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Abstract

Diffusion models are a remarkably effective way of learning and sampling from a distribution
p(x). In posterior sampling, one is also given a measurement model p(y | x) and a measurement y,
and would like to sample from p(x | y). Posterior sampling is useful for tasks such as inpainting,
super-resolution, and MRI reconstruction, so a number of recent works have given algorithms
to heuristically approximate it; but none are known to converge to the correct distribution in
polynomial time.

In this paper we show that posterior sampling is computationally intractable: under the most
basic assumption in cryptography—that one-way functions exist—there are instances for which
every algorithm takes superpolynomial time, even though unconditional sampling is provably
fast. We also show that the exponential-time rejection sampling algorithm is essentially optimal
under the stronger plausible assumption that there are one-way functions that take exponential
time to invert.
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1 Introduction

Over the past few years, diffusion models have emerged as a powerful way for representing
distributions of images. Such models, such as Dall-E [RDN+22] and Stable Diffusion [RBL+21],
are very effective at learning and sampling from distributions. These models can then be used
as priors for a wide variety of downstream tasks, including inpainting, superresolution, and MRI
reconstruction.

Diffusion models are based on representing the smoothed scores of the desired distribution. For
a distribution p(x), we define the smoothed distribution pσ(x) to be p convolved with N (0, σ2I).
These have corresponding smoothed scores sσ(x) := ∇ log pσ(x). Given the smoothed scores, the
distribution p can be sampled using an SDE [HJA20] or an ODE [SME21]. Moreover, the smoothed
score is the minimizer of what is known as the score-matching objective, which can be estimated
from samples.

Sampling via diffusion models is fairly well understood from a theoretical perspective. The
sampling SDE and ODE are both fast (polynomial time) and robust (tolerating L2 error in the esti-
mation of the smoothed score). Moreover, with polynomial training samples of the distribution, the
empirical risk minimizer (ERM) of the score matching objective will have bounded L2 error, leading
to accurate samples [BMR20, GPPX23]. So diffusion models give fast and robust unconditional
samples.

But sampling from the original distribution is not the main utility of diffusion models: that
comes from using the models to solve downstream tasks. A natural goal is to sample from the
posterior : the distribution gives a prior p(x) over images, so given a noisy measurement y of x
with known measurement model p(y | x), we can in principle use Bayes’ rule to compute and
sample from p(x | y). Often (such as for inpainting, superresolution, MRI reconstruction) the
measurement process is the noisy linear measurement model, with measurement y = Ax + η for
a known measurement matrix A ∈ R

m×d with m < d, and Gaussian noise η = βN (0, Im); we will
focus on such linear measurements in this paper.

Posterior sampling has many appealing properties for image reconstruction tasks. For example,
if you want to identify x precisely, posterior sampling is within a factor 2 of the minimum error
possible for every measurement model and every error metric [JAD+21]. When ambiguities do arise,
posterior sampling has appealing fairness guarantees with respect to sensitive attributes [JKH+21].

Given the appeal of posterior sampling, the natural question is: is efficient posterior sampling
possible given approximate smoothed scores? A large number of recent papers [JAD+21, CKM+23,
KVE21, TWN+23, SVMK23, KEES22, DS24] have studied algorithms for posterior sampling, with
promising empirical results. But all these fail on some inputs; can we find a better posterior sampling
algorithm that is fast and robust in all cases?

There are several reasons for optimism. First, there’s the fact that unconditional sampling is
possible from approximate smoothed scores; why not posterior sampling? Second, we know that
information-theoretically, it is possible: rejection sampling of the unconditional samples (as produced
with high fidelity by the diffusion process) is very accurate with fairly minimal assumptions. The
only problem is that rejection sampling is slow: you need to sample until you get lucky enough to
match on every measurement, which takes time exponential in m.

And third, we know that the unsmoothed score of the posterior p(x | y) is computable efficiently
from the unsmoothed score of p(x) and the measurement model: ∇x log p(x | y) = ∇ log p(x) +
∇ log p(y | x). This is sufficient to run Langevin dynamics to sample from p(x | y). Of course, this
has the same issues that Langevin dynamics has for unconditional sampling: it can take exponential
time to mix, and is not robust to errors in the score. Diffusion models fix this by using the smoothed
score to get robust and fast (unconditional) sampling. It seems quite plausible that a sufficiently
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clever algorithm could also get robust and fast posterior sampling.
Despite these reasons for optimism, in this paper we show that no fast posterior sampling

algorithm exists, even given good approximations to the smoothed scores, under the most basic
cryptographic assumption that one-way functions exist. In fact, under the further assumption that
some one-way function is exponentially hard to invert, there exists a distribution—one for which
the smoothed scores are well approximated by a neural network so that unconditional sampling
is fast—that takes exponential in m time for posterior sampling. Rejection sampling takes time
exponential in m, and so, one can no longer hope for much general improvement over rejection
sampling.

Precise statements. To more formally state our results, we make a few definitions. We say a
distribution is “well-modeled” if its smoothed scores can be represented by a polynomial size neural
network to polynomial precision:

Definition 1.1 (C-Well-Modeled Distribution). For any constant C > 0, we say a distribution
p over R

d with covariance Σ is “C-well-modeled” by score networks if ∥Σ∥ ≲ 1 and there are
approximate scores ŝσ that satisfy

E
x∼pσ

[∥ŝσ(x)− sσ(x)∥2] <
1

dCσ2

and can be computed by a poly(d)-parameter neural network with poly(d)-bounded weights for every
1
dC

≤ σ ≤ dC .

Throughout our paper we will be comparing similar distributions. We say distributions are (τ, δ)
close if they are close up to some shift τ and failure probability δ:

Definition 1.2 ((τ, δ)-Close Distribution). We say the distribution of x and x̂ are (τ, δ) close if
they can be coupled such that

P[∥x− x̂∥ > τ ] < δ.

An unconditional sampler is one that is (τ, δ) close to the true distribution.

Definition 1.3 ((τ, δ)-Unconditional Sampler). A (τ, δ) unconditional sampler of a distribution D
is one where its samples x̂ are (τ, δ) close to the true x ∼ D.

The theory of diffusion models [CCL+23] says that the diffusion process gives an unconditional
sampler for well-modeled distributions that takes polynomial time (with the precise polynomial
improved by subsequent work [BBDD24]).

Theorem 1.4 (Unconditional Sampling for Well-Modeled Distributions). For an O(C)-well-modeled
distribution p, the discretized reverse diffusion process with approximate scores gives a

(
1
dC
, 1
dC

)
-

unconditional sampler (as defined in Definition 1.3) for any constant C > 0 in poly(d) time.

But what about posterior samplers? We want that, for most measurements y, the conditional
distribution is (τ, δ) close to the truth:

Definition 1.5 ((τ, δ)-Posterior Sampler). Let D be a distribution over X × Y with density p(x, y).
Let C be an algorithm that takes in y ∈ Y and outputs samples from some distribution p̂|y over X.
We say C is a (τ, δ)-Posterior Sampler for D if, with 1− δ probability over y ∼ DY , p̂|y and p(x | y)
are (τ, δ) close.

As described above, we consider the linear measurement model:
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Definition 1.6 (Linear measurement model). In the linear measurement model with m measurements
and noise parameter β, we have for x ∈ R

d, the measurement y = Ax+ η for A ∈ R
m×d normalized

such that ∥A∥ ≤ 1, and η = βN (0, Im).

One way to implement posterior sampling is by rejection sampling. As long as the measurement
noise β is much bigger than the error τ = 1

poly(d) from the diffusion process, this is accurate. However,
the running time is exponentially large in m:

Theorem 1.7 (Upper bound). Let C > 1 be a constant. Consider an O(C)-well-modeled distribution
and a linear measurement model with β > 1

dC
. When δ > 1

dC
, rejection sampling of the diffusion

process gives a ( 1
dC
, δ)-posterior sampler that takes poly(d)(O(1)

β
√
δ
)m time.

Our main result is that this is nearly tight:

Theorem 1.8 (Lower bound). Suppose that one-way functions exist. Then for any d0.01 < m <
d/2, there exists a 10-well-modeled distribution over R

d, and linear measurement model with m
measurements and noise parameter β = Θ( 1

log2 d
), such that ( 1

10 ,
1
10)-posterior sampling requires

superpolynomial time.

To be a one-way function, inversion must take superpolynomial time (on average). For many
one-way function candidates used in cryptography, the best known inversion algorithms actually take
exponential time. Under the stronger assumption that some one-way function exists that requires
exponential time to invert with non-negligible probability, we can show that posterior sampling
takes 2Ω(m) time:

Theorem 1.9 (Lower bound: exponential hardness). For any m ≤ d/2, suppose that there exists a
one-way function f : {±1}m → {±1}m that requires 2Ω(m) time to invert. Then for any C > 1, there
exists a C-well-modeled distribution over R

d and linear measurement model with m measurements
and noise level β = 1

C2 log2 d
, such that ( 1

10 ,
1
10)-posterior sampling takes at least 2Ω(m) time.

Assuming such strong one-way functions exist, then for the lower bound instance, 2Ω(m) time is
necessary and rejection sampling takes 2O(m log log d) poly(d) time. Up to the log log d factor, this
shows that rejection sampling is the best one can hope for in general.

Remark 1.10. The lower bound produces a “well-modeled” distribution, meaning that the scores
are representable by a polynomial-size neural network, but there is no requirement that the network
be shallow. One could instead consider only shallow networks; the same theorem holds, except that
f must also be computable by a shallow depth network. Many candidate one-way functions can be
computed in NC

0 (i.e., by a constant-depth circuit) [AIK04], so the cryptographic assumption is still
mild.

2 Related Work

Diffusion models [SDWMG15, DN21, SE19] have emerged as the most popular approach to
deep generative modeling of images, serving as the backbone for the recent impressive results in
text-to-image generation [RDN+22, RBL+21], along with state-of-the-art results in video [BDK+23,
HSG+22] and audio [KPH+21, CZZ+21] generation.

Noisy linear inverse problems capture a broad class of applications such as image inpainting,
super-resolution, MRI reconstruction, deblurring, and denoising. The empirical success of diffusion
models has motivated their use as a data prior for linear inverse problems, without task-specific
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training. There have been several recent theoretical and empirical works [JAD+21, CKM+23,
KVE21, TWN+23, SVMK23, KEES22, DS24] proposing algorithms to sample from the posterior
of a noisy linear measurement. We highlight some of these approaches below.

Posterior Score Approximation. One class of approaches [CKM+23, KVE21, SVMK23] ap-
proximates the intractable posterior score ∇ log pt(xt|y) = ∇ log pt(xt) +∇ log p(y|xt) at time t of
the reverse diffusion process, and uses this approximation to sample. Here, y = Ax0 + η is the
noisy measurement of x0 ∼ p0, where pt is the density at time t. For instance, [CKM+23] proposes
the approximation ∇ log p(y|xt) ≈ ∇ log p(x|E [x0|xt]), thereby incurring error quantified by the
so-called Jensen gap. [SVMK23] proposes an approximation based on the pseudoinverse of A, while
[KVE21] proposes to use the score of the posterior wrt measurement yt of xt.

Replacement Method. Another approach, first introduced in the context of inpainting [LDR+22],
replaces the observed coordinates of the sample with a noisy version of the observation during the
reverse diffusion process. An extension was proposed for general noisy linear measurements [KEES22].
This approach essentially also attempts to sample from an approximation to the posterior.

Particle Filtering. A recent set of works [TWN+23, TYT+23, DS24] makes use of Sequential
Monte Carlo (SMC) methods to sample from the posterior. These methods are guaranteed to
sample from the correct distribution as the number of particles goes to ∞. Our paper implies
a lower bound on the number of particles necessary for good convergence. Assuming one-way
functions exist, polynomially many particles are insufficient in general, so that these algorithms
takes superpolynomial time; assuming some one-way function requires exponential time to invert,
particle filtering requires exponentially many particles for convergence.

To summarize, our lower bound implies that these approaches are either approximations that
fail to sample from the posterior, and/or suffer from prohibitively large runtimes in general.

3 Proof Overview – Lower Bound

In this section, we give an overview of the proof of our main Theorem 1.8, which states that
there is some well-modeled distribution for which posterior sampling is hard. The full proof can be
found in the Appendix.

An initial attempt. Given a one-way function f : {−1, 1}d → {−1, 1}d, consider the distribution
that is uniform over (s, f(s)) ∈ {−1, 1}2d for all s ∈ {−1, 1}d. This distribution is easy to sample
from unconditionally: sample s uniformly, then compute f(s). At the same time, posterior sampling
is hard: if you observe the last d bits, i.e. f(s), a posterior sample should be from f−1(f(s)); and if
f is a one-way function, finding any point in this support is computationally intractable on average.

However, it is not at all clear that this distribution is well-modeled as per Definition 1.1; we
would need to be able to accurately represent the smoothed scores by a polynomial size neural
network. The problem is that for smoothing levels 1 ≪ σ ≪

√
d, the smoothed score can have

nontrivial contribution from many different (s, f(s)); so it’s not clear one can compute the smoothed
scores efficiently. Thus, while posterior sampling is intractable in this instance, it’s possible the
hardness lies in representing and computing the smoothed scores using a diffusion model, rather
than in using the smoothed scores for posterior sampling.
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However, for smoothing levels σ ≪ 1√
log d

, the smoothed scores are efficiently computable with

high accuracy. The smoothed distribution is a mixture of Gaussians with very little overlap, so
rounding to a nearby Gaussian and taking its score gives very high accuracy.

To design a better lower bound, we modify the distribution to encode f(s) differently: into the
phase of the discretization of a Gaussian. At large smoothing levels, a discretized Gaussian looks
essentially like an undiscretized Gaussian, and the phase information disappears. Thus at large
smoothing levels, the distribution is essentially like a product distribution, for which the scores
are easy to compute. At the same time, conditioning on the observations still implies inverting f ,
so this is still hard to conditionally sample; and it’s still the case that small smoothing levels are
efficiently computable.

Based on the above, we define our lower bound instance formally in Section 3.1. Then, in
Section 3.2 we sketch a proof of Lemma 3.4, which shows that it is impossible to perform accurate
posterior sampling for our instance, under standard cryptographic assumptions. Section 3.3 shows
that our lower bound distribution is well-modeled by a small ReLU network, which means that
the hardness is not coming merely from inability to represent the scores, and that unconditional
sampling is provably efficient. Finally, we put these observations together to show the theorem.

3.1 Lower Bound Instance

We define our lower bound instance here formally. Let wσ(x) denote the density of a Gaussian
with mean zero and standard deviation σ, and let combε denote the Dirac Comb distribution with
period ε, given by

combε(x) =
∞∑

k=−∞
δ(x− kε)

For any b ∈ {−1, 1}, let ψb be the density of a standard Gaussian discretized to multiples of ε, with
phase either 0 or ε

2 depending on b:

ψb(x) ∝ w1(x) · combε

(
x− ε/2 · 1− b

2

)
.

Definition 3.1 (Unscaled Lower Bound Distribution). Let f : {±1}d → {±1}d′ be a given function.
For R > 0 and for any s ∈ {±1}d, define the product distribution gs over x ∈ R

d+d′ such that

xi ∼ w1(xi −R · si) for i ≤ d

xi ∼ ψf(s)i−d
for i > d.

The unconditional distribution g we consider is the uniform mixture of gs over s ∈ {±1}d.
We will have d′ = O(d) throughout. Figure 1 gives a visualization of gs; the final distribution is

the mixture of gs over uniformly random s.
For ease of exposition, we will also define a scaled version of our distribution g such that its

covariance Σ has ∥Σ∥ ≲ 1.

Definition 3.2 (Scaled Lower Bound Distribution). Let g̃(x) = Rd+d′g(R · x) be the scaled version
of the distribution with density g defined in Definition 3.1. Similarly, let g̃s = Rd+d′gs(R · x).

The measurement process then takes sample x ∼ g̃ and computes Ax+ η, where η = N(0, β2Id′)
and A =

(
0d

′×d Id′
)
. That is, we observe the last d′ bits of x, with variance β2 Gaussian noise

added to each coordinate.
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the first d coordinates). Since this is a product distribution, we can represent its score using our
ReLU construction.

On the other hand, when σ is small, for R ≫ log d and 1
poly(d) ≤ σ ≪ R√

log d
, the score of h at

any point x is well approximated by the distribution hr, where r ∈ {±1}d represents the orthant
containing the first d coordinates of x. Since hr is a product distribution, our ReLU construction
applies.

Finally, we set R≫ log d so that for any 1
poly(d) ≤ σ ≤ poly(d), there is a polynomially bounded

ReLU net that approximates the score of h. We now describe each of these steps in more detail.

3.3.1 ReLU Approximation for Score of Product Distribution

We will show first how to construct a ReLU network approximating the score of a one-dimensional
distribution – the construction generalizes to product distributions in a straightforward way.

Consider any one-dimensional distribution p with σ-smoothed version pσ, and corresponding
score sσ. Suppose pσ has standard deviation m2. We will first construct a piecewise-linear function
l that approximates sσ in L2.

Since sσ is σ-smoothed, its value does not change much in most σ-sized regions. More precisely,
Lemma H.1 shows that

E
x∼pσ

[
sup
|c|≤σ

s′σ(x+ c)2

]
≲

1

σ4

This immediately gives a piecewise linear-approximation l1 with O(γσ2)-width pieces: By Taylor
expansion, we can write any sσ(x) = sσ(αx) + (x− αx)s

′
σ(ξ) for some ξ between αx and x. Then, if

αx is the largest discretization point smaller than x (so that |x− αx| ≲ γσ2), this gives that

E
[
(sσ(x)− sσ(αx))

2
]
≲ γ2σ4 E[sup

c
s′σ(x+ c)2]

≲ γ2

So, we can approximate every sσ(x) with sσ(αx), yielding a piecewise-constant approximation. Then,
we can similarly obtain another piecewise-constant approximation by replacing sσ(x) with sσ(βx)
for βx the smallest discretization point larger than x. By convexity, we can linearly interpolate
between sσ(αx) and sσ(βx) to obtain our piecewise-linear approximation l1 (see Fig. 2).

Unfortunately, l1 suffers from two issues: 1) It is potentially unbounded, and 2) It has an
unbounded number of pieces.

For 1), since sσ is σ-smoothed, it is bounded by with high probability, so that we can ensure
that our approximation is also bounded without increasing its error much. For 2), since pσ has
standard deviation m2, Chebyshev’s inequality gives that the total probability outside a radius m2

γσ2

region is small, so that we can use a constant approximation outside this region. This allows us to

bound the number of pieces by poly
(
m2
γσ

)
, yielding our final approximation l.

As is well-known, such a piecewise linear function can be represented using a ReLU network with

poly
(
m2
γσ

)
parameters, and each parameter bounded by poly

(
m2
γσ

)
in absolute value. For product

distributions, we simply construct ReLU networks for each coordinate individually, and then append
them, for bounds polynomial in d and 1/σ, 1/γ and m2. In the remaining proof, whenever this
construction is used, all these parameters are set to polynomial in d, for final bounds poly(d).
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Since the score of h is well-approximated by the score of hr, and hr is a product distribution,
we can essentially use our ReLU construction for product distributions to represent its score, after
using a small gadget to identify the orthant that x1,...,d lies in.

3.4 Putting it all Together

Lemma 3.4 shows that it is computationally hard to sample from g̃ from the posterior of a noisy
linear measurement when f is a one-way funciton, while Corollary 3.5 shows that g̃ has score that is
well-modeled by a ReLU network when f can be represented by a polynomial-sized ReLU network.
In Section G, we show that any one-way function can be represented using a polynomial-sized ReLU
network. Thus, together, these imply our lower bound, Theorem 1.8.

Essentially the same argument holds under the stronger guarantee that there exists a one-way
function that takes exponential time to invert, for a lower bound exponential in the number of
measurements m.

4 Proof Overview - Upper Bound

Algorithm 1: Rejection Sampling Algorithm

Input: y ∈ Y
1: while True do

2: Sample x ∼ Dx

3: Compute q := e
−∥Ax−y∥2

2β2 (proportional to p(y | x))
4: Generate a random number r ∼ U(0, 1)
5: if r < q then

6: return x
7: end if

8: end while

In this section, we sketch the proof of Theorem 1.7 in Section E: the time complexity of posterior
sampling by rejection sampling (Algorithm 1). For ease of discussion, we only consider the case when
δ = Θ(1). The proof overview below will repeatedly refer to events as occurring with “arbitrarily
high probability”; this means the statement is true for every constant probability p < 1. (Usually
there will be a setting of constants in big-O notation nearby that depends on p.)

Sampling Correctness With Ideal Sampler. To illustrate the idea of the proof, we first focus
on the scenario where we can sample from the distribution of x perfectly. We aim to show that
rejection sampling perfectly samples x | y. To prove the correctness of Algorithm 1, noting that
each round is independent, it suffices to verify that each round outputs x with probability density
proportional to p(x | y). We have

p(x | y) = p(y | x)p(x)
p(y)

∝ p(y | Ax)p(x) ∝ e
− ∥Ax−y∥

2β2 p(x).

Therefore, with a perfect unconditional sampler for Dx (sampling x according to density p(x)),
rejection sampling perfectly samples x | y.

10



Running time. Now we show that for linear measurements y = Ax+ βN (0, Id), with arbitrarily
high probability over x ∼ D, the acceptance probability per round is at least Θ(β)m; this implies
the algorithm terminates in (O(1)/β)m rounds with arbitrarily high probability. For a given y, the
acceptance probability per round is equal to

E
x

[
e
− ∥Ax−y∥2

2β2

]
≥ Px

[
∥Ax− y∥ ≤ O(β

√
m)
]
· e−O(m).

We first focus on the case when m = 1. We aim to show that with arbitrarily high probability
over y,

Px [∥Ax− y∥ ≤ O(β)] ≥ β.

For well-modeled distributions, the covariance matrix of x has constant singular values. Then
with arbitrarily high probability, x is O(1) in each direction. Since every singular value of A is at
most 1, the projection Ax onto R will lie in [−C,+C] for some constant C with arbitrarily high
probability.

We divide [−C,+C] into N = 2C
β segments of length β, forming set S. Now we only need to

prove that with arbitrarily high probability over y, there exists a segment θ ∈ S satisfying for all
x ∈ θ, |x− y| ≤ O(β) , and Px∼Dx [Ax ∈ θ] ≳ β. For any constant c > 0, define

S′ := {θ ∈ S | Px∼Dx [Ax ∈ θ] >
c

N
}.

Each segment in S′ has probability at least Ω(1/N) ≳ β to be hit. Therefore, we only need to
prove that, with arbitrarily high probability, y = Ax + η satisfies these two independent events
simultaneously: (1) Ax lands in some segment θ ∈ S′; (2) η ≲ β.

By a union bound, the probability that Ax lies in a segment in S \ S′ is at most N · c
N ≤ c. For

sufficiently small c, combining with the fact that Ax ∈ S with arbitrarily high probability, we have
(1) with arbitrarily high probability. Since that η ∼ N (0, β2). By the concentration of Gaussian
distribution, (2) is satisfied with arbitrarily high probability.

For the general case when m > 1, with arbitrarily high probability, Ax will lie in {x ∈ R
m |

∥x∥ ≤ C
√
m} for some C > 0. Instead of segments, we use N = (O(1)

β )m balls with radius β to

cover {x ∈ R
m | ∥x∥ ≤ C

√
m}. Following a similar argument, we can prove that with arbitrarily

high probability over y,
Px

[
∥Ax− y∥ ≤ O(β

√
m)
]
≥ Θ(β)m.

Diffusion as unconditional sampler. In practice, we do not have a perfect sampler for Dx.
Theorem 1.4 states that for O(C)-well-modeled distributions, diffusion model gives an unconditional
sampler that samples from approximation distribution D̂x satisfying that there exists a coupling
between x ∼ Dx and x̂ ∼ D̂x such that with arbitrarily high probability, ∥x− x̂∥ ≤ 1/d2C .

For (x, x̂) drawn from this coupling, we know from our previous analysis that rejection sampling
based on x is correct. But the algorithm only knows x̂, which changes its behavior in two ways: (1)
it chooses to accept based on p(y | x̂) rather than p(y | x), and (2) it returns x̂ rather than x on
acceptance. The perturbation from (2) is easily within our tolerance, since it is 1

d2C
close to x with

arbitrarily high probability.
For (1), we can show when x and x̂ are close, these two probabilities are nearly the same. When

∥x− x̂∥ ≤ 1
d2C

≤ o(β/
√
m), we have

∣∣∣∣log
p(y | x̂)
p(y | x)

∣∣∣∣ =
∣∣∣∣∣
∥Ax− y∥2

2β2
− ∥Ax̂− y∥2

2β2

∣∣∣∣∣ ≤ o(1).

This implies that p(y | x̂) = (1± o(1))p(y | x) and proves Theorem 1.7.
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5 Conclusion and Future Work

We have shown that one cannot hope for a fast general algorithm for posterior sampling from
diffusion models, in the way that diffusion gives general guarantees for unconditional sampling.
Rejection sampling, slow as it may be, is about the fastest one can hope for on some distributions.
However, people run algorithms that attempt to approximate the posterior sampling every day;
they might not be perfectly accurate, but they seem to do a decent job. What might explain this?

Given our lower bound, a positive theory for posterior sampling of diffusion models must
invoke distributional assumptions on the data. Our lower bound distribution is derived from a
one-way function, and not very “nice”. It would be interesting to identify distributional properties
under which posterior sampling is possible, as well as new algorithms that work under plausible
assumptions.
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A Lower Bound instance

We first define our Lower Bound Distribution g (up to scaling). Let wσ(x) denote the density
of a Gaussian with mean zero and standard deviation σ, and let combε denote the Dirac Comb
distribution with period ε, given by

combε(x) =

∞∑

k=−∞
δ(x− kε)

For any b ∈ {−1, 1}, let ψb be the density of a standard Gaussian discretized to multiples of ε, with
phase either 0 or ε

2 depending on b:

ψb(x) ∝ w1(x) · combε

(
x− ε/2 · 1− b

2

)
.
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Definition 3.1 (Unscaled Lower Bound Distribution). Let f : {±1}d → {±1}d′ be a given function.
For R > 0 and for any s ∈ {±1}d, define the product distribution gs over x ∈ R

d+d′ such that

xi ∼ w1(xi −R · si) for i ≤ d

xi ∼ ψf(s)i−d
for i > d.

The unconditional distribution g we consider is the uniform mixture of gs over s ∈ {±1}d.

We define our final Lower Bound distribution below, which is a scaled version of g.

Definition 3.2 (Scaled Lower Bound Distribution). Let g̃(x) = Rd+d′g(R · x) be the scaled version
of the distribution with density g defined in Definition 3.1. Similarly, let g̃s = Rd+d′gs(R · x).

B Lower Bound – Posterior Sampling implies Inversion of One-Way

Function

B.1 Notation

Let l := [d] = {1, 2, 3, . . . , d}, and let r := {d+ 1, d+ 2, . . . , d+ d′}, so that for any x ∈ R
d+d′ ,

x[:d] ∈ R
d is a vector containing the first d entries of x, and x[−d′:] ∈ R

d′ is a vector containing the
last d′ entries of x.

Let RoundR : Rk → {±R}k be such that for all i ∈ [k],

RoundR(x)i = argmin
v∈{±R}

|xi − v| .

Let parity : Z → {−1,+1} be such that parity(2i) = −1, parity(2i + 1) = 1 for all i ∈ Z. Let
Bitsε : R

k → {±1}k be such that for all i ∈ [k],

(Bitsε(y))i = parity

(
argmin

i∈Z

∣∣∣i · ε
2
− yi

∣∣∣
)

This function takes a value y and returns a guess for whether y comes from a smoothed distribution
discretized to even multiples of ε/2 or odd multiples of ε/2, based on which is closer.

Definition B.1 (Conditional Distribution). Let g be the distribution defined in 3.1, parameterized by
a function f , and real values R, ε > 0. For some noise pdf h, we define X h

f,R,ε to be the distribution
over (x, y) where x ∼ g and y ∼ x[−d′:] + h.

We also explicitly define the two noise models we will be using for the lower bound: we take

X β
f,R,ε := Xwβ

f,R,ε, wβ = N(0, β2). (1)

Let (X β
f,R,ε)y denote the marginal over y. Further, X β,βmax

f,R,ε := X b
f,R,ε where b is a clipped normal

distribution: b := clip(βmax, N(0, β2)).
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B.2 Inverting f via Posterior Sampling

Lemma B.2. Let βmax ≤ ε/4 and
√

32 log d
δ ≤ R. Then,

P
xb,yb∼Xβ,βmax

f,R,ε

[
f(RoundR(x

b
[:d])) = Bitsε(y

b)
]
≥ 1− δ

Proof. Let xb, yb ∼ X β,βmax

f,R,ε . By definition, we know that yb ∼ xb[−d′:] + clip(βmax, N(0, β2). Further,

for all indices i, (xb[−d′:])i = jε/2 for some integer j. So, if βmax ≤ ε/4, then

Bitsε(y
b) = Bitsε(x

b
[−d′:]). (2)

We know that xb is drawn from a uniform mixture over gs(x), as defined in 3.1. So, fixing an
s ∈ {±1}d. We have that

Bitsε(x
b
[−d′:]) = s. (3)

On the other hand, x[:d] is a product of gaussians centered at Rsi in the ith coordinate. Therefore,
for all i < d,

Pxb

[∣∣∣(xb[:d])i −Rsi

∣∣∣ ≤
√

2 log
d

δ

]
≥ 1− δ

d

Since
√
2 log d

δ ≤ R/4, we get that

Pxb

[
RoundR(x

b
[:d]) = s

]
≥ 1− δ. (4)

Putting together eq. (2), eq. (3), and eq. (4) we get

Pxb

[
RoundR(x

b
[:d]) = Bitsε(y

b)
]
≥ 1− δ

Lemma B.3. Let C be a (τ, δ)-conditional sampling algorithm for X β
f,R,ε. If ε ≥ β

√
32 log d

δ ,

τ ≤ R/4, and 32 log d
δ ≤ R2, then for y ∼ (X β

f,R,ε)y and x̂ ∼ C(y),

P[f(RoundR(x̂[:d])) ̸= Bitsε(y)] ≤ 5δ.

Proof. Let X β
f,R,ε have pdf pβ . Assume we have a (τ, δ)-posterior sampler over X β

f,R,ε that outputs

sample from distribution X̂ with distribution p̂. This means that with probability 1 − δ over y,
there exists a coupling P over (x, x̂) such that (x, x̂) are (τ, δ)-close. Therefore, there exists a
distribution P over (x, x̂, y) ∈ R

d+d′ × R
d+d′ × R

d′ with density pP such that pP(x, y) = pβ(x, y),
pP(x̂ | y) = p̂(x̂ | y), and

Px,x̂∼P [∥x− x̂∥2 ≤ τ ] ≥ 1− 2δ.

Now, let X β,βmax

f,R,ε have pdf pβ,βmax , with βmax = β
√

2 log 1
δ . We have

TV (X β
f,R,ε,X

β,βmax

f,R,ε ) ≲ e−β2
max/2β

2 ≤ δ
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Therefore, building on P, we can construct a new distribution P ′ over (x, x̂, xb, y, yb) ∈ R
d+d′ ×

R
d+d′ × R

d+d′ × R
d′ × R

d′ with density pP
′
such that pP

′
(x, y) = pβ(x, y), pP

′
(x̂ | y) = p̂(x̂ | y),

pP
′
(xb, yb) = pβ,βmax(xb, yb), (x, y) = (xb, yb) with probability 1− δ, and

Px,x̂∼P ′ [∥x− x̂∥2 ≤ τ ] ≥ 1− 2δ

Therefore, under this distribution,

Px̂,xb∼P ′

[
∥x̂− xb∥2 ≤ τ

]
≥ 1− 3δ

In particular, we apply the fact that ∥x̂[:d] − xb[:d]∥∞ ≤ ∥x̂− xb∥∞ ≤ ∥x̂− xb∥2 to get

Px̂,xb∼P ′

[
∥x̂[:d] − xb[:d]∥∞ ≤ τ

]
≥ 1− 3δ. (5)

Now, by the definition of X β,βmax

f,R,ε , for all i < d, xbi is a mixture of variance 1 normal distributions
centered at ±R. So, for any i < d,

Pxb

[∣∣∣xbi − RoundR(x
b
i)
∣∣∣ ≥

√
2 log

d

δ

]
≤ δ

d

Applying a union bound over i ∈ [d] and putting this together with eq. (5),

Px̂,xb∼P ′

[
∥x̂[:d] − RoundR(x

b
[:d])∥∞ ≤

√
2 log

1

δ
+ τ

]
≥ 1− 4δ

So, since
√
2 log d

δ + τ ≤ R
4 + R

4 = R
2 , and RoundR((x

b
[:d])i) ∈ ±R, we have

Px̂,xb∼P ′

[
∥RoundR(x̂[:d])− RoundR(x

b
[:d])∥∞ ≤

√
2 log

d

δ
+ τ

]
≤ 1− 3δ

Again, the output of RoundR is always ±R, so this means

Px̂,xb∼P ′

[
RoundR(x̂[:d]) = RoundR(x

b
[:d])
]
≥ 1− 3δ

Now, by Lemma B.2, since βmax < ε/4 and R ≥
√
32 log d

δ , we have

Pxb,yb∼P ′

[
f(RoundR(x

b
[:d])) = Bitsε(y

b)
]
≥ 1− δ

Therefore,

Px̂,yb∼P ′

[
f(RoundR(x̂[:d])) = Bitsε(y

b)
]
≥ 1− 4δ

Finally, we know that y = yb with probability 1− δ. Therefore, we get

Px̂,y∼P ′
[
f(RoundR(x̂[:d])) = Bitsε(y)

]
≥ 1− 5δ
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Theorem B.4. For any function f , let C be a (R/4, δ)-posterior sampler (1.5) for X β
f,R,ε, as defined

in (1), with ε ≥ β
√

32 log d
δ , and R ≥

√
32 log d

δ , that takes time T to run. Then, there exists an

algorithm A that runs in time T +O(d) such that

Ps,A[f(A(f(s))) ̸= f(s)] ≤ 6δ

Proof. Sample y ∼ hf(r), where

hs(y) =

{
(w1(y) · combε(y))) ∗N(0, β2), si = 1(
w1(y) · combε

(
y − ε

2

))
∗N(0, β2) si = −1

Now, since β ≤ ε√
32 log d

δ

, each coordinate of the noise, drawn from N(0, β2), is less than ε/4 with

probability 1− δ/d. Therefore,
P [Bitsε(y) = f(r)] ≥ 1− δ

By definition, hs is the same as the density of (X β
f,R,ε)y. So, by Lemma B.3, since R ≥ τ/4, R ≥√

32 log d
δ , and we take x̂ ∼ C(y), we have

Px̂,y

[
f(RoundR(x̂[:d])) ̸= Bitsε(y)

]
≤ 5δ

Therefore,
Px̂,y

[
f(RoundR(x̂[:d])) ̸= f(r)

]
≤ 6δ

So, our algorithm A can output RoundR(x̂l). All we had to do to run this algorithm was to sample
d normal random variables, and then run our posterior sampler. This takes T +O(d) time.

Lemma 3.3. For any function f , suppose C is an (1/10, 1/10)-posterior sampler in the linear
measurement model with noise parameter β for distribution with density g̃ as defined in Definition 3.2,
with ε ≥ β

√
32 log d and R ≥ 32

√
log d. If C takes time T to run, then there exists an algorithm A

that runs in time T +O(d) such that

Ps,A[f(A(f(s))) ̸= f(s)] ≤ 3

4

Proof. This follows from Theorem B.4, using the fact that after rescaling down by R, X β
f,R,ε as a

distribution over (x, y) is the same distribution as x ∼ g̃, with y = Ax+N(0, β2).

B.3 Inverting a One-Way function via Posterior Sampling

Lemma 3.4. Suppose d0.01 ≤ m ≤ d/2 and one-way functions exist. Then, for g̃ as defined in
Definition 3.2 with ε = 1

C
√
log d

and R = C log d, and linear measurement model with noise parameter

β = 1
C2 log2 d

and measurement matrix A ∈ R
m×d, ( 1

10 ,
1
10)-posterior sampling takes superpolynomial

time.

Proof. Since d0.01 < m < d/2, d and m are only polynomially separated. So, by G.2, we can
construct a one-way function f : {±1}d−m → {±1}m. By definition, we can see that g̃, with

measurement noise β is the same distribution as X βR
f,R,ε, scaled down by R. Therefore, by Theorem

B.4, since R ≥ 32
√

log d
δ , ε ≥ βR

√
log d

δ , if we can run a posterior sampler in time T , we can invert

f with probability 1−6δ in time T +O(m). So, if f takes time superpolynomial in m to invert, then
T +O(m) is superpolynomial. Since m > d0.01, this means that T itself is superpolynomial.
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Lemma B.5. For any m ≤ d/2, suppose that there exists a one-way function f : {±1}m → {±1}m
that requires 2Ω(m) time to invert. Then, for g̃ as defined in Definition 3.2 with ε = 1

C
√
log d

and

R = C log d, and linear measurement model with noise parameter β = 1
C2 log2 d

and measurement

matrix A ∈ R
m×d, ( 1

10 ,
1
10)-conditional sampling takes at least 2Ω(m) time.

Proof. By definition, we can see that g̃, with measurement noise β is the same distribution as X βR
f,R,ε,

scaled down by R. Therefore, by Theorem B.4, since R ≥ 32
√
log d, ε ≥ βR

√
log d, if we can run a

posterior sampler in time T , we can invert f with probability 0.4 in time T +O(m). So, if f takes
at least time 2Ω(m) to run, then we must have T +O(m) ≥ 2Ω(m), which means T ≥ 2Ω(m).

C Lower Bound – ReLU Approximation of Score

C.1 Piecewise Linear Approximation of σ-smoothed score in One Dimension

In this section, we analyze the error of a piecewise linear approximation to a smoothed score.
We first show that for one dimensional distributions, we can get good approximations, and later
extend it to product distributions in higher dimensions.

First, we show that a piecewise linear approximation that discretizes the space into intervals of
width γ has low error.

Lemma C.1. Let p be a distribution over R, and let pσ = p ∗N(0, σ2) have score sσ. Let γ ≤ σ,
and let Si = [iγ, (i+ 1)γ) for all i ∈ Z. Define a piecewise linear function f : R → R so that: for all
x, if i is such that Si ∋ x, then

f(x) =
((i+ 1)γ − x) · s(iγ) + (x− iγ) · s((i+ 1)γ)

γ
.

Then f is continuous and satisfies

E
[
(s(x)− f(x))2

]
≲
γ2

σ4

Proof. Define the left and right piecewise constant approximations l(x) = s(iγ), r(x) = s((i+ 1)γ)
for all x ∈ Si.

We know that for any y ∈ Si, there is some y′ ∈ [iγ, y] such that s(y) = s(iγ) + (y − iγ)s′(y′).
So, we get

∀y ∈ Si, s(y) ≤ s(iγ) + γ sup
z∈Si

s′(z) ≤ s(iγ) + γ sup
|c|≤γ

s′(y + c).

Therefore,

E
x∼p

[
(sσ(x)− l(x))2

]
≤ γ2 E

x∼p
[ sup
|c|≤γ

s′(y + c)2] ≲
γ2

σ4

By Lemma H.1. The same holds for r(x). Now, recall that f satisfies

∀i ∈ Z, ∀x ∈ Si, f(x) =
(i+ 1)γ − x

γ
· s(iγ) + x− iγ

γ
· s((i+ 1)γ).

The coefficients (i+1)γ−x
γ and x−iγ

γ sum to 1 and are within the interval [0, 1]. So, at each point,
f is just a convex combination of the two approximations l and r. Therefore, by convexity, for any
Si, if x ∈ Si,

E
x∈Si

[(sσ(x)− f(x))2] ≤ E
x∈Si

[(sσ(x)− l(x))2] + E
x∈Si

[(sσ(x)− r(x))2] (6)
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This immediately gives us that

E[(sσ(x)− f(x))2] ≤ E[(sσ(x)− l(x))2] + E[(sσ(x)− r(x))2] ≲
ε2

σ4

Within each interval, the function is linear and so it is continous. We just need to check continuity
at the endpoints. However, we can see that for any i ∈ Z, limx→iγ− = limx→iγ+ = s(iγ), and so we
also have continuity.

Unfortunately, the above approximation has an infinite number of pieces. To handle this, we
show that in regions far away from the mean, a zero-approximation is good enough, given that the
distribution has bounded second moment m2.

Lemma C.2. Let p be some distribution over R with mean µ, and let pσ = p ∗N(0, σ2) have score
sσ. Let m2

2 := Ex∼p

[
(x− µ)2

]
be the second moment of pσ. Further, let |ϕ| ≤ 1

σ log 1
δ be some

constant. Then,

E

[
(sσ(x)− ϕ)2 · 1|x−µ|>m2√

δ

]
≲

√
δ

σ2

Proof. We have

E

[
(sσ(x)− ϕ)2 · 1|x−µ|>m2√

δ

]
≲ E

[
sσ(x)

2 · 1|x−µ|>m2√
δ

]
+ E

[
ϕ2 · 1|x−µ|>m2√

δ

]

First, by Chebyshev’s inequality, we know that

P

[
|x− µ| ≥ m2

δ

]
≤ δ

Now, we use Cauchy Schwarz to bound the first term:

E

[
sσ(x)

2 · 1|x−µ|>m2√
δ

]
≤
√
E [sσ(x)4]E

[
1|x−µ|>m2√

δ

]

=

√
E [sσ(x)4]P

[
|x− µ| ≥ m2√

δ

]

=
√
E [sσ(x)4] · δ ≲

√
δ/σ4 =

√
δ/σ2

where the last line is by Corollary H.8. Finally, for the second term, we know that

E

[
ϕ2 · 1|x−µ|>m2√

δ

]
≤ E

[
1

σ2
log2

1

δ
· 1|x−µ|>m2√

δ

]

=
1

σ2
log2

1

δ
P

[
|x− µ| > m2√

δ

]

=
δ

σ2
log2

1

δ
≲

√
δ

σ2

The last line here uses the fact that for all x, x log2(1/x) ≤ 3
√
x. Summing the two terms gives the

desired result.

Then, we show that neighborhoods where the magnitude of the score can be large are rare and
can also be approximated by the zero function. This allows us to control the slope of the piecewise
linear approximation in each piece.
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Lemma C.3. Let p be a distribution over R. Let pσ = p ∗N(0, σ2) have score sσ. Let γ ≤ σ
2 , and

let m(x) = supy∈[x−γ,x+γ] s(x). Then,

E

[
s(x)2 · 1

m(x)>
log 1

δ
σ

]
≲

√
δ

σ2

Proof.

E

[
m(x)2 · 1

m(x)>
log 1

δ
σ

]
≤
√
E [m(x)4] · E

[
1
m(x)>

log 1
δ

σ

]
by Cauchy-Schwarz

≤

√√√√√E



(

sup
y∈[x−γ,x+γ]

s(x)

)4

 · P

[
m(x) >

log 1
δ

σ

]

≲

√√√√ 1

σ4
· P
[
m(x) >

log 1
δ

σ

]
by Lemma H.8

≤
√
δ

σ2
by Lemma H.2

We put these lemmas together to show that a piecewise linear function with a bounded number
of pieces and bounded slope in each piece is a good approximation to the smoothed score.

Lemma C.4. Let p be a distribution over R with mean µ, and let pσ = p ∗N(0, σ2) have score sσ
and second moment m2

2. Then, for any α ≤ 1/4 there exists a function l : R → R that satisfies

1. l is piecewise linear with at most Θ( m2

σκ3/2 ) pieces,

2. if x is a transition point between two pieces, then |x− µ| ≤ m2
κ

3. the slope of each piece is bounded by Θ
(

log 1
κ

σ2
√
κ

)
,

4. |l| ≲ 1
σ log 1

κ

5.
E

x∼p
[(l(x)− s(x))2] ≲

κ

σ2

Proof. First, we partition the real line into Si = [iγ, (i+ 1)γ) for all i ∈ Z, where γ < σ/2. Define
the function l1 : R → R so that if Si ∋ x, then

l1(x) =
((i+ 1)γ − x)s(iγ) + (x− iγ)s((i+ 1)γ)

γ
. (7)

As in Lemma C.1, this is the linear interpolation between s(iγ) and s((i + 1)γ) on the interval
[iγ, (i+ 1)γ). By Lemma C.1, when γ < σ/2, we have

E
[
(s(x)− l1(x))

2
]
≲
γ2

σ4
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Now, we define l2 : R → R. This function uses the piecewise linear l1 to create a linear approximation
that has small slopes on all of the pieces. Define first a set of “good” sets

G =

{
Si : sup

y∈Si

s(x) ≤ 1

σ
log

1

δ

}
.

These are the intervals on which the score is always bounded. Further, define two helper maps L(x)
and U(x):

L(x) = the largest i such that iγ < x, Si−1 ∈ G

R(x) = the smallest i such that iγ ≥ x, Si ∈ G

These represent the nearest endpoint of a “good” interval to the left and right, respectively. We
then interpolate linearly between s(γL(x)) and s(γR(x)) to evaluate l2(x). That is,

l2(x) =
(γR(x)− x)s(γL(x)) + (x− γL(x))s(γR(x))

γ(R(x)− L(x))
(8)

Note that by assumption, we have that |s(γR(x))| , |s(γL(x))| ≤ 1
σ log 1

δ , and so |l2(x)| ≤ 1
σ log 1

δ .
We now analyze the error of l2 against s. First, we note that on the sets outside G, the error is
bounded, using Lemma C.3:
∑

Si ̸∈G
E
[
(s(x)− l2(x))

2
1x∈Si

]
≤ 2

∑

Si ̸∈G

(
E
[
s(x)21x∈Si

]
+ E

[
l2(x)

2
1x∈Si

])

≲

√
δ

σ2
+
∑

Si ̸∈G
E

[
1

σ2
log2

1

δ
1x∈Si

]
by Lemma C.3

=

√
δ

σ2
+

1

σ2
log2

1

δ
P [x ̸∈ G]

≤
√
δ

σ2
+

1

σ2
log2

1

δ
P

[
sup

y∈[x−γ,x+γ]
s(x) ≥ 1

σ
log

1

δ

]

≤
√
δ

σ2
+

δ

σ2
log2

1

δ
by Lemma H.2

Further, if x is in a “good” interval, then L(x), R(x) are simply the left and right endpoints of the
interval that x is in. This means that l2(x) = l1(x). So,

∑

Si∈G
E
[
(s(x)− l2(x))

2
1x∈Si

]
=
∑

Si∈G
E
[
(s(x)− l1(x))

2
1x∈Si

]

≤
∑

i

E
[
(s(x)− l1(x))

2
1x∈Si

]
≲

√
δ

σ2

Putting these two together, we get that

E
[
(l2(x)− s(x))2

]
≲

√
δ

σ2
+
γ2

σ4
+

δ

σ2
log2

1

δ

Now, define l3 : R → R as follows:

l3(x) =





l2(x) |x− µ| ≤ m2√
δ

l2

(
µ− m2√

δ

)
x < µ− m2√

δ

l2

(
µ+ m2√

δ

)
x > µ− m2√

δ

(9)
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This takes our previous approximation l2 and holds it constant on values of x far away from the
mean.

Let B be the integers i such that x ∈ Si =⇒ |x− µ| ≥ m2/
√
δ. In other words, the set B

enumerates the intervals on which l2 ≠ l1, and equivalently, l2 = 0. Note that since |l3(x)| ≤ 1
σ log 1

δ ,

we have in particular that
∣∣∣l3
(
µ± m2√

δ

)∣∣∣ ≤ 1
σ log 1

δ . Therefore, for some |ϕ| ≤ 1
σ log 1

δ , we have

E
[
(s(x)− l3(x))

2
]
=
∑

i

E
[
(s(x)− l3(x))

2
1x∈Si

]

=
∑

i∈B
E
[
(s(x)− l3(x))

2
1x∈Si

]
+
∑

i ̸∈B
E
[
(s(x)− l3(x))

2
1x∈Si

]

=
∑

i∈B
E

[
(s(x)− ϕ)21|x−µ|≥m2/

√
δ

]
+
∑

i

E
[
(s(x)− l2(x))

2
1x∈Si

]

≲

√
δ

σ2
+
γ2

σ4

where this last line uses Lemma C.2.

Finally, each piece of l3 has slope at most Θ
(
log 1

δ
γσ

)
since the endpoints of each interval are

bounded in magnitude by 1
σ log 1

δ and each interval is at least γ in width. Also, we can see that

l3 has at most as many pieces as l2, which has Θ
(

m2

γ
√
δ

)
pieces, with each endpoint being within

m2/
√
δ of the mean.

So, we take l to be l3 with δ = κ2, and γ = σ
√
κ. Note that when κ < 1/4, we have γ < σ/2.

Plugging these in, and using the fact that x log2(1/x) ≤ 3
√
x, we get that the number of pieces is

Θ
(

m2

σκ3/2

)
, the slope of each piece is bounded by Θ

(
log 1

κ2

σ2
√
κ

)
, the function itself is always bounded

by 1
σ log 1

κ2 , and Ex∼p[∥l(x)− s(x)∥22] ≤ κ
σ2 .

Finally, we show that if we have a product distribution over d dimensions, we can simply use
the product of the one dimensional linear approximations along each coordinate to give a good
approximation for the full score.

Lemma C.5. Let p be a product distribution over Rd, such that p(x) =
∏d

i=1 pi(xi). Let s : R
d → R

d

be the score of p and let si : R → R be the score of pi. If li : R → R is an approximation to si such
that

E
xi∼pi

[
(li(xi)− si(xi))

2
]
≤ ε/d,

then the function l : Rd → R
d defined as l(x) = (li(xi)) satisfies

E
x∼p

[
∥l(x)− s(x)∥22

]
≤ ε

Proof. We have

s(x)i = (∇ log p(x))i =
∂

∂xi
log

d∏

i=1

pi(xi) =
∂

∂xi

d∑

i=1

log pi(xi) =
∂

∂xi
log pi(xi) = si(xi).

Therefore,

E
x∼p

[
∥l(x)− s(x)∥22

]
= E

x∼p

[
d∑

i=1

∥li(xi)− si(xi)∥22

]
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=
d∑

i=1

E
xi∼pi

[
∥li(xi)− si(xi)∥22

]
≤ d · ε/d = ε

C.2 Small noise level – Score of vertex distribution close to full score in vertex

orthant

Lemma C.6 (Density gs(x) is close to g(x) for s ∈ {±1}d closest to x). Let d′ = O(d). Consider gs
and g as in Definition 3.1. We have that for x ∈ {±1}d such that s is closest to x1,...,d among points
in {±1}d, for the σ-smoothed versions hs = gs ∗ N (0, σ2Id+d′) of gs and h = g ∗ N (0, σ2Id+d′) of g,

for R2

1+σ2 > C log d for sufficiently large constant C,

∣∣∣∣
1

2d
hs (x)− h(x)

∣∣∣∣ ≲
1

2d
· e−

R2

4(1+σ2)

Proof. We have that there are
(
d
k

)
vectors z ∈ {±1}d such that ∥R · z − x1,...,d∥2 ≥ kR2. For such a

z,

hz(y) ≲ e
− kR2

2(1+σ2)

So,

∣∣∣∣
1

2d
hs (x)− h(x)

∣∣∣∣ =

∣∣∣∣∣∣
1

2d

∑

r ̸=s

hr(x)

∣∣∣∣∣∣
≲

∣∣∣∣∣
1

2d

d∑

k=1

dke
−kR2

2(1+σ2)

∣∣∣∣∣ ≲
1

2d
· e−

R2

4(1+σ2)

since R2

1+σ2 > C log d.

Lemma C.7 (Gradient of density gx(y) is close to g(y) for x ∈ {±1}d closest to y). Let d′ = O(d)
and consider gs and g as in Definition 3.1, and x ∈ R

d+d′. We have that for s ∈ {±1}d such
that s is closest to x1,...,d among points in {±1}d, for σ ≥ τ , τ = 1

dC
and ε > 1

poly(d) , for the

σ-smoothed versions hs = gs ∗N (0, σ2Id+d′) of gs and h = g ∗N (0, σ2Id+d′) of g, for
R2

1+σ2 > C log d
for sufficiently large constant C,

∥∥∥∥
1

2d
∇hs(x)−∇h(x)

∥∥∥∥
2

≲
1

2d
· e−

R2

16(1+σ2)

Proof. We will let h̃s,i = g̃s,i ∗ N (0, σ2), where g̃s,i is defined in Definition 3.1. So, hs(x) =∏d+d′
i=1 h̃s,i(xi). We have that there are

(
d
k

)
vectors z ∈ {±1}d such that ∥R · z − x1,...,d∥2 ≥ kR2. So,

for i ∈ [d], for such a z,

| (∇hz(x))i | ≲ e
− kR2

4(1+σ2)

On the other hand, for i > d, by Lemma C.16, since σ > ε2 and ε > 1
poly(d) ,

∣∣∣h̃′z,i(xi)− w′√
σ2+1

(xi)
∣∣∣ ≲ e

− σ2

2ε2(1+σ2) +
∑

j>0

e
− j2σ2

2ε2(1+σ2)
+log j

ε(1+σ2)
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≤ e
− τ2

2ε2(1+τ2) +
∑

j>0

e
− j2τ2

2ε2(1+τ2)
+log j

ε(1+τ2)

≲ ε

√
1 +

1

τ2

So, we have that for z ∈ {±1}d such that ∥R · z − x1,...,d∥2 > kR2, since ε > 1
poly(d) , τ = 1

poly(d) and
R2

1+σ2 > C log d,

|(∇hz(x))i| ≲ ε

√
1 +

1

τ2
· e−

kR2

2(1+σ2) ≲ e
− kR2

4(1+σ2)

So, finally, for such z,

∥∇hz(x)∥2 ≲ e
− kR2

8(1+σ2)

Thus,

∥∥∥∥
1

2d
∇hs(x)−∇h(x)

∥∥∥∥
2

=

∥∥∥∥∥∥
1

2d

∑

r ̸=s

∇hr(x)

∥∥∥∥∥∥

2

≲
1

2d

d∑

k=1

dke
− kR2

8(1+σ2) ≲
1

2d
· e−

R2

16(1+σ2)

Lemma C.8 (Score of mixture close to score of closest (discretized) Gaussian). Let d = O(d′),
and consider gs, g as in Definition 3.1 for any s ∈ {±1}d, with R2

1+σ2 > C log d for sufficiently large

constant C. Let S ⊂ R
d be the orthant containing s. Let σ ≥ τ for τ = 1

poly(d) , and let ε > 1
poly(d) .

We have that, for the σ-smoothed scores sσ,s of gs and sσ of g,

E
x∼h

[
∥sσ,s(x)− sσ(x)∥2

∣∣∣1x1,...,d∈S
]
≲ e

−Ω
(

R2

1+σ2

)

where h is the σ-smoothed version of g, given by h = g ∗ N (0, σ2Id+d′).

Proof. Let hs be the σ-smoothed version of gs, given by hs = gs ∗ N (0, σ2Id+d′). Let s̃ ∈ R
d+d′ be

such that the first d coordinates are given by s, and the remaining d′ coordinates are 0. We have

E
x∼h

[
∥sσ,s(x)− sσ(x)∥2

∣∣∣1x1,...,d∈S
]
= E

x∼h

[
∥sσ,s(x)− sσ(x)∥2 · 1∥x−s̃∥≤R/10

∣∣∣1x1,...,d∈S
]

+ E
x∼h

[
∥sσ,s(x)− sσ(x)∥2 · 1∥x−s̃∥>R/10

∣∣∣1x1,...,d∈S
]

Note that when ∥x − s̃∥ ≤ R/10, by Lemma C.16, hs(x) ≳ e
− R2

64(1+σ2) since σ ≥ τ for τ = 1
poly(d) ,

ε > 1
poly(d) and R2

1+σ2 > C log d. So, by Lemmas C.6 and C.7, h(x) = 1
2d
hs(x)

(
1 +O

(
e
− R2

8(1+σ2)

))
,

and ∥∇h(x) − 1
2d
∇hs(x)∥2 ≲ 1

2d
e
− R2

16(1+σ2) . Also note that by Lemma C.6, h(x|x1,...,d ∈ S) ≤

hs(x) +O(e
− R2

8(1+σ2) ) ≤ hs(x) ·
(
1 +O

(
e
− R2

32(1+σ2)

))
. So, for the first term,

E
x∼h

[
∥sσ,s(x)− sσ(x)∥2 · 1∥x−s̃∥≤ R

10

∣∣∣1x1,...,d∈S
]
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= E
x∼h



∥∥∥∥∥

1
2d
∇hs(x)
1
2d
hs(x)

− ∇h(x)
h(x)

∥∥∥∥∥

2

· 1∥x−s̃∥≤R/10

∣∣∣1x1,...,d∈S




≲ E
x∼h




1
2d
e
− R2

16(1+σ2) + e
− R2

8(1+σ2) · 1
2d

· ∥∇hs(x)∥2
1
2d
hs(x)2

· 1∥x−s̃∥≤R/10

∣∣∣1x1,...,d∈S




≲ e
− R2

32(1+σ2) + e
− R2

8(1+σ2) · E
x∼hs

[∥∇hs(x)∥2
hs(x)2

]

≲ e
− R2

32(1+σ2) +
de

− R2

8(1+σ2)

σ2

≲ e
− R2

64(1+σ2)

since σ ≥ 1
poly(d) , ε >

1
poly(d) and R2

1+σ2 > C log d.
For the second term, by Cauchy-Schwarz,

E
x∼h

[
∥sσ,s(x)− sσ(x)∥2 · 1∥x−s̃∥> R

10

∣∣∣1x1,...,d∈S
]

≲

√(
E

x∼h

[
∥sσ,s(x)∥4 + ∥sσ(x)∥4

∣∣∣1x1,...,d∈S
])

· E
[
1∩∥x−s̃∥>R/10

∣∣∣1x1,...,d∈S
]

≲

√
R4

σ4
+

1

σ4
E

[
∥x∥4

∣∣∣1x1,...,d∈S
]
· e−Ω

(
R2

1+σ2

)

=
1

σ2

√
R4 + E

s∼{±1}d

[
E

[
∥x∥4

∣∣∣1x1,...,d∈S , x ∼ gs

]]
e
−Ω

(
R2

1+σ2

)

≲
R2

σ2
· e−Ω

(
R2

1+σ2

)

≲ e
Ω
(

R2

1+σ2

)

So, we have the claim.

C.3 ReLU Network approximation of σ-smoothed Scores of Product Distribu-

tions

Once we have this, we also need to go from being close to mixture of Gaussians to being close to
mixture of discretized Gaussians.

Lemma C.9. Let f : R → R be a continuous piecewise linear function with D segments. Then, f
can be represented by a ReLU network with O(D) parameters. If each segment’s slope, each transition
point, and the values of the transition points are at most β in absolute value, each parameter of the
network is bounded by O(β) in absolute value.

Proof. Since f is piecewise linear, we can define f as follows: there exists −∞ = γ0 < γ1 < γ2 <
· · · < γD−1 = γD = +∞ such that

f(x) =





a1x+ b1, x ≤ γ1
a2x+ b2, γ1 < x ≤ γ2

...
aDx+ bD, γD−1 < x,
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where akγk + bk = ak+1γk + bk+1 for each k ∈ [D − 1]. Now we will show that f(x) equals g(x)
defined below:

g(x) := a1x+ b1 +

D∑

i=2

ReLU((ai − ai−1)(x− γi−1)).

We observe that for γk−1 < x ≤ γk,

g(x) = a1x+ b1 +

k∑

i=2

(ai − ai−1)(x− γi−1) = akx−
k∑

i=2

(ai − ai−1)γi−1.

Then, when k > 1, for γk−1 < x ≤ γk, we have

g(x) = akx−
k∑

i=2

(ai − ai−1)γi−1

=

(
ak−1γk−1 −

k−1∑

i=2

(ai − ai−1)γi−1

)
+ akx− ak−1γk−1 − (ak − ak−1)γk−1

= g(γk−1) + akx− akγk−1.

Using these observations, we can inductively show that for each k ∈ [D], g(x) = f(x) holds for
γk−1 < x ≤ γk. For x ≤ γ1,

g(x) = a1x+ b1 = f(x).

Assuming for γk−2 < x ≤ γk−1, g(x) = f(x). Then g(γk−1) = f(γk−1) = akγk−1 + bk. Therefore, for
γk−1 < x ≤ γk, we have

g(x) = g(γk−1) + akx− akγk−1 = akx+ bk = f(x).

This proves that g(x) = f(x) for x ∈ R and we only need to design neural network to represent
g. By employing one neuron for a1x+ b1 and D − 1 neurons for ReLU((ai − ai−1)(x− γi−1)), and
aggregating their outputs, we obtain the function g. There are O(D) parameters in total, and each
parameter is bounded by O(β) in absolute value.

Lemma C.10. Let f1, . . . , fk be functions mapping R to R. Suppose each fi can be represented by
a neural network with p parameters bounded by β in absolute value. Then, function g : Rk → R

k

defined by
g(x1, . . . , xk) := (f1(x1), . . . , fk(xk))

can be represented by a neural network with O(pk) parameters bounded by β in absolute value.

Proof. We just need to deal with each coordinate separately and use the neural network representation
for each fi. We just need to concatenate each result of fi together as the final output.

Lemma C.11 (ReLU network implementing the score of a one-dimensional σ-smoothed distribution).
Let p be a distribution over R with mean µ, and let pσ = p ∗ N (0, σ2) have variance m2

2 and score
sσ. There exists a constant-depth ReLU network f : R → R with O( m2

γ3σ4 ) parameters with absolute

values bounded by O( m2
σ2γ2 +

log 1
γ

σ3γ
+ |µ|) such that

E
x∼pσ

[
∥sσ(x)− f(x)∥2

]
≲ γ2

and

|f(x)| ≲ 1

σ
log

1

σγ
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Proof. By Lemma C.4, there exists a continuous piecewise approximation of p with O( m2
σ3γ4 ) pieces

with each segment’s slope, each transition point, and function value all bounded in O( m2
σ2γ2 +

1
σ3γ

log 1
σγ + 1

σ log 1
σγ + |µ|). Taking this into C.9 and we have the bound.

Lemma C.12. Let p be a product distribution over R
d such that p(x) =

∏d
i=1 pi(xi), and let

pσ = p ∗ N (0, σ2Id) have score sσ. Assume pσ has mean µ and variance m2
2 = Ep[∥x− µ∥22]. Then,

there exists a constant-depth ReLU network f : Rd → R
d with O( dm2

γ3σ4 ) parameters with absolute

values bounded by O( dm2
σ2γ2 +

√
d

σ3γ
log d

σγ + ∥µ∥1) such that

E
x∼pσ

[
∥sσ(x)− f(x)∥2

]
≲ γ2.

and

|f(x)i| ≲
1

σ
log

1

σγ

Proof. Consider distribution pi : R → R and its σ-smoothed version piσ = pi ∗ N (0, σ2). Let µi and
m2i be the mean and the variance of pi respectively. Let sσi be the i-th component of sσ. Then,
Lemma C.11 shows that for each i ∈ [d], there exists a constant-depth ReLU network fi : R → R

with O( m2i
γ3σ4 ) parameters with absolute values bounded by O( dm2

σ2γ2 +
√
d

σ3γ
log d

σγ + |µi|) such that

E
x∼pσi

[
∥sσi(x)− fi(x)∥2

]
≲
γ2

d
.

Then, we can use the product function f = (f1, . . . , fd) as the approximation for sσ. By Lemma C.5,

E
x∼pσ

[
∥sσ(x)− f(x)∥2

]
≲ γ2.

Taking the fact that
∑

i∈[d] |µi| = ∥µ1∥ and
∑

i∈[d]m2i ≤ dm2 into Lemma C.10, and we prove the
statement.

C.4 ReLU network for Score at Small smoothing level

Lemma C.13 (Vertex Identifier Network). For any 0 < α < 1, there exists a ReLU network
h : Rd → R

d with O(d/α) parameters, constant depth, and weights bounded by O(1/α) such that

• If |xi| > α, for all i ∈ [d], then h(x)i =
xi
|xi| for all i ∈ [d].

Proof. Consider the one-dimensional function

g(y) =





−1, y ≤ −α
y
α , −α < y < α

1, y ≥ α

This is a piecewise linear function, where the derivative of each piece is bounded by 1
α , the value

of the transition points are at most α in absolute value, and |h| itself is bounded by 1. Thus, by
Lemma C.9, we can represent the function h(x) = (g(x1), . . . , g(xd)) using O(d/α) parameters, with
each parameter’s absolute value bounded by O(1/α). Moreover, clearly h(x)i =

xi
|xi| for all i ∈ [d]

whenever |xi| ≥ 1
C .
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Lemma C.14 (Switch Network). Consider any function switch : Rd+1 → R
d such that for x ∈ R

d,
y ∈ R, with |xi| ≤ T for all i ∈ [d],

switch(x, y) =

{
x if y = 1

0 if y = −1

switch can be implemented using a constant depth ReLU network with O(dT ) parameters, with each
parameter’s absolute value bounded by O(T ).

Proof. Consider the ReLU network given by

switch(x, y)i = ReLU((xi − 2T ) + 2T · y)− ReLU((−xi − 2T ) + 2T · y)

It computes our claimed function. Moreover, it is constant-depth, the number of parameters is
O(dT ), and each parameter is bounded by O(T ) in absolute value, as claimed.

Lemma C.15. Let d′ = O(d). Given a constant-depth ReLU network representing a one-way
function f : {−1, 1}d → {−1, 1}d′ with poly(d) parameters, there is a constant-depth ReLU network

h : Rd+d′ → R
d+d′ with poly

(
d
σγ

)
parameters with each parameter bounded in absolute value by

poly
(

d
σγ

)
such that for the unconditional distribution g defined in Definition 3.1 with σ-smoothed

version gσ and corresponding score sσ, for τ = 1
dC

and τ ≤ σ < R
C
√
log d

for sufficiently large constant

C, and R > C log d, ε > 1
poly(d) , γ >

1
dC/100

E
x∼gσ

[
∥sσ(x)− h(x)∥2

]
≲ γ2

Proof. We will let our ReLU network h be as follows. Let r be the ReLU network from Lemma C.13
that identifies the closest hypercube vertex with any constant parameter α < 1.

For each i ∈ [d], we will let h̃i be the ReLU network that implements the approximation to the
score of the one-dimensional distribution w1(x) ∗ N (0, σ2) from Lemma C.11. By the lemma, it
satisfies

E
x∼w√

σ2+1

[
(h̃i(x)−∇ logw√

σ2+1(x))
2
]
≲ γ2 (10)

For i ∈ d+[d′], we will let h̃i,1 be the ReLU network that implements the approximation to the score

s̃σ,i,−1 of g̃σ,i,−1 = ( w1·combε∫
w1(x)·combε(x)dx

) ∗ N (0, σ2), and we will let h̃i,−1 implement the approximation

to the score of
(

w1(x)·combε(x−ε/2)∫
w1(x)·combε(x−ε/2)dx

)
∗ N (0, σ2), as given by Lemma C.11. By the Lemma, for

every i ∈ d+ [d′] and j ∈ {±1}, we have

E
x∼g̃σ,i,j

[
(h̃i,j(x)− sσ,i,j(x))

2
]
≲ γ2 (11)

Note that each |h̃i| ≤ C
σ log 1

σγ for i ≤ d, and |h̃i,±1| ≤ C
σ log 1

σγ for i > d, for sufficiently large
constant C.

Now let switch be the ReLU network described in Lemma C.14 for T = C
σ log 1

σγ .

Consider the network h : Rd+d′ → R
d+d′ given by

h(x)i =

{
h̃i(xi − r(x)i ·R) for i ≤ d

switch(h̃i,1(xi), f(r(x))i−d) + switch(h̃i,−1(xi),−f(r(x))i−d) for i > d
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Note that h can be represented with poly
(

d
σγ

)
parameters with absolute value of each parameter

bounded in poly
(

d
σγ

)
. We will show that h approximates sσ well in multiple steps.

For r(x) ∈ {±1}d, consider the score sσ,r(x) of gσ,r(x), the σ-smoothed version of the distribution

gr(x) centered at r̃(x) ∈ R
d+d′ , as described in Definition 3.1, where r̃(x) has the first d coordinates

given by r(x), and the remaining coordinates set to 0.

Whenever r(x) = j ∈ {±1}d, h approximates sσ,j well over gσ,j. We will show that for fixed
j ∈ {±1}d

E
x∼gσ,j

[
∥sσ,j(x)− h(x)∥2 · 1r(x)=j

]
≲ dγ2

First, note that for i ≤ d, by (10) and our definition of h,

E
x∼w√

σ2+1

[
(h(x)i −∇ logw√

σ2+1(x−R · j))2 · 1r(x)=j

]
≲ γ2

On the other hand, for i > d, by (11) and our definition of h,

E
x∼g̃σ,i,f(j)i−d

[
(h(x)i − sσ,i,f(j)i−d

)2 · 1r(x)=j

]
≲ γ2

Since by Definition 3.1, for j ∈ {±1}d, gσ,j(x) =
∏d

i=1w
√
σ2+1(x) ·

∏d+d′
i=d+1 g̃σ,i,f(j)i−d

(x), we have by
Lemma C.5,

E
x∼gσ,j

[
∥h(x)− sσ,j(x)∥2 · 1r(x)=j

]
≲ dγ2

h approximates sσ,j exponentially accurately over gσ. By Lemma C.6, we have that for x
such that r(x) = j,

∣∣∣∣
1

2d
gσ,j(x)− gσ(x)

∣∣∣∣ ≲
1

2d
· e−

R2

4(1+σ2) ≲
1

2d

for our choice of R, σ.
So, we have

E
x∼gσ

[
∥h(x)− sσ,j(x)∥2 · 1r(x)=j

]
≲
dγ2

2d

h approximates sσ well over gσ whenever r(x) ∈ {±1}d. Summing the above over j ∈ {±1}d
gives

E
x∼gσ

[
∥h(x)− sσ,r(x)(x)∥2 · 1r(x)∈{±1}d

]
≲ dγ2

Moreover, by Lemma C.8, for r̄(x) = y where y ∈ {±1}d represents the orthant that x ∈ {±1}d
belongs to,

E
x∼gσ

[
∥sσ,r̄(x) − sσ(x)∥2

]
≲ e

−Ω
(

R2

1+σ2

)

≲
1

dC2/10

So, by the above, we have that

E
x∼gσ

[
∥h(x)− sσ(x)∥2 · 1r(x)∈{±1}d

]
≲ dγ2 +

1

dC2/10
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Contribution of x such that r(x) ̸∈ {±1}d is small. By the definition of r,

Px∼gσ

[
r(x) ̸∈ {±1}d

]
≲ de−

(R−α)2

2 ≲ e−
R2

4

So, by Cauchy-Schwarz,

E
x∼gσ

[
∥sσ(x)∥2 · 1r(x) ̸∈{±1}d

]
≤
√

E
x∼gσ

[∥sσ(x)∥4] · Px∼gσ [r(x) ̸∈ {±1}d]

≲
1

σ2
e−

R2

4

≲ e−
R2

8

Similarly, since |h(x)i| ≤ C
σ log 1

σγ , we have

E
x∼gσ

[
∥h(x)∥2 · 1r(x) ̸∈{±1}d

]
≲

1

σ2
log2

1

σγ
· e−R2

4 ≲ e−
R2

8

Thus, we have

E
x∼gσ

[
∥h(x)− sσ(x)∥2 · 1r(x) ̸∈{±1}d

]
≲ e−

R2

8 ≲
1

dC2/40

Putting it together. By the above, we have,

E
x∼gσ

[
∥h(x)− sσ(x)∥2

]
≲ dγ2 +

1

dC2/40

Reparameterizing γ and noting that γ > 1
dC/100 gives the claim.

C.5 Smoothing a discretized Gaussian

Lemma C.16. For any φ, let g be the univariate discrete Gaussian with pdf

g(x) ∝ w1(x) · combε(x− φ)

Consider the ρ-smoothed version of g, given by gρ = g ∗ wρ. We have that

∣∣∣gρ(x)− w√
ρ2+1

(x)
∣∣∣ ≲ e

− ρ2

2ε2(1+ρ2) · w√
ρ2+1

(x)

and
∣∣∣∣g

′
ρ(x)− w′√

ρ2+1
(x)

∣∣∣∣ ≲ e
− ρ2

2ε2(1+ρ2) · |w′√
ρ2+1

(x)|+
∑

j>0

e
− j2ρ2

2ε2(1+ρ)2 · j

ε(1 + ρ2)
· w√

ρ2+1
(x)

Proof. The Fourier transform of the combε distribution is given by 1
εcomb1/ε. So, for the discrete

Gaussian g, we have that its Fourier Transform is given by

ĝ(ξ) =

(
ŵ1 ∗

(
e−iξφ

ε
comb1/ε

))
(ξ)

=
1

ε
·
∑

j∈Z
e−i j

ε
φ · e−

(ξ− j
ε )2

2
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Then, for gρ, the ρ-smoothed version of g, we have that its Fourier Transform is

ĝρ(ξ) = (ĝ · ŵ1/ρ)(ξ)

=
1

ε

k∑

j=−k

e−
ij
ε
φe−

ξ2ρ2

2 · e−
(ξ− j

ε)
2

2

So, we have that, by the inverse Fourier transform,

gρ(x) = w√
ρ2+1

(x) +
1

2π

∫ ∞

−∞
eiξx

∑

j ̸=0

e−
ij
ε
φe−

ξ2ρ2

2
− (ξ− j

ε )2

2 dξ

= w√
ρ2+1

(x) +
1

2π

∫ ∞

−∞
eiξx · e−

j2

2ε2
+ j2

2ε2(ρ2+1)

∑

j ̸=0

e−
ij
ε
φ · e−

ρ2+1
2

(
ξ− j

ε(ρ2+1)

)2

= w√
ρ2+1

(x) +
∑

j ̸=0

e−
ij
ε
φ · e−

j2ρ2

2ε2(ρ2+1) e
ix j

ε(ρ2+1) · w√
ρ2+1

(x)

so that

∣∣∣gρ(x)− w√
ρ2+1

(x)
∣∣∣ ≤

∑

j ̸=0

e
− j2ρ2

2ε2(ρ2+1)w√
ρ2+1

(x)

giving the first claim. For the second claim, note that the above gives

g′ρ(x) = w′√
ρ2+1

(x) +
∑

j ̸=0

e−
ijφ
ε · e−

j2ρ2

2ε2(ρ2+1) e
ixj

ε(ρ2+1) ·
(

ij

ε(ρ2 + 1)
w√

ρ2+1
(x) + w′√

ρ2+1
(x)

)

So,

∣∣∣∣g
′
ρ(x)− w′√

ρ2+1
(x)

∣∣∣∣ ≲ e
− ρ2

2ε2(1+ρ2) ·
∣∣∣∣w

′√
ρ2+1

(x)

∣∣∣∣+
∑

j>0

e
− j2ρ2

2ε2(1+ρ2) · j

ε(1 + ρ2)
w√

ρ2+1
(x)

C.6 Large Noise Level - Distribution is close to a mixture of Gaussians

Lemma C.17. Let C be a sufficiently large constant. Let gj(x) ∝ ∏d
i=1w1(xi) ·

∏d′
i=d+1w1(xi) ·

combε(xi − φi,j) be the pdf of a distribution on R
d+d′ with shifts φi,j. Consider a mixture of discrete

d-dimensional Gaussians, given by the pdf

h(x) =
k∑

j=1

βjg
j(x− µj)

Let hρ(x) = (h ∗ wρ)(x) be the smoothed version of h. Then, for the mixture of standard (d+ d′)-
dimensional Gaussians given by

fρ(x) =
k∑

j=1

βjw√ρ2+1
(x− µj)
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for ρ2

ε2(1+ρ2)
> C log d, we have that

E
x∼hρ

[∥∥∥∥
∇hρ(x)
hρ(x)

− ∇fρ(x)
fρ(x)

∥∥∥∥
2
]
≲ e

− ρ2

2ε2(1+ρ2) ·
(
1 +m2

2 + sup
j

∥µj∥2
)

+
∑

j>0

e
− j2ρ2

2ε2(1+ρ2)
j

ε(1 + ρ2)

where m2
2 = Ex∼hρ

[
∥x∥2

]
.

Proof. We have that

hρ(x) =
k∑

i=1

βjg
j
ρ(x− µj)

where gjρ(x) = gj(x) ∗ wρ(x). By Lemma C.16, we have that for every i, j,

∣∣∣
(
∇gjρ(x)

)
i
−
(
∇w√

ρ2+1
(x)
)
i

∣∣∣

≲ de
− ρ2

2ε2(1+ρ2)

∣∣∣
(
∇w√

ρ2+1
(x)
)
i

∣∣∣+ d ·
∑

j>0

e
− j2ρ2

2ε2(1+ρ2) · j

ε(1 + ρ2)
· w√

ρ2+1
(x)

So,

∣∣(∇hρ(x))i − (∇fρ(x))i
∣∣

=

∣∣∣∣∣∣

k∑

j=1

βj ·
(
∇gjρ(x− µj)−∇w√

ρ2+1
(x− µj)

)
i

∣∣∣∣∣∣

≲ d

k∑

j=1

βj ·


e−

ρ2

2ε2(1+ρ2)

∣∣∣∇
(
w√

ρ2+1
(x− µj)

)
i

∣∣∣+
∑

j>0

e
− j2ρ2

2ε2(1+ρ2)
j

ε(1 + ρ2)
· w√

ρ2+1
(x)




Similarly, for the density, by Lemma C.16

∣∣∣gjρ(x)− w√
ρ2+1

(x)
∣∣∣ ≲ de

− ρ2

2ε2(1+ρ2)w√
ρ2+1

(x)

So,

|hρ(x)− fρ(x)| =

∣∣∣∣∣∣

k∑

j=1

βj ·
(
gjρ(x− µj)− w√

ρ2+1
(x− µj)

)
∣∣∣∣∣∣

≲ de
− ρ2

2ε2(1+ρ2)

k∑

j=1

βj · w√ρ2+1
(x− µj)

≲ de
− ρ2

2ε2(1+ρ2) fρ(x)

Thus, we have

E
x∼hρ

[(
(∇hρ(x))i
hρ(x)

− (∇fρ(x))i
fρ(x)

)2
]
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≤ E
x∼hρ







∇hρ(x))i
fρ(x) ·

(
1 +O

(
de

− ρ2

2ε2(1+ρ2)

)) − (∇fρ(x))i
fρ(x)




2


≲ de
− ρ2

ε2(1+ρ2) · E
[(

(∇fρ(x) )i
fρ(x)

)2
]

+ d · E







∑k
j=1 βj ·

(
e
− ρ2

2ε2(1+ρ2)

∣∣∣∇w√
ρ2+1

(x− µj)
∣∣∣
i
+
∑

j>0 e
− j2ρ2

2ε2(1+ρ2) j
ε(1+ρ2)

· w√
ρ2+1

(x)

)

fρ(x)




2


≲
d

ρ2
e
− ρ2

ε2(1+ρ2) + d
∑

j>0

e
− j2ρ2

ε2(ρ2+1)
j

ε(1 + ρ2)
+ de

− ρ2

ε2(1+ρ2) · E





∑k

j=1 βj · |x− µj |i · w√ρ2+1
(x− µj)

fρ(x)




2


≲ de
− ρ2

ε2(1+ρ2) + d
∑

j>0

e
− j2ρ2

ε2(1+ρ2)
j

ε(1 + ρ2)
+ de

− ρ2

ε2(1+ρ2) · E
[
sup
j

|x− µj |2i

]

≲ de
− ρ2

ε2(1+ρ2)

(
1 + E

[
x2i
]
+ sup

j
|µj |2i

)
+ d

∑

j>0

e
− j2ρ2

ε2(1+ρ2)
j

ε(1 + ρ2)

Thus, we have

E
x∼hρ

[∥∥∥∥
∇hρ(x)
hρ(x)

− ∇fρ(x)
fρ(x)

∥∥∥∥
2
]
≲ d2e

− ρ2

ε2(1+ρ2) ·
(
1 + E

[
∥x∥2

]
+ sup

j
∥µj∥2

)
+ d2

∑

j>0

e
− j2ρ2

2ε2(1+ρ2)
j

ε(1 + ρ2)

≲ e
− ρ2

2ε2(1+ρ2) ·
(
1 +m2

2 + sup
j

∥µj∥2
)

+
∑

j>0

e
− j2ρ2

2ε2(1+ρ2)
j

ε(1 + ρ2)

since ρ2

ε2(1+ρ2)
> C log d

Corollary C.18. Let d′ = O(d), and let g be as defined in Definition 3.1, and let gρ = g ∗
N (0, ρ2Id+d′) be the ρ-smoothed version of g. Let fρ be the mixture of (d+ d′)-dimensional standard
Gaussians, given by

fρ(y) =
1

2d

∑

x∈{±1}d
w√

ρ2+1
(y −R · x̃)

where x̃ ∈ R
d+d′ has the first d coordinates given by x, and the last d′ coordinates 0. Then, for

ρ2

ε2(1+ρ2)
> C log d for sufficiently large constant C, we have

E
x∼gρ

[
∥∇ log gρ(x)−∇ log fρ(x)∥2

]
≲ e

− ρ2

2ε2(1+ρ2) ·
(
1 +R2 + ρ2

)
+
∑

j>0

e
− j2ρ2

2ε2(1+ρ2)
j

ε(1 + ρ2)

Proof. Follows from the facts that m2
2 ≲ d

(
R2 + ρ2

)
and µ2j ≲ dR2 for all j.
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C.7 ReLU network for Score at Large smoothing Level

This section shows how to represent the score of the σ-smoothed unconditional distribution
defined in Definition 3.1 for large σ using a ReLU network with a polynomial number of parameters
bounded by a polynomial in the relevant quantities. We proceed in two stages – first, we show
how to represent the score of a mixture of Gaussians placed on the vertices of a scaled hypercube.
Then, we show that for large σ, this network is close to the score of the σ-smoothed unconditional
distribution.

Lemma C.19 (ReLU network representing score of mixture of Gaussians on hypercube). For any
σ > 0 and R > 1 consider the distribution on R

d with pdf

fσ(x) =
1

2d

∑

µ∈{±1}d
wσ(x−Rµ)

where wσ is the pdf of N (0, σ2Id).

There is a constant depth ReLU network h : Rd → R
d with O

(
dR
γ3σ4

)
parameters, with absolute

values bounded by O
(

dR
σ3γ2

)
such that

E
x∼fσ

[
∥∇ log fσ(x)− h(x)∥2

]
≲ γ2

Proof. Note that gσ is a product distribution. So, the claim follows by Lemma C.12.

Lemma C.20. Let d′ = O(d), and let R ≤ poly(d). Let g be the pdf of the unconditional distribution
on R

d+d′, as defined in Definition 3.1, and let gσ be its σ-smoothed version with score sσ. For

ε < 1
C
√
log d

, and σ > Cε
(√

log d+
√

log 1
ε

)
for sufficiently large constant C, there is a constant

depth ReLU network h with O
(

dR
γ3σ4

)
parameters with absolute values bounded by O

(
dR
σ3γ2

)
such

that

E
x∼gσ

[
∥sσ(x)− h(x)∥2

]
≲ γ2 +

1

dC2/20

Proof. Let h be the ReLU network from Lemma C.19 for smoothing σ. It satisfies our bounds on
the number of parameters and the absolute values.

Note that for our setting of ε and σ, we have that

σ2

ε2(1 + σ2)
=

1

ε2
(
1 + 1

σ2

) > 1

ε2 + 1
C2 log d

>
1
2

C2 log d

>
C2 log d

2

and

σ2

ε2(1 + σ2)
>
C2(log d+ log 1

ε )

2
> log

1

ε(1 + σ2)

So, by Lemma C.18, for the mixture of Gaussians fσ as described in Lemma C.19, for R ≤ poly(d),

E
x∼gσ

[
∥sσ(x)−∇ log fσ(x)∥2

]
≲ e

− σ2

10ε2(1+σ2) ≲
1

dC2/20
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Also, by Lemma C.16,

|gσ(x)− fσ(x)| ≲
fσ(x)

dC2/20

So, by Lemma C.19,

E
x∼gσ

[
∥∇ log fσ(x)− h(x)∥2

]
≲ E

x∼fσ

[
∥∇ log fσ(x)− h(x)∥2

]
≲ γ2

So we have

E
x∼gσ

[
∥sσ(x)− h(x)∥2

]
≲ γ2 +

1

dC2/20

C.8 ReLU Network Approximating score of Unconditional Distribution

Theorem C.21 (ReLU Score Approximation for Lower bound Distribution). Let C be a sufficiently
large constant, and let d′ = O(d). Fix any σ ≥ τ for τ = 1

dC
. Given a constant-depth ReLU network

representing a function f : {−1, 1}d → {−1, 1}d′ with poly(d) parameters, there is a constant-
depth ReLU network h : Rd+d′ → R

d+d′ with poly (d) parameters with each parameter bounded in
absolute value by poly (d) such that for the unconditional distribution g defined in Definition 3.1
with σ-smoothed version gσ and corresponding score sσ, for R > C log d, 1

poly(d) < ε < 1
C
√
log d

,

E
x∼gσ

[
∥sσ(x)− h(x)∥2

]
≲

1

dC/200

Proof. Follows by Lemmas C.15 and C.20.

Corollary 3.5 (Lower Bound Distribution is Well-Modeled). Let C be a sufficiently large constant.
Given a ReLU network f : {±1}d → {±1}d′ with poly(d) parameters bounded by poly(d) in absolute
value, the distribution g̃ defined in Definition 3.2 for R = C log d and 1

poly(d) < ε < 1
C
√
log d

, is

O(C)-well-modeled.

Proof. Follows via reparameterization from the Theorem, and rescaling.

D Lower Bound – Putting it all Together

Theorem 1.8 (Lower bound). Suppose that one-way functions exist. Then for any d0.01 < m <
d/2, there exists a 10-well-modeled distribution over R

d, and linear measurement model with m
measurements and noise parameter β = Θ( 1

log2 d
), such that ( 1

10 ,
1
10)-posterior sampling requires

superpolynomial time.

Proof. First, by Lemma G.4, there exists a ReLU network that represents a one-way function
f : {±1}m → {±1}m, with constant weights, polynomial size, and parameters bounded in magnitude
by poly(d).

Therefore, by Corollary 3.5, the distribution g̃ over Rd is a C-well-modeled distribution, if we
take R = C log d, ε = 1

C
√
log d

. Further, if we take a linear measurement model with β = 1
C2 log2(d)

,

then by Lemma 3.4, any (1/10, 1/10)-posterior sampler for this distribution takes at least 2Ω(m)

time to run.
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Theorem 1.9 (Lower bound: exponential hardness). For any m ≤ d/2, suppose that there exists a
one-way function f : {±1}m → {±1}m that requires 2Ω(m) time to invert. Then for any C > 1, there
exists a C-well-modeled distribution over R

d and linear measurement model with m measurements
and noise level β = 1

C2 log2 d
, such that ( 1

10 ,
1
10)-posterior sampling takes at least 2Ω(m) time.

Proof. First, by Lemma G.4, there exists a ReLU network that represents a one-way function
f : {±1}m → {±1}m, with constant weights, polynomial size, and parameters bounded in magnitude
by poly(d).

Therefore, by Corollary 3.5, the distribution g̃ over Rd is a C-well-modeled distribution, if we
take R = C log d, ε = 1

C
√
log d

. Further, if we take a linear measurement model with β = 1
C2 log2(d)

,

then by Lemma B.5, any (1/10, 1/10)-posterior sampler for this distribution takes at least 2Ω(m)

time to run.

E Upper Bound

Lemma E.1. Let q be a distribution over R
m such that Ew∼q[∥w∥22] = O(m). Let w ∼ q and

y = w + βN (0, Im). Then, there exists a constant c > 0 such that

Py

[
Pw

[
∥y − w∥ ≤ 10γ

√
m+ log(1/δ)

∣∣∣ y
]
≥ (cγ)m · δm/2+1

]
≥ 1− δ.

Proof. Since Ew∼q[∥w∥22] ≲ m, there exists a constant C such that

Pw∼q

[
∥w∥22 >

Cm

δ

]
<
δ

3
.

Lemma H.10 shows that there exists a covering over {x ∈ R
m | ∥x∥2 ≤

√
Cm/δ} with N =

O( 1√
δβ
)m balls of radius β

√
m+ log(1/δ). Let S be the set of all the covering balls. This means

that

P[∃θ ∈ S : w ∈ θ] ≥ 1− δ

3
.

Define

S′ := {θ ∈ S | Pw[w ∈ θ] >
δ

3N
}.

Then we have that with high probability, w will land in one of the cells in S′:

Pw

[
∀θ ∈ S′ : w /∈ θ

]
≤ P[∀θ ∈ S : w /∈ θ] + P[

∨

θ∈S\S′

w ∈ θ] ≤ δ

3
+N · δ

3N
≤ 2δ

3
.

Moreover, we define

S+ := {y ∈ R
m | ∃θ ∈ S′, ∀w ∈ θ : ∥w − y∥ ≤ 10β

√
m+ log

1

δ
}.

By the sampling process of y, we have that

Py

[
y ∈ S+

]
= Pw∼q,z∼N (0,Im)

[
w + βz ∈ S+

]

≥ Pw∼q,z∼N (0,Im)

[
(∃θ ∈ S′ : w ∈ θ) ∧ (∥z∥ ≤ 8

√
m)
]

≥ 1− Pw

[
∀θ ∈ S′ : w /∈ θ

]
− Pz∼N (0,Im)

[
∥z∥2 > 64(m+ log

1

δ
)

]
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By Lemma H.9, we have

Pz∼N (0,Im)

[
∥z∥2 > 64(m+ log

1

δ
)

]
<
δ

3
.

Therefore,
Py

[
y ∈ S+

]
≥ 1− δ.

This implies that with 1− δ probability over y, there exists a cell θ ∈ S such that
∥∥y − t̃

∥∥ ≤ 10β

and Pw[w ∈ θ] ≥ δ
3N ≥ δ ·Θ(

√
δβ)m.

Lemma E.2. Consider a well-modeled distribution and a linear measurement model. Suppose we
have a (τ, δ)-unconditional sampler for the distribution, where τ < cδβ√

m+log(1/δ)
for a sufficiently

small constant c > 0. Then rejection sampling (Algorithm 1) gives a (τ, 2δ)-posterior sampler using

at most log(1/δ)
δ2

(O(1)

β
√
δ
)m samples .

Proof. Let P be the distribution that couples true distribution D over (x, y) and the output
distribution of the posterior sampler p̂|y. Rigorously, we define P over (x, x̂, y) ∈ X × X × Y

with density pP such that pP(x, y) = pD(x, y), pP(x̂ | y) = p̂|y(x̂). Similarly, we let P̃ over

(x, x̂, y) ∈ R
d ×R

d ×R
α be the joint distribution between the unconditional sampler over (x, x̂) and

the measurement process D over (x, y). Then by the definition of unconditional samplers, we have

P
x,x̂∼P̃ [∥x− x̂∥ ≥ τ ] ≤ δ.

Therefore, to prove the correctness of the algorithm, we only need to show that there exists a P̂
over (x, x̂, y) such that P̃(x̂ | y) = p̂|y(x̂) and TV(P̂, P̃) ≤ δ. By Lemma H.9,

PP̃ ′

[
∥Ax− y∥2 ≥ 4β2(m+ log

1

δ
)

]
≤ δ

4
.

Therefore, we define P̃ ′ as P̃ conditioned on ∥x− x̂∥ < τ and ∥Ax−y∥2
2β2 ≤ 2(m + log 1

δ ). Then we
have

TV(P̃, P̃ ′) ≤ 3δ

2
.

Algorithm correctness. We have

p̂|y(x̂) =
pP̃

′
(x̂) · e

−∥Ax̂−y∥2
2β2

∫
pP̃ ′(x̂) · e

−∥Ax̂−y∥2
2β2 dx̂

=

∫
pP̃

′
(x, x̂) · e

−∥Ax̂−y∥2
2β2 dx

∫
pP̃ ′(x̂) · e

−∥Ax̂−y∥2
2β2 dx̂

,

Then we define

r(x̂) :=

∫
pP̃

′
(x, x̂) · e

−∥Ax−y∥2
2β2 dx

∫
pP̃ ′(x, x̂) · e

−∥Ax̂−y∥2
2β2 dx

.

Conditioned on ∥x− x̂∥ ≤ τ and ∥Ax−y∥2
2β2 ≤ 2(m+ log 1

δ ), we have

|log r(x̂)| ≤ sup
x

|∥Ax− y∥2 − ∥Ax̂− y∥2|
2β2
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≤ τ2 ∥A∥22 + 2τ ∥A∥2 ∥Ax− y∥
2β2

≲
τ2

β2
+
τ
√
m+ log(1/δ)

β
.

By our setting of τ , we have 1− δ/8 < r(x̂) < 1 + δ/8.
So we have

∫
pP̃

′
(x̂) · e

−∥Ax̂−y∥2
2β2 dx̂ =

∫
pP̃

′
(x, x̂) · e

−∥Ax̂−y∥2
2β2 dx dx̂ =

(
1± δ

8

)∫
pP̃

′
(x, x̂) · e

−∥Ax−y∥2
2β2 dx dx̂.

Hence,

p̂|y(x̂) =
r(x̂) ·

∫
pP̃

′
(x, x̂)e

−∥Ax−y∥2
2β2 dx

(1± δ
8)
∫
pP̃ ′(x, x̂)e

−∥Ax−y∥2
2β2 dx dx̂

=
r(x̂) ·

∫
pP̃

′
(x, x̂)pP̃

′
(y | x) dx

(1± δ
8)p

P̃ ′(y)

=

(
1± δ

4

)
r(x̂)

∫
pP̃

′
(x, x̂ | y) dx

=

(
1± δ

2

)
pP̃

′
(x̂ | y).

Finally, we have

∫ ∣∣∣pP̃ ′
(x̂ | y)− p̂|y(x̂)

∣∣∣ dx̂ dpP̃ ′
(y) =

∫ ∣∣∣∣
(
1± δ

2

)
pP̃

′
(x̂ | y)− pP̃

′
(x̂ | y)

∣∣∣∣ dx̂ dp
P̃ ′
(y) ≤ δ

2
.

This implies that

TV(P̂x̂, P̃x̂) = TV(P̂x̂, P̃ ′
x̂) + TV(P̃ ′

x̂, P̃x̂) ≤
δ

4
+
δ

2
≤ 3δ

4
.

Hence,

P
x,x̂∼P̂ [∥x− x̂∥ ≥ τ ] ≤ 3δ

4
+ δ ≤ 7δ

4
.

Running time. Now we prove that for most y For y ∈ Y , for each round, the acceptance
probability q(y) each round is that

q(y) =

∫
pP̃

′
(x̂)e

− ∥y−Ax̂∥2
2γ2 dx̂

= (1± δ

8
)

∫
pP̃

′
(x, x̂) · e

−∥Ax−y∥2
2β2 dx dx̂

≥ 1

2

∫
pX (x) · e

−∥Ax−y∥2
2β2 dx

=
1

2
E

x∼X

[
e
− ∥Ax−y∥2

2β2

]

≥ 1

2
Px∼X

[
∥Ax− y∥ ≤ 10

√
m+ log(1/δ)β

]
· e−

100(m+log(1/δ))β2

2β2
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=
1

2
Px∼X

[
∥Ax− y∥ ≤ 10

√
m+ log(1/δ)β

]
· δe−50m

By Lemma H.11, Ex∼X [∥Ax∥22] = O(m). By Lemma E.1, we have that for 1− δ/8 probability
over y, for some c > 0,

Px∼X
[
∥Ax− y∥ ≤ 10

√
m+ log(1/δ)β

]
≥ (cβ)m · δm/2+1.

Therefore, for some c > 0,

Py∼Y
[
q(y) ≥ (cβ)m · δm/2+2

]
≥ 1− δ

8
.

Hence, for some C > 0,

P

[
Rejection sampling terminates in

log(1/δ)

δ2

(
C

β
√
δ

)m

rounds

]
≥ 1− δ

4
.

Theorem 1.7 (Upper bound). Let C > 1 be a constant. Consider an O(C)-well-modeled distribution
and a linear measurement model with β > 1

dC
. When δ > 1

dC
, rejection sampling of the diffusion

process gives a ( 1
dC
, δ)-posterior sampler that takes poly(d)(O(1)

β
√
δ
)m time.

Proof. Theorem 1.4 suggests that for an O(C)-well-modeled distribution, a poly(d) time ( 1
d3C

, 1
2dC

)-
unconditional sampler exists. Since

1

d3C
< o

(
1

2dC
· 1
dC√
d

)
< o

(
δβ2√

m+ log(1/δ)

)
.

By lemma E.2, a ( 1
d3C

, 1
dC

)-posterior sampler exists using log(1/δ)
δ2

(O(1)

β
√
δ
)m ≤ poly(d)(O(1)

β
√
δ
)m samples.

Since generating each sample costs poly(d) time. The total time is poly(d)(O(1)

β
√
δ
)m.

F Well-Modeled Distributions Have Accurate Unconditional Sam-

plers

Notation. For the purposes of this section, we let s̃t = sσ2 denote the score at time t.

Definition F.1 (Forward and Reverse SDE). For distribution q0 over R
d, consider the Variance

Exploding (VE) Forward SDE, given by

dxt = dBt, x0 ∼ q0

where Bt is Brownian motion, so that xt ∼ x0 +N (0, tId). Let qt be the distribution of xt.
There is a VE Reverse SDE associated with the above Forward SDE given by

dxT−t = s̃T−t(xT−t) + dBt (12)

for xT ∼ qT .
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Theorem F.2 (Unconditional Sampling Theorem, Implied by [BBDD24], adapted from [GPPX23]).
Let q be a distribution over R

d with second moment m2
2 = Ex∼q

[
∥x∥2

]
between 1

poly(d) and poly(d).

Let qt = q ∗N (0, tId) be the
√
t-smoothed version of q, with corresponding score s̃t. Suppose T = dC .

For any γ > 0, there exist N = Õ
(

d
ε2

log2 1
γ

)
discretization times 0 = t0 < · · · < tN ≤ T − γ such

that, given score approximations hT−tk of s̃T−tk that satisfy

E
x∼qT−tk

[
∥s̃T−tk − hT−tk∥2

]
≲

ε2

C · (T − tk) · log d
γ

for sufficiently large constant C, then, the discretization of the VE Reverse SDE defined in (12)
using the score approximations can sample from a distribution ε+ 1

dC/2 close in TV to a distribution
γm2-close in 2-Wasserstein to q in N steps.

Theorem 1.4 (Unconditional Sampling for Well-Modeled Distributions). For an O(C)-well-modeled
distribution p, the discretized reverse diffusion process with approximate scores gives a

(
1
dC
, 1
dC

)
-

unconditional sampler (as defined in Definition 1.3) for any constant C > 0 in poly(d) time.

Proof. The definition of a well-modeled distribution gives that, for every 1
dC

< σ < dC there is an
approximate score ŝσ such that

E
x∼pσ

[
∥ŝσ(x)− sσ(x)∥2

]
<

1

dCσ2

and ŝσ can be computed by a poly(d)-parameter neural network with poly(d) bounded weights.
Here pσ is the σ-smoothed version of p with score sσ.

Then, by Theorem F.2, this means that the discretized reverse diffusion process can use the ŝσ
to produce a sample x̂ from a distribution p̂ that is 1

dC/3 close in TV to a distribution 1
dC/3 close in

2-Wasserstein. This means there exists a coupling between x̂ ∼ p̂ and x ∼ p such that

P

[
∥x̂− x∥ > 1

dC/6

]
<

1

dC/6

The claim follows via reparameterization.

G Cryptographic Hardness

A one-way function f is a function such that every polynomial-time algorithm fails to find a
pre-image of a random output of f with high probability.

Definition G.1. A function f : {±1}n → {±1}m(n) is one-way if, for any polynomial-time algorithm
A, any constant c > 0, and all sufficiently large n,

Px∼Un [f(A(f(x))) = f(x)] < n−c.

Lemma G.2. If a one-way function f : {±1}n → {±1}m(n) exists, then for any 1
poly(n) ≤ l(n) ≤

poly(n), there exists a one-way function g : {±1}n → {±1}l(n).

Proof. For l(n) > m(n), we just need to pad l(n)−m(n) 1’s at the end of the output, i.e.,

g(x) := (f(x), 1l(n)−m(n)).
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For 1
poly(n) ≤ l(n) < m(n), for each n, there exists a constant c < 1 such that l(n) = m(nc). Then

we can satisfies the requirement by defining

g(x) := f(first nc bits of x).

Lemma G.3. Every circuit f : {±1}n → {±1}m(n) of poly(n) size can be simulated by a ReLU
network with poly(n) parameters and constant weights.

Proof. In the realm of {+1,−1}, −1 corresponds to True and +1 corresponds to False. We can use
a layer of neurons to translate it to {0, 1} first, where 1 corresponds to True and −1 corresponds to
False. We will translate {0, 1} back to {+1,−1} when output.

Now we only need to show that the logic operation (¬, ∧, ∨) in each gate of the circuit can be
simulated by a constant number of neurons with constant weights in ReLU network when the input
is in {0, 1}n:

• For each AND (∧) gate, we use ReLU(
∑

(yi − 1) + 1) to calculate
∧
yi.

• For each OR (∨) gate, we use ReLU(1− ReLU(1−∑ yi)) to calculate
∨
yi.

• For each NOT (¬) gate , we use ReLU(1− yi) to calculate ¬yi.
It is easy to verify that for {0, 1} input, the output of each neuron-simulated gate will remain in

{0, 1}n and equal to the result of the logical operation.

Then the next corollary directly follows.

Corollary G.4. Every one-way function can be computed by a ReLU network with poly(n) param-
eters, and constant weights.

H Utility Results

Lemma H.1. Let pσ be some σ-smoothed distribution with score sσ. For any ε ≤ σ,

E
x∼pσ

sup
|c|≤ε

s′σ(x+ c)2 ≲
1

σ4

Proof. Draw x ∼ pσ, and let z ∼ N(0, σ2) be independent of x. By Lemma H.3,

sσ(x) = E
z|x

[ z
σ2

]
.

Moreover, by Corollary H.4,

sσ(x+ c) =

Ez|x

[
e

2cz−c2

2σ2
(
z−c
σ2

)]

Ez|x

[
e

2cz−c2

2σ2

] =
Ez|x

[
ecz/σ

2 ( z−c
σ2

)]

Ez|x[ecz/σ
2 ]

Taking the derivative with respect to c, since (a/b)′ = (a′b− ab′)/b2,

s′σ(x+ c) =
Ez|x

[
ecz/σ

2
(
z2−zc−σ2

σ4

)]
Ez|x[ecz/σ

2
]− Ez|x

[
ecz/σ

2 ( z−c
σ2

)]
Ez|x

[
z
σ2 e

cz/σ2
]

Ez|x[ecz/σ
2 ]2
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=
Ez|x

[
ecz/σ

2
(
z2−σ2

σ4

)]
Ez|x[ecz/σ

2
]− Ez|x

[
ecz/σ

2 z
σ2

]2

Ez|x[ecz/σ
2 ]2

≤
Ez|x[eεz/σ

2 z2

σ4 ]

Ez|x[eεz/σ
2 ]

(13)

Now we take the supremum over all |c| ≤ ε, and take the expectation of this quantity over x to get
the desired moment:

E
x

[
sup
|c|≤ε

s′σ(x+ c)2

]
≤ E

x

[
sup
|c|≤ε

Ez|x[ecz/σ
2 z2

σ4 ]
2

Ez|x[ecz/σ
2 ]2

]

≤ E
x

[(
sup
|c|≤ε

E
z|x

[
ecz/σ

2 z2

σ4

]2)(
sup
|c|≤ε

E
z|x

[
ecz/σ

2
]−2
)]

≤

√√√√
E
x

[
sup
|c|≤ε

E
z|x

[
ecz/σ2 z2

σ4

]4]
E
x

[
sup
|c|≤ε

E
z|x

[
ecz/σ2

]−4

]
(14)

The last inequality here follows from Cauchy-Schwarz. For the first term of equation 14, we have

E
x

[
sup
|c|≤ε

E
z|x

[
ecz/σ

2 z2

σ4

]4]
≤ E

x
E
z|x

[
(eεz/σ

2
+ e−εz/σ2

)
z2

σ4

]
=: g(x)

We compute the 4th moment of this term directly:

E
x
[g(x)4] = E

x

[
E
z|x

[
(eεz/σ

2
+ eεz/σ

2
)
z2

σ4

]4]

≤ E
z

[
(eεz/σ

2
+ e−εz/σ2

)4
z8

σ16

]

≤
√

E
z
[(eεz/σ2 + e−εz/σ2)8]E

z

[
z16

σ32

]

≤
√

E
z
[28(e8εz/σ2 + e−8εz/σ2)]E

z

[
z16

σ32

]

≲

√
e32ε2/σ2 · 1

σ16
=
e16ε

2/σ2

σ8
(15)

For the second term of equation 14,

E
x

[
sup
|c|≤ε

E
z|x

[
ecz/σ

2
]−4
]
≤ E

x

[
sup
|c|≤ε

E
z|x

[
e−4cz/σ2

]]
by Jensen’s

≤ E
x

[
E
z|x

[
e4ε|z|/σ

2
]]

≤ E
z

[
e4εz/σ

2
+ e−4εz/σ2

]

= 2e
1
2
σ2·(4ε/σ2)2 = 2e8ε

2/σ2
(16)

43



So, putting equations 16 and 15 into equation 14, we get

E
x

[
sup
|c|≤ε

s′σ(x+ c)2

]
≤

√

2e8ε2/σ2 · e
16ε2/σ2

σ8

Now, by assumption, ε ≤ σ. So, we finally get that

E
x

[
sup
|c|≤ε

s′σ(x+ c)2

]
≲

√
1

σ8
=

1

σ4

Lemma H.2. Let p be a distribution over R, and let pσ = p ∗N(0, σ2) have score sσ. If γ ≤ σ/4,
then,

P

[
sup

y∈[x−γ,x+γ]
s(y) ≥ t

]
≤ e−σt

Proof. From Corollary H.8, we have

E

[
sup

y∈[x−γ,x+γ]
s(y)k

]
≤ kk15k

σk

So, we have

P

[
sup

y∈[x−γ,x+γ]
s(x)k ≥ tk

]
≤

E

[
supy∈[x−γ,x+γ] s(x)

k
]

tk
≤
(
15k

tσ

)k

Setting k = log 1
δ , we get

P

[
sup

y∈[x−γ,x+γ]
|s(x)| ≥ 15

eσ
log

1

δ

]
≤ δ

For the following Lemmas, If p is a distribution over R and has score s, define the Fisher
information I as

I := E
x∼p

[s2(x)]

Lemma H.3 (Lemma A.1 from [GLPV22]). Let p be a distribution over R, and let pσ = p∗N(0, σ2)
have score sσ. Let (x, y, z) be the joint distribution such that y ∼ p, z ∼ N(0, σ2) are independent,
and x = y + z. For all ε > 0,

p(x+ ε)

p(x)
= E

z|x

[
e

2εz−ε2

2σ2

]
and sσ(x) = E

z|x

[ z
σ2

]

Corollary H.4. Let p be a distribution over R, and let pσ = p ∗N(0, σ2) have score sσ.

sσ(x+ ε) =
Ez|x

[
eεz/σ

2 ( z−ε
σ2

)]

Ez|x[eεz/σ
2 ]
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Proof. This proof is given in Lemma A.2 of [GLPV22], and is reproduced here for convenience and
completeness, since a statement in the middle of their proof is what we use.

By Lemma H.3, we have
pσ(x+ ε)

pσ(x)
= E

z|x

[
e

2εz−ε2

2σ2

]

Taking the derivative with respect to ε, we have

p′σ(x+ ε)

pσ(x)
= Ez|x

[
e

2εz−ε2

2σ2

(
z − ε

σ2

)]

So,

sσ(x+ ε) =
p′σ(x+ ε)

pσ(x+ ε)
=
p′σ(x+ ε)

pσ(x)

pσ(x)

pσ(x+ ε)

=

Ez|x

[
e

2εz−ε2

2σ2
(
z−ε
σ2

)]

Ez|x

[
e

2εz−ε2

2σ2

] =
Ez|x

[
eεz/σ

2 ( z−ε
σ2

)]

Ez|x[eεz/σ
2 ]

Lemma H.5 (Lemma 3.1 from [GLPV22]). Let p be a distribution over R and let pσ = p ∗N(0, σ2)
have Fisher information Iσ. Then, Iσ ≤ 1

σ2 .

Lemma H.6 (Lemma B.3 from [GLPV22]). Let p be a distribution over R and let pσ = p ∗N(0, σ2)
have score sσ and Fisher information Iσ. If |γ| ≤ σ/2, then

E[s2(x+ γ)] ≤ Iσ +O

(
γ

σ
Iσ
√

log
1

σ2Iσ

)

Lemma H.7 (Lemma A.6 from [GLPV22]). Let p be a distribution over R and let pσ = p ∗N(0, σ2)
have score sσ and Fisher information Iσ. Then, for k ≥ 3 and |γ| ≤ σ/2,

E[|sσ(x+ γ)|k] ≤ k!

2
(15/σ)k−2max

(
E[s2σ(x+ γ)], Iσ

)

Corollary H.8. Let p be a distribution over R and let pσ = p ∗N(0, σ2) have score sσ. Then, for
k ≥ 3 and |γ| ≤ σ/2,

E[|sσ(x+ γ)|k] ≤
(
15k

σ

)k

Proof. Consider the continuous function f(x) = x
√
log 1

σ2x
. This function is only defined on

0 < x ≤ 1/σ2. We have

f ′(x) =
2 log 1

σ2x
− 1

2
√

log 1
σ2x

.

Setting this equal to zero gives x = 1
σ2

√
e
. f( 1

σ2
√
e
) = 1

σ2
√
2e
. Since f(1/σ2) = 0 and limx→0+ f(x) = 0,

we have this is the maximum value of the function. Further, we know by Lemma H.5 that Iσ ≤ 1/σ2.
So, along with the fact that |γ| ≤ σ/2, we have

γ

σ
Iσ

√
log

1

σ2Iσ
≲

1

σ2
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Therefore, from Lemma H.6, and using Lemma H.5 again, we get

E[s2(x+ γ)] ≤ Iσ +O

(
γ

σ
Iσ

√
log

1

σ2Iσ

)
≲

1

σ2

Finally, we can plug this into Lemma H.7 to get

E[|sσ(x+ γ)|k] ≤ k!

2
(15/σ)k−2max

(
E[s2σ(x+ γ)], Iσ

)

≲ kk
15k−2

σk−2
· 1

σ2
≤ kk

15k

σk

Lemma H.9 (Laurent-Massart Bounds[LM00]). Let v ∼ N (0, In). For any t > 0,

P[∥v∥2 − n ≥ 2
√
nt+ 2t] ≤ e−t.

Lemma H.10 (See [MRT18, Lemma 6.27]). There exist Θ(R/ε)d d-dimensional balls of radius ε
that cover {x ∈ R

d | ∥x∥2 ≤ R}.

Lemma H.11. Let p be a distribution over R
d with covariance Σ such that ∥Σ∥ ≲ 1, and let

A ∈ R
m×d be a matrix with ∥A∥ ≤ 1. Then

E
x∼p

[∥Ax∥2] ≲ m.

Proof. Note the expectation of the squared norm ∥Ax∥2 can be expressed as:

Ex∼p[∥Ax∥2] = trace(ATAΣ).

Given that ∥A∥ ≤ 1, the singular values of A are at most 1. Hence, the matrix ATA, which
represents the sum of squares of these singular values, will have its trace (sum of eigenvalues)
bounded by m:

trace(ATA) ≤ m.

Hence, given that ∥Σ∥ ≲ 1, we have :

Ex∼p[∥Ax∥2] = trace(ATAΣ) ≤ ∥Σ∥ · trace(ATA) ≲ m.
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