̸= Si and a ball
B(µ, 3c4η + 3c5ε) is added to Si in this iteration. We first prove a useful claim below.

Claim A.3. If a ballB′ = (µ, 3c4η+3c5ε) is added to Si at some iteration i, λi(B(µ, c4η+c5ε)) ≥
0.6.

14

Proof. If B′ is added to Si at the iteration i, then there exists some ball D with radius c4η + c5ε
such that λ̄i,Si−1(D) ≥ 0.8. If a set of hypotheses gains probability after capping, the gained
probability comes from the reduced probability of other hypotheses not in this set. Therefore, the
gained probability of any set is upper bounded by half of the probability of the complement of that
set before capping. This means λi(D) ≥ 0.6 because otherwise after capping λ̄i,Si−1

(D) < 0.8,
which is a contradiction. As a result, λi(B(µ, c4η + c5ε)) ≥ λi(D) ≥ 0.6.

By Claim A.3, the probability of B(µ, c4η + c5ε) is at least 0.6 over the uncapped distribution
λi. So any ball not intersecting B(µ, c4η + c5ε) has probability at most 0.4 before capping. After
capping these balls will have probability no more than 0.7. At the same time, any ball intersects
B(µ, c4η + c5ε) would be completely inside B(µ, 3c4η + 3c5ε) so its probability would be at most
0.5 after capping.

Now we are ready to apply Lemma A.1 and Lemma 2.1 except one caution. Remember that in the
beginning of the algorithm, we compute a 2η-packingH ′ ⊆ H of the instance. From the well-known
relationship between packing and covering (for example, see Vershynin [2018, Lemma 4.2.8]), we
have |H ′| ≤ N(H, η). Every hypothesis in H is within 2η to some hypothesis in H ′, so there exists
a hypothesis in H ′ with error less than 3η. This means that the best hypothesis h∗ ∈ H ′ has error
3η instead of η. The following lemma serves as the cornerstone of the proof of the query complexity
upper bound, which states that the potential grows at rate Ω

(
1

m∗

)
in each iteration.

Lemma A.4. Given c4 ≥ 300 and err(h∗) ≤ 3η, there exists a sampling distribution q such that

E[∆i|Fi] ≥ E [∆i|Fi]− 2αηmax
x

q(x)

DX(x)
≳

α

m∗
(
H,DX , c4η, c5ε− 2η, 99

100

) if h∗ /∈ Si,

as well as |∆i| ≤ α always and Var[∆i|Fi] ≤ αE [|∆i||Fi] ≲ αE[∆i|Fi].

Proof. For the sake of bookkeeping, we letm∗ = m∗
(
H,DX , c4η, c5ε− 2η, 99

100

)
in this proof and

the following text. We first bound the expectation. By Lemma A.1 applied to S ∈ {H,H \Si} with
3η, we have

E [∆i|Fi]− 2αηmax
x

q(x)

DX(x)
≥0.9α

(
E

x∼q
[ri,H,h∗(x) + ri,H\Si,h∗(x)]− 13.8ηmax

x

q(x)

DX(x)

)

− 2αηmax
x

q(x)

DX(x)
,

where q is the query distribution of the algorithm at iteration i. Now, by the definition of

λi,S =
1

2
λi +

1

2
λi,H\S ,

we have for any x that

ri,Si,h∗(x) =
1

2
(ri,h∗(x) + ri,H\Si,h∗(x))

and thus

E [∆i|Fi]− 2αηmax
x

q(x)

DX(x)

≥ 1.8α

(
E

x∼q
[ri,Si,h∗(x)]− 6.9ηmax

x

q(x)

DX(x)

)
− 2αηmax

x

q(x)

DX(x)
(7)

≥ 1.8α

(
E

x∼q
[ri,Si

(x)]− 8.1ηmax
x

q(x)

DX(x)

)
.

Algorithm 1 chooses the sampling distribution q to maximize Ex∼q[ri,Si
(x)]− c4

20ηmaxx
q(x)

DX(x) ≤
Ex∼q[ri,Si

(x)]− 15ηmaxx
q(x)

DX(x) because c4 ≥ 300. By Lemma A.2, λi,Si
over H ′ has no radius-

(c4η + c5ε) ball with probability larger than 80%, so by Lemma 2.1 q satisfies

E
x∼q

[ri,Si
(x)]−15ηmax

x

q(x)

DX(x)
≥ E

x∼q
[ri,Si

(x)]− c4
20
ηmax

x

q(x)

DX(x)
≳

1

m∗
(
H ′,DX , c4η, c5ε,

99
100

) .

15

BecauseH ′ ⊆ H is a maximal 2η-packing, every hypothesis inH is within 2η of some hypothesis in
H ′. The problem

(
H,DX , c4η, c5ε− 2η, 99

100

)
is harder than the problem

(
H ′,DX , c4η, c5ε,

99
100

)

because we can reduce the latter to the former by simply adding more hypotheses and solve
it then map the solution back by returning the closest hypothesis in H ′. Hence, m∗ ≥
m∗
(
H ′,DX , c4η, c5ε,

99
100

)
. Therefore,

E [∆i|Fi]− 2αηmax
x

q(x)

DX(x)
≥ 1.8α

(
E

x∼q
[ri,Si

(x)]− 8.1ηmax
x

q(x)

DX(x)

)
≳

α

m∗
.

We now bound the variance. The value of ∆i may be positive or negative, but it is bounded by
|∆i| ≤ α. Thus

Var[∆i|Fi] ≤ E
[
∆2

i |Fi

]
≤ αE[|∆i| |Fi].

By Lemma A.1 and (7) we have

E[|∆i| |Fi] = E[2max {∆i, 0} −∆i|Fi]

≤ 4α E
x∼q

[ri,Si
(x)]− 1.8α

(
E

x∼q
[ri,Si

(x)]− 8.1ηmax
x

q(x)

DX(x)

)

≤ 2.2α

(
E

x∼q
[ri,S,h∗(x)] + 6.7ηmax

x

q(x)

DX(x)

)

≤ 2.2α

1.8α
E [∆i|Fi] + 2.2α · 6.9ηmax

x

q(x)

DX(x)
+ 2.2α · 6.7ηmax

x

q(x)

DX(x)

≤ 1.3E[∆i|Fi] + 30αηmax
x

q(x)

DX(x)
.

Since Ex∼q[∆i|Fi]− 2αηmaxx
q(x)

DX(x) ≳
1

m∗ ≥ 0, we have

ηmax
x

q(x)

DX(x)
≤ 1

2α
E

x∼q
[∆i|Fi] ,

and thus
Var[∆i|Fi] ≤ αE[|∆i| |Fi] ≲ αE [∆i|Fi] .

A.3 Concentration of potential

We have showed that the potential will grow at Ω
(

1
m∗

)
per iteration, but only in expectation, while

our goal is to obtain a high probability bound. Let µk :=
∑

i<k E[∆i|Fi−1] ≳ k/m∗, then

E [(ψk − µk)− (ψk−1 − µk−1) |Fk−1] = E [ψk − ψk−1|Fk−1]− (µk − µk−1)

= E [∆k|Fk−1]− E [∆k|Fk−1] ≥ 0.

Apparently |ψk − µk| is upper bounded, so ψk − µk is a submartingale. To show a high probability
bound, we will use Freedman’s inequality. A version is stated in Tropp [2011]. We slighted modify
it so it can be applied to submartingale as the following.

Theorem A.5 (Freedman’s Inequality). Consider a real-valued submartingale
{Yk : k = 0, 1, 2, · · · } that is adapted to the filtration F0 ⊆ F1 ⊆ F2 ⊆ · · · ⊆ F with
difference sequence {Xk : k = 1, 2, 3, · · · }. Assume that the difference sequence is uniformly
bounded:

Xk ≤ R almost surely for k = 1, 2, 3, · · ·
Define the predictable quadratic variation process of the submartingale:

Wk :=
k∑

j=1

E
[
X2

j |Fj−1

]
for k = 1, 2, 3, · · ·

Then, for all t ≥ 0 and σ2 > 0,

Pr
(
∃k ≥ 0 : Yk ≤ −t and Wk ≤ σ2

)
≤ exp

(
− t2/2

σ2 +Rt/3

)
.

16

Then we can prove a high probability bound as the following.

Lemma A.6. With probability 1− δ, φi = 0 for some i = O
(
m∗ log |H|

δ

)
so h∗ ∈ Si.

Proof. Remember we have that

φk = φ0 + ψk +
∑

i<k

log
λi,H\Si+1

(h∗)

λi,H\Si
(h∗)

.

Since Si+1 ⊇ Si for all i, λi,H\Si+1
(h∗) ≥ λi,H\Si

(h∗) if h∗ /∈ Si+1, we have

φk ≥ φ0 + ψk if h∗ /∈ Sk.

Let K = O
(
m∗ log |H|

δ

)
. Let’s assume by contradiction that φK < 0 for for, then h∗ /∈ Si for

i ≤ K. We know by Lemma A.4 that

µk :=
∑

i<k

E[∆i|Fi−1] ≳
k

m∗

and that
∑

i<k Var [∆i] ≤ 1
4µk by picking α small enough. Moreover, |∆i| ≤ α always. To use

Freedman’s inequality, let’s set the RHS

exp

(
− t2/2

σ2 +Rt/3

)
≤ δ.

Solving the above quadratic equation, one solution is that t ≥ R
3 log 1

δ +
√

R2

9 log2 1
δ + 2σ2 log 1

δ .

Let’s substitute in R = α and σ2 =
∑

i<k Vari−1(∆i), with 1 − δ probability we have for any

k > O(m∗ log 1
δ) that

ψk ≥ µk −
√
α2

9
log2

1

δ
+ 2

∑

i<k

Var
i−1

(∆i) log
1

δ
− α

3
log

1

δ

≥ µk −
√
α2

9
log2

1

δ
+

1

2
µk log

1

δ
− α

3
log

1

δ

≥ µk −max

{√
2α

3
log

1

δ
,

√
µk log

1

δ

}
− α

3
log

1

δ

≥ 1

2
µk

≳
k

m∗
.

The second last inequality is because the first term outscales all of the rest. Since K =

O
(
m∗ log |H|

δ

)
, we have

ψK ≥ 2 log |H|
with 1−δ probability. Then φK ≥ φ0+ψk because φ0 ≥ log 1

2|H| ≥ −2 log |H| and this contradicts

h∗ /∈ SK . Therefore, with probability at least 1 − δ, h∗ ∈ SK and by definition, φi = 0 for some
i ≤ K as desired.

A.4 Bounding the Size of |C|

So far we’ve shown that after O
(
m∗ log |H|

δ

)
iterations, h∗ will be included in the set Si. The last

thing we need to prove Theorem 1.1 is that with high probability, C is small, which is equivalent to

show that not many balls will be added to Si after O
(
m∗ log |H|

δ

)
iterations. To show this, we first

need to relate the number of balls added to Si to ψi. Let Ei denote the number of errors h∗ made up
to iteration i (and set Ei = Ei−1 if h∗ ∈ Si) and Ni denote the number of balls added to Si up to
iteration i (again set Ni = Ni−1 if h∗ ∈ Si).

17

Lemma A.7. The following inequality holds for every i:

Ni ≤ 5(ψi + 2αEi) + 1.

Proof. We divide the i iterations into phases. A new phase begins and an old phase ends if at
this iteration a new ball is added to the set Si. We use p1, . . . , pk for k ≤ i to denote phases
and i1, . . . , ik to denote the starting iteration of the phases. We analyse how the potential changes
from the phase pj to the phase pj+1. Let’s say the ball B2 = (µ2, 3c4η + 3c5ε) is added at the
beginning of pj+1 and B1 = (µ1, 3c4η + 3c5ε) is the ball added at the beginning of pj . Then the
ball B′

2 = (µ2, c4η + c5ε) and the ball B′
1 = (µ1, c4η + c5ε) are disjoint. Otherwise, B′

2 ⊆ B1 so
B2 would not have been added by the algorithm. At the beginning of pj , B′

1 has probability no less
than 0.6 by Claim A.3. Therefore, B′

2 has probability no more than 0.4. Similarly, at the beginning
of pj+1, B′

2 has probability at least 0.6 by Claim A.3. Since during one iteration the weight of a
hypothesis cannot change too much, at iteration ij+1 − 1, B′

2 has weight at least 0.5 by picking α
small enough. Therefore, we have log λij+1−1(B

′
2) − log λij (B

′
2) ≥ log 0.5

0.4 ≥ 1
5 . Moreover, note

that Si does not change from iteration ij to iteration ij+1 − 1 by the definition of phases. Now we
compute

ij+1−1∑

l=ij

∆l = log
λij+1−1(h

∗)

λij (h
∗)

+ log
λij+1−1,H\Sij

(h∗)

λij ,H\Sij
(h∗)

,

= log
wij+1−1(h

∗)

wi1(h
∗)

∑
h∈H wi1(h)∑

h∈H wij+1−1(h)
+ log

wij+1−1(h
∗)

wij (h
∗)

wij (H \ Sij)

wij+1−1(H \ Sij)
.

The change of the weight of h∗ is

wij+1(h
∗)

wij (h
∗)

= e−αEpj ,

where Epj
is the number of errors h∗ made in pj . Consequently,

ij+1−1∑

l=ij

∆l = −2αEpj
+ log

∑
h∈H wij (h)∑

h∈H wij+1−1(h)
+ log

wij (H \ Sij)

wij+1−1(H \ Sij)

≥ −2αEpj
+

1

5
.

The last step above comes from

log

∑
h∈H wij (h)∑

h∈H wij+1−1(h)
≥ log

∑
h∈B′

2
wij+1−1(h)∑

h∈B′
2
wij (h)

∑
h∈H wij (h)∑

h∈H wij+1−1(h)
= log

λij+1−1 (B
′
2)

λij (B
′
2)

≥ 1

5
,

and

log
wij (H \ Sij)

wij+1−1(H \ Sij)
≥ 0

because the weight w(h) only decreases. Summing over all phases j and we get

ψi ≥ −2αEi +
1

5
(Ni − 1) .

Since imay not exactly be the end of a phase, the last phase may end early so we haveNi−1 instead
of Ni. Rearrange and the proof finishes.

We have already bounded ψi, so we just need to bound Ei in order to bound Ni by the following
lemma.

Lemma A.8. For every k, with probability at least 1− δ,

Ek ≤
1

α

(
ψk +

√
2 log

1

δ

)
.

18

Proof. Let q be the query distribution at iteration i−1 and p(x) be the probability that x is corrupted
by the adversary. Then the conditional expectation of Ei − Ei−1 is

E [Ei − Ei−1|Fi] = Pr
x∼q

[h∗(x) is wrong] = E
x∼q

[p(x)] = E
x∼D

[
p(x)

q(x)

D(x)

]
≤ ηmax

x

q(x)

DX(x)
.

Then if h∗ /∈ S, from Lemma A.4

E[∆i − 2α(Ei − Ei−1)|Fi] ≥ E [∆i|Fi]− 2αηmax
x

q(x)

DX(x)
≳

1

m∗
.

Therefore, E[α (Ei − Ei−1) |Fi] ≤ 1
2 E [∆i|Fi] and E [∆i − α(Ei − Ei−1)|Fi] ≥ 1

2 E [∆i|Fi]. This

means that ψk−αEk− 1
2µk is a supermartingale. We then bound Var [∆i − α(Ei − Ei−1)|Fi]. Note

that |∆i − α(Ei − Ei−1)| ≤ 2α, so

Var[∆i − α(Ei − Ei−1)|Fi] ≤ E

[
(∆i − α(Ei − Ei−1))

2
∣∣∣Fi

]
≤ 2αE [|∆i − α(Ei − Ei−1)| |Fi] .

Furthermore,

E [|∆i − α(Ei − Ei−1)| |Fi] ≤ E [|∆i||Fi] + αηmax
x

q(x)

DX(x)
.

As a result,

Var[∆i − α(Ei − Ei−1)|Fi] ≤ 2α

(
E [|∆i||Fi] + αηmax

x

q(x)

DX(x)

)

≤ 2α

(
E [|∆i||Fi] +

1

2
E [∆i|Fi]

)

≤ 3αE [|∆i||Fi]

≲ αE [∆i|Fi] .

By picking α small enough,
∑

i<k Var [∆i − α(Ei − Ei−1)|Fi] ≤ 1
8µk. Moreover,

|∆i − α(Ei − Ei−1)| ≤ 2α always. Therefore by Freedman’s inequality, with 1 − δ probability
we have for any k that

ψk − αEk ≥ µk −
√

4α2

9
log2

1

δ
+ 2

∑

i<k

Var
i−1

[∆i − α(Ei − Ei−1)] log
1

δ
− 2α

3
log

1

δ

≥ µk −
√

4α2

9
log2

1

δ
+

1

4
µk log

1

δ
− 2α

3
log

1

δ

≥ µk −max

{
2
√
2α

3
log

1

δ
,

√
2

2

√
µk log

1

δ

}
− 2α

3
log

1

δ

≥ µk −max

{√
2

2
log

1

δ
,

√
2

2
µk

}
− 2α

3
log

1

δ

≥
(
1−
√
2

2

)
µk −

√
2 log

1

δ

≥ −
√
2 log

1

δ
Rearrange and we proved the lemma.

Combining Lemma A.7 and Lemma A.8, we can showC is small with high probability as the lemma
follows.

Lemma A.9. For k = O
(
m∗ log |H|

δ

)
, with probability at least 1 − 2δ, h∗ ∈ Sk and |C| ≤

O
(
log |H|

δ

)
at iteration k.

Proof. By union bound, with probability at least 1− 2δ, Lemma A.6 and A.8 will hold at the same
time. This means h∗ is added to Sk. By definition, 0 ≥ φk ≥ φ0+ψk, so ψk ≤ 2 log |H|. Therefore,

by Lemma A.7 and A.8, the number of balls added |C| is O
(
log |H|+ log 1

δ

)
= O

(
log |H|

δ

)
.

19

A.5 Putting Everything Together

We proved that afterO
(
m∗ log |H|

δ

)
iterations, h∗ ∈ Si andC is small with high probability. Hence,

running the stage two algorithm to return a desired hypothesis will not take much more queries. We
are ready to put everything together and finally prove Theorem 1.1.

Theorem 1.1 (Competitive Bound). There exist some constants c1, c2 and c3 such that for any
instance (H,DX , η, ε, δ) with ε ≥ c1η, Algorithm 1 solves the instance with sample complexity

m(H,DX , η, ε, δ) ≲

(
m∗

(
H,DX , c2η, c3ε,

99

100

)
+ log

1

δ

)
· log N(H,DX , η)

δ

and polynomial time.

Proof. Let’s pick c1, c4, c5 as in Theorem 2.3 and pick the confidence parameter to be δ
3 . Then by

Lemma A.9, with probability 1 − 2δ
3 , the first O

(
log |H|

δ

)
ball added to Si will contain h∗. Since

each ball added to C has radius 3c4η + 3c5ε, the best hypothesis in C has error (3 + 3c4)η + 3c5ε.
By Theorem 2.2, with probability 1 − δ

3 , the algorithm will return a hypothesis with error (9 +
9c4)η + 9c5ε ≤ η + ε. Therefore, by union bound, the algorithm will return a desired hypothesis
with probability 1− δ. This proves the correctness of the algorithm.

The stage one algorithm makes

O

(
m∗

(
H,DX , c4η, c5ε− 2η,

99

100

)
log
|H|
δ

)
≤ O

(
m∗

(
H,DX , c4η,

c5
2
ε,

99

100

)
log
|H|
δ

)

queries. The stage two algorithm makes O
(
|C| log |C|

δ

)
queries by Theorem 2.2. Note that

C is a c4η + c5ε-packing because the center of added balls are at least c4η + c5ε away, so

m∗
(
H,DX ,

c4
2 η,

c5
2 ε,

99
100

)
≥ log |C|. Since |C| ≤ log |H|

δ by Lemma A.9, stage two algorithm

takes O
((
m∗
(
H,DX ,

c4
2 η,

c5
2 ε,

99
100

)
+ log 1

δ

)
log |H|

δ

)
queries. Picking c2 = c4, c3 = c5

2 , we get

the desired sample complexity bound.

To compute the packing at the beginning of the algorithm, we need to compute the distance of every
pair of hypotheses, which takes O(|H|2| X |) time. Computing r in each round takes O(|H|| X |)
time and solving the optimization problem takes O(| X |) time. Therefore, the remaining steps in

stage one takes O
(
m∗|H|| X | log |H|

δ

)
time. Stage two takes O

(
log |H|

δ log
log

|H|
δ

δ

)
time. There-

fore, the overall running time is polynomial of the size of the problem.

Similarly, we can prove Theorem 2.3, which is a stronger and more specific version of Theorem 1.1.

Theorem 2.3. Suppose that Dx and H are such that, for any distribution λ over H such that no
radius-(c4η + c5ε) ball has probability more than 80%, there exists a distribution q over X such
that

E
x∼q

[r(x)]− c4
20
ηmax

x

q(x)

Dx(x)
≥ β

for some β > 0. Then for ε ≥ c1η, c4 ≥ 300, c5 = 1
10 and c1 ≥ 90c4, let N = N(H,Dx, η)

be the size of an η-cover of H . Algorithm 1 solves (η, ε, δ) active agnostic learning with

O
(

1
β log N

δ + log N
δ log logN

δ

)
samples.

Proof. By Lemma A.9 (with m∗ replaced by 1
β and setting confidence parameter to δ

3) after

O
(

1
β log N

δ

)
queries, with probability at least 1− 2δ

3 , a hypothesis in C will be within c4η+ c5ε to

h∗ and |C| = O
(
log N

δ

)
. From Theorem 2.2, with probability at least 1 − δ

3 , stage two algorithm

then outputs a hypothesis ĥ that is 9c4η + 9c5ε from h′ so err
(
ĥ
)
≤ 9c4η + 9c5ε ≤ η + ε by

the choice of the constants. The stage two algorithm makes O
(
log N

δ log
log N

δ

δ

)
queries. Overall,

20

the algorithm makes O
(

1
β log N

δ + log N
δ log

log N
δ

δ

)
queries and succeeds with probability at least

1− δ.

B Query Complexity Lower Bound

In this section we derive a lower bound for the agnostic binary classification problem, which we
denote by AGNOSTICLEARNING. The lower bound is obtained from a reduction from minimum set
cover, which we denote by SETCOVER. The problem SETCOVER consists a pair (U,S), where U
is a ground set and S is a collection of subsets of U . The goal is to find a set cover C ⊆ S such that⋃

S∈C S = U of minimal size |C|. We use K to denote the cardinality of the minimum set cover.

Lemma B.1 (Dinur and Steurer [2014], Corollary 1.5). There exists hard instances SETCOVER-
HARD with the property K ≥ log |U | such that for every γ > 0, it is NP-hard to approximate
SETCOVERHARD to within (1− γ) ln |U |.

Proof. This lemma directly follows from Dinur and Steurer [2014, Corollary 1.5]. In their proof,
they constructed a hard instance of SETCOVER from LABELCOVER. The size of the minimum
cover K ≥ |V1| = Dn1 and log |U | = (D + 1) lnn1 ≤ K. So the instance in their proof satisfies
the desired property.

Then we prove the following lemma by giving a ratio-preserving reduction from SETCOVER to
AGNOSTICLEARNING.

Lemma B.2. If there exists a deterministic α-approximation algorithm for

AGNOSTICLEARNING

(
H,Dx,

1
3| X | ,

1
3| X | ,

1
4|H|

)
, there exists a deterministic 2α-approximation

algorithm for SETCOVERHARD.

Proof. Given an instance of SETCOVERHARD, for each s ∈ S , number the elements u ∈ s in an
arbitrary order; let f(s, u) denote the index of u in s’s list (and padding 0 to the left with the extra
bit). We construct an instance of AGNOSTICLEARNING as the following:

1. Let the domain X have three pieces: U , V := {(s, j) | s ∈ S, j ∈ [1 + log |s|]}, and
D = {1, . . . , log |U |}, an extra set of log |U | more coordinates.

2. On this domain, we define the following set of hypotheses:

(a) For u ∈ U , define hu which only evaluates 1 on u ∈ U and on (s, j) ∈ V if u ∈ s and
the j’th bit of (2f(s, u) + 1) is 1.

(b) For d ∈ D, define hd which only evaluates 1 on d.

(c) Define h0 which evaluates everything to 0.

3. Let DX be uniform distribution over X and set η = 1
3|X | and ε = 1

3|X | . Set δ = 1
4|H| .

Any two hypotheses satisfy ∥h1 − h2∥ ≥ 1
|X | > ε = η, so err(h∗) = 0. First we show that

m∗
(
H,Dx,

1
3| X | ,

1
3| X | ,

1
4|H|

)
≤ K + log |U |. Indeed there exists a deterministic algorithm using

K + log |U | queries to identify any hypothesis with probability 1. Given a smallest set cover C,
the algorithm first queries all (s, 0) ∈ V for s ∈ C. If h∗ = hu for some u, then for the s ∈ S
that covers u, (s, 0) will evaluate to true. The identity of u can then be read out by querying (s, j)
for all j. The other possibilities–hd for some d or 0—can be identified by evaluating on all of
D with logU queries. The total number of queries is then at most K + log |U | in all cases, so
m∗ ≤ K + log |U | ≤ 2K.

We now show how to reconstruct a good approximation to set cover from a good approximate query
algorithm. We feed the query algorithm y = 0 on every query it makes, and let C be the set of all s
for which it queries (s, j) for some j. Also, every time the algorithm queries some u ∈ U , we add
an arbitrary set containing u to C. Then the size of C is at most the number of queries. We claim
that C is a set cover: if C does not cover some element u, then hu is zero on all queries made by
the algorithm, so hu is indistinguishable from h0 and the algortihm would fail on either input h0

21

or hu. Thus if A is a deterministic α-approximation algorithm for AGNOSTICLEARNING, we will
recover a set cover of size at most αm∗ ≤ α (K + log |U |) ≤ 2αK, so this gives a deterministic
2α-approximation algorithm for SETCOVERHARD.

Similar results also holds for randomized algorithms, we just need to be slightly careful about prob-
abilities.

Lemma B.3. If there exists a randomized algorithm for

AGNOSTICLEARNING

(
H,Dx,

1
3| X | ,

1
3| X | ,

1
4|H|

)
, there exists a randomized 2α-approximation

algorithm for SETCOVERHARD with success probability at least 2
3 .

Proof. We use the same reduction as in Lemma B.2. Let A be an algorithm solves

AGNOSTICLEARNING

(
H,Dx,

1
3| X | ,

1
3| X | ,

1
4|H|

)
. To obtain a set cover using A, we keeping giv-

ing A label 0 and construct the set C as before. Let qC be a distribution over the reconstructed set
C. Assume that by contradiction with probability at least 1

3 , C is not a set cover. Then, with proba-
bility at least 1/3, there is some element v such that both hv and h0 are consistent on all queries the
algorithm made; call such a query set “ambiguous”.

Then what is the probability that the agnostic learning algorithm fails on the input distribution that
chooses h∗ uniformly from H? Any given ambiguous query set is equally likely to come from any
of the consistent hypotheses, so the algorithm’s success probability on ambiguous query sets is at
most 1/2. The chance the query set is ambiguous is at least 2

3|H| : a 1
3H chance that the true h∗ is h0

and the query set is ambiguous, and at least as much from the other hypotheses making it ambiguous.
Thus the algorithm’s fails to learn the true hypothesis with at least 1

3|H| probability, contradicting

the assumed 1
4|H| failure probability.

Therefore, a set cover of size at most 2αK can be recovered with probability at least 1
3 using the

agnostic learning approximation algorithm.

The following theorem will then follow.

Theorem 1.2 (Lower Bound). It is NP-hard to find a query strategy for every agnostic active learn-
ing instance within an c log |H| for some constant c > 0 factor of the optimal sample complexity.

Proof. Let’s consider the instance of set cover constructed in Lemma B.2. Let c = 0.1 and note that

0.1 log |H| ≤ 0.49 log |H|
2 . If there exists a polynomial time 0.49 log |H|

2 approximation algorithm

for the instance, then there exists a polynomial time 0.98 log |H|
2 ≤ 0.98 log |U | approximation

algorithm for SETCOVERHARD, which is a contradiction to Lemma B.1.

22

