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Abstract

In streaming PCA, we see a stream of vectors 1, ..., 2z, € R? and want to estimate the top
eigenvector of their covariance matrix. This is easier if the spectral ratio R = A1 /A2 is large. We
ask: how large does R need to be to solve streaming PCA in O(d) space? Existing algorithms
require R = Q(d). We show:

e For all mergeable summaries, R = Q(v/d) is necessary.

e In the insertion-only model, a variant of Oja’s algorithm gets o(1) error for R = O(log nlogd).

e No algorithm with o(d?) space gets o(1) error for R = O(1).

Our analysis is the first application of Oja’s algorithm to adversarial streams. It is also
the first algorithm for adversarial streaming PCA that is designed for a spectral, rather than

Frobenius, bound on the tail; and the bound it needs is exponentially better than is possible by
adapting a Frobenius guarantee.



1 Introduction

Principal Component Analysis (PCA) is a fundamental primitive for handling high-dimensional
data by finding the highest-variance directions. At its most simple, given a data set X € R"*% of
n data points in d dimensions, we want to find the top unit eigenvector v* of the covariance matrix
»=1XxTX.

One common way to approximate v* is the power method: start with a random vector ug, then
repeatedly multiply by ¥ and renormalize. This converges to v* at a rate that depends on the
ratio of the top two eigenvalues of 3, denoted R := A\;/A2. In particular, after O(logp g) iterations
we have ||Pug||* = 1 — (ug, v*)? = sin®(uy, v*) < e with high probability, where P = I — v*(v*)7
projects away from v*.

But what if the data points z1, za, . .., 2, € R? arrive in a streaming fashion? Directly applying
the power method requires either nd space to store X, or d? space to store ¥. What can be done in
smaller space? The question of streaming PCA has been extensively studied, in two main settings:
adversarial and stochastic streams.

In the adversarial streaming setting, we want to solve PCA for an arbitrary set of data points
in arbitrary order. Many of these algorithms store linear sketches of the data, such as AX and
X B for Gaussian matrices A, B [CW09; BWZ16; Wool4b; Upal8; TYUC17]. These results give a
Frobenius guarantee for rank-k approximation of X. Specialized to k = 1, the result direction u
satisfies

A~ T (12 2
| XTI —aa")||, < (1+4¢) | XP|%

which is equivalent to
ﬂTEﬂ > )\1 — 62)\2
i>1

The best result here is FREQUENTDIRECTIONS [Lib13; GLPW16], which is a deterministic insertion-
only algorithm rather than a linear sketch. It uses O(d/e) space to get the guarantee, which is
optimal [CWO09]. Unfortunately, this Frobenius guarantee can be quite weak: if the eigenvalues
do not decay and we only have a bound on R = A;/Xa, to get ||Pa||* < 0.1 we need ¢ < %,
which means ©(d?/R) space. The well-known spiked covariance mode [Joh01], where the x; are
iid Gaussian with covariance that has eigenvalues Ao = A3 = --- = Ay, is one example where this
quadratic space bound appears.

In the stochastic streaming setting, the x; are drawn iid from a somewhat nice distribution.
The goal is to converge to the principal component of the true distribution using little space and
few samples. Algorithms for the stochastic setting are typically iterative, using O(d) space and
converging to the true solution with a sample complexity depending on how “nice” the distribu-
tion is. Examples include Oja’s algorithm [Oja82; BDF13; JJKNS16; AL17; HNTW21; HNW21;
LSW21] and the block power method [ACLS12; MCJ13; HP14; BDWY16]. Oja’s algorithm starts
with a random vg, then repeatedly sets

T
Vi = Vi—1 + NiTiT; Vi1

for some small learning rate 7;. These analyses depend heavily on the data points being iid'. In
return, they can get a stronger spectral guarantee than the sketching algorithms. The bounds are
not directly comparable to the sketching algorithms (not only does the sample complexity depend
on the data distribution, but the convergence is to the principal component of the true distribution

LOr nearly so; for example, [JJKNS16] requires that the x; are independent with identical covariance matrices.



rather than the empirical ), but in the spiked covariance setting they just need n > 5((1—1— ﬁ)zd)
rather than O(d?/R). That is, they use near-linear samples down to R = 1 + ¢.

So the situation is: algorithms that handle arbitrary data need O(d?/R) space for a spectral
guarantee. Iterative methods have a good spectral guarantee—linear space and often near-linear
samples for constant R—but only handle iid data. Is this separation necessary, or can we get a
good spectral guarantee in the arbitrary-data setting? In this paper we ask:

Is a polynomial spectral gap necessary to guarantee a near-linear space algorithm?

1.1 Our results

Our main result is that linear space is possible for polylogarithmic spectral gaps. In fact, Oja’s
method essentially achieves this:

Theorem 1.1 (Performance of Oja’s method in adversarial streams). For any sufficiently large
universal constant C, suppose 1 is such that nmA; > Clogd and nnie < C%gn. Ifn ||3:Z||2 <1 for
every i, then Oja’s algorithm with learning rate n returns v satisfying || Po|| < vnnia + d=2 with
1 — d=%©) probability.

Moreover, Oja’s method can be modified (Algorithm 1) so that in addition, regardless of \1 and
Ao, if n||lzi||> < 1 for all i then either |P3| < v/mnig +d~2 or o =L.

If R > O(lognlogd), there exists an n that satisfies the eigenvalue condition. However, The-
orem 1.1 requires knowing 7 and that no single ||z;|| is too large. It’s fairly easy to extend the
algorithm to remove both restrictions, as well as describe the performance with respect to finite
precision. Algorithm 2 simply runs Oja’s method for different learning rates and picks the smallest
one that works; unless any single x; has too large ”sz2 violating Theorem 1.1, in which case it
outputs that x;. For X € R"*? with b-bits entries, where each X ; is either O or falls within
270 < |X;4|< 2P, it suffices to test roughly O(b) different learning rates in parallel. We say an
algorithm e-approximates PCA if it returns u with ||Pul|* < e, and we have the following theorem.

Theorem 1.2 (Full algorithm). For X € R"*? have b-bit entries for b > log(dn). Whenever the
spectral gap R = \1/Xa > O(lognlogd), Algorithm 2 uses O(b%d) bits of space and O(% +d9)-
approzimates PCA with high probability.

Algorithm 1 Oja’s Algorithm, checking the growth of ||v,|| to identify too-small learning rates.
procedure OJACHECKINGGROWTH(X, )

Choose Ty € S4~! uniformly. > All numbers stored to O(log(nd)) bits of precision
Set sg = 0.
fori=1,...,n do

v < (14 nziz] )01

[[7]]

5; < si—1 + log ||V
end for
if s, <10logd, return L. > Returns L rather than a wrong answer if 7 is too small.

else return v,
end procedure




Algorithm 2 Algorithm handling unknown learning rate and large-norm entries
procedure ADVERSARIALPCA (X, b) > X € R™4 has X; ;=0 or 27° < |X; ;|< 2b
Define n; = 2¢ for integer i, |i|< 4b + log(nd?) + O(1).
In parallel run OJACHECKINGGROWTH(X, 7;) for all i, getting v(®).
In parallel record 7, the single x; of maximum ||z;]|.
Let i* be the smallest ¢ with v(®) £ .
if n;« ||T||, > 1, return %

else return v(").
end procedure

Lower bound for mergeable summaries. FExisting algorithms for adversarial PCA, including
linear sketching or FREQUENTDIRECTIONS, fall under the category of mergeable summaries [ACHPWY13].
These algorithms enable processing of disjoint data inputs on separate machines, producing sum-
maries that can be combined to address the problem using the full dataset. By contrast, our
algorithm is not mergeable and requires the data to appear in one long sequence.

Considering the benefits of mergeable summaries, a natural goal would be to get a good spectral
guarantee with a mergeable summary. As discussed above, existing algorithms require Q(d?/R)
space, so R = (:)(d) is needed for them to achieve near-linear space. Is it possible to get near-linear
space and logarithmic R, like Theorem 1.2 achieves in the insertion-only model?

Existing lower bounds [LW16] imply that Q(d?/R?) space is necessary for linear sketching (see
Appendix B for discussion). We show that the same bound applies to all mergeable algorithms: all
mergeable summaries require 2(d?/R?) bits of space to 0.1-approximate PCA, making R = fNZ(\/E)
necessary for near-linear space.

Theorem 1.3 (Mergeable Lower Bound). For all mergeable summaries, 0.1-approzimate PCA on
streams with spectral gap R requires at least Q(d?/R?) bits of space.

Dependence on Accuracy. Theorem 1.2 shows that it is possible to solve O(lolg%d)-approximate
PCA in near-linear space. This is o(1), but cannot be driven towards 0 in the way that other settings
allow (in the iid setting, the accuracy improves exponentially in the number of samples; in the
existing O(d?/R)-space worst-case algorithms, the space grows as % for accuracy ¢). Unfortunately,
we show that this is inherent: there is a phase transition where aiming for more than poly(1/R)
accuracy requires quadratic rather than near-linear space.

Theorem 1.4 (Accuracy Lower Bound). There exists a universal constant C' > 1 such that: for
any R > 1, ﬁ-appromimate PCA on streams with spectral gap R requires at least Cd—;g bits of space
for sufficiently large d > poly(R).

Specializing to constant R gives the following corollary:

Theorem 1.5. For any constant R > 1, there exists a constant € > 0 such that e-approximate
PCA on streams of spectral gap R requires Q(d?) bits of space.

This shows that for constant R, storing the entire covariance matrix is essentially the only thing
one can do to achieve o(1) accuracy. By contrast, Theorem 1.2 shows that for R = ©(lognlogd),
e-solving PCA for any constant ¢ > 0 is possible in 6(d) bits of space. This is a much lower
threshold than the R = é(d) needed for near-linear space by existing analyses.

Our results are summarized in Table 1, which gives upper and lower bounds for the requirements
for near-linear space.



Setting Method Mergeable? ‘ Requirement for O(d) space ‘ Citation
e Oja’s algorithm No AL > Ao [Oja82]
Distributional Block power method No AL > Ao [HP14; BDWY16]
Linear Sketching Yes A > (A4 .o+ A) Q(log;cd) [Upal8; TYUC17]
Adversarial | FREQUENTDIRECTIONS Yes M> (A4 4+ Q(@—d) [Lib13; GLPW16]
Algorithm 2 No A1 > A2 - O(log dlogn) Theorem 1.2
. - Yes A1 < A\ - d0%0 Theorem 1.3
Adversarial Impossibility No AL < Mg - 100 Theorem 1.5

Table 1: In various settings, the requirement on the eigenvectors A; of the covariance matrix for the
algorithm to get small constant approximate PCA in O(d) space. In the last two rows, we instead
state a setting of Aj, A2 for an instance in which O(d) space is impossible.

1.2 Related Work

Oja’s algorithm has been extensively studied in the stochastic setting where the data streams are
sampled iid; see, e.g., [BDF13; JJKNSI16; AL17; HNTW21; HNW21; LSW21]. Since the goal
in this setting is to approximate the underlying distribution’s principal components, there is a
minimum sample complexity for even an offline algorithm to estimate the principal component.
This line of work [JJKNSI16] can show that Oja’s algorithm has a similar sample complexity to
the optimal offline algorithm, even for spectral ratios R close to 1. Recent work of [KK524] extends
Oja’s algorithm to data sampled from a Markov chain instead of iid samples. They showed that,
despite the data dependency inherent in Markovian data, the performance of Oja’s algorithm is as
good as the iid case when the Markov chain has large second eigenvalue.

Our analysis of Oja’s algorithm is by necessity quite different from these stochastic-setting
analyses. Oja’s algorithm returns v, = Bpvg for a transformation matrix B, = (I + nna:nxg)(l +
Nn1Zn_17L 1)--- (I + mz1x?). In the stochastic setting, B, is a random variable, with E[B; |
Bi_1] = (I + nX)B;; the analyses focus on matrix concentration of B, essentially to bound the
deviation of B,, around the “expected” (I 4+nX)™. In our arbitrary-data setting, B,, is not a random
variable at all. The only randomness is the initialization vy. This makes our analysis quite different,
instead tracking how much ; can move under the covariance constraints.

Our lower bound construction for high accuracy is closely related to one in [Wool4a], which
shows an Q(dk/e) lower bound for a (1 + €)-approximate rank-k approximation of ¥ in Frobenius
norm. The [Wool4a] construction for k = 1 and ¢ = @(%) is very similar to ours, and would give
an Q(d?) lower bound for a small constant approximation when R < 2. Our construction has a
more careful analysis in terms of R.

Much of the prior work on streaming PCA, for both the adversarial and stochastic settings, is
focused on solving k-PCA not just the single top direction. We leave the extension of our upper
bound to general k as an open question.

2 Proof Overview

2.1 Upper Bound

For our application of Oja’s algorithm we use a fixed learning rate n throughout the stream. The
x; correlated with v* could all arrive at the beginning or the end of the stream, and we want to
weight them equally so that at least we can solve the commutative case where Oja’s algorithm is
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Figure 1: Suppose n = 1. Then even after convergence to v* exactly, a single final sample can skew
the result by ©(,/02). For smaller 7, the same can happen with % final samples.

relatively simple.
As a basic intuition, Oja’s algorithm returns v,, = ”ZZ”, where

v = (I + nanwy ) (I +nzp-12y_) - (I + nera v

T T T
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where the approximation is good when 7 ”%H2 < 1. Imagine that these matrix exponentials
commute (e.g., each x; is e; for some j). Then we would have

Uy, R e”XTXUO. (1)

This suggests that the important property of the learning rate 7 is the spectrum of nX7X. Let
nXT X have top eigenvalue o1 = nn\;, with corresponding eigenvector v*, and all other eigenvalues
at most oo = nnAy. For Theorem 1.1, we would like to show that Oja’s algorithm works if o1 >
O(logd) and o9 < m.

For (1) to converge to v*, as in the power method, we want the v* coefficient of vy to grow by
a poly(d) factor more than any other eigenvalue, i.e., €”* > poly(d)e® or o1 > o2 + O(logd). So
we certainly need to set 7 such that o3 > O(log d). But how large a spectral gap do we need, i.e.,
how small does o9 need to be?

One big concern for adversarial-order Oja’s algorithm is: even if most of the stream clearly
emphasizes v* so v; converges to it, a small number of inputs at the end could cause v, to veer
away from v* to a completely wrong direction. This cannot happen in the commutative setting,
but it can happen in general: v, can rotate by ©(,/02), by ending the stream with % copies of
v* + /020" (see Figure 1). But this is the worst that can happen. We show:

Lemma 2.1 (Growth implies correctness). For any vy and all i, ||Pv;|| < /o2 + [Pvol

floill
This lemma has two useful implications: first, if we ever get close to v*, the final solution will
be at most /o3 further from v*. Second, no matter where we start, the final output is good if ||v,|
is very large. This is how Algorithm 1 can return either a correct answer or L: it just observes
whether ||v,|| has grown by poly(d).
So it suffices to show that ||v,| is large for a random wvp; and since vy starts with a random
1

oy component in the v* direction, it in fact suffices to show that [Jun|| would grow by poly(d)

if Oja’s algorithm started at vg = v*. Now, one can show that

e @



So if v; were always exactly v*, we would have [|v,||> > e?)" X" Xv" — ¢o1 > 1oly(d) as needed.
In addition, if we start at v*, then Lemma 2.1 implies ||Pv;|| < /o2 for all 4, so we never deviate
much from v*. However, v; can deviate a little bit, which could decrease (x;,7;_1). The question

is, by how much? Well, it’s easy to show

1—o09

n{zi, Bic1)? > 1 5 (@i, v*)? = (i, POi_1) (3)
so we just need to show that
HZ@Ci,P@'—ﬁz < 01. (4)

)

We know that ||[Pt;_1]|* < o9, and 7Y, (z;,w)? < oy for any fixed unit vector w L v*, but the
worry is that P?v;_1 could rotate through many different orthogonal directions; each direction w
can only contribute o3 to n>_.(z;, P;_1)?, but the total could conceivably be up to o3d.

Our main technical challenge is to rule this out, so 7", (x;, P0;_1)? is small. For intuition, in
this overview we just rule out Pv;_1 moving through many standard basis vectors by showing

d
> max(e;, Pt;-1)* < 03 log® nlog [|va | - (5)
T
j=1

That is, Pv;_; cannot rotate through ,/o3 correlation with each of the d different basis vectors
(which would give a value of oad) unless ||v,|| is large (which is what we wanted to show in the
first place).

First, we show that ||v,|| grows proportional to the squared movement of Pvj:

Lemma 2.2. Suppose Pvg = 0. For any two time steps 0 < a <b<mn,

" . v
| POy, — PO, ||? < 40 log vl
[[vall
As a result, for any subsequence 1o, ..., of iterations, the sum of squared movement has

k
S |1Po, — P, ||* S o2 log [[ual] -
7j=1

We use a combinatorial lemma to turn this bound on squared distances over subsequences into (5).
For any set of vectors A the following holds (see Figure 2):

Lemma 2.3 (Simplified version of Lemma 3.2). Let Ay = 0, and Ay,..., A, € R? satisfy that
every subsequence S of {0,...,n} has

Z HASz‘ - ASFlH; < B.

for some B > 0. Then

Applying Lemma 2.3 to A; := Pv; immediately gives (5).



Ay Ay A3 Ay As ... A,

Figure 2: Lemma 2.3 states that, if the sum of squared distances across any subsequence of vectors

A; is at most B, then the vector selecting the maximum value in each coordinate has squared norm
Blog?n.

Remark 2.4. The log?n factor in Lemma 2.8 is why we need R > O(logdlogn), rather than just
R > O(logd). The factor in Lemma 2.3 is tight for n = ©(d): A;; := log # has B = ©(n)

Jl
while Z;l:l maxie[n}(Ai)? is ©(nlog®n).
A similar approach, applied to A4; ; = a:ZTPi)\j, lets us bound our actual target (4):

Lemma 2.5. If vy = v*, then

n

772<$i, Po;_1)* < 03 log® nlog [|v, |
i1

Combined with (2) and (3), this implies that ||, || > e®() if oy < @:

Lemma 2.6 (The right direction grows). Suppose oo < % Then if vg = v* we have

o1
log||vp|| 2 ————5—

Since the initial vy is random, it with high probability has a m component in the v*
direction; then linearity of the unnormalized algorithm means ||v,|| is large with high probability.
By Lemma 2.1, this means the angle between v* and final answer o, is bounded by /a3 +d ¢, so
the algorithm succeeds.

2.2 Lower bound for mergeable summaries

In this section, we outline the proof of the mergeable summary lower bound. Specifically, we show
with spectral gap R = 0(\/3), no mergeable summary algorithm can 0.1-approximate PCA using
O(d) space. Consider the scenario where there are R players each possessing d/R — 1 vectors that
are i.i.d. drawn from N(0, I;). We then insert another vector v* ~ A(0, I;) into a random location
in each player’s data list. Consequently, from the viewpoint of each participant, their dataset



consists of d/R i.i.d. Gaussian vectors, making it impossible for them to individually identify the
shared vector v*.

Now we consider the spectral properties of the overall data. With high probability, the variance
in the direction of v* will be ©(R) times larger than orthogonal directions. This implies that

1. The spectral gap of the data is at least O(R).
2. The principal component of the data is very close to v*.

Therefore, we can employ a mergeable summary algorithm that approximates PCA to approximate
v*. Now we only need to prove that each player’s summary must have at least w(d) bits.

Suppose each player runs this algorithm and writes an s bits long summary S of their data to
help approximate v*. We measure the amount of information S contains about v*, i.e., I(v*;5).
Because each player cannot distinguish v* from the other d/R — 1 vectors they have, we can prove
that I(S;v*) < H(S)/(d/R) = R-O(s/d). With R = o(+/d) players, the combined summaries have
at most R - I(S;v*) < R?-O(s/d) = o(s) bits of information about v*. Since an approximation of
v* has ©(d) bits of information about v*, this requires that s = w(d).

2.3 Lower bound for high accuracy in insertion-only streams

To give an (d?) lower bound for constant R, we construct a two-player one-way communication
game, where Alice feeds a uniformly random stream into the algorithm and passes the state to Bob.
Bob then repeatedly takes this state, adds a few more vectors, and extracts the PCA estimate. We
will show that Bob is able to learn Q(d?) bits about Alice’s input, and therefore the stream state
must have (d?) bits. Our approach is illustrated in Figure 3.

Suppose that Alice feeds in a random binary stream 1,29, ...,z, € {—1,1}¢. What can Bob
insert so the PCA solution reveals information about (say) z1?

First, suppose Bob inserted k— 1 more copies of 1 for some constant k. Then (if n < d/100) the
PCA solution would be very close to z1: v = m has || Xv||? > kd from just the copies of 27, while

every orthogonal direction has variance at most (y/n++v/d)? ~ 1.1d by standard bounds on singular
values of subgaussian matrices [RV10]. Thus the spectral ratio R = ’\—; > %, so the streaming
algorithm should return a vector highly correlated with x1. The problem with this approach is that
Bob cannot insert 1 without knowing 1, so the streaming PCA solution does not reveal any new

information to him.

1 -1 -1 1}-1 -1 1 1
11 1 -11 1 -1 -1
-11 1 -1}(-1 -1 -1 -1
-1 -1 1 -1}-1 -1 1 -1
1 1 1 -17,0 0 0 O
1 1 1 -1,0 O O O
1 1 1 -17,0 0 0 O

Figure 3: High-accuracy lower bound approach: Alice inserts a sequence of random bits (all but the
last row). Bob knows the left side and wants to approximate the right side. To estimate the blue
bits on the right, he adds O(1) vectors using the corresponding red bits on the left and random
bits on the right. With high probability, the principal component has constant correlation with the
blue bits.



But what if Bob inserts zo, ..., z; that match x; on the first half of bits, and are all 0 on the
second half? The top principal component u* will still be highly correlated with z1: the vector v
that matches x1, 2o, ..., 2; on the first half of bits and is zero on the rest has variance that is a
O(k) factor larger than any orthogonal direction.

A more careful analysis shows that the top principal component v* is not only correlated with
the half of bits of 21 shared with the z;, but (on the remaining bits) is very highly correlated with
the average %(ml + 29+ -+ + zx). In fact, it is so highly correlated with the average that v* must
be at least somewhat—©(1/k?)—correlated with the last 10% of bits in ;. This analysis is robust
to a PCA approximation, so the streaming PCA algorithm lets Bob construct v with constant
correlation with the last half of bits in 7.

Thus Bob can learn 2(d) bits about the first row by inserting zo, ..., z; that match the first
half of bits and looking at the PCA solution on the last half of bits. If he does this for every row,
he learns Q(nd) = Q(d?) bits about Alice’s input. Therefore the algorithm state Alice sent needs
Q(d?) space.

This construction is very similar to the one in [Wool4a] for lower-bounding low-rank Frobenius
approximation. The difference in [Wool4a] is that Bob only inserts one row, so necessarily R < 2.
Our main contribution here is the more careful analysis in terms of R.

3 Proof of Upper Bound

For most of this section we focus on Oja’s method (Theorem 1.1), then in Section 3.4 we show
Theorem 1.2. For simplicity, the proof is given assuming exact arithmetic. In Section 3.5 we
discuss why O(log(nd)) bits of precision suffice.

Setup. 7; is the normalized state at time ¢, v; is the unnormalized state, x; is the sample, 7 is
the learning rate, v* is the direction of maximum variance, P = I — v*(v*)” to be the projection
matrix that removes the v* component. Let o1 =17 HXTXH and o9 =7 HPXTXP| , SO:

n

> e = o (6)

1=1

nZ(w,xi>2 < o9 (Vw L v¥) (7)
i=1

For much of the proof we will also need o1 > Clogd and o9 < C%gn, but this will be stated as
needed.

Oja’s algorithm works by starting with a (typically random) vector vy, then repeatedly applying
Hebb’s update rule that “neurons that fire together, wire together”:

Vi = Vi—1 + ’I’}<l‘i,’0i_1>l‘i = (I + Ul‘il‘lr)vi_l. (8)

The algorithm only keeps track of the normalized vectors v; = v;/||v;||, but for analysis purposes
we will often consider the unnormalized vectors v;.
The norm ||v;|| grows in each step, according to

loill® = llvi—a[1” (1 + (20 + 92 [|2]1*) (23, 5-1)%), (9)



and in particular (since Theorem 1.1 assumes 7 [|2;|? < 1)

2
[[vil]

i1l

5 2> n(xi,fz’)}_1>2. (10)
Our goal is to show that v, = v*, or equivalently, that ||Pv,|| is small.

3.1 Initial Lemmas

Claim 3.1. Let 0 < ai,ao,...,a, and define b; = e2i<i % forie{0,1,...,n}. Then:

n
Z a;bi—1 < b, — 1.
=1
Proof. This follows from induction on n. n = 0 is trivial, and then

n
Zaibi—l < bn—l -1+ anbn—l = (1 + an)bn—l -1< eanbn—l —-1= bn -1

i=1
U
Define B; = ||||Zé |||22, and A; = log Bﬁil which satisfies A; > n{(z;,0;_1)? by (10). Therefore
n n
Y (@i vie1)® < ool Y AiBict < o]l (B = 1) = [[vall* — [[eo]® (11)

i=1 i=1

by Claim 3.1. Then for any unit vector w with Pw = w,

n 2
(v, — vo,w>2 = <77 Z(xi,vi_ﬁ(azi,w)) by (8)
i=1

< nZ(wi, vi_1)? - ’I’}Z(:Ei, w)? by Cauchy-Schwarz
i=1 i=1
< ([val® = [lvo[l*)or2- by (11) and (7)

There’s nothing special about the start and final indices, giving the following bound for general
indices a < b:

(05 = va,w)* < (fop® = [[oall*)o. (12)

LPwoll
ol

Lemma 2.1 (Growth implies correctness). For any vy and all i, |Pv;|| < (/o2 +

Proof. By (12), for any w with w = Pw,

(vi —vo,w) < /o |lvi| .

Hence
(i, w) = {(v; — v, w) + (vy, w) < o+ {vg, w)
(2 - = .
[[oi [[oi
Setting w = Pv;/||Pv;||, we have (v;, w) = ||Pv;|| and (vg, w) < ||Pvg||, giving the result. O

10



Lemma 2.1 implies that, if we start at v*, we never move by more than /o5 from it. We now
show that you cannot even move /o9 without increasing the norm of v.

Lemma 2.2. Suppose Pvg = 0. For any two time steps 0 < a < b < n,

| P5y, — PO, || < 4oy log ” b||||
CL

Proof. Define w to be the unit vector in direction P (v, — v,). By (12) we have
(v — va, w)? < o2([lop]|® = [Jval®).
Therefore

Py, — P,||? = (P(T) — Ta), w)2 = (T} — Vg, w)?
|

S 2(1}\[) ||U¢IHAm > +2<||Ua||/\ %,w)z
[|vg | [|vp |
1 lvall 2 pm 12
< 2—— (v — v, w)* + 2 )7 [Pl
[lvg | osl]
”Ua”z | aH
< 209(1 — +2(1 —
2( ”’Ub”z) ( ”Ub”)
[|vall
=4o9(1 — ).
vl
Finally, (1 — 1/z) <logz for all = > 0. O

3.2 Results on Sequences

The following combinatorial result is written in a self-contained fashion, independent of the stream-
ing PCA application.

Lemma 3.2. Let A € R¥™™ have first column all zero. Define b(-k) to be column 1+2Fi of A. Then:

ZmaXA < (1+ logy n) Z ZHb(k — H

k=0 j>0
Proof. We will show this separately for each row i; the result is just the sum over these rows. For
fixed 4, let j* = arg max; A?j.
Let j®) = 1 4 2k VZ;lj set the last k bits of j* — 1 to zero. We have that j(© = j* and
jlog2m = 0. Therefore

logy 1
k=0
Now, j*) is either j*+1) or j(#+1) 4 2% Each value in the right sum is either zero (if j*) is j(+1))
or the ith coordinate of bgfc) - bg.lfll for some 5 (if j*) = j*+1) 4 2k using j' = §(*) /2). Thus, by
Cauchy-Schwarz,
logy 1
A?j* < (1 + logy ’I’L) ’ Z (Ai,j(k) - Ai,j(k+1))2
k=0
logy n

< (L+logyn) - > ST, — (6%

k=0 j>0

11



Summing over i,

ZmaxA (14 logyn) Z ZHb(k b(k H

k=0 j>0

3.3 Proof of Growth

We return to the streaming PCA setting. The goal of this section is to show that, if vg = v*, then
||vn|| is large.

Lemma 2.5. If vy = v*, then

n

772<$i, Po;_1)* < 03 log® nlog [|v, |
i1

Proof. Define u; = Pv;. We apply Lemma 3.2 to the matrix A;; = (x;,uj_1) for i,j € [n], getting:

n logy n
(i, u)? < (141 )’
max (z;, u; 08y 1) (@i, ugrj) — (@i, ugr(j_1y))"
i=17= k=0 j>0 i=1

Now,

Z((xivuzkﬂ - <xi7u2k(j—l)>)2 = (Uzkj - U2k(j—1))XTX(U2kj - Uzk(j—l))
i=1
02

2
S—“Uk—Uk i H .
n 2k 2F(j—1)

by the assumption (7) on X and that every u; L v*. Then, for each k, Lemma 2.2 shows that

2 [[on
I ) e T A
3>0 0
and thus
logy 1
nZ(xi,Pﬁi_Qz < anjax(a:,-,uﬁz < (1+logyn) Z 403 log ||vp|| < 03 log? nlog ||v,||
i i k=0
as desired. n

Lemma 2.6 (The right direction grows). Suppose oo < % Then if vg = v* we have

o1
log ||vn]| 2 ————5—.
Proof. We will show that 7Y " | (z;,0;—1)? 2 o1, giving the result by (10).
Recall that (z +y)? > %xz —y? for all z,y. Thus, if ¥; = a;v* + u; for u; L v*, we have
a;_y
2

(i, 0i1)? > (24, v") — (i, u-1)2

12



Lemma 2.1 shows that a? >1— 09> 1 sosumming up over i,

n
TIZ i, 01)° > so1—n Y (@i ui)?
i=1

Then (10) and Lemma 2.5 give

=

1
log ||vn|| > nz z5,0i-1)2 > =01 — O(02 log? nlog ||va]|),
1=1 8
or o
1
log [lvnll 2

1+o02log?n’

Claim 3.3. Let a ~ N(0,1). For any two vectors u and v, with probability 1 — 4,

lau+ vl = 6v/7/2 ||ull -

Proof. First, without loss of generality v is collinear with u; any orthogonal component only helps.
So we can only consider real-valued v and v, and in fact rescale so u = 1. The claim is then: with
probability 1 — ¢, a sample from N (v, 1) has absolute value at least §/7/2. This follows from the
standard Gaussian density being at most 1/v/27. O

Theorem 1.1 (Performance of Oja’s method in adversarial streams). For any sufficiently large
universal constant C, suppose 1 is such that nmmA; > Clogd and nmmAe < ﬁgn. Ifn ||x2||2 <1 for
every i, then Oja’s algorithm with learning rate n returns v satisfying || Po|| < v/nnXa + d=2 with
1 — d=¥) probability.

Moreover, Oja’s method can be modified (Algorithm 1) so that in addition, regardless of A1 and
Ao, if llas]|? < 1 for all i then either | Po|| < v/mnia +d =2 or v =L1.

Proof. We assume that 7|z < 1 for all 4, since the theorem is otherwise vacuous.
We begin with the last statement. Algorithm 1 only returns v # 1 if s,, = log ||||ZZ|||| > 10logd.

But then by Lemma 2.1,
125l < Vo + (20 < Va4
'I’L

All that remains is to show that, if o1 > C'logd and o9 < ﬁgn, ¥ #1 with at least 1 —d—(©)

probability. And of course, v #.L if HU”H > d'°.

Oja’s algorithm starts with 7y uniformly on the sphere, and is indifferent to the initial scale
|lvol|, so vg could be constructed as ”5—8” for vg ~ N (0, I4).

Let vg = av* +u for w L v*. Let B=T[[;" (I + nxixf), so v, = Buyg.

By Lemma 2.6 and the bound on oy, we know ||Bv*|| > et for some constant ¢. Then by
Claim 3.3, with probability 1 — 4,

vp|| = [[aBv* + Bul| > 6+/7/2 || Bv*| > de°t.
The (very naive) Markov bound from E[||vg||?] = d gives that

lon]l 8%

lvoll = Vd
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with probability 1 — 24. For sufficiently large C' in o1 > C'log d, this gives

||| > 410
[[voll

with probability 1 — d—2(©), U

3.4 Proof of Theorem 1.2

Theorem 1.2 (Full algorithm). For X € R"*? have b-bit entries for b > log(dn). Whenever the
spectral gap R = \1/Xa > O(lognlogd), Algorithm 2 uses O(b%d) bits of space and O(% +d9)-
approzimates PCA with high probability.

Proof. Let C be the constant in Theorem 1.1. For R to be well defined, Ay # 0 so some x; # 0.
Therefore 2720 < \; < nd?2%". Thus one of the 7; considered in Algorithm 2 is such that nn\; €
[Clogd,2Clogd]. Let i be this i. For sufficiently large constant in the choice of R, we have

Ay <
i 2_Clogn

for all : < i,

Let T be the z; of maximum norm, as computed by the algorithm. We now show that z := ”%'
is a sufficiently good answer if 77;Hf||2 > 1. Decompose T = av* + bw for w L v* a unit vector.
By (7), b is fairly small:

2C'logd
R

i

B <Y (mi,w)® < |[PXTXP|| =n)y <

The unit vector Z in direction T has error

b? 2Clogd log d
112
HP‘/EH = _2§ _25 2 (13)
[Zl™ — R (7" B[]
Therefore if 7 |Z||? > 1, 7 is a sufficiently accurate answer.
The last statement in Theorem 1.1 shows that, if 7+ ||Z||> < 1 and i* <7, then
e [12 2Clogd
HPU(’ W™ < (Ve + d=9)2 < mpendo + d18 < % s (14)

which is sufficiently accurate. We now split into case analysis. ~

In one case, suppose 7; |Z||*> < 1. Therefore the main body of Theorem 1.1 states that v(?) %1
with high probability. In particular, this means i* < i, so i HEH2 < 1, and the algorithm’s answer
is v("") which is sufficiently accurate by (14).

Otherwise, 17Z~||EH2 > 1. Then outputting 7 is sufficiently accurate by (13). If i* > 7, the
algorithm will definitely output 7; if i* < ?, the algorithm might output v("), but only if 7 EHz <
1, in which case this is sufficiently accurate by (14). O

14



3.5 Precision

Finally, we discuss why O(log(nd)) bits of precision suffice for the algorithm. Algorithm 1 tracks
two values: a unit vector v; and the log-norm s; of the unnormalized v;. The main concern is that
the error in v; could compound.

Consider v; and s; to be the values computed by the algorithm, which has some ¢ = m
error (in f3) added in each iteration. We can enforce s; > s;_1 despite the error. Redefine v; to
2%i7;.

2
We now redo the proof of (12) with e error in each step. Define B; = ||||;’é||||2 = 2%, and

A; =log BzB—il = (s; — s;—1) which satisfies A; > n{(z;,7;-1)% — O(¢) by (10). Therefore

Y (@i, vi1)? < looll* Y (Ai + O€)) Bimt < lvol® (B — 1) + O(enBy)) = |[vnll* — [lvoll* + Olen [Jval|*)
— :
(15)

by Claim 3.1. Then for any unit vector w with Pw = w,

n

(v, — vo,w>2 = (Z(Uz — Ui—la’w>)2

=1

= (O @i, viea) (@i, w) + O(e) via )
i=1

n 2
= (0(n€\\vnll)+nz<xuvz’—1><xuw>> by (8)

i=1
n
< ?72@31',1)1' 1) nz zi,w)? 4+ O(ne ||vn||?) by Cauchy-Schwarz

< (loall® = llvol*)o= + 0(67%2 lon?). by (15) and (7)

There’s nothing special about the start and final indices, giving the following bound for general
indices a < b:

(05 = va,w)? < (]| = lvall*)o2 + Ofen® [[up]|*). (16)

Given (16), the error tolerance flows through the rest of the proof easily. Lemmas 2.1 and 2.2
follow immediately with O(en?) additive error. Lemma 2.5 gets additive error O(ogen®log?n),
so both the numerator and denominator of Lemma 2.6 change by e poly(n). Both the conditions
and result of Theorem 1.1 only change by an additive € poly(n) error, which for sufficiently small
polynomial € are absorbed by the constant factors and dlg additive error. And Algorithm 2 does
nothing that could compound the error by more than a constant factor, so Theorem 1.2 holds as
well.

4 Lower Bound for Mergeable Summaries

In this section, we show that any all the mergeable summaries require Q(d?/R?) bits of space, even
just to approximate PCA with 0.1 error. This is significantly worse than our upper bound for
streaming algorithms.

15



Theorem 1.3 (Mergeable Lower Bound). For all mergeable summaries, 0.1-approzimate PCA on
streams with spectral gap R requires at least Q(d?/R?) bits of space.

To prove the theorem, for p > 1, we define distribution D, over R4 such that X ~ D, is
drawn according to the following randomized procedure:

1. Sample v* ~ N (0, Iy).

2. Define k := d/p. For each i € [p], we sample a X € RF*? as follows: Randomly choose a
J; € [k] and set X() to be v*. For j € [k]\ {j'}, independently sample X ~ N(0,1). Let

X0 = (X}”,X(” X
3. Finally, let X be the concatenation of all the Xg e,
x @)
x(2)
X =

ka)

We first show that for X ~ D), XT X has a large spectral gap with high probability:

Lemma 4.1. For X ~ D, with 1 — o(1) probability,

3112
i PP g
x|

|| ||1

Furthermore, the spectral gap of X7 X is at least 0.1p.

Proof. We can decompose the rows of X into two parts: repetitions of v* and other randomly
sampled rows. Define X € R(4=P)*d 35 X excluding the v*’s in each X ().
For an arbitrary unit vector u € Rd, X’s variance on u is equal to

1Xul*= pv*, u)® + | Xul|*.
Therefore, X’s variance at the direction of v* is
IX0*|P= p(v*, v%)? + | Xo¥|*> p(v*, v*)* = p|v**.
For any unit vector u orthogonal to v*, we have
IXulP= p(o*,u)® + || XulP= || Xul < [|X]*.

Utilizing this, we have R

IXo* )2 pllv*]®
5 > .

P e

|| ||1

Note that v* ~ N(0, I4), by Lemma A.5, |[v*[|* > 0.9d holds with probability at least 1 — o(1).
In addition, since every instance in X follows N(0, 1) independently, by Lemma A.1, we have

Pr [ X]|> 3vd] < o(1).

16



This states that with probability 1 — o(1),

X plotlP ) 0.9pd 1
X |? X2 T 9d

v’lJ_v*
flv']|=1

Furthermore, the spectral gap of X7 X is given by

X)) X
> L L

et oo | X vt [ Xo]E
g o1

O

Lemma 4.2. For X ~ D, let v be the top eigenvalue of X' X. Let o be an arbitrarily small
positive constant. There exists a constant C' such that when p > C, with 1 — o(1) probability,
sin?(v*,v) < o?.

Proof. Without loss of generality, we express v as v = V1 — £20% + eu for some £ > 0 and unit
vector u orthogonal to v*. We only need to prove that ¢ < a.
We have

1X0* <(1 = ) IX0 1 + &2 | Xul® +2V1 — 2| Xo*|| - | Xu] .
By Lemma 4.1, we have with probability 1 — o(1), || Xv*||?> > 0.1p|| X u|?. Therefore,

—~ 10 10
[ X0|? < || X0¥]2(1 — &% + 32— + 2¢4/ —).
b D

When ¢ > «, there exists a constant C' > 0 such that for p > C,
~ 10 10 ~ g2 ~
IXP20 -+ 22 42602 < X1 - T) < X7
p p

This contradicts the assumption that the direction of v has larger variance than v*. This proves
the lemma. O

Let A be an arbitrary deterministic mergeable summary for PCA that satisfies

P [sin? (A(X),v*) < 0.105] > 0.9. (17)

Lemma 4.3. A requires Q(d?/p?) bits of space.

Before proving Lemma 4.3, we first show the proof of Theorem 1.3 assuming Lemma 4.3 is true.

Proof of Theorem 1.3. Suppose we have a mergeable summary S that 0.1-approximates PCA uses
o(d?/R?) bits of space with high probability. Let o > 0 be a constant such that

sin? (arcsin a + arcsin v0.1) < 0.105.

Let C be the constant in Lemma 4.2 corresponding to . By Lemma 4.1, for X ~ Digpic, X1 X
has spectral gap R with high probability. Therefore, S succeeds in 0.1-approximating PCA with
high probability. Combining with Lemma 4.2, we have S succeeds in 0.105-approximating v* on
X ~ Digrsc with high probability.

By Yao’s minimax principle, there must be a deterministic mergeable summary A that also uses
o(d?/R?) bits of space and 0.105-approximates PCA on X ~ Digp ¢ with high probability, i.e., it
satisfies (17). By Lemma 4.3, A must require (d?/R?) bits of space, which is a contradiction.

O
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We use s to denote the bits of space of A. To prove Lemma 4.3, we will show that s = Q(d?/p?).
We use m; to denote A’s summary for X, The key property we use here is that each m; is a
deterministic function of X @, so m;’s are independent except for the shared vector v*. We start
with the following classical result:

Proposition 4.4 (Chain Rule for Mutual Information). Let X, Y, Z be random variables. We

have
IX;Y [ 2)=1(X;Y) - (I(X;2) - (X5 Z | Y)).

Corollary 4.5. Let X, Y, Z be random variables. If X and Z are independent,
I(X;Y)<I(X;Y | 2).
Proof. Since X and Z are independent, I(X;Z) = 0. Applying proposition 4.4 gives the result. [

Using these results, we can prove the next two lemmas bounding the mutual information between
v* and m;’s in terms of s.

Lemma 4.6. For every i € [p], I(m;;v*) < s/k.

Proof. Since m; and j; are independent, by corollary 4.5 we have

I(mi; X{7) < Ims X7 1 i),

Thus,

« i i) | 1 W) o1 i
I(mg;v*) = I(mi;X](.;)) < I(mi;X](.;) | 55) = z Z [(mi;X](.) | jF=4) = z Z I(mi;X](-)).
JE[K] JEK]

)

Furthermore, since each X ](Z is sampled independently, by applying corollary 4.5, we have for each

s (#) @ | v (@ ()
I(m,-;XjZ ) < I(mi;XjZ | X7 ,...,ij_l).
We have

ST Ims X7y < 3 1 X | x P X0) = Ims X XD < H(m).
jelk] jelk]

Since A only has s bits of space, H(m;) < s. Therefore,

I(mg;v*) < %H(ml) < %
O
Lemma 4.7. I(v*;my,ma,...,m,) < p?s/d
Proof. We first prove that for i € [p], I(v*;m; | mq,...,m;—1) < I(v*;m;). Note that
I(mgmy,...,mi_q |v*) < I(XD; X0 x5 =,
By proposition 4.4, we have
I(v*;m; | ma,...,mi—1) =I(v*;my) — I(mgma,...,mi—1) + I(miz;my, ..., mi—q | v*) < I(v*;my).

18



Then by Lemma 4.6, we have
2
I(v*;my,...,mp) = %:}I(v*;mi My, ...,mi—1) < %:}I(U*;mi) < % = ]%
i€[p i€[p

O

Next, we show that the mutual information between v* and the output of A must be at least
Q(d). For this purpose, we refer to a special case of lemma 4.4 from [JKDP21]:

Lemma 4.8 (Lemma 4.4 of [JKDP21]). Consider random variable x uniformly distributed over
D C R? and random variable & in R?. If the joint distribution of (x,Z) satisfies

Prl|z — Z[|< 7] = 0.9,

then we have )
3 log Covsy, 1/2(D) < I(x;7) + 1.98,

where Covgy, 175 denotes the minimum number of d-dimensional balls of radius 3n required to cover
at least half of D.

Lemma 4.9. Let unit vector v be an approrimation offz;;‘ such that
Pr[sin?(v*, %) < 0.105] > 0.9.

Then,
I(v*;0) 2 d.

Proof. We define ¢ := sign(¢? v*)d. Then it is easy to verify that sin?(v*,7) < 0.105 implies that
|v* = ?'[|<1/3—¢ for some constant ¢ > 0. Therefore, by Lemma 4.8, we have

I(v*; ') > glog Covi_3c,1/2(Sa) — 1.98,

where Sy denotes the d-dimensional unit sphere. Note that each ball of radius 1 — 3¢ can cover a
spherical cap with height at most 1 — 3¢ on the unit sphere, and the union of these caps need to
cover at least half of the surface area of a unit sphere. Using a bound on the area of a spherical
cap (Lemma A.6), we have

area of Sy

log Cov,_ >1 2 d
OB LOVI-3c1/2 = 0B e of height-(1 — 3c¢) spherical cap ™~

Therefore,
I(v*;0") 2 d.

This implies that
d < I(0%;0') = I(v¥;sign(07v*)d) < I(v*;9,sign(d7v*)) = I(0*;0) + I(0*;sign(@v*) | ©).

In addition, since
I(v*;sign(dTv*) | ©) < H(sign(67v*)) < 1,

we have
I(v*;0) 2 d.
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This gives us a lower bound for s:
Proof of Lemma 4.3. Let ¥ be the output of A. By Lemma 4.9, we have
I(;0%) > d.
By Lemma 4.7,
I(my,...,mp;v") < %

Using the data processing inequality, we get

Therefore,

5 Lower Bound for Accuracy

Our lower bound is based on the PARTIALDUPLICATE instance, where an instance is a matrix
X € {0,—1,1}(++n+Dxd capn he expressed as follows:

e The first row equals z + y, where x,5 € {0,—1,1}¢ have supp(z) = {1,2,...,d/2} and
supp(y) = {d/2+1,...,d}.

e For i € {2,...,k+ 1}, the i-th row equals z.
e The last n rows form a uniformly random matrix X’ € {—1,1}"*%.

That is, the entries look like:

Ty
z|0
X=|:|:
z|0

X/

except that z,y are zero-padded to d dimensions. Without loss of generality, we assume d is
superconstant and k = o(d).

5.1 Spectral properties of PartialDuplicate

Let v* be the top unit eigenvector of X7 X. We can decompose v* into three components: the
direction, the y direction, and the component orthogonal to both of these. This is:

v* = aT + by + cw,

where a? + b2 + ¢? = 1 and w is an arbitrary unit vector orthogonal to = and y.
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We have that

X" |2 = | X 0" P +k{z, v*)? + (@ +y, 0")?
= [1X"v" | +a?k|lz]|*+(all[|+blly)*
= [IX"v*[*+a®(k + 1)|2]*+2ablz|]ly]|+b* |1y *

a?(k +1)d b2d
2

= || X v*|| 2+ +abd + - (18)

Lemma 5.1. Suppose n < d. Then |c|< O(1/k) with high probability.

Proof. Since sign(b) - v* is also a top eigenvector of X7 X, without loss of generality, we assume

b > 0. We consider unit vector v' = Va2 + 2T + by, we have
10" 12— Xo*|?

*(k+1)d
a2 S (e o
2(k+1)d
> (o *TX/TX/ Ik C( )
>+ ") (v —0v*) + 5
By Lemma A.1, with high probability,

|(v' + v*)TX'TX’(v’ —v")I< HX'H2 [|[v" = v*|| ||v" + v*]| < O(|ed]).

Thus,
2(k+1)d
X0 P 0 22~y + SEFDE
Since v* is the top eigenvector, this implies that
2(k+1)d
—O(Jed]) + c(% <0.
Hence,
lc|< O(1/k).

O

Lemma 5.2. Suppose k > C and n < 9% for a sufficiently large constant C. Then |b|> 3—1k with
high probability.

Proof. Suppose |b|< ?%k with non-negligible probability. Combining with Lemma 5.1, this implies
that with non-negligible probability, |b|< 3_1k and |c|< O(1/k). We will show that with high proba-
bility, any unit vector v = aZ + by + cw satisfying |b|< ?%k and |c|< logk is not the top eigenvector
of XTX. This contradicts the assumption and proves the lemma.

Without loss of generality, we only consider the case when b > 0. Let ¢ := Va2 + b2 = V1 — 2 >

2/3. Therefore, we have a = /t2 — b2 = t — ©(b?). Taking this into (18), we have

(t2 — b%)kd

2
0 = X"+

+b(t — O(b?))d.

21



We consider vector v/ = /t2 — (b +€)?Z + (b+€)§ + cw for € = 5. Now we prove that with high
probability || Xv'[|2—||Xv||>> 0. We have

x| = | X0 = || X"|)* — || X" +@ b — (b+¢)?) +etd+ O(b°)d — O((b+¢)°)d

_ i _ / _ o @ 3y 3
= || x"||* = || X"0||* — bkde 5~ +etd+0(b")d —O((b+¢)*)d

> [0~ [P - o - e + o £ 0l
> x| + &
with our choice of k. Note that
Il < a3+ [0 + lex'l < [ + o X5 + 255 )
By Lemma A.1, with high probability,
|X7|| < 2Vd.

Furthermore, since 7 and 7 are independent of X’, by Claim A.2, with high probability,
HX/:/E\H2 <n-+o(n) and HX’§H2 <n+o(n).
Therefore, with high probability,

%] < 11 < &

Hence, with high probability,
| x||* = | X|* > 0.

O

Lemma 5.3. Suppose k > C, n < 9 and € < W for a sufficiently large constant C. For any
e-approzimate PCA solution w, (w,y) > Q(v/d/k) with high probability.

Proof. By Lemma 5.2, with high probability,
(W, y) = (b7, y) > QV/k).
Therefore, for w = v* + y/eu for some unit vector u, we have

(w,y) = (v* +Veu,y) = (*,y) + Velu,y) > QVd/k) — Velly| > QVd/k).

Lemma 5.4. Suppose n < d. The spectral gap R is at least k/20 with high probability.

Proof. The first eigenvalue \; of X7 X satisfies

kd

A= max IX0l* 2 | X2 = (k + 1){z,2)* 2 >
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The second eigenvalue Ay of X7 X satisfies

Ao = min max HX?/Hz

v oylo
=1
< max ||/
g
= max <HX'1/H2 + <y,v/>2)
v lx
g
< X+ &

By Lemma A.1 , with high probability, || X’||< 3v/d. Therefore,
A2 < 10d.

Hence the spectral ratio

>

R=

Ly ko
9 — 20

>

5.2 Accuracy lower bound

Theorem 1.4 (Accuracy Lower Bound). There exists a universal constant C' > 1 such that: for
any R > 1, ﬁ—appromimate PCA on streams with spectral gap R requires at least Cd—;g bits of space
for sufficiently large d > poly(R).

Proof. Suppose that we have such an e-approximate streaming PCA algorithm. We set up a two
player one-way communication protocol. Let A; € {—1, 1}"X% and Ay € {—1, 1}"X% be chosen
uniformly at random. Let A = [A1, As] € {—1,1}"*? be their concatenation. Let A’ = [A;,0] €
{0, —1,1}"*4 be the matrix that pads A; to d columns with 0.

In this protocol, Alice receives A = [A1, A3] and Bob receives Ay. Alice feeds A to the streaming
algorithm, reaching some stream state S, which she sends to Bob. Bob uses A; and S to construct an
approximation A to A in the following fashion. For each i € [n], Bob sets the streaming algorithm’s
state to S, inserts the i-th row of A’ for k times and computes the algorithm’s approximate PCA
solution ;. Let V € R™*4 be the matrix with the i-th row being v;. Let Vs € R™% be the last d/2
columns of V. We will show that I (Ag; ‘7) > d?/R3? for an appropriate choice of parameters.

Note that when Bob produces v;, the streaming algorithm has effectively seen the stream A
followed by k vectors that match the ith row of A. Up to reordering of rows, this is distributed
identically to PARTIALDUPLICATE. Reordering the rows, of course, does not change the covariance
matrix.

We choose k = max(20R,C), n = % and ¢ = # for the constant C' in Lemma 5.3. By
Lemma 5.4, with high probability the stream has spectral gap at least k/20 > R. Therefore the
streaming algorithm’s PCA solution should be e-approximate with at least 2/3 probability. Then
Lemma A.3 says that

~ 1 d d
I(V; Ay) > Q (ﬁ e 5) —d=Q(d*/R%).
Now, V is independent of As conditioned on (S, A1) so by the data processing inequality,
I(V; Ag) < I(A1,S; Ag) < I(Ay; Ag) + 1(S; Ay | Ay) <0+ H(S).
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Thus, if the state S contains |S| bits, we have
Q(d®/R%) < H(S) = H(|S]) + H(S | S]) < E[|S|] + H(|S])
Now, for any random variable X over positive integers,

H(X) = 3 pli)log —1

i=1 (

~.
~—

so Q(d?/R3) < 2E[|S]] + 2, or
E[|S]] > Q(d*/R?).

Thus the streaming algorithm must store Q(d?/R3) bits on average after Alice has finished feeding
in her part of the stream. O
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A Utility lemmas for the Lower Bounds

We use the following bound on the maximum singular value of an iid subgaussian matrix:

Lemma A.1 (Feldheim and Sodin [FS10], see also (2.4) of [RV10]). Let A be an n x N random
matriz with independent subgaussian entries of zero mean and variance 1, forn < N. There exists
a unwversal constant ¢ > 0 such that

Pr[|A| > v+ VN +7VN] S e
for any T > 0.

The following is essentially a restatement of the JL. lemma for +1 matrices:
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Claim A.2. Let u € R? be a unit vector, and X € {—1,1}"*? independently and uniformly. Then

E[|l Xul*]=n

1 1
|||Xu||2 —n|< \/nlogg + log 5

Proof. Let z = Xwu. The coordinates z; are independent, mean zero, variance 1, and subgaussian
with variance parameter 1. The expectation bound is trivial: sum the variance over n independent
coordinates. For concentration, each coordinate zi2 is a squared subgaussian, and hence subgamma
with (o,c¢) parameters (O(1),0(1)). Then Y, 2? is subgamma with parameters (O(y/n),O(1)).
Hence with probability 1 — § we have

1 1
1 Xul|* = n|< \/nlogg + log 5

Lemma A.3. Let X € {—1,1}"*? be uniformly distributed, and let Y € R™ ¢ have rows of norm
at most 1 such that each row i € [n] has |(x;,y;)|> av/d with at least 50% probability, for a > 0.
Then

and with 1 — § probability

O

I(X;Y) > Q(a*nd) — n.

Proof. For any row y, when = € {—1,1}¢ uniformly at random, (x,%) is subgaussian with variance
parameter ||y||? < 1, so
Pr{|(z, y)|> avd] < 2¢ 742,

so the number of z with |(z,y)|> av/d is at most 2024 Let b € {0,1}" denote the indicator
vector with b; = 1 if |(x;,y;)|> av/d and b; = 0 otherwise.

For any Y,b, let Sy, C {—1, 1}7%4 be the set of possible X that satisfy the inner product
condition |(z;,y;)|> av/d for all rows i € [n] with b; = 1. Each row with b; = 1 has at most
2(1=2(a*))d yalyes of x; in the support, so

1Sy 4| < 2nd= bl ).

We have E[|[b]|;] > 5, so

H(X |Y) < H(X | Y.5) + H(b) < (F loglSys)) +n < (1 - Qta?nd +n

2

" I(X;Y)=H(X)-H(X|Y) > Q(a*nd) — n.

Claim A.4. Let A,B > 0. Then

2 b2
Ad® + Bab< 2 ; (A+ VA2 + B?),

A2
LanVirean=3;

) S 2
with equality if = = 2
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Proof. Just ask a computer. By hand, though: the equations are homogeneous, so WLOG we can
assume a® 4+ b?> = 1. We then maximize over a € [0,1]. Taking the derivative, the maximum is

achieved when )

a
24a+ B(V1—a?— ——)=0
( V1 —a? )
or
24a\/1 — a2 = B(24* — 1)
4A%2(1 — a®) = B*(4a* — 4a® +1)
at(4B? + 4A?) — a®(4A%> + 4B?) + B =0
A2
. L=/ a2
B 2
the first squaring preserved equality only when a? > %, so the optimum is at
A2
o L+ z e
R —
Then

) 1+ i Lt ah L= wfim
Ad®+ Bay/1—-a2=A— Y27 1 p

2 2 2

1+ /—A;fBQ B
— A VAP py | AZHB?
2 + \/ 4

1
= 5(A + VA2 + B?).

Lemma A.5 (Laurent-Massart Bounds[LMO00]). Let v ~ N(0,1I,). For anyt >0,
Pr||v]|> = n > 2v/nt + 2t] < e,
Pr[||v]> = n < —2v/nt] < e~

Lemma A.6 ([MV10], see also [BDGLI15]). Consider a d-dimensional unit sphere Sy. Let Cy, be a
spherical cap on Sy with height h < 1, i.e.,

Ch = {v € Sa | (u,v) > 1—h}

for some u € Sg. Then the ratio of the area of Cy, to the area of Sq is given by d®M) . (2h — hz)d/z.

B Lower Bound for Linear Sketching

When establishing lower bounds for approximating operator norms using linear sketching, Li and
Woodruff [LW16] constructed a lower bound instance with the following properties:

Lemma B.1. For any o > 1.01, there exist two distributions D1 and Dy over R4 gnd s > 0 such
that
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~

For X ~ Dy, || X|2> Vas with 0.99 probability.
For X ~ Dy. || X|2< s with 0.99 probability.

For X ~ Dy, the spectral gap M\ (XTX)/Ao(XTX) is at least o with 0.99 probability.

e e

Let L1 and Lo be the corresponding distribution of the linear sketch of dimension k on Dy
and Dy. Then dry (L1, L2) < 0.1 whenever k < o(d?/a?).

This implies a space lower bound for PCA using linear sketching. We present the Johnson-
Lindenstrauss lemma, first.

Lemma B.2 (Johnson-Lindenstrauss Lemma [JL84]). For any positive integer d and €,d € (0,1),
there exists a distribution S over R™*¢ where m = © (5_2 log %) such that for every x € R,

Pr[[lAz]l3= (i3] < ellllz] > 1 -6

Using these lemmas, we can prove the following lower bound, which implies any sketching
algorithm for adversarial streaming PCA needs at least Q(d?/R?) bits of space.

Theorem B.3. For all linear sketching algorithms, 0.1-approximate PCA on streams with spectral
gap R = o(/d) requires sketches of dimension Q(d*/R?),

Proof. Let Dy and D5y be the distributions described in Lemma B.1 with o = R. Suppose there
exists a linear sketching algorithm that 0.1-approximates PCA using o(d?/R?) space with success
probability 0.99. We will show that this leads to a contradiction by constructing a linear sketch of
dimension o(d?/R?) that distinguishes D; and D, with 0.9 probability whenever 4 < R < o(+/d).

Let S be the distribution in Lemma B.2 with parameters § = ¢ = 0.01, and S is a distribution
over ROWX*d et s be the corresponding parameter for D; and Dy in Lemma B.1. Our algorithm
proceeds as follows: Given a matrix X, run the PCA approximation algorithm, which is a linear
sketching of dimension o(d?/R?), to obtain an approximation v. In parallel, sample A ~ S and
compute AX, which is a matrix of dimension O(1) x d; that is, it is a linear sketch with O(d) =
o(d?/R?) dimensions. Suppose ||[AX7|2> 1.1s, output that X is from Dj; otherwise, output that
X is from Ds.

We first show that for X ~ Dj, ||AX7||2> 1.1s with 0.9 probability. Let v* be the true principal
component of X in the direction that (v,v*) > 0. By a union bound, we have that with probability
at least 0.96, the following events happen simultaneously:

1. X has a spectral gap of R.
2. The PCA approximation ¥ satisfies sin?(7, v*) < 0.1.
3. ||AX7]|2> 0.99)| X[
4. || X|j2> V/Rs.
When all of these hold, we can prove that ||AX7||z> 0.6v/Rs. We have
JAXT]5> 0.99] X7]2> 0.99(|X 0" |~ X (6 — B)[l2) > 0.99(1X [ —[[o* — o1 X]2).

Since ¥ and v* are unit vectors, sin?(v,v*) < 0.1 implies that |[v* — ?||a= /2 — 2cos(v, v*) < 0.35.
Thus,
|AX %2> 0.6 X|]2> 0.6V Rs.
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Therefore, || AX7]|2> 1.1s with probability at least 0.9 whenever R > 4.
Next, we show that for X ~ Dy, ||AX7||2< 1.1s with 0.9 probability. Again, by a union bound,
we have with at least 0.9 probability,

|AX]|2< 101 X7]|2< 1.01]| X|2< 1.1s.

This proves that our sketching algorithm distinguishes D7 and Dy with probability at least 0.9,
contradicting Lemma B.1, and therefore proves the theorem. O
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