
ar
X

iv
:2

4
0
8
.1

0
3
3
2
v
1
  
[c

s.
D

S
] 

 1
9
 A

u
g
 2

0
2
4

Spectral Guarantees for Adversarial Streaming PCA

Eric Price

UT Austin

Zhiyang Xun

UT Austin

August 21, 2024

Abstract

In streaming PCA, we see a stream of vectors x1, . . . , xn ∈ R
d and want to estimate the top

eigenvector of their covariance matrix. This is easier if the spectral ratio R = λ1/λ2 is large. We

ask: how large does R need to be to solve streaming PCA in Õ(d) space? Existing algorithms

require R = Ω̃(d). We show:

• For all mergeable summaries, R = Ω̃(
√
d) is necessary.

• In the insertion-only model, a variant of Oja’s algorithm gets o(1) error forR = O(log n log d).

• No algorithm with o(d2) space gets o(1) error for R = O(1).

Our analysis is the first application of Oja’s algorithm to adversarial streams. It is also
the first algorithm for adversarial streaming PCA that is designed for a spectral, rather than
Frobenius, bound on the tail; and the bound it needs is exponentially better than is possible by
adapting a Frobenius guarantee.



1 Introduction

Principal Component Analysis (PCA) is a fundamental primitive for handling high-dimensional
data by finding the highest-variance directions. At its most simple, given a data set X ∈ R

n×d of
n data points in d dimensions, we want to find the top unit eigenvector v∗ of the covariance matrix
Σ = 1

nX
TX.

One common way to approximate v∗ is the power method: start with a random vector u0, then
repeatedly multiply by Σ and renormalize. This converges to v∗ at a rate that depends on the
ratio of the top two eigenvalues of Σ, denoted R := λ1/λ2. In particular, after O(logR

d
ε ) iterations

we have ‖Puk‖2 = 1 − 〈uk, v∗〉2 = sin2(uk, v
∗) ≤ ε with high probability, where P = I − v∗(v∗)T

projects away from v∗.
But what if the data points x1, x2, . . . , xn ∈ R

d arrive in a streaming fashion? Directly applying
the power method requires either nd space to store X, or d2 space to store Σ. What can be done in
smaller space? The question of streaming PCA has been extensively studied, in two main settings:
adversarial and stochastic streams.

In the adversarial streaming setting, we want to solve PCA for an arbitrary set of data points
in arbitrary order. Many of these algorithms store linear sketches of the data, such as AX and
XB for Gaussian matrices A,B [CW09; BWZ16; Woo14b; Upa18; TYUC17]. These results give a
Frobenius guarantee for rank-k approximation of X. Specialized to k = 1, the result direction û
satisfies ∥∥X(I − ûûT )

∥∥2
F
≤ (1 + ε) ‖XP‖2F

which is equivalent to

ûTΣû ≥ λ1 − ε
∑

i>1

λi.

The best result here is FrequentDirections [Lib13; GLPW16], which is a deterministic insertion-
only algorithm rather than a linear sketch. It uses O(d/ε) space to get the guarantee, which is
optimal [CW09]. Unfortunately, this Frobenius guarantee can be quite weak: if the eigenvalues
do not decay and we only have a bound on R = λ1/λ2, to get ‖Pû‖2 ≤ 0.1 we need ε < R

d ,
which means Θ(d2/R) space. The well-known spiked covariance mode [Joh01], where the xi are
iid Gaussian with covariance that has eigenvalues λ2 = λ3 = · · · = λd, is one example where this
quadratic space bound appears.

In the stochastic streaming setting, the xi are drawn iid from a somewhat nice distribution.
The goal is to converge to the principal component of the true distribution using little space and
few samples. Algorithms for the stochastic setting are typically iterative, using O(d) space and
converging to the true solution with a sample complexity depending on how “nice” the distribu-
tion is. Examples include Oja’s algorithm [Oja82; BDF13; JJKNS16; AL17; HNTW21; HNW21;
LSW21] and the block power method [ACLS12; MCJ13; HP14; BDWY16]. Oja’s algorithm starts
with a random v0, then repeatedly sets

vi = vi−1 + ηixix
T
i vi−1

for some small learning rate ηi. These analyses depend heavily on the data points being iid1. In
return, they can get a stronger spectral guarantee than the sketching algorithms. The bounds are
not directly comparable to the sketching algorithms (not only does the sample complexity depend
on the data distribution, but the convergence is to the principal component of the true distribution

1Or nearly so; for example, [JJKNS16] requires that the xi are independent with identical covariance matrices.
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rather than the empirical Σ), but in the spiked covariance setting they just need n ≥ Õ((1+ 1
R−1 )

2d)

rather than O(d2/R). That is, they use near-linear samples down to R = 1 + ε.
So the situation is: algorithms that handle arbitrary data need O(d2/R) space for a spectral

guarantee. Iterative methods have a good spectral guarantee—linear space and often near-linear
samples for constant R—but only handle iid data. Is this separation necessary, or can we get a
good spectral guarantee in the arbitrary-data setting? In this paper we ask:

Is a polynomial spectral gap necessary to guarantee a near-linear space algorithm?

1.1 Our results

Our main result is that linear space is possible for polylogarithmic spectral gaps. In fact, Oja’s
method essentially achieves this:

Theorem 1.1 (Performance of Oja’s method in adversarial streams). For any sufficiently large
universal constant C, suppose η is such that ηnλ1 > C log d and ηnλ2 < 1

C logn . If η ‖xi‖2 ≤ 1 for

every i, then Oja’s algorithm with learning rate η returns v̂ satisfying ‖P v̂‖ ≤ √ηnλ2 + d−9 with
1− d−Ω(C) probability.

Moreover, Oja’s method can be modified (Algorithm 1) so that in addition, regardless of λ1 and
λ2, if η ‖xi‖2 ≤ 1 for all i then either ‖P v̂‖ ≤ √ηnλ2 + d−9 or v̂ =⊥.

If R > O(log n log d), there exists an η that satisfies the eigenvalue condition. However, The-
orem 1.1 requires knowing η and that no single ‖xi‖ is too large. It’s fairly easy to extend the
algorithm to remove both restrictions, as well as describe the performance with respect to finite
precision. Algorithm 2 simply runs Oja’s method for different learning rates and picks the smallest
one that works; unless any single xi has too large ‖xi‖2 violating Theorem 1.1, in which case it
outputs that xi. For X ∈ R

n×d with b-bits entries, where each Xi,j is either 0 or falls within
2−b ≤ |Xi,j|≤ 2b, it suffices to test roughly O(b) different learning rates in parallel. We say an
algorithm ε-approximates PCA if it returns u with ‖Pu‖2 ≤ ε, and we have the following theorem.

Theorem 1.2 (Full algorithm). For X ∈ R
n×d have b-bit entries for b > log(dn). Whenever the

spectral gap R = λ1/λ2 > O(log n log d), Algorithm 2 uses O(b2d) bits of space and O( log dR + d−9)-
approximates PCA with high probability.

Algorithm 1 Oja’s Algorithm, checking the growth of ‖vn‖ to identify too-small learning rates.

procedure OjaCheckingGrowth(X, η)
Choose v̂0 ∈ Sd−1 uniformly. ⊲ All numbers stored to O(log(nd)) bits of precision
Set s0 = 0.
for i = 1, . . . , n do

v′i ← (1 + ηxix
T
i )v̂i−1.

v̂i ← v′i
‖v′i‖ .

si ← si−1 + log ‖v′i‖.
end for

if sn ≤ 10 log d, return ⊥. ⊲ Returns ⊥ rather than a wrong answer if η is too small.
else return v̂n

end procedure
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Algorithm 2 Algorithm handling unknown learning rate and large-norm entries

procedure AdversarialPCA(X, b) ⊲ X ∈ R
n×d has Xi,j = 0 or 2−b ≤ |Xi,j |≤ 2b

Define ηi = 2i for integer i, |i|≤ 4b+ log(nd2) +O(1).
In parallel run OjaCheckingGrowth(X, ηi) for all i, getting v(i).
In parallel record x, the single xi of maximum ‖xi‖.
Let i∗ be the smallest i with v(i) 6=⊥.
if ηi∗ ‖x‖2 ≥ 1, return x

‖x‖ .

else return v(i
∗).

end procedure

Lower bound for mergeable summaries. Existing algorithms for adversarial PCA, including
linear sketching or FrequentDirections, fall under the category of mergeable summaries [ACHPWY13].
These algorithms enable processing of disjoint data inputs on separate machines, producing sum-
maries that can be combined to address the problem using the full dataset. By contrast, our
algorithm is not mergeable and requires the data to appear in one long sequence.

Considering the benefits of mergeable summaries, a natural goal would be to get a good spectral
guarantee with a mergeable summary. As discussed above, existing algorithms require Ω(d2/R)
space, so R = Θ̃(d) is needed for them to achieve near-linear space. Is it possible to get near-linear
space and logarithmic R, like Theorem 1.2 achieves in the insertion-only model?

Existing lower bounds [LW16] imply that Ω(d2/R2) space is necessary for linear sketching (see
Appendix B for discussion). We show that the same bound applies to all mergeable algorithms: all
mergeable summaries require Ω(d2/R2) bits of space to 0.1-approximate PCA, making R = Ω̃(

√
d)

necessary for near-linear space.

Theorem 1.3 (Mergeable Lower Bound). For all mergeable summaries, 0.1-approximate PCA on
streams with spectral gap R requires at least Ω(d2/R2) bits of space.

Dependence on Accuracy. Theorem 1.2 shows that it is possible to solve O( log dR )-approximate
PCA in near-linear space. This is o(1), but cannot be driven towards 0 in the way that other settings
allow (in the iid setting, the accuracy improves exponentially in the number of samples; in the
existing O(d2/R)-space worst-case algorithms, the space grows as 1

ε for accuracy ε). Unfortunately,
we show that this is inherent: there is a phase transition where aiming for more than poly(1/R)
accuracy requires quadratic rather than near-linear space.

Theorem 1.4 (Accuracy Lower Bound). There exists a universal constant C > 1 such that: for

any R > 1, 1
CR2 -approximate PCA on streams with spectral gap R requires at least d2

CR3 bits of space
for sufficiently large d > poly(R).

Specializing to constant R gives the following corollary:

Theorem 1.5. For any constant R > 1, there exists a constant ε > 0 such that ε-approximate
PCA on streams of spectral gap R requires Ω(d2) bits of space.

This shows that for constant R, storing the entire covariance matrix is essentially the only thing
one can do to achieve o(1) accuracy. By contrast, Theorem 1.2 shows that for R = Θ(log n log d),
ε-solving PCA for any constant ε > 0 is possible in Õ(d) bits of space. This is a much lower
threshold than the R = Θ̃(d) needed for near-linear space by existing analyses.

Our results are summarized in Table 1, which gives upper and lower bounds for the requirements
for near-linear space.
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Setting Method Mergeable? Requirement for Õ(d) space Citation

Distributional
Oja’s algorithm No λ1 > λ2 [Oja82]

Block power method No λ1 > λ2 [HP14; BDWY16]

Adversarial
Linear Sketching Yes λ1 > (λ2 + . . .+ λd) · Ω( 1

logC d
) [Upa18; TYUC17]

FrequentDirections Yes λ1 > (λ2 + . . .+ λd) · Ω( 1
logC d

) [Lib13; GLPW16]

Algorithm 2 No λ1 > λ2 ·O(log d log n) Theorem 1.2

Adversarial Impossibility
Yes λ1 ≤ λ2 · d0.49 Theorem 1.3
No λ1 ≤ λ2 · 100 Theorem 1.5

Table 1: In various settings, the requirement on the eigenvectors λi of the covariance matrix for the
algorithm to get small constant approximate PCA in Õ(d) space. In the last two rows, we instead
state a setting of λ1, λ2 for an instance in which Õ(d) space is impossible.

1.2 Related Work

Oja’s algorithm has been extensively studied in the stochastic setting where the data streams are
sampled iid; see, e.g., [BDF13; JJKNS16; AL17; HNTW21; HNW21; LSW21]. Since the goal
in this setting is to approximate the underlying distribution’s principal components, there is a
minimum sample complexity for even an offline algorithm to estimate the principal component.
This line of work [JJKNS16] can show that Oja’s algorithm has a similar sample complexity to
the optimal offline algorithm, even for spectral ratios R close to 1. Recent work of [KS24] extends
Oja’s algorithm to data sampled from a Markov chain instead of iid samples. They showed that,
despite the data dependency inherent in Markovian data, the performance of Oja’s algorithm is as
good as the iid case when the Markov chain has large second eigenvalue.

Our analysis of Oja’s algorithm is by necessity quite different from these stochastic-setting
analyses. Oja’s algorithm returns vn = Bnv0 for a transformation matrix Bn = (I + ηnxnx

T
n )(I +

ηn−1xn−1x
T
n−1) · · · (I + η1x1x

T
1 ). In the stochastic setting, Bn is a random variable, with E[Bi |

Bi−1] = (I + ηΣ)Bi; the analyses focus on matrix concentration of Bn, essentially to bound the
deviation of Bn around the “expected” (I+ηΣ)n. In our arbitrary-data setting, Bn is not a random
variable at all. The only randomness is the initialization v0. This makes our analysis quite different,
instead tracking how much v̂i can move under the covariance constraints.

Our lower bound construction for high accuracy is closely related to one in [Woo14a], which
shows an Ω(dk/ε) lower bound for a (1 + ε)-approximate rank-k approximation of Σ in Frobenius
norm. The [Woo14a] construction for k = 1 and ε = Θ( 1n) is very similar to ours, and would give
an Ω(d2) lower bound for a small constant approximation when R < 2. Our construction has a
more careful analysis in terms of R.

Much of the prior work on streaming PCA, for both the adversarial and stochastic settings, is
focused on solving k-PCA not just the single top direction. We leave the extension of our upper
bound to general k as an open question.

2 Proof Overview

2.1 Upper Bound

For our application of Oja’s algorithm we use a fixed learning rate η throughout the stream. The
xi correlated with v∗ could all arrive at the beginning or the end of the stream, and we want to
weight them equally so that at least we can solve the commutative case where Oja’s algorithm is
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v̂n−1 + ηxnx
T
n v̂n−1

v̂n−1 = v∗

xn

√
σ2

Figure 1: Suppose η = 1. Then even after convergence to v∗ exactly, a single final sample can skew
the result by Θ(

√
σ2). For smaller η, the same can happen with 1

η final samples.

relatively simple.
As a basic intuition, Oja’s algorithm returns v̂n = vn

‖vn‖
, where

vn = (I + ηxnx
T
n )(I + ηxn−1x

T
n−1) · · · (I + ηx1x

T
1 )v0

≈ eηxnxT
n eηxn−1xT

n−1 · · · eηx1xT
1 v0

where the approximation is good when η ‖xi‖2 ≪ 1. Imagine that these matrix exponentials
commute (e.g., each xi is ej for some j). Then we would have

vn ≈ eηX
TXv0. (1)

This suggests that the important property of the learning rate η is the spectrum of ηXTX. Let
ηXTX have top eigenvalue σ1 = nηλ1, with corresponding eigenvector v∗, and all other eigenvalues
at most σ2 = nηλ2. For Theorem 1.1, we would like to show that Oja’s algorithm works if σ1 >
O(log d) and σ2 <

1
O(logn) .

For (1) to converge to v∗, as in the power method, we want the v∗ coefficient of v0 to grow by
a poly(d) factor more than any other eigenvalue, i.e., eσ1 ≥ poly(d)eσ2 or σ1 ≥ σ2 + O(log d). So
we certainly need to set η such that σ1 ≥ O(log d). But how large a spectral gap do we need, i.e.,
how small does σ2 need to be?

One big concern for adversarial-order Oja’s algorithm is: even if most of the stream clearly
emphasizes v∗ so vi converges to it, a small number of inputs at the end could cause vn to veer
away from v∗ to a completely wrong direction. This cannot happen in the commutative setting,
but it can happen in general: vn can rotate by Θ(

√
σ2), by ending the stream with 1

η copies of

v∗ +
√
σ2v

′ (see Figure 1). But this is the worst that can happen. We show:

Lemma 2.1 (Growth implies correctness). For any v0 and all i, ‖P v̂i‖ ≤
√
σ2 +

‖Pv0‖
‖vi‖

.

This lemma has two useful implications: first, if we ever get close to v∗, the final solution will
be at most

√
σ2 further from v∗. Second, no matter where we start, the final output is good if ‖vn‖

is very large. This is how Algorithm 1 can return either a correct answer or ⊥: it just observes
whether ‖vn‖ has grown by poly(d).

So it suffices to show that ‖vn‖ is large for a random v0; and since v0 starts with a random
1

poly(d) component in the v∗ direction, it in fact suffices to show that ‖vn‖ would grow by poly(d)

if Oja’s algorithm started at v0 = v∗. Now, one can show that

‖vn‖2 ≥ e
∑n

i=1 η〈xi,v̂i−1〉
2
. (2)
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So if vi were always exactly v∗, we would have ‖vn‖2 ≥ eη(v
∗)TXTXv∗ = eσ1 ≥ poly(d) as needed.

In addition, if we start at v∗, then Lemma 2.1 implies ‖P v̂i‖ ≤
√
σ2 for all i, so we never deviate

much from v∗. However, vi can deviate a little bit, which could decrease 〈xi, v̂i−1〉2. The question
is, by how much? Well, it’s easy to show

η〈xi, v̂i−1〉2 ≥ η
1− σ2

2
〈xi, v∗〉2 − η〈xi, P v̂i−1〉2 (3)

so we just need to show that

η
∑

i

〈xi, P v̂i−1〉2 ≪ σ1. (4)

We know that ‖P v̂i−1‖2 ≤ σ2, and η
∑

i〈xi, w〉2 ≤ σ2 for any fixed unit vector w ⊥ v∗, but the
worry is that P v̂i−1 could rotate through many different orthogonal directions; each direction w
can only contribute σ2

2 to η
∑

i〈xi, P v̂i−1〉2, but the total could conceivably be up to σ2
2d.

Our main technical challenge is to rule this out, so η
∑

i〈xi, P v̂i−1〉2 is small. For intuition, in
this overview we just rule out P v̂i−1 moving through many standard basis vectors by showing

d∑

j=1

max
i
〈ej , P v̂i−1〉2 . σ2 log

2 n log ‖vn‖ . (5)

That is, P v̂i−1 cannot rotate through
√
σ2 correlation with each of the d different basis vectors

(which would give a value of σ2d) unless ‖vn‖ is large (which is what we wanted to show in the
first place).

First, we show that ‖vn‖ grows proportional to the squared movement of P v̂i:

Lemma 2.2. Suppose Pv0 = 0. For any two time steps 0 ≤ a < b ≤ n,

‖P v̂b − P v̂a‖2 ≤ 4σ2 log
‖vb‖
‖va‖

As a result, for any subsequence i0, . . . , ik of iterations, the sum of squared movement has

k∑

j=1

∥∥P v̂ij − P v̂ij−1

∥∥2 . σ2 log ‖vn‖ .

We use a combinatorial lemma to turn this bound on squared distances over subsequences into (5).
For any set of vectors A the following holds (see Figure 2):

Lemma 2.3 (Simplified version of Lemma 3.2). Let A0 = 0, and A1, . . . , An ∈ R
d satisfy that

every subsequence S of {0, . . . , n} has
∑

i

∥∥ASi −ASi−1

∥∥2
2
≤ B.

for some B > 0. Then
d∑

j=1

max
i∈[n]

(Ai)
2
j ≤ B(1 + log2 n)

2.

Applying Lemma 2.3 to Ai := P v̂i immediately gives (5).

6



A1 A2 A3 A4 A5 An. . .

Figure 2: Lemma 2.3 states that, if the sum of squared distances across any subsequence of vectors
Ai is at most B, then the vector selecting the maximum value in each coordinate has squared norm
B log2 n.

Remark 2.4. The log2 n factor in Lemma 2.3 is why we need R > O(log d log n), rather than just
R > O(log d). The factor in Lemma 2.3 is tight for n = Θ(d): Ai,j := log n

1+|i−j| has B = Θ(n)

while
∑d

j=1maxi∈[n](Ai)
2
j is Θ(n log2 n).

A similar approach, applied to Ai,j = xTi P v̂j , lets us bound our actual target (4):

Lemma 2.5. If v0 = v∗, then

η
n∑

i=1

〈xi, P v̂i−1〉2 . σ2
2 log

2 n log ‖vn‖

Combined with (2) and (3), this implies that ‖vn‖ ≥ eΩ(σ1) if σ2 ≪ 1
logn :

Lemma 2.6 (The right direction grows). Suppose σ2 <
1
2 . Then if v0 = v∗ we have

log ‖vn‖ &
σ1

1 + σ2
2 log

2 n
.

Since the initial v0 is random, it with high probability has a 1
poly(d) component in the v∗

direction; then linearity of the unnormalized algorithm means ‖vn‖ is large with high probability.
By Lemma 2.1, this means the angle between v∗ and final answer v̂n is bounded by

√
σ2 + d−C , so

the algorithm succeeds.

2.2 Lower bound for mergeable summaries

In this section, we outline the proof of the mergeable summary lower bound. Specifically, we show
with spectral gap R = o(

√
d), no mergeable summary algorithm can 0.1-approximate PCA using

O(d) space. Consider the scenario where there are R players each possessing d/R − 1 vectors that
are i.i.d. drawn from N (0, Id). We then insert another vector v∗ ∼ N (0, Id) into a random location
in each player’s data list. Consequently, from the viewpoint of each participant, their dataset

7



consists of d/R i.i.d. Gaussian vectors, making it impossible for them to individually identify the
shared vector v∗.

Now we consider the spectral properties of the overall data. With high probability, the variance
in the direction of v∗ will be Θ(R) times larger than orthogonal directions. This implies that

1. The spectral gap of the data is at least Θ(R).

2. The principal component of the data is very close to v∗.

Therefore, we can employ a mergeable summary algorithm that approximates PCA to approximate
v∗. Now we only need to prove that each player’s summary must have at least ω(d) bits.

Suppose each player runs this algorithm and writes an s bits long summary S of their data to
help approximate v∗. We measure the amount of information S contains about v∗, i.e., I(v∗;S).
Because each player cannot distinguish v∗ from the other d/R− 1 vectors they have, we can prove
that I(S; v∗) ≤ H(S)/(d/R) = R ·O(s/d). With R = o(

√
d) players, the combined summaries have

at most R · I(S; v∗) ≤ R2 · O(s/d) = o(s) bits of information about v∗. Since an approximation of
v∗ has Θ(d) bits of information about v∗, this requires that s = ω(d).

2.3 Lower bound for high accuracy in insertion-only streams

To give an Ω(d2) lower bound for constant R, we construct a two-player one-way communication
game, where Alice feeds a uniformly random stream into the algorithm and passes the state to Bob.
Bob then repeatedly takes this state, adds a few more vectors, and extracts the PCA estimate. We
will show that Bob is able to learn Ω(d2) bits about Alice’s input, and therefore the stream state
must have Ω(d2) bits. Our approach is illustrated in Figure 3.

Suppose that Alice feeds in a random binary stream x1, x2, . . . , xn ∈ {−1, 1}d. What can Bob
insert so the PCA solution reveals information about (say) x1?

First, suppose Bob inserted k−1 more copies of x1 for some constant k. Then (if n < d/100) the
PCA solution would be very close to x1: v = x1

‖x1‖
has ‖Xv‖2 ≥ kd from just the copies of x1, while

every orthogonal direction has variance at most (
√
n+
√
d)2 ≈ 1.1d by standard bounds on singular

values of subgaussian matrices [RV10]. Thus the spectral ratio R = λ1
λ2

> k
1.1 , so the streaming

algorithm should return a vector highly correlated with x1. The problem with this approach is that
Bob cannot insert x1 without knowing x1, so the streaming PCA solution does not reveal any new
information to him.

1 -1 -1 1 -1 -1 1 1
1 1 1 -1 1 1 -1 -1

-1 1 1 -1 -1 -1 -1 -1
-1 -1 1 -1 -1 -1 1 -1

1 1 1 -1 0 0 0 0
1 1 1 -1 0 0 0 0
1 1 1 -1 0 0 0 0

Figure 3: High-accuracy lower bound approach: Alice inserts a sequence of random bits (all but the
last row). Bob knows the left side and wants to approximate the right side. To estimate the blue

bits on the right, he adds O(1) vectors using the corresponding red bits on the left and random
bits on the right. With high probability, the principal component has constant correlation with the
blue bits.
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But what if Bob inserts z2, . . . , zk that match x1 on the first half of bits, and are all 0 on the
second half? The top principal component u∗ will still be highly correlated with x1: the vector v
that matches x1, z2, . . . , zk on the first half of bits and is zero on the rest has variance that is a
O(k) factor larger than any orthogonal direction.

A more careful analysis shows that the top principal component v∗ is not only correlated with
the half of bits of x1 shared with the zi, but (on the remaining bits) is very highly correlated with
the average 1

k (x1 + z2 + · · · + zk). In fact, it is so highly correlated with the average that v∗ must
be at least somewhat—Θ(1/k2)—correlated with the last 10% of bits in x1. This analysis is robust
to a PCA approximation, so the streaming PCA algorithm lets Bob construct v̂ with constant
correlation with the last half of bits in x1.

Thus Bob can learn Ω(d) bits about the first row by inserting z2, . . . , zk that match the first
half of bits and looking at the PCA solution on the last half of bits. If he does this for every row,
he learns Ω(nd) = Ω(d2) bits about Alice’s input. Therefore the algorithm state Alice sent needs
Ω(d2) space.

This construction is very similar to the one in [Woo14a] for lower-bounding low-rank Frobenius
approximation. The difference in [Woo14a] is that Bob only inserts one row, so necessarily R < 2.
Our main contribution here is the more careful analysis in terms of R.

3 Proof of Upper Bound

For most of this section we focus on Oja’s method (Theorem 1.1), then in Section 3.4 we show
Theorem 1.2. For simplicity, the proof is given assuming exact arithmetic. In Section 3.5 we
discuss why O(log(nd)) bits of precision suffice.

Setup. v̂i is the normalized state at time i, vi is the unnormalized state, xi is the sample, η is
the learning rate, v∗ is the direction of maximum variance, P = I − v∗(v∗)T to be the projection
matrix that removes the v∗ component. Let σ1 = η

∥∥XTX
∥∥ and σ2 = η

∥∥PXTXP
∥∥, so:

n∑

i=1

〈v∗, xi〉2 = σ1 (6)

η
n∑

i=1

〈w, xi〉2 ≤ σ2 (∀w ⊥ v∗) (7)

For much of the proof we will also need σ1 ≥ C log d and σ2 ≤ 1
C logn , but this will be stated as

needed.
Oja’s algorithm works by starting with a (typically random) vector v0, then repeatedly applying

Hebb’s update rule that “neurons that fire together, wire together”:

vi = vi−1 + η〈xi, vi−1〉xi = (I + ηxix
T
i )vi−1. (8)

The algorithm only keeps track of the normalized vectors v̂i = vi/‖vi‖, but for analysis purposes
we will often consider the unnormalized vectors vi.

The norm ‖vi‖ grows in each step, according to

‖vi‖2 = ‖vi−1‖2 (1 + (2η + η2 ‖x‖2)〈xi, v̂i−1〉2), (9)

9



and in particular (since Theorem 1.1 assumes η ‖xi‖2 ≤ 1)

log
‖vi‖2

‖vi−1‖2
≥ η〈xi, v̂i−1〉2. (10)

Our goal is to show that v̂n ≈ v∗, or equivalently, that ‖P v̂n‖ is small.

3.1 Initial Lemmas

Claim 3.1. Let 0 ≤ a1, a2, . . . , an and define bi = e
∑

j≤i ai for i ∈ {0, 1, . . . , n}. Then:

n∑

i=1

aibi−1 ≤ bn − 1.

Proof. This follows from induction on n. n = 0 is trivial, and then

n∑

i=1

aibi−1 ≤ bn−1 − 1 + anbn−1 = (1 + an)bn−1 − 1 ≤ eanbn−1 − 1 = bn − 1.

Define Bi =
‖vi‖

2

‖v0‖
2 , and Ai = log Bi

Bi−1
which satisfies Ai ≥ η〈xi, v̂i−1〉2 by (10). Therefore

η

n∑

i=1

〈xi, vi−1〉2 ≤ ‖v0‖2
n∑

i=1

AiBi−1 ≤ ‖v0‖2 (Bn − 1) = ‖vn‖2 − ‖v0‖2 (11)

by Claim 3.1. Then for any unit vector w with Pw = w,

〈vn − v0, w〉2 =

(
η

n∑

i=1

〈xi, vi−1〉〈xi, w〉
)2

by (8)

≤ η
n∑

i=1

〈xi, vi−1〉2 · η
n∑

i=1

〈xi, w〉2 by Cauchy-Schwarz

≤ (‖vn‖2 − ‖v0‖2)σ2. by (11) and (7)

There’s nothing special about the start and final indices, giving the following bound for general
indices a ≤ b:

〈vb − va, w〉2 ≤ (‖vb‖2 − ‖va‖2)σ2. (12)

Lemma 2.1 (Growth implies correctness). For any v0 and all i, ‖P v̂i‖ ≤
√
σ2 +

‖Pv0‖
‖vi‖

.

Proof. By (12), for any w with w = Pw,

〈vi − v0, w〉 ≤
√
σ2 ‖vi‖ .

Hence

〈v̂i, w〉 =
〈vi − v0, w〉 + 〈v0, w〉

‖vi‖
≤ √σ2 +

〈v0, w〉
‖vi‖

.

Setting w = P v̂i/‖P v̂i‖, we have 〈v̂i, w〉 = ‖P v̂i‖ and 〈v0, w〉 ≤ ‖Pv0‖, giving the result.

10



Lemma 2.1 implies that, if we start at v∗, we never move by more than
√
σ2 from it. We now

show that you cannot even move
√
σ2 without increasing the norm of v.

Lemma 2.2. Suppose Pv0 = 0. For any two time steps 0 ≤ a < b ≤ n,

‖P v̂b − P v̂a‖2 ≤ 4σ2 log
‖vb‖
‖va‖

Proof. Define w to be the unit vector in direction P (v̂b − v̂a). By (12) we have

〈vb − va, w〉2 ≤ σ2(‖vb‖2 − ‖va‖2).
Therefore

‖P v̂b − P v̂a‖2 = 〈P (v̂b − v̂a), w〉2 = 〈v̂b − v̂a, w〉2

≤ 2〈v̂b −
‖va‖
‖vb‖

v̂a, w〉2 + 2〈‖va‖‖vb‖
v̂a − v̂a, w〉2

≤ 2
1

‖vb‖2
〈vb − va, w〉2 + 2(

‖va‖
‖vb‖

− 1)2 ‖P v̂a‖2

≤ 2σ2(1−
‖va‖2

‖vb‖2
) + 2(1− ‖va‖‖vb‖

)2σ2

= 4σ2(1−
‖va‖
‖vb‖

).

Finally, (1− 1/x) ≤ log x for all x > 0.

3.2 Results on Sequences

The following combinatorial result is written in a self-contained fashion, independent of the stream-
ing PCA application.

Lemma 3.2. Let A ∈ R
d×n have first column all zero. Define b

(k)
i to be column 1+2ki of A. Then:

∑

i

max
j

A2
ij ≤ (1 + log2 n)

log2 n∑

k=0

∑

j>0

∥∥∥b(k)j − b
(k)
j−1

∥∥∥
2
.

Proof. We will show this separately for each row i; the result is just the sum over these rows. For
fixed i, let j∗ = argmaxj A

2
ij .

Let j(k) = 1 + 2k⌊ j∗−1
2k
⌋ set the last k bits of j∗ − 1 to zero. We have that j(0) = j∗ and

jlog2 n = 0. Therefore

Aij∗ =

log2 n∑

k=0

(Ai,j(k) −Ai,j(k+1)).

Now, j(k) is either j(k+1) or j(k+1) +2k. Each value in the right sum is either zero (if j(k) is j(k+1))

or the ith coordinate of b
(k)
j′ − b

(k)
j′−1 for some j′ (if j(k) = j(k+1) + 2k, using j′ = j(k)/2k). Thus, by

Cauchy-Schwarz,

A2
ij∗ ≤ (1 + log2 n) ·

log2 n∑

k=0

(Ai,j(k) −Ai,j(k+1))2

≤ (1 + log2 n) ·
log2 n∑

k=0

∑

j>0

((b
(k)
j )i − (b

(k)
j−1)i)

2.
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Summing over i,

∑

i

max
j

A2
ij ≤ (1 + log2 n)

log2 n∑

k=0

∑

j>0

∥∥∥b(k)j − b
(k)
j−1

∥∥∥
2
.

3.3 Proof of Growth

We return to the streaming PCA setting. The goal of this section is to show that, if v0 = v∗, then
‖vn‖ is large.

Lemma 2.5. If v0 = v∗, then

η
n∑

i=1

〈xi, P v̂i−1〉2 . σ2
2 log

2 n log ‖vn‖

Proof. Define ui = P v̂i. We apply Lemma 3.2 to the matrix Aij = 〈xi, uj−1〉 for i, j ∈ [n], getting:

n∑

i=1

max
j≤n−1

〈xi, uj〉2 ≤ (1 + log2 n)

log2 n∑

k=0

∑

j>0

n∑

i=1

(〈xi, u2kj〉 − 〈xi, u2k(j−1)〉)2.

Now,

n∑

i=1

(〈xi, u2kj〉 − 〈xi, u2k(j−1)〉)2 = (u2kj − u2k(j−1))X
TX(u2kj − u2k(j−1))

≤ σ2
η

∥∥∥u2kj − u2k(j−1)

∥∥∥
2
.

by the assumption (7) on X and that every uj ⊥ v∗. Then, for each k, Lemma 2.2 shows that

∑

j>0

∥∥∥u2kj − u2k(j−1)

∥∥∥
2
≤ 4σ2 log

‖vn‖
‖v0‖

= 4σ2 log ‖vn‖

and thus

η
∑

i

〈xi, P v̂i−1〉2 ≤ η
∑

i

max
j
〈xi, uj〉2 ≤ (1 + log2 n)

log2 n∑

k=0

4σ2
2 log ‖vn‖ . σ2

2 log
2 n log ‖vn‖

as desired.

Lemma 2.6 (The right direction grows). Suppose σ2 <
1
2 . Then if v0 = v∗ we have

log ‖vn‖ &
σ1

1 + σ2
2 log

2 n
.

Proof. We will show that η
∑n

i=1〈xi, v̂i−1〉2 & σ1, giving the result by (10).
Recall that (x+ y)2 ≥ 1

2x
2 − y2 for all x, y. Thus, if v̂i = aiv

∗ + ui for ui ⊥ v∗, we have

〈xi, v̂i−1〉2 ≥
a2i−1

2
〈xi, v∗〉2 − 〈xi, ui−1〉2.

12



Lemma 2.1 shows that a2i ≥ 1− σ2 ≥ 1
2 , so summing up over i,

η

n∑

i=1

〈xi, v̂i−1〉2 ≥
1

4
σ1 − η

n∑

i=1

〈xi, ui−1〉2.

Then (10) and Lemma 2.5 give

log ‖vn‖ ≥
1

2
η

n∑

i=1

〈xi, v̂i−1〉2 ≥
1

8
σ1 −O(σ2

2 log
2 n log ‖vn‖),

or
log ‖vn‖ &

σ1

1 + σ2
2 log

2 n
.

Claim 3.3. Let a ∼ N(0, 1). For any two vectors u and v, with probability 1− δ,

‖au+ v‖ ≥ δ
√

π/2 ‖u‖ .

Proof. First, without loss of generality v is collinear with u; any orthogonal component only helps.
So we can only consider real-valued u and v, and in fact rescale so u = 1. The claim is then: with
probability 1− δ, a sample from N(v, 1) has absolute value at least δ

√
π/2. This follows from the

standard Gaussian density being at most 1/
√
2π.

Theorem 1.1 (Performance of Oja’s method in adversarial streams). For any sufficiently large
universal constant C, suppose η is such that ηnλ1 > C log d and ηnλ2 < 1

C logn . If η ‖xi‖2 ≤ 1 for

every i, then Oja’s algorithm with learning rate η returns v̂ satisfying ‖P v̂‖ ≤ √ηnλ2 + d−9 with
1− d−Ω(C) probability.

Moreover, Oja’s method can be modified (Algorithm 1) so that in addition, regardless of λ1 and
λ2, if η ‖xi‖2 ≤ 1 for all i then either ‖P v̂‖ ≤ √ηnλ2 + d−9 or v̂ =⊥.

Proof. We assume that η ‖xi‖2 ≤ 1 for all i, since the theorem is otherwise vacuous.

We begin with the last statement. Algorithm 1 only returns v̂ 6=⊥ if sn = log ‖vn‖
‖v0‖

> 10 log d.
But then by Lemma 2.1,

‖P v̂n‖ ≤
√
σ2 +

‖v0‖
‖vn‖

≤ √σ2 + d−10.

All that remains is to show that, if σ1 > C log d and σ2 <
1

C logn , v̂ 6=⊥ with at least 1− d−Ω(C)

probability. And of course, v̂ 6=⊥ if ‖vn‖
‖v0‖
≥ d10.

Oja’s algorithm starts with v̂0 uniformly on the sphere, and is indifferent to the initial scale
‖v0‖, so v0 could be constructed as v0

‖v0‖
for v0 ∼ N(0, Id).

Let v0 = av∗ + u for u ⊥ v∗. Let B =
∏n

i=1(I + ηxix
T
i ), so vn = Bv0.

By Lemma 2.6 and the bound on σ2, we know ‖Bv∗‖ ≥ ec
′σ1 for some constant c′. Then by

Claim 3.3, with probability 1− δ,

‖vn‖ = ‖aBv∗ +Bu‖ ≥ δ
√

π/2 ‖Bv∗‖ ≥ δec
′σ1 .

The (very naive) Markov bound from E[‖v0‖2] = d gives that

‖vn‖
‖v0‖

≥ δ3/2ec
′σ1

√
d
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with probability 1− 2δ. For sufficiently large C in σ1 ≥ C log d, this gives

‖vn‖
‖v0‖

≥ d10

with probability 1− d−Ω(C).

3.4 Proof of Theorem 1.2

Theorem 1.2 (Full algorithm). For X ∈ R
n×d have b-bit entries for b > log(dn). Whenever the

spectral gap R = λ1/λ2 > O(log n log d), Algorithm 2 uses O(b2d) bits of space and O( log dR + d−9)-
approximates PCA with high probability.

Proof. Let C be the constant in Theorem 1.1. For R to be well defined, λ1 6= 0 so some xi 6= 0.
Therefore 2−2b ≤ λ1 ≤ nd222b. Thus one of the ηi considered in Algorithm 2 is such that ηnλ1 ∈
[C log d, 2C log d]. Let î be this i. For sufficiently large constant in the choice of R, we have

ηinλ2 ≤
1

C log n

for all i ≤ î.
Let x be the xi of maximum norm, as computed by the algorithm. We now show that x̂ := x

‖x‖

is a sufficiently good answer if η̂i ‖x‖
2 ≥ 1. Decompose x = av∗ + bw for w ⊥ v∗ a unit vector.

By (7), b is fairly small:

b2 ≤ η̂i

∑

i

〈xi, w〉2 ≤
∥∥PXTXP

∥∥ = nλ2 ≤
2C log d

Rη̂i
.

The unit vector x̂ in direction x has error

‖Px̂‖2 = b2

‖x‖2
≤ 2C log d

Rη̂i ‖x‖
2 .

log d

Rη̂i ‖x‖
2 . (13)

Therefore if η̂i ‖x‖
2 ≥ 1, x̂ is a sufficiently accurate answer.

The last statement in Theorem 1.1 shows that, if ηi∗ ‖x‖2 ≤ 1 and i∗ ≤ î, then

∥∥∥Pv(i
∗)
∥∥∥
2
≤ (
√

ηi∗nλ2 + d−9)2 . ηi∗nλ2 + d−18 ≤ 2C log d

R
+ d−18 (14)

which is sufficiently accurate. We now split into case analysis.

In one case, suppose η̂i ‖x‖
2 < 1. Therefore the main body of Theorem 1.1 states that v(̂i) 6=⊥

with high probability. In particular, this means i∗ ≤ î, so ηi∗ ‖x‖2 < 1, and the algorithm’s answer
is v(i

∗) which is sufficiently accurate by (14).
Otherwise, η̂i ‖x‖

2 ≥ 1. Then outputting x is sufficiently accurate by (13). If i∗ ≥ î, the

algorithm will definitely output x; if i∗ < î, the algorithm might output v(i
∗), but only if ηi∗ ‖x‖2 <

1, in which case this is sufficiently accurate by (14).
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3.5 Precision

Finally, we discuss why O(log(nd)) bits of precision suffice for the algorithm. Algorithm 1 tracks
two values: a unit vector v̂i and the log-norm si of the unnormalized vi. The main concern is that
the error in v̂i could compound.

Consider v̂i and si to be the values computed by the algorithm, which has some ε = 1
poly(nd)

error (in ℓ2) added in each iteration. We can enforce si ≥ si−1 despite the error. Redefine vi to
2si v̂i.

We now redo the proof of (12) with ε error in each step. Define Bi = ‖vi‖
2

‖v0‖
2 = 2si , and

Ai = log Bi
Bi−1

= (si − si−1) which satisfies Ai ≥ η〈xi, v̂i−1〉2 −O(ε) by (10). Therefore

η
n∑

i=1

〈xi, vi−1〉2 ≤ ‖v0‖2
n∑

i=1

(Ai +O(ε))Bi−1 ≤ ‖v0‖2 ((Bn − 1) +O(εnBn)) = ‖vn‖2 − ‖v0‖2 +O(εn ‖vn‖2)

(15)

by Claim 3.1. Then for any unit vector w with Pw = w,

〈vn − v0, w〉2 = (
n∑

i=1

〈vi − vi−1, w〉)2

= (

n∑

i=1

η〈xi, vi−1〉〈xi, w〉 +O(ε) ‖vi−1‖)2

=

(
O(nε ‖vn‖) + η

n∑

i=1

〈xi, vi−1〉〈xi, w〉
)2

by (8)

≤ η
n∑

i=1

〈xi, vi−1〉2 · η
n∑

i=1

〈xi, w〉2 +O(n2ε ‖vn‖2) by Cauchy-Schwarz

≤ (‖vn‖2 − ‖v0‖2)σ2 +O(εn2 ‖vn‖2). by (15) and (7)

There’s nothing special about the start and final indices, giving the following bound for general
indices a ≤ b:

〈vb − va, w〉2 ≤ (‖vb‖2 − ‖va‖2)σ2 +O(εn2 ‖vb‖2). (16)

Given (16), the error tolerance flows through the rest of the proof easily. Lemmas 2.1 and 2.2
follow immediately with O(εn2) additive error. Lemma 2.5 gets additive error O(σ2εn

3 log2 n),
so both the numerator and denominator of Lemma 2.6 change by εpoly(n). Both the conditions
and result of Theorem 1.1 only change by an additive εpoly(n) error, which for sufficiently small
polynomial ε are absorbed by the constant factors and 1

d9
additive error. And Algorithm 2 does

nothing that could compound the error by more than a constant factor, so Theorem 1.2 holds as
well.

4 Lower Bound for Mergeable Summaries

In this section, we show that any all the mergeable summaries require Ω(d2/R2) bits of space, even
just to approximate PCA with 0.1 error. This is significantly worse than our upper bound for
streaming algorithms.
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Theorem 1.3 (Mergeable Lower Bound). For all mergeable summaries, 0.1-approximate PCA on
streams with spectral gap R requires at least Ω(d2/R2) bits of space.

To prove the theorem, for p > 1, we define distribution Dp over R
d×d such that X ∼ Dp is

drawn according to the following randomized procedure:

1. Sample v∗ ∼ N (0, Id).

2. Define k := d/p. For each i ∈ [p], we sample a X(i) ∈ R
k×d as follows: Randomly choose a

j∗i ∈ [k] and set X
(i)
j∗i

to be v∗. For j ∈ [k] \ {j∗i }, independently sample X
(i)
j ∼ N (0, Id). Let

X(i) := (X
(i)
1 ,X

(i)
2 , . . . ,X

(i)
k )T .

3. Finally, let X be the concatenation of all the X(i)’s, i.e.,

X :=




X(1)

X(2)

...

X(p)


 .

We first show that for X ∼ Dp, X
TX has a large spectral gap with high probability:

Lemma 4.1. For X ∼ D, with 1− o(1) probability,

min
v′⊥v∗
‖v′‖=1

‖Xv̂∗‖2
‖Xv′‖2

≥ 0.1p.

Furthermore, the spectral gap of XTX is at least 0.1p.

Proof. We can decompose the rows of X into two parts: repetitions of v∗ and other randomly
sampled rows. Define X̃ ∈ R

(d−p)×d as X excluding the v∗’s in each X(i).
For an arbitrary unit vector u ∈ R

d, X’s variance on u is equal to

‖Xu‖2= p〈v∗, u〉2 + ‖X̃u‖2.

Therefore, X’s variance at the direction of v∗ is

‖Xv̂∗‖2= p〈v∗, v̂∗〉2 + ‖X̃v̂∗‖2≥ p〈v∗, v̂∗〉2 = p ‖v∗‖2 .

For any unit vector u orthogonal to v∗, we have

‖Xu‖2= p〈v∗, u〉2 + ‖X̃u‖2= ‖X̃u‖2≤ ‖X̃‖2.

Utilizing this, we have

min
v′⊥v∗
‖v′‖=1

‖Xv̂∗‖2
‖Xv′‖2

≥ p‖v∗‖2
‖X̃‖2

.

Note that v∗ ∼ N (0, Id), by Lemma A.5, ‖v∗‖2 ≥ 0.9d holds with probability at least 1− o(1).
In addition, since every instance in X̃ follows N (0, 1) independently, by Lemma A.1, we have

Pr
[
‖X̃‖≥ 3

√
d
]
≤ o(1).
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This states that with probability 1− o(1),

min
v′⊥v∗
‖v′‖=1

‖Xv̂∗‖2
‖Xv′‖2

≥ p‖v∗‖2
‖X̃‖2

≥ 0.9pd

9d
= 0.1p.

Furthermore, the spectral gap of XTX is given by

max
‖v‖=1

min
v′⊥v

‖v′‖=1

‖Xv‖2

‖Xv′‖2
≥ min

v′⊥v∗
‖v′‖=1

‖Xv̂∗‖2
‖Xv′‖2

≥ 0.1p.

Lemma 4.2. For X ∼ D, let v be the top eigenvalue of XTX. Let α be an arbitrarily small
positive constant. There exists a constant C such that when p ≥ C, with 1 − o(1) probability,
sin2(v̂∗, v) ≤ α2.

Proof. Without loss of generality, we express v as v =
√
1− ε2v̂∗ + εu for some ε > 0 and unit

vector u orthogonal to v∗. We only need to prove that ε ≤ α.
We have

‖Xv‖2 ≤(1− ε2)‖Xv̂∗‖2 + ε2 ‖Xu‖2 + 2
√

1− ε2ε‖Xv̂∗‖ · ‖Xu‖ .

By Lemma 4.1, we have with probability 1− o(1), ‖Xv̂∗‖2 ≥ 0.1p‖Xu‖2. Therefore,

‖Xv‖2 ≤ ‖Xv̂∗‖2(1− ε2 + ε2
10

p
+ 2ε

√
10

p
).

When ε > α, there exists a constant C > 0 such that for p ≥ C,

‖Xv̂∗‖2(1− ε2 + ε2
10

p
+ 2ε

√
10

p
) ≤ ‖Xv̂∗‖2(1− ε2

2
) ≤ ‖Xv̂∗‖2.

This contradicts the assumption that the direction of v has larger variance than v∗. This proves
the lemma.

Let A be an arbitrary deterministic mergeable summary for PCA that satisfies

Pr
X∼Dp

[sin2(A(X), v∗) ≤ 0.105] ≥ 0.9. (17)

Lemma 4.3. A requires Ω(d2/p2) bits of space.

Before proving Lemma 4.3, we first show the proof of Theorem 1.3 assuming Lemma 4.3 is true.

Proof of Theorem 1.3. Suppose we have a mergeable summary S that 0.1-approximates PCA uses
o(d2/R2) bits of space with high probability. Let α > 0 be a constant such that

sin2(arcsinα+ arcsin
√
0.1) ≤ 0.105.

Let C be the constant in Lemma 4.2 corresponding to α. By Lemma 4.1, for X ∼ D10R+C , X
TX

has spectral gap R with high probability. Therefore, S succeeds in 0.1-approximating PCA with
high probability. Combining with Lemma 4.2, we have S succeeds in 0.105-approximating v∗ on
X ∼ D10R+C with high probability.

By Yao’s minimax principle, there must be a deterministic mergeable summary A that also uses
o(d2/R2) bits of space and 0.105-approximates PCA on X ∼ D10R+C with high probability, i.e., it
satisfies (17). By Lemma 4.3, A must require Ω(d2/R2) bits of space, which is a contradiction.
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We use s to denote the bits of space of A. To prove Lemma 4.3, we will show that s = Ω(d2/p2).
We use mi to denote A’s summary for X(i). The key property we use here is that each mi is a
deterministic function of X(i), so mi’s are independent except for the shared vector v∗. We start
with the following classical result:

Proposition 4.4 (Chain Rule for Mutual Information). Let X, Y , Z be random variables. We
have

I(X;Y | Z) = I(X;Y )− (I(X;Z) − I(X;Z | Y )).

Corollary 4.5. Let X, Y , Z be random variables. If X and Z are independent,

I(X;Y ) ≤ I(X;Y | Z).

Proof. Since X and Z are independent, I(X;Z) = 0. Applying proposition 4.4 gives the result.

Using these results, we can prove the next two lemmas bounding the mutual information between
v∗ and mi’s in terms of s.

Lemma 4.6. For every i ∈ [p], I(mi; v
∗) ≤ s/k.

Proof. Since mi and j∗i are independent, by corollary 4.5 we have

I(mi;X
(i)
j∗i
) ≤ I(mi;X

(i)
j∗i
| j∗i ).

Thus,

I(mi; v
∗) = I(mi;X

(i)
j∗i

) ≤ I(mi;X
(i)
j∗i
| j∗i ) =

1

k

∑

j∈[k]

I(mi;X
(i)
j | j∗i = j) =

1

k

∑

j∈[k]

I(mi;X
(i)
j ).

Furthermore, since each X
(i)
j is sampled independently, by applying corollary 4.5, we have for each

j ∈ [k],

I(mi;X
(i)
j ) ≤ I(mi;X

(i)
j | X

(i)
1 , . . . ,X

(i)
j−1).

We have
∑

j∈[k]

I(mi;X
(i)
j ) ≤

∑

j∈[k]

I(mi;X
(i)
j | X

(i)
1 , . . . ,X

(i)
j−1) = I(mi;X

(i)
1 , . . . ,X(i)

n ) ≤ H(mi).

Since A only has s bits of space, H(mi) ≤ s. Therefore,

I(mi; v
∗) ≤ 1

k
H(mi) ≤

s

k
.

Lemma 4.7. I(v∗;m1,m2, . . . ,mp) ≤ p2s/d

Proof. We first prove that for i ∈ [p], I(v∗;mi | m1, . . . ,mi−1) ≤ I(v∗;mi). Note that

I(mi;m1, . . . ,mi−1 | v∗) ≤ I(X(i);X(1), . . . ,X(i−1) | v∗) = 0.

By proposition 4.4, we have

I(v∗;mi | m1, . . . ,mi−1) = I(v∗;mi)− I(mi;m1, . . . ,mi−1) + I(mi;m1, . . . ,mi−1 | v∗) ≤ I(v∗;mi).
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Then by Lemma 4.6, we have

I(v∗;m1, . . . ,mp) =
∑

i∈[p]

I(v∗;mi | m1, . . . ,mi−1) ≤
∑

i∈[p]

I(v∗;mi) ≤
ps

k
=

p2s

d
.

Next, we show that the mutual information between v∗ and the output of A must be at least
Ω(d). For this purpose, we refer to a special case of lemma 4.4 from [JKDP21]:

Lemma 4.8 (Lemma 4.4 of [JKDP21]). Consider random variable x uniformly distributed over
D ⊆ R

d and random variable x̃ in R
d. If the joint distribution of (x, x̃) satisfies

Pr[‖x− x̃‖≤ η] ≥ 0.9,

then we have
1

8
log Cov3η,1/2(D) ≤ I(x; x̃) + 1.98,

where Cov3η,1/2 denotes the minimum number of d-dimensional balls of radius 3η required to cover
at least half of D.

Lemma 4.9. Let unit vector ṽ be an approximation of v̂∗ such that

Pr[sin2(v∗, ṽ) ≤ 0.105] ≥ 0.9.

Then,
I(v̂∗; ṽ) & d.

Proof. We define ṽ′ := sign(ṽT v∗)ṽ. Then it is easy to verify that sin2(v∗, ṽ) ≤ 0.105 implies that
‖v̂∗ − ṽ′‖≤ 1/3 − c for some constant c > 0. Therefore, by Lemma 4.8, we have

I(v̂∗; ṽ′) ≥ 1

8
log Cov1−3c,1/2(Sd)− 1.98,

where Sd denotes the d-dimensional unit sphere. Note that each ball of radius 1 − 3c can cover a
spherical cap with height at most 1 − 3c on the unit sphere, and the union of these caps need to
cover at least half of the surface area of a unit sphere. Using a bound on the area of a spherical
cap (Lemma A.6), we have

log Cov1−3c,1/2 ≥ log
area of Sd

area of height-(1 − 3c) spherical cap
& d.

Therefore,
I(v̂∗; ṽ′) & d.

This implies that

d . I(v̂∗; ṽ′) = I(v̂∗; sign(ṽT v∗)ṽ) ≤ I(v̂∗; ṽ, sign(ṽT v∗)) = I(v̂∗; ṽ) + I(v̂∗; sign(ṽT v∗) | ṽ).

In addition, since
I(v̂∗; sign(ṽT v∗) | ṽ) ≤ H(sign(ṽT v∗)) ≤ 1,

we have
I(v̂∗; ṽ) & d.
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This gives us a lower bound for s:

Proof of Lemma 4.3. Let ṽ be the output of A. By Lemma 4.9, we have

I(ṽ; v̂∗) & d.

By Lemma 4.7,

I(m1, . . . ,mp; v
∗) ≤ p2s

d
.

Using the data processing inequality, we get

d . I(ṽ; v̂∗) ≤ I(m1, . . . ,mp; v
∗) ≤ p2s

d
.

Therefore,

s &
d2

p2
.

5 Lower Bound for Accuracy

Our lower bound is based on the PartialDuplicate instance, where an instance is a matrix
X ∈ {0,−1, 1}(k+n+1)×d can be expressed as follows:

• The first row equals x + y, where x, y ∈ {0,−1, 1}d have supp(x) = {1, 2, . . . , d/2} and
supp(y) = {d/2 + 1, . . . , d}.

• For i ∈ {2, . . . , k + 1}, the i-th row equals x.

• The last n rows form a uniformly random matrix X ′ ∈ {−1, 1}n×d.

That is, the entries look like:

X =

x y
x 0
...

...
x 0

X ′

except that x, y are zero-padded to d dimensions. Without loss of generality, we assume d is
superconstant and k = o(d).

5.1 Spectral properties of PartialDuplicate

Let v∗ be the top unit eigenvector of XTX. We can decompose v∗ into three components: the x
direction, the y direction, and the component orthogonal to both of these. This is:

v∗ = ax̂+ bŷ + cw̃,

where a2 + b2 + c2 = 1 and w̃ is an arbitrary unit vector orthogonal to x and y.
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We have that

‖Xv∗‖2 = ‖X ′v∗‖2+k〈x, v∗〉2 + 〈x+ y, v∗〉2

= ‖X ′v∗‖2+a2k‖x‖2+(a‖x‖+b‖y‖)2

= ‖X ′v∗‖2+a2(k + 1)‖x‖2+2ab‖x‖‖y‖+b2‖y‖2

= ‖X ′v∗‖2+a2(k + 1)d

2
+ abd+

b2d

2
. (18)

Lemma 5.1. Suppose n ≤ d. Then |c|≤ O(1/k) with high probability.

Proof. Since sign(b) · v∗ is also a top eigenvector of XTX, without loss of generality, we assume
b > 0. We consider unit vector v′ =

√
a2 + c2x̂+ bŷ, we have

‖Xv′‖2−‖Xv∗‖2

=‖X ′v′‖2−‖X ′v∗‖2+c2(k + 1)d

2
+ (
√

a2 + c2 − a)bd

≥(v′ + v∗)TX ′TX ′(v′ − v∗) +
c2(k + 1)d

2
.

By Lemma A.1, with high probability,

|(v′ + v∗)TX ′TX ′(v′ − v∗)|≤
∥∥X ′

∥∥2 ∥∥v′ − v∗
∥∥∥∥v′ + v∗

∥∥ ≤ O(|cd|).

Thus,

‖Xv′‖2−‖Xv∗‖2≥ −O(|cd|) + c2(k + 1)d

2
.

Since v∗ is the top eigenvector, this implies that

−O(|cd|) + c2(k + 1)d

2
≤ 0.

Hence,
|c|≤ O(1/k).

Lemma 5.2. Suppose k ≥ C and n ≤ d
9k for a sufficiently large constant C. Then |b|≥ 1

3k with
high probability.

Proof. Suppose |b|< 1
3k with non-negligible probability. Combining with Lemma 5.1, this implies

that with non-negligible probability, |b|< 1
3k and |c|≤ O(1/k). We will show that with high proba-

bility, any unit vector v = ax̂+ bŷ + cw̃ satisfying |b|< 1
3k and |c|< log k

k is not the top eigenvector
of XTX. This contradicts the assumption and proves the lemma.

Without loss of generality, we only consider the case when b > 0. Let t :=
√
a2 + b2 =

√
1− c2 >

2/3. Therefore, we have a =
√
t2 − b2 = t−Θ(b2). Taking this into (18), we have

‖Xv‖2 = ‖X ′v‖2+(t2 − b2)kd

2
+ b(t−Θ(b2))d.
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We consider vector v′ =
√

t2 − (b+ ε)2x̂+ (b+ ε)ŷ + cw̃ for ε = 1
3k . Now we prove that with high

probability ‖Xv′‖2−‖Xv‖2> 0. We have

∥∥Xv′
∥∥2 − ‖Xv‖2 =

∥∥X ′v′
∥∥2 −

∥∥X ′v
∥∥2 + kd

2
(b2 − (b+ ε)2) + εtd+Θ(b3)d−Θ((b+ ε)3)d

=
∥∥X ′v′

∥∥2 −
∥∥X ′v

∥∥2 − bkdε− kdε2

2
+ εtd+Θ(b3)d−Θ((b+ ε)3)d

≥
∥∥X ′v′

∥∥2 −
∥∥X ′v

∥∥2 − d

9k
− d

18k
+

d

3k
±O(

1

k3
)d

≥ −
∥∥X ′v

∥∥2 + d

8k

with our choice of k. Note that

∥∥X ′v
∥∥2 ≤

∥∥aX ′x̂
∥∥2 +

∥∥bX ′ŷ
∥∥2 +

∥∥cX ′w̃
∥∥2 ≤

∥∥X ′x̂
∥∥2 + 1

9k2
∥∥X ′ŷ

∥∥2 + log2 k

k2
∥∥X ′

∥∥2 .

By Lemma A.1, with high probability,

∥∥X ′
∥∥ ≤ 2

√
d.

Furthermore, since x̂ and ŷ are independent of X ′, by Claim A.2, with high probability,

∥∥X ′x̂
∥∥2 ≤ n+ o(n) and

∥∥X ′ŷ
∥∥2 ≤ n+ o(n).

Therefore, with high probability,
∥∥X ′v

∥∥2 ≤ 1.1n <
d

8k
.

Hence, with high probability, ∥∥Xv′
∥∥2 − ‖Xv‖2 > 0.

Lemma 5.3. Suppose k ≥ C, n ≤ d
9k and ε ≤ 1

Ck2
for a sufficiently large constant C. For any

ε-approximate PCA solution w, 〈w, y〉 ≥ Ω(
√
d/k) with high probability.

Proof. By Lemma 5.2, with high probability,

〈v∗, y〉 = 〈bŷ, y〉 ≥ Ω(
√
d/k).

Therefore, for w = v∗ +
√
εu for some unit vector u, we have

〈w, y〉 = 〈v∗ +√εu, y〉 = 〈v∗, y〉+√ε〈u, y〉 ≥ Ω(
√
d/k)−√ε ‖y‖ ≥ Ω(

√
d/k).

Lemma 5.4. Suppose n ≤ d. The spectral gap R is at least k/20 with high probability.

Proof. The first eigenvalue λ1 of XTX satisfies

λ1 = max
‖v‖=1

‖Xv‖2 ≥ ‖Xx̂‖2 ≥ (k + 1)〈x, x̂〉2 ≥ kd

2
.
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The second eigenvalue λ2 of XTX satisfies

λ2 = min
v

max
v′⊥v

‖v′‖=1

∥∥Xv′
∥∥2

≤ max
v′⊥x
‖v′‖=1

∥∥Xv′
∥∥2

= max
v′⊥x
‖v′‖=1

(∥∥X ′v′
∥∥2 + 〈y, v′〉2

)

≤
∥∥X ′

∥∥2 + d

2
.

By Lemma A.1 , with high probability, ‖X ′‖≤ 3
√
d. Therefore,

λ2 ≤ 10d.

Hence the spectral ratio

R =
λ1

λ2
≥ k

20
.

5.2 Accuracy lower bound

Theorem 1.4 (Accuracy Lower Bound). There exists a universal constant C > 1 such that: for

any R > 1, 1
CR2 -approximate PCA on streams with spectral gap R requires at least d2

CR3 bits of space
for sufficiently large d > poly(R).

Proof. Suppose that we have such an ε-approximate streaming PCA algorithm. We set up a two

player one-way communication protocol. Let A1 ∈ {−1, 1}n×
d
2 and A2 ∈ {−1, 1}n×

d
2 be chosen

uniformly at random. Let A = [A1, A2] ∈ {−1, 1}n×d be their concatenation. Let A′ = [A1, 0] ∈
{0,−1, 1}n×d be the matrix that pads A1 to d columns with 0.

In this protocol, Alice receives A = [A1, A2] and Bob receives A1. Alice feeds A to the streaming
algorithm, reaching some stream state S, which she sends to Bob. Bob uses A1 and S to construct an
approximation Â to A2 in the following fashion. For each i ∈ [n], Bob sets the streaming algorithm’s
state to S, inserts the i-th row of A′ for k times and computes the algorithm’s approximate PCA

solution v̂i. Let V̂ ∈ R
n×d be the matrix with the i-th row being v̂i. Let V̂2 ∈ Rn× d

2 be the last d/2
columns of V̂ . We will show that I(A2; V̂ ) & d2/R3 for an appropriate choice of parameters.

Note that when Bob produces v̂i, the streaming algorithm has effectively seen the stream A
followed by k vectors that match the ith row of A. Up to reordering of rows, this is distributed
identically to PartialDuplicate. Reordering the rows, of course, does not change the covariance
matrix.

We choose k = max(20R,C), n = d
9k and ε = 1

Ck2
for the constant C in Lemma 5.3. By

Lemma 5.4, with high probability the stream has spectral gap at least k/20 ≥ R. Therefore the
streaming algorithm’s PCA solution should be ε-approximate with at least 2/3 probability. Then
Lemma A.3 says that

I(V̂ ;A2) ≥ Ω

(
1

k2
· d
k
· d
2

)
− d = Ω

(
d2/R3

)
.

Now, V̂ is independent of A2 conditioned on (S,A1) so by the data processing inequality,

I(V̂ ;A2) ≤ I(A1, S;A2) ≤ I(A1;A2) + I(S;A2 | A1) ≤ 0 +H(S).
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Thus, if the state S contains |S| bits, we have

Ω(d2/R3) ≤ H(S) = H(|S|) +H(S | |S|) ≤ E[|S|] +H(|S|)

Now, for any random variable X over positive integers,

H(X) =
∞∑

i=1

p(i) log
1

p(i)

=


 ∑

i:p(i)≤2−i

p(i) log
1

p(i)


+


 ∑

i:p(i)>2−i

p(i) log
1

p(i)




≤


 ∑

i:p(i)≤2−i

2−i · i


+


 ∑

i:p(i)>2−i

ip(i)




= 2 + E[X]

so Ω(d2/R3) ≤ 2E[|S|] + 2, or
E[|S|] ≥ Ω(d2/R3).

Thus the streaming algorithm must store Ω(d2/R3) bits on average after Alice has finished feeding
in her part of the stream.
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A Utility lemmas for the Lower Bounds

We use the following bound on the maximum singular value of an iid subgaussian matrix:

Lemma A.1 (Feldheim and Sodin [FS10], see also (2.4) of [RV10]). Let A be an n × N random
matrix with independent subgaussian entries of zero mean and variance 1, for n ≤ N . There exists
a universal constant c > 0 such that

Pr[‖A‖ ≥ √n+
√
N + τ

√
N ] . e−cnτ3/2

for any τ > 0.

The following is essentially a restatement of the JL lemma for ±1 matrices:
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Claim A.2. Let u ∈ R
d be a unit vector, and X ∈ {−1, 1}n×d independently and uniformly. Then

E[‖Xu‖2] = n

and with 1− δ probability

|‖Xu‖2 − n|.
√

n log
1

δ
+ log

1

δ
.

Proof. Let z = Xu. The coordinates zi are independent, mean zero, variance 1, and subgaussian
with variance parameter 1. The expectation bound is trivial: sum the variance over n independent
coordinates. For concentration, each coordinate z2i is a squared subgaussian, and hence subgamma
with (σ, c) parameters (O(1), O(1)). Then

∑
i z

2
i is subgamma with parameters (O(

√
n), O(1)).

Hence with probability 1− δ we have

|‖Xu‖2 − n|.
√

n log
1

δ
+ log

1

δ
.

Lemma A.3. Let X ∈ {−1, 1}n×d be uniformly distributed, and let Y ∈ R
n×d have rows of norm

at most 1 such that each row i ∈ [n] has |〈xi, yi〉|> a
√
d with at least 50% probability, for a > 0.

Then
I(X;Y ) ≥ Ω(a2nd)− n.

Proof. For any row y, when x ∈ {−1, 1}d uniformly at random, 〈x, y〉 is subgaussian with variance
parameter ‖y‖2 ≤ 1, so

Pr[|〈x, y〉|> a
√
d] ≤ 2e−a2d/2,

so the number of x with |〈x, y〉|> a
√
d is at most 2(1−Ω(a2))d. Let b ∈ {0, 1}n denote the indicator

vector with bi = 1 if |〈xi, yi〉|> a
√
d and bi = 0 otherwise.

For any Y, b, let SY,b ⊆ {−1, 1}n×d be the set of possible X that satisfy the inner product
condition |〈xi, yi〉|> a

√
d for all rows i ∈ [n] with bi = 1. Each row with bi = 1 has at most

2(1−Ω(a2))d values of xi in the support, so

|SY,b|≤ 2nd−Ω(a2‖b‖1d).

We have E[‖b‖1] ≥ n
2 , so

H(X | Y ) ≤ H(X | Y, b) +H(b) ≤ (E
Y,b

log|SY,b|) + n ≤ (1− Ω(
1

2
a2))nd+ n

so
I(X;Y ) = H(X) −H(X | Y ) ≥ Ω(a2nd)− n.

Claim A.4. Let A,B > 0. Then

Aa2 +Bab ≤ a2 + b2

2
(A+

√
A2 +B2),

with equality if a2

a2+b2
=

1+

√
A2

A2+B2

2 .
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Proof. Just ask a computer. By hand, though: the equations are homogeneous, so WLOG we can
assume a2 + b2 = 1. We then maximize over a ∈ [0, 1]. Taking the derivative, the maximum is
achieved when

2Aa+B(
√

1− a2 − a2√
1− a2

) = 0

or

2Aa
√

1− a2 = B(2a2 − 1)

4A2a2(1− a2) = B2(4a4 − 4a2 + 1)

a4(4B2 + 4A2)− a2(4A2 + 4B2) +B2 = 0

a2 =
1±

√
A2

A2+B2

2

the first squaring preserved equality only when a2 ≥ 1
2 , so the optimum is at

a2 =
1 +

√
A2

A2+B2

2
.

Then

Aa2 +Ba
√
1− a2 = A

1 +
√

A2

A2+B2

2
+B

√√√√1 +
√

A2

A2+B2

2

1−
√

A2

A2+B2

2

= A
1 +

√
A2

A2+B2

2
+B

√
B2

A2+B2

4

=
1

2
(A+

√
A2 +B2).

Lemma A.5 (Laurent-Massart Bounds[LM00]). Let v ∼ N (0, In). For any t > 0,

Pr[‖v‖2 − n ≥ 2
√
nt+ 2t] ≤ e−t,

Pr[‖v‖2 − n ≤ −2
√
nt] ≤ e−t.

Lemma A.6 ([MV10], see also [BDGL15]). Consider a d-dimensional unit sphere Sd. Let Ch be a
spherical cap on Sd with height h < 1, i.e.,

Ch := {v ∈ Sd | 〈u, v〉 ≥ 1− h}

for some u ∈ Sd. Then the ratio of the area of Ch to the area of Sd is given by dΘ(1) · (2h− h2)d/2.

B Lower Bound for Linear Sketching

When establishing lower bounds for approximating operator norms using linear sketching, Li and
Woodruff [LW16] constructed a lower bound instance with the following properties:

Lemma B.1. For any α > 1.01, there exist two distributions D1 and D2 over Rd×d and s > 0 such
that
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1. For X ∼ D1, ‖X‖2>
√
αs with 0.99 probability.

2. For X ∼ D2. ‖X‖2< s with 0.99 probability.

3. For X ∼ D1, the spectral gap λ1(X
TX)/λ2(X

TX) is at least α with 0.99 probability.

4. Let L1 and L2 be the corresponding distribution of the linear sketch of dimension k on D1

and D2. Then dTV (L1,L2) < 0.1 whenever k ≤ o(d2/α2).

This implies a space lower bound for PCA using linear sketching. We present the Johnson-
Lindenstrauss lemma first.

Lemma B.2 (Johnson-Lindenstrauss Lemma [JL84]). For any positive integer d and ε, δ ∈ (0, 1),
there exists a distribution S over R

m×d where m = Θ
(
ε−2 log 1

δ

)
such that for every x ∈ R

d,

Pr
A∼S

[∣∣‖Ax‖22−‖x‖22
∣∣ ≤ ε‖x‖22

]
≥ 1− δ.

Using these lemmas, we can prove the following lower bound, which implies any sketching
algorithm for adversarial streaming PCA needs at least Ω(d2/R2) bits of space.

Theorem B.3. For all linear sketching algorithms, 0.1-approximate PCA on streams with spectral
gap R = o(

√
d) requires sketches of dimension Ω(d2/R2),

Proof. Let D1 and D2 be the distributions described in Lemma B.1 with α = R. Suppose there
exists a linear sketching algorithm that 0.1-approximates PCA using o(d2/R2) space with success
probability 0.99. We will show that this leads to a contradiction by constructing a linear sketch of
dimension o(d2/R2) that distinguishes D1 and D2 with 0.9 probability whenever 4 ≤ R ≤ o(

√
d).

Let S be the distribution in Lemma B.2 with parameters δ = ε = 0.01, and S is a distribution
over RO(1)×d. Let s be the corresponding parameter for D1 and D2 in Lemma B.1. Our algorithm
proceeds as follows: Given a matrix X, run the PCA approximation algorithm, which is a linear
sketching of dimension o(d2/R2), to obtain an approximation ṽ. In parallel, sample A ∼ S and
compute AX, which is a matrix of dimension O(1) × d; that is, it is a linear sketch with O(d) =
o(d2/R2) dimensions. Suppose ‖AXṽ‖2> 1.1s, output that X is from D1; otherwise, output that
X is from D2.

We first show that for X ∼ D1, ‖AXṽ‖2> 1.1s with 0.9 probability. Let v∗ be the true principal
component of X in the direction that 〈ṽ, v∗〉 ≥ 0. By a union bound, we have that with probability
at least 0.96, the following events happen simultaneously:

1. X has a spectral gap of R.

2. The PCA approximation ṽ satisfies sin2(ṽ, v∗) ≤ 0.1.

3. ‖AXṽ‖2≥ 0.99‖Xṽ‖2.

4. ‖X‖2>
√
Rs.

When all of these hold, we can prove that ‖AXṽ‖2> 0.6
√
Rs. We have

‖AXṽ‖2≥ 0.99‖Xṽ‖2≥ 0.99(‖Xv∗‖2−‖X(v∗ − ṽ)‖2) ≥ 0.99(‖X‖2−‖v∗ − ṽ‖2‖X‖2).

Since ṽ and v∗ are unit vectors, sin2(ṽ, v∗) ≤ 0.1 implies that ‖v∗ − ṽ‖2=
√

2− 2 cos(ṽ, v∗) ≤ 0.35.
Thus,

‖AXṽ‖2≥ 0.6‖X‖2> 0.6
√
Rs.
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Therefore, ‖AXṽ‖2> 1.1s with probability at least 0.9 whenever R ≥ 4.
Next, we show that for X ∼ D2, ‖AXṽ‖2≤ 1.1s with 0.9 probability. Again, by a union bound,

we have with at least 0.9 probability,

‖AXṽ‖2≤ 1.01‖Xṽ‖2≤ 1.01‖X‖2≤ 1.1s.

This proves that our sketching algorithm distinguishes D1 and D2 with probability at least 0.9,
contradicting Lemma B.1, and therefore proves the theorem.
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