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Abstract

We study residual networks with a residual branch scale of 1/
√

depth in combi-
nation with the µP parameterization. We provide experiments demonstrating that
residual architectures including convolutional ResNets and Vision Transformers
trained with this parameterization exhibit transfer of optimal hyperparameters
across width and depth on CIFAR-10 and ImageNet. Furthermore, using recent
developments in the dynamical mean field theory (DMFT) description of neural
network learning dynamics, we show that this parameterization of ResNets admits
a well-defined feature learning joint infinite-width and infinite-depth limit and show
convergence of finite-size network dynamics towards this limit.

1 Introduction
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Figure 1: The optimal learning rate η∗ transfers across both depth and width in our proposed
parameterization but not in µP or standard parameterization (Fig. C.2). Loss is plotted after 20 epochs
on CIFAR-10. All the missing datapoints indicate that the corresponding run diverged.
Increasing the number of parameters in a neural network has led to often dramatic improvements in
model quality [31, 26, 60, 32, 45], at the price of a costly hyperparameter tuning. To combat this,
[57] proposed the so-called µP parameterization, which seeks to develop principles by which optimal
hyperparameters from small networks can be reused — or transferred — to larger networks [55].
The µP prescription focuses on transfer from narrower to wider models, but does not always transfer
across depth (see Figure 1(a)). This leads us to pose the following problem:
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SP (PyTorch) µP / Mean Field µP+1/
√
L-Residual (Ours)

Branch Scale βℓ 1

{
N−1/2, ℓ > 0

D−1/2, ℓ = 0


N−1/2, ℓ = L

(LN)−1/2, 0 < ℓ < L

D−1/2, ℓ = 0

Output Scale γ 1 γ0N
1/2 γ0N

1/2

LR Schedule η(t) η0(t) η0(t)γ
2
0N η0(t)γ

2
0N

Weight Variance σ2
ℓ

{
N−1, ℓ > 0

D−1, ℓ = 0
1 1

Table 1: In Equation 1, different choices of coefficients leads to standard parameterization (SP,
PyTorch default [46]), µP / Mean Field parameterization, and our µP+1/

√
L-residual branch scaling.

Question: Can we transfer hyperparameters simultaneously across depth and width?
In this work, we provide an affirmative answer for a particular flexible class of residual architectures
(including ResNets and transformers) with residual branches scaled like 1/

√
depth (see Equation 1

and Table 1 for the exact parameterization). More specifically:

• We show that we the proposed model allows for transfer of learning rates across both depth and
width (Equation 1 and Fig. 1(b)), with and without complex learning rate schedules (Fig. 3).

• We show that the lack of transfer across depth in µP ResNets can be partly overcome by adding
normalization layers (Fig. 2), and it is improved with 1/

√
depth residual branches (Fig. 3 and C.5).

• We present evidence that our prescription leads to learning rate transfer in Vision Transformers
(ViTs), both with and without normalization (Figure 3).

• We show transfer for momentum and weight decay coefficients (Fig. C.9).
The key underlying idea is that two neural networks will exhibit similar training dynamics if they are
both finite size approximations to, or discretizations of, such a consistent scaling limit. Our main
theoretical contributions can be summarized as follows:

• We show the infinite-width-and-depth limit of a residual network with 1/
√

depth residual branch
scaling and µP can be characterized by a dynamical mean field theory (DMFT) (Section 4, 4.2).

2 Framework for Depthwise Hyperparameter Transfer
We consider the following type of residual network of width N and depth L with inputs x ∈ RD

which are mapped to N -dimensional preactivations hℓ ∈ RN and outputs f(x) ∈ R:

f(x) =
βL

γ
wL · ϕ(hL(x)) , hℓ+1(x) = hℓ(x) + βℓW

ℓϕ(hℓ(x)) , h1(x) = β0W
0x, (1)

where γ is a scaling factor, ϕ(·) the activation function, and the weights are initialized as W ℓ
ij ∼

N (0, σ2
ℓ ) with a corresponding learning rate η(t). See Table 1. Compared to what is commonly

done in practical residual architectures, our parameterization uses the
√
L factor proposed in [24, 15],

and the coefficient γ from µP, but do not use normalization layers (Table 1). The parameters
θ = {W 0, ...,wL} are updated with a gradient based learning rule.

θ(t+ 1) = θ(t)− η(t) Ex∼Bt
∇θ L[f(θ,x)], (2)

where Bt is the minibatch at iteration t, η(t) is the learning rate schedule, and the loss function L
depends on parameters through the predictions f of the model. The choice of how (γ, η(t)) should be
scaled as width N and depth L go to infinity determines the stability and feature learning properties
of the network. In this work, we study the feature learning (mean field) parameterization γ = γ0

√
N ,

η(t) = η0(t)γ
2
0 N , where γ0, η0(t) are independent of N . One contribution of this work is identifying

how η0, γ0 should be scaled with depth L in order to obtain a stable feature-learning large L limit.
We argue — both theoretically and empirically — that after the 1√

L
factors have been introduced the

correct scaling is simply to take η0, γ0 ∼ O(1).
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Figure 2: Effect of batch normalization on a standard Resnet18-type architecture [25]. The above
examples are taken after 20 epochs on CIFAR-10. Normalization layers can slightly improve
consistency and trainability across depths in standard ResNets, but consistency is much more reliable
with the 1/

√
L scaling (precisely, we use βℓ = 3/

√
L here to increase feature learning at finite depth).

Runs that exceed a target loss of 0.5 are removed from the plot for visual clarity.

3 Experimental Verification of Hyperparameter Transfer
We report here a variety of experiments on hyperparameter transfer in residual networks. We begin
with a basic modification of equation 1 by replacing fully connected layers with convolutional layers
(Fig. 1, C.9, C.2 and C.1). We also experiment with a practical ResNet (in figures 2, C.4, C.5) (see
Appendix B.2). Finally, we also perform selected experiments on Vision Transformers [14] (Figure
3). Below we list the the main takeaways from our experiments.
µP does not Transfer at Large Depths. While µP exhibits transfer over network widths, it does not
immediately give transfer over network depths. In Figure 1(a), we show the train loss after 20 epochs
on CIFAR-10. Notice how the network transfers over widths but not depths for µP. For completeness,
in Fig. C.2 we show that also SP does not transfer.
1/
√
L-scaled Residual Networks Transfer. We repeat the same experiment, but now scale the

residual branch by 1/
√
L. The networks transfer over both width and depth (Figure 1 (b)).

The Role of Normalization Layers. Normalization layers, such as LayerNorm and BatchNorm,
are commonly used instead of the 1/

√
L-scaling in residual architectures. In Fig. 2, we repeat the

learning rate transfer experiment with BatchNorm placed after the convolutional layer. In Fig. C.4 we
repeat the same experiment with LayerNorm. In both cases, while it is known that the presence of
normalization layers certainly helps the trainability of the model at larger depth [13, 30], we observe
that the 1/

√
L-scaled version exhibits a more consistent transfer across both width and depth.

Empirical Verification on Vision Transformers with Adam. We empirically test whether the
transfer results can be extended to Vision Transformers (ViTs) trained with µP-parameterized Adam
optimizer [55]. In particular, we consider Pre-LN Transformers [53], and adapt it to our setting by
scaling all the residual branches by 1/

√
L (as in [43]), and make the architecture compatible with

the µP framework of [55] (see Appendix B.3 for details). We test the variants both with and without
LayerNorm. Results for 20 epochs training with the Tiny ImageNet dataset are shown in Fig. 3 (a-c),
where we also see a good transfer across all the settings.
Other Hyperparameters and Learning Rate Schedules also Transfer. Given the standard practice
of using learning rate schedulers in optimizing Transformers [14, 51], we show that linear warm-up
(Fig 3(a-c)), optionally followed by a cosine decay (Fig 3(c)) also transfer consistently. Finally, in
Figure C.9, we plot the learning dynamics for momentum, weight decay, and the feature learning rate
γ0, which interpolates between the kernel and feature learning regimes [6].
4 Convergence to the Large Width and Depth Limit
We argued that width/depth-invariant feature and prediction updates are crucial for hyperparameter
transfer. To formalize this, let fN,L(t) be the network output after t steps of optimization, where
we explicitly write the dependence on width N and depth L. For hyperparameter transfer we want
fN,L(t) to be close to fN ′,L′(t). One strategy to achieve this is to adopt a parameterization which
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Figure 3: ViTs trained with Adam also exhibit learning rate transfer, with or without LayerNorm
and 1/

√
L-scaling. The above examples are taken after 20 epochs on Tiny ImageNet. In (a)-(c),

the learning rate is linearly increased in the first 1000 steps. In (c), after 2000 warm-up steps, the
learning rate is decreased to zero with a cosine schedule in 100 epochs.

makes finite networks as close as possible to a limit f∞,∞(t). The existence of the limit for the
forward pass at initialization t = 0 was shown in [23, 12]. Here, we study the learning dynamics in
1/
√
L ResNets with µP parameterization, establish that the limit exists and and characterize the limit

throughout training in App. D, E, F and finite-size approximations in App. H and I.
4.1 Primer on the DMFT in the N →∞ Limit
To derive our theoretical results, we use a technique known as dynamical mean field theory (DMFT)
[6]. DMFT describes the dynamics of neural networks at (or near) infinite width (preserving feature
learning). In this setting one tracks a set of kernel order parameters

Φℓ(x,x′; t, s) =
1

N
ϕ(hℓ(x, t)) · ϕ(hℓ(x′, s)) , Gℓ(x,x′; t, s) =

1

N
gℓ(x, t) · gℓ(x′, s), (3)

where gℓ(x, t) ≡ Nγ0
∂f(x,t)
∂hℓ(x,t)

are the back-propagation signals. DMFT reveals the following facts:
(1) {Φℓ, Gℓ} and outputs f concentrate over random initializations of the weights throughout training.
(2) The preactivations and gradient fields of each neuron {hℓ

i , g
ℓ
i} become i.i.d. random variables

drawn from a single-site (i.e. neuron marginal) density which depends on the kernels. (3) The kernels
can be computed as averages over this single-site density.
4.2 The Large-Width-and-Depth Limit DMFT Equations
From the finite-L DMFT equations (App. D), we calculate the large depth L→∞ limit, generating
a continuum process over the layer time τ = ℓ

L ∈ [0, 1], a concept introduced in Li et al. [35].

Proposition 1 (Informal) Consider training dynamics of a ResNet as in Equation 1 with our µP
1√
L

scaling in the infinite width and depth limit. The preactivation h(τ ;x, t) drawn from the density
of neurons at layer-time τ , data point x and training time t obeys a stochastic integral equation

h(τ ;x; t) = h(0;x; t) +

∫ τ

0

du(τ ′;x; t) + η0γ0

∫ τ

0

dτ ′
∫ t

0

ds

∫
dx′Ch(τ

′;x,x′; t, s)g(τ ′;x′; s)

(4)

where du(τ ;x; t) is zero mean Brownian motion. The covariance of du is the feature kernel Φ and
the deterministic operator Ch can be computed from the deterministic limiting kernels Φ, G. The
gradients g(τ) satisfy an analogous integral equation (See App. E.7 for formulas for Ch and g). The
stochastic variables h, g and the kernels Φ, G satisfy a closed system of equations.

A full proposition can be found in Appendix E.7. We derive this limit in the Appendix E, F. These
equations are challenging to solve in the general case, as the h and g distributions are non-Gaussian.
Its main utility in the present work is demonstrating that there is a well-defined feature-learning
infinite width and depth limit and that, in the limit, the predictions, and kernels evolve by O(1).
4.3 Special Exactly Solveable Cases of the N,L→∞ DMFT equations
Though the resulting DMFT equations for the kernels are intractable in the general case, we can
provide analytical solutions in special cases. We first write down the training dynamics in the lazy
limit by characterizing the neural tangent kernel (NTK) at initialization. We discuss deep linear
ResNets where the feature learning dynamics gives ODEs that can be closed while preserving
Gaussianity of preactivations. Due to space limitation, these results are deferred to Appendix G.
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Figure 4: Approximation of the N →∞, L→∞ limit requires sufficiently large N and L. CNNs
are compared after 250 steps on CIFAR-10 with batchsize 32. As we cannot compute the infinite
width and depth predictor, we use a proxy f≈∞,∞ (N = 512 and L = 128). (a) SGD dynamics at
large width are consistent across depths. (b) The convergence of fN,L to a large width and depth
proxy f≈∞,∞ is bottlenecked by width N for small N while for large N , it decays like O(L−1).

5 Discussion
In this work, we have proposed a simple parameterization of residual networks. In this parame-
terization, we have seen empirically that hyperparameter transfer is remarkably consistent across
both width and depth for a variety of architectures, hyperparameters, and datasets. The experimental
evidence is supported by theory, which shows that dynamics of all hidden layers are both non-trivial
and independent of width and depth while not vanishing in the limit. We believe that these results
have the potential to reduce computational costs of hyperparameter tuning, allowing the practitioner
to train a large depth and width model only once with near optimal hyperparameters.
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Appendix

A Related Works

The 1/
√
L-scaled residual model [25] adopted in this work belongs to a rapidly expanding research

domain. This approach has several advantageous characteristics in signal propagation, in terms of
dynamical isometry [50], as well as stable backward and forward kernels [2, 24, 15]. As a result,
this has paved the way for the development of reliable initialization methods [49, 61], including
Transformers without normalization layers [27, 43].

The study of neural network scaling limits started with MLPs in the infinite-width kernel regime
[29, 41, 38, 33], where the preactivations are also Gaussian with deterministic covariance. However,
the joint depth and width limit has been shown to be non-Gaussian [20, 42] and have a stochastic
covariance [34]. In particular, the feature covariance of particular classes of networks have a
limit described by stochastic differential equations (SDEs) [35, 44], where the layer time is the
depth-to-width ratio in this case. On the other hand, [23] study the forward signal propagation in
1/
√
L-scaled ResNets at initialization, where the preactivations converge to a Gaussian distribution

with a deterministic covariance described by an ODE.

Transfer across width and depth was achieved on non-residual networks with the Automatic Gradient
Descent algorithm proposed by [3, 4]. Successful hyperparameter transfer across network widths in
µP was shown in [55]. Width-consistent early time prediction and representation dynamics were also
observed in an empirical study of [52]. The infinite width limits of feature learning networks have
been characterized with a mean-field PDE in two layer networks [8, 39, 9], Tensor programs [56, 57],
and DMFT techniques [6, 5, 7], which have been proven useful to understand the gradient dynamics
in other settings as well [40, 16]. This present work extends the DMFT technique to ResNets to
analyze their feature learning behavior at large depth L.

Understanding feature learning in non-residual feedforward networks close to the asymptotic regime
has also been studied with finite width and depth corrections from the corresponding infinite limit,
both in the lazy [10] NTK [17, 19] and NNGP limits [1, 54, 36, 59, 48, 18], and more recently in the
rich feature learning regime [7]. At any finite width and depth the analysis is even more challenging
and has been studied in special cases using combinatorial approaches and hypergeometric functions
[42, 58, 21].

B Experimental Details

B.1 Simplified ResNet

We design a residual architecture following the footprint of Eq. 1, and replacing the weight matrices
with 1-strided convolutional layers with 3 × 3 kernel size. We max-pool the feature map at three
selected layers equally distributed across depth. For instance, for a depth=12 model, we perform
average pooling after the third, 6-th and 9-th layer. After each average pooling, we apply an extra
convolutional layer to double the number of channels, which play the role of width in a convolutional
network. Hence, also the width doubled three times across the depth (one time per average pooling).
The final feature map is then flattened and passed through a final readout layer. The reported
width in all the figures is the last width before the flattening operations. In the experiment with the
1/
√
L-scaling, we divide by the total number of layers instead of the number of residual blocks (i.e.

L = 3 + # blocks). This extra factor does not affect the scaling limit.

B.2 ResNet

Compared to the simplified ResNet architecture of the previous section, the ResNet family as proposed
in [25] are augmented with two convolutional layers per residual block, each followed by batch
normalization normalization. The subsampling is performed by 2-strided convolutional layers, for
a total of 4 times across the depth. For further details, we refer to [25]. In some experiments (e.g.
Fig. C.4), we replace batch norm with LayerNorm applied across each two dimensional channel.
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B.3 Vision Transformer

We use the standard ViT architecture as in [14], i.e. we tokenize the input images by splitting it into
patches of fixed size, and embed it to N dimension using a linear layer. Then we apply a number
of the usual Transformer blocks, each one composed of two residual blocks, a Softmax-based self
attention block, and an MLP block with GeLU activation function. If used, we place LayerNorm
at the beginning of each residual branch (Pre-LN configuration). Finally, we apply the following
modification to make it compatible with µP [55]:

• We re-scale the Softmax logits (i.e. the product of queries and keys) of each attention layer by
1/Nq . The usual convention would be to use instead 1/

√
Nq .

• Initialize the queries to zero.

• Initialize all the other weights to have standard deviation of 1/
√
N , where N here is the model

dimension.

B.4 Details

We always use data augmentation, in particular the following random transformations:

• CIFAR-10: horizontal flips, 10-degree rotations, affine transformations, color jittering.
• Tiny ImageNet and ImageNet: crops, horizontal flips.

Across all the experiments, we fix the batch size to 64. Unless stated otherwise, all the hyperpa-
rameters that are not tuned are set to a default value: β, γ0, σℓ = 1. For ViTs, we use a patch size
We use the µP implementation of the µ-Readout layer, and optimizers (SGD, and Adam under µP
parametrizstion) as in the released µP package.

C Additional Experiments

C.1 Depth Width Trade-Off

While tuning the architecture at small widths/depths, it is interesting to study along which direction —
width or depth — the architecture should be scaled. To test this, we train the residual convolutional
model (Sec. B.1) at relatively large scale (up to almost a billion parameters), for 20 epochs on
CIFAR-10 with fixed learning rate of 0.046 (using data augmentation, see Sec. B). We report the
results in Fig. C.1, where we plot the train loss as a function of parameters. In particular, in Fig. C.1(a)
we highlight models of same widths, while in Fig. C.1(a) models of equal depth. We find that the
Pareto optimal curve coincides by the depth 12 model for the range of widths/depths used for the
experiment. As shown in Fig. C.1, we then fit power laws to the curves of constant depth, which
seems to predict an optimal depth 30 at very large widths. Notice that we fix the number of epochs.
We hypothesize the optimal curve to shift to different trade-offs as the number of epochs increases.
We also expect different trade-offs for different datasets and models. However, extensively studying
width-depth trade-off is beyond the scope of this work, thus we leave it as a potential direction for
future work.

C.2 How Long Should you Train for Accurate Transfer?

An important question is after how many steps the optimal hyperparameters are fixed and can hence
be selected without training for longer. In Fig. C.3(a), we plot the training loss profiles for two
different depths and 4 different learning rates for a residual convolutional network of width 512
trained on CIFAR-10. Notice how after the first few epochs it is already possible to decide the optimal
learning rate. We confirm this for a ViT trained on Tiny ImageNet in Fig. C.3(b-c), where the optimal
learning rate at two selected epochs (3 and 9) is the same.

C.3 Other Experiments

In Fig. C.2, we show how the learning rate does not transfer under SP for the residual model
considered in this work, both with and without the 1/

√
L-scaling. In Fig. 2 and Fig. C.4, we train
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Figure C.1: Since all models have hyperparameter transfer across depths and widths, one can explore
a trade-off between depth and width at the optimal learning rate. We illustrate this idea with a simple
experiment on CIFAR-10. (a) We plot the final train loss as a function of parameters for different
widths. (b) intermediate depth of ∼ 9− 12 is preferred at fixed parameter count.
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Figure C.2: Learning rates transfer across both depth and width in our proposed parameterization
but not in standard parameterization (SP) or µP. Loss is plotted after 20 epochs on CIFAR-10. All
the missing datapoints indicate that the corresponding run diverged. In particular, all depth 30 runs
diverged when using µP without 1/

√
depth scaling.

models from the ResNets family, both with BatchNorm and with LayerNorm, concluding that the
version with 1/

√
L scaling exhibits a better transfer. In Fig. C.5 we show our results on learning rate

transfers for ImageNet, and in Fig. C.9 and Fig. C.10, we show how also other hyperparameters, such
as weight decay, transfer under the proposed 1/

√
L-scaling and have very consistent dynamics. The

model used is the simplified residual convolutional model, trained for 20 epochs on CIFAR-10.
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Figure C.3: (a) dynamics of train loss for different depths and learning rates. The network is the
residual convolutional network trained on CIFAR-10. (b-c) learning rate tranfer plots for the same
ViT at two different checkpoints (epoch 3 and 5). Notice how the optimal learning rate is determined
after the first few epochs of training.

10 3 10 2 10 1

Learning Rate

0.4

0.6

0.8

1.0

Tr
ai

n 
Lo

ss

(a) ResNet + µP, LayerNorm

10 3 10 2 10 1

Learning Rate

0.50

0.75

1.00

1.25

1.50

Tr
ai

n 
Lo

ss

Depth
18
26
34
Width
512
1024
2048

(b) 1√
L

ResNet + µP, LayerNorm

Figure C.4: Effect of normalization layers. The above examples are taken after 20 epochs on CIFAR-
10. Normalization layers can slightly improve consistency across depths in standard ResNets, but
consistency is much more reliable with the 1/

√
L scaling.

D Derivation of the N →∞ limit at fixed L

In this section, we characterize the feature learning dynamics of the N →∞ limit of fixed depth L
residual networks. Our derivation is an extension of the approach presented in [6]. Before taking the
limit, we first identify our order parameters and weight space dynamics. Then we take the N →∞
limit using a technique known as Dynamical Mean Field Theory (DMFT).

D.1 Finite N,L Function and Weight Dynamics

We start by computing the neural tangent kernel (NTK). For the sake of brevity, we will first write
the equations where the read-in W 0 weights are held fixed and will add their contribution to the
dynamics in Appendix K.3. Excluding these two weight matrices from the present discussion does
not alter any of the scalings with width N or depth L. The dynamics of the prediction f under
gradient flow take the form

d

dt
f(x; t) = η0 Ex′K(x,x′; t)∆(x′; t) (5)

where ∆(x; t) = −∂L(f(x,t))
∂f(x,t) is an error signal and K is the NTK of this model, which takes the

form

K(x,x′) = γ2
0N

L∑
ℓ=1

∂f(x)

∂W ℓ
· ∂f(x

′)

∂W ℓ
. (6)
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Figure C.5: Learning rate + depth sweep on ImageNet for 5 epochs with depth extrapolations of
ResNet-18 without any normalization layers. Training is performed with SGD with momentum 0.9
and batchsize 128. (a) The loss curves for different learning rates (each learning rate is a distinct
linestyle) and for different depths (colors). Dynamics are strikingly consistent across depths for each
learning rate. (b) The optimal learning rate is preserved across depths.
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Figure C.6: ViTs trained with Adam also exhibit learning rate transfer, with or without LayerNorm
and 1/

√
L-scaling. The above examples are taken after 20 epochs on Tiny ImageNet for (a) and

ImageNet after 10 epochs for (b)-(c). In (a), the learning rate is linearly increased in the first 1000
steps.

Explicitly calculating the gradients of the output with respect to the weights W ℓ gives

Nγ0
∂f(x)

∂W ℓ
=

1√
NL

gℓ+1(x)ϕ(hℓ(x))⊤ , gℓi ≡ Nγ0
∂f(x)

∂hℓ
i(x)

∼ ON,L(1) (7)

Using this above formula, we find that the NTK is O(1) with respect to N,L

K(x,x′) =
1

L

L∑
ℓ=1

Gℓ+1(x,x′)Φℓ(x,x′) (8)

where we introduced the O(1) feature kernel Φℓ and gradient kernels Gℓ which have the form

Φℓ(x,x′) =
1

N
ϕ(hℓ(x)) · ϕ(hℓ(x′)) , Gℓ(x,x′) =

1

N
gℓ(x) · gℓ(x′) (9)

The base cases for the feature and gradient kernels are given by

Φ0(x,x′) =
1

D
x · x′ , GL+1(x,x′) = 1. (10)

We next start by computing the dynamics of the weights under gradient flow

d

dt
W ℓ =

η0γ0√
LN

Ex ∆(x; t)gℓ+1(x, t)ϕ(hℓ(x, t))⊤. (11)
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Figure C.7: Convergence of the depth L NTK to the limiting kernel at initialization. (a) The infinite
width NTK for a ReLU residual multilayer perpectron (MLP) for two inputs x,x′ separated by angle
θ ∈ [−π, π] over varying depth L. The kernel converges as L→∞. (b) The convergence rate of the
initialization averaged NTK ⟨K⟩ with network widths N and network depths L at initialization. For
sufficiently large N , the initial NTK will converge at rate O(L−2) in square error.
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Figure C.8: Further numerical support of our finite N,L error decomposition in Appendix I through
ensembling logits over E = 15 random seeds in the same experimental setting as Figure 4. (a) At
each depth L, the finite width N network converges in square error asON,L(N

−1), independent of L.
(b) The full expected square error from Figure 4 shows a convergence rate of O(L−1) for sufficiently
large N , consistent with theory. (c) The ensemble averaged logits ⟨fL,N ⟩ converge to the infinite
depth proxy at a faster rate, which is consistent with the theoretical O(L−2) for sufficiently large N .

Integrating this equation from time 0 to time t, we get the following

hℓ+1(x, t) =hℓ(x, t) +
1√
NL

W ℓ(0)ϕ(hℓ)

+
η0γ0
L

∫ t

0

dsEx′∆(x′, s)gℓ+1(x′, s)Φℓ(x,x′; t, s) (12)

where Φℓ(x,x′; t, s) = 1
N ϕ(hℓ(x, t)) · ϕ(hℓ(x′; s)) is the double time-index generalization of the

feature kernel. Similarly, we obtain a backward pass relation of the form

gℓ(x, t) =gℓ+1(x, t) +
1√
NL

ϕ̇(hℓ(x, t))⊙W ℓ(0)⊤gℓ+1

+
η0γ0
L

ϕ̇(hℓ(x, t))⊙
∫ t

0

dsEx′∆(x′, s)Gℓ+1(x,x′; t, s)ϕ(hℓ(x′, s)) (13)

These equations define update rules for the preactivations hℓ and the gradients gℓ in terms of the
feature and gradient kernels {Φℓ, Gℓ}. However the above equations explicitly depend on the random
initial weights W ℓ(0) through which time-varying signals propagate. Our ultimate goal is to gain
insight into the effective dynamics over random initializations in the large N limit. To do that, we
will invoke dynamical mean field theory. In the next section, we characterize how these terms behave
at large N using a saddle point argument.
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Figure C.9: Other hyperparameters also transfer. This example shows training dynamics during the
first 20 epochs on CIFAR-10 (architecture details in Appendix B). The dynamics at two different
depths are provided for (a) momentum (b) feature learning rate γ0.
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Figure C.10: Weight decay dynamics also transfer across depths.

D.2 Intuitive Explanation of Large Width Feature Learning Limit

In the limit of N →∞ with γ0 held fixed, the above equations can be simplified. The two key effects
that occur at large width are

• Kernels (feature kernels, gradient kernels, NTK) and output logits concentrate by a law of large
numbers.

• At each layer, each of the hidden neuron’s activities becomes independent draws from a single site
stochastic process which is characterized by the kernels.

Once the single site density is known, the kernels can be computed as averages over the single
site density. The next section derives this result formally from a Martin-Siggia-Rose Path Integral
derivation of the Dynamical Mean Field Theory [37].

D.3 Path-integral and Saddle Point Equations in N →∞ Limit

This computation sketches the DMFT derivation of the limiting large N process. Examples of detailed
computations of the DMFT action S can be found in the Appendix of [6, 5]. Our notation is chosen
to match the derivations found in their Appendix.

To characterize the effect of the random initial weights, we will attempt to characterize the distribution
of hℓ(x, t), gℓ(x, t) by tracking the moment generating functional of these fields

Z[{jh, jg}] = E{W ℓ(0)} exp

(
L∑

ℓ=1

∫
dx

∫
dt [jℓh(x, t) · hℓ(x, t) + jg(x, t) · gℓ(x, t)]

)
(14)
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Moments of the fields can be obtained with differentiation near zero source, for example

lim
{jℓ

h,j
ℓ
g}→0

δ

δjℓh,i1(x1, t1)
...

δ

δjℓh,ik(xk, tk)
Z[{jh, jg}] =

〈
hℓ1
i1
(x1, t1)...h

ℓk
ik
(xk, tk)

〉
. (15)

Now, following [6], we introduce the following useful auxiliary fields

χℓ+1(x, t) =
1√
N

W ℓ(0)ϕ(hℓ(x, t)) , ξℓ(x, t) =
1√
N

W ℓ(0)⊤gℓ+1(x, t) (16)

The choice to introduce these auxiliary fields is apparent once one realizes that the h and g fields can
be regarded as functions of χ, ξ and the kernels Φ, G. We enforce the constraints defining these fields
with Dirac-delta functions by repeatedly multiplying by unity

1 =

∫
dχℓ+1(x, t) δ

(
χℓ+1(x, t)− 1√

N
W ℓ(0)ϕ(hℓ(x, t))

)
=

∫
dχ̂ℓ+1(x, t)dχℓ+1(x, t)

(2π)N
exp

(
iχ̂ℓ+1(x, t) ·

[
χℓ+1(x, t)− 1√

N
W ℓ(0)ϕ(hℓ(x, t))

])
(17)

for all ℓ,x, t. And similarly for the gℓ fields. After this insertion, the averages over {W ℓ(0)} can be
performed with Gaussian integration. Concretely, we obtain the following average over Gaussian
initialization W ℓ(0)

lnE exp

(
− i√

N
Tr W ℓ(0)⊤

∫
dx

∫
dt
[
χ̂ℓ+1(x, t)ϕ(hℓ(x, t))⊤ + gℓ+1(x, t)ξℓ(x, t)⊤

])
=− 1

2

∫
dtdsdxdx′ χ̂ℓ+1(x, t) · χ̂ℓ+1(x′, s)Φℓ(x,x′; t, s)

− 1

2

∫
dtdsdxdx′ ξ̂ℓ(x, t) · ξ̂ℓ(x′, s)Gℓ+1(x,x′; t, s)

− i

∫
dtdsdxdx′ χ̂ℓ+1(x, t) · gℓ+1(x′, s) Aℓ(x,x′; t, s) (18)

where we introduced the following order parameters

Φℓ(x,x′; t, s) =
1

N
ϕ(hℓ(x, t)) · ϕ(hℓ(x′, s)) , Gℓ(x,x′; t, s) =

1

N
gℓ(x, t) · gℓ(x′, s) (19)

Aℓ(x,x′; t, s) = − i

N
ϕ(hℓ(x, t)) · ξ̂ℓ(x′, s) (20)

As we did with the χ, ξ fields, we can enforce the definition of the above order parameters with
integral representations of Dirac-delta functions. For example, the Φ kernels can be enforced by
inserting

1 =

∫
dΦℓ(x,x′; t, s)dΦ̂ℓ(x,x′; t, s)

2πiN−1
exp

(
NΦℓ(x,x′; t, s)Φ̂ℓ(x,x′; t, s)

)
exp

(
−Φ̂ℓ(x,x′; t, s)ϕ(hℓ(x, t)) · ϕ(hℓ(x′, t′))

)
(21)

where the Φ̂ integral is performed along the imaginary axis (−i∞, i∞) in the complex plane. The
same trick is performed for Gℓ and Aℓ which have conjugate variables Ĝℓ, Bℓ respectively. After
inserting these new variables, we find that the moment generating function can be expressed as an
integral over a collection of order parameters q,

q = Vec{Φℓ(x,x′; t, s), Φ̂ℓ(x,x′; t.s), Gℓ(x,x′, t, s), Ĝℓ(x,x′, t, s), Aℓ(x,x′, t, s)Bℓ(x,x′, t, s)},
(22)

which is vectorized over all layers ℓ time points t, s and samples x,x′. The moment generating
function takes the form

Z[{jh, jg}] =
∫

dq exp (NS[q, jh, jg]) (23)
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where S is the ON (1) DMFT action which has the following form

S =
∑
ℓ

∫
dxdx′dtds

[
Φℓ(x,x′; t, s)Φ̂ℓ(x,x′; t.s) +Gℓ(x,x′, t, s)Ĝℓ(x,x′, t, s)

]
−
∑
ℓ

∫
dxdx′dtds Aℓ(x,x′, t, s)Bℓ(x′,x, s, t) +

1

N

N∑
i=1

Zi[q, jh, jg] (24)

The functions Zi are single-site moment generating functions (MGFs) which express the distribution
of hi, gi for a given value of the order parameters q and sources jh, jg .

Zi =

∫ ∏
ℓ,x,t

dχ̂ℓ(x, t)dχ̂ℓ(x, t)dχ̂ℓ(x, t)dχ̂ℓ(x, t) exp

(
−
∑
ℓ

Hℓ
i [χ̂, ξ̂, χ, ξ, jh,i, jg,i]

)
(25)

whereHℓ
i are the single-site Hamiltonians

Hℓ
i =

1

2

∫
dxdx′dtds

[
Φℓ−1(x,x′; t, s)χ̂ℓ(x, t)χ̂ℓ(x′, s) +Gℓ+1(x,x′; t, s)ξ̂ℓ(x, t)ξ̂ℓ(x′, s)

]
+

∫
dxdx′dtds

[
Φ̂ℓ(x,x′; t, s)ϕ(hℓ(x, t))ϕ(hℓ(x′, t′)) + Ĝℓ(x,x′; t, s)gℓ(x, t)gℓ(x′, s)

]
+ i

∫
dxdx′dtds

[
Aℓ−1(x,x′; t, s)χ̂ℓ(x, t)gℓ(x′, s) +Bℓ(x,x′; t, s)ξ̂ℓ(x, t)ϕ(hℓ(x′, s))

]
−
∫

dxdt
[
iχ̂ℓ(x, t)χℓ(x, t) + iξ̂ℓ(x, t)ξℓ(x, t) + jℓh,i(x, t)h

ℓ(x, t) + jℓg,i(x, t)g
ℓ(x, t)

]
(26)

In the above formulas, the h, g fields should be regarded as functions of the χ, ξ fields.

Since the moment generating function has the form Z =
∫
dq exp (NS[q]), the N →∞ limit can

thus be characterized by the steepest-descent method (saddle-point integration over q). The result
is that all of the order parameters take on definite values (concentrate) at infinite width. The saddle
point equations ∂S

∂q = 0 state that each of the kernels takes on definite values

Φℓ(x,x′; t, s) =
1

N

N∑
i=1

〈
ϕ(hℓ(x, t))ϕ(hℓ(x′, s))

〉
i

Gℓ(x,x′; t, s) =
1

N

N∑
i=1

〈
gℓ(x, t)gℓ(x′, s)

〉
i

Aℓ(x,x′; t, s) = − i

N

N∑
i=1

〈
ϕ(hℓ(x, t))ξ̂ℓ(x′, s)

〉
i

Bℓ(x,x′; t, s) = − i

N

N∑
i=1

〈
gℓ+1(x, t)χ̂ℓ+1(x′, s)

〉
i

Φ̂ℓ(x,x′; t, s) = − 1

2N

N∑
i=1

〈
χ̂ℓ(x, t)χ̂ℓ(x′, s)

〉
i

Ĝℓ(x,x′; t, s) = − 1

2N

N∑
i=1

〈
ξ̂ℓ(x, t)ξ̂ℓ(x′, s)

〉
i

(27)

where ⟨⟩i denotes averaging over a single site stochastic process defined by the moment generating
function Zi. At zero source j → 0 all of the single site MGF functions Zi are identical so all
averages ⟨·⟩i are also identical. At zero source, the kernels have the simple expressions such as
Φℓ(x,x′; t, s) =

〈
ϕ(hℓ(x, t))ϕ(hℓ(x′, s))

〉
.
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D.3.1 Hubbard-Stratonovich transform

Now that we know the kernels Φℓ, Gℓ take on definite values at N →∞, we can perform a Hubbard-
Stratonovich transformation to introduce Gaussian sources

exp

(
−1

2

∫
dxdx′dtds χ̂ℓ(x, t)χ̂ℓ(x′, t′)Φℓ−1(x,x′; t, s)

)
=

〈
exp

(
−i
∫

dxdt χ̂ℓ(x, t)uℓ(x, t)

)〉
uℓ∼GP(0,Φℓ−1)

(28)

exp

(
−1

2

∫
dxdx′dtds ξ̂ℓ(x, t)ξ̂ℓ(x′, t′)Gℓ+1(x,x′; t, s)

)
=

〈
exp

(
−i
∫

dxdt ξ̂ℓ(x, t)rℓ(x, t)

)〉
rℓ∼GP(0,Gℓ+1)

(29)

After introducing these Gaussian sources uℓ, rℓ, we have linearized the single site HamiltoniansHℓ
i

with respect to χ̂ and ξ̂. Integration over these variables gives us the following Dirac-Delta function
constraints

χℓ(x, t) = uℓ(x, t) +

∫
dxds Aℓ−1(x,x′; t, s)gℓ(x′, s)

ξℓ(x, t) = rℓ(x, t) +

∫
dxds Bℓ(x,x′; t, s)ϕ(hℓ(x′, s)) (30)

Using similar manipulations, we can simplify the expressions for Aℓ, Bℓ, Φ̂, Ĝ at zero source j = 0

Aℓ(x,x′; t, s) =

〈
δϕ(hℓ(x, t))

δrℓ(x′, s)

〉
Bℓ(x,x′; t, s) =

〈
δgℓ+1(x, t)

δuℓ(x′, s)

〉
Φ̂ℓ(x,x′; t, s) = 0 , Ĝℓ(x,x′; t, s) = 0 (31)

Plugging the dynamics for χ, ξ into the formulas for hℓ, gℓ, we obtain the following final equations
for the stochastic process of hℓ, gℓ.

hℓ+1(x, t) = hℓ(x, t) +
1√
L
uℓ+1(x, t) +

1√
L

∫
dx′ds Aℓ(x,x′; t, s)gℓ+1(x′, s)

+
η0γ0
L

Ex′

∫ t

0

ds ∆(x′, s)Φℓ(x,x′; t, s) gℓ+1(x′, s) , uℓ ∼ GP(0,Φℓ−1)

gℓ(x, t) = gℓ+1(x, t) +
1√
L
ϕ̇(hℓ(x, t))zℓ(x, t) ,

zℓ(x, t) = rℓ(x, t) +

∫
dx′ds Bℓ(x,x′; t, s)ϕ(hℓ(x′, s)) , rℓ ∼ GP(0, Gℓ+1)

+
η0γ0√

L
Ex′

∫ t

0

ds ∆(x′, s)Gℓ+1(x,x′; t, s)ϕ(hℓ(x′, s)) (32a)

where the order parameters satisfy the the following saddle point equations
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Φℓ(x,x′; t, s) =
〈
ϕ(hℓ(x, t))ϕ(hℓ(x′, s))

〉
, Gℓ(x,x′; t, s) =

〈
gℓ(x, t)gℓ(x′, s)

〉
Aℓ(x,x′; t, s) =

〈
δϕ(hℓ(x, t))

δrℓ(x′, s)

〉
, Bℓ(x,x′; t, s) =

〈
δgℓ+1(x, t)

δuℓ+1(x′, s)

〉
df(x, t)

dt
= η0Ex′K(x,x′, t)∆(x′, t) , ∆(x, t) = − ∂L

∂f(x, t)

K(x,x′, t) =
1

L

L∑
ℓ=1

Gℓ+1(x,x′; t, s)Φℓ(x,x′; t, s) (33a)

Up to the residual skip connections and the factors of 1√
L

, this agrees with the N →∞ limit DMFT
derived in [6]. At fixed L this above equation can be solved with a self-consistent Monte Carlo
sampling procedure. For deep linear networks, the equations close since all h, g fields are Gaussian.
In the next section, we analyze the behavior of the above equations at large depth L so that we can
take a large depth limit.

E The L→∞ limit from the DMFT Saddle Point Equations

In this section, we consider how the infinite width dynamics behaves at large depth. We will show
that the limiting dynamics takes the form of a system of ODEs for the kernels in terms of layer time
τ = ℓ/L. First, we will show that the response functions need to be rescaled with respect to L. Then
we will take a continuum limit over layers to arrive at the final ODEs for the Φ and G correlation
functions.

E.1 Unfolding the Layer Recursion

A useful first step which we will use in the following analysis is “unfolding" the recurrence to get
explicit formulas for hℓ in terms of all of the Gaussian sources u and all of the gradient fields gℓ.

hℓ(x, t) =h1(x, t) +
1√
L

ℓ∑
k=0

uk(x, t) +
1√
L

ℓ−1∑
k=1

∫
dx′ds Ak(x,x′; t, s)gk+1(x′, s)

+
η0γ0
L

Ex′

∫ t

0

ds ∆(x′, s)
ℓ−1∑
k=0

Φk(x,x′, t, s)gk+1(x′, s) (34)

and similarly for the backward pass, we have

gℓ(x, t) =gL(x, t) +
1√
L

L∑
k=ℓ

ϕ̇(hk(x, t))rk(x, t)

+
1√
L

L∑
k=ℓ

ϕ̇(hk(x, t))

∫
dx′ds Bk(x,x′; t, s)ϕ(hk(x′, s))

+
η0γ0
L

L∑
k=ℓ

ϕ̇(hk(x, t))Ex′

∫ t

0

ds ∆(x′, s)
ℓ−1∑
k=1

Gk(x,x′, t, s)ϕ(hk(x′, s)) (35)

A very useful fact that can be immediately gleaned from the above equations is that

∀k ≤ ℓ ,
δhℓ(x, t)

δuk(x, t)
∼ O

(
1√
L

)
∀k ≥ ℓ ,

δgℓ(x, t)

δrk(x, t)
∼ O

(
1√
L

)
(36)

These facts will be utilized to obtain the scale of the response functions in the large depth limit.
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E.2 Characterizing Response Functions at Large Depth

First, we will study the response functions Aℓ, Bℓ. We note that from the saddle point equations,

Aℓ(x,x′; t, s) =

〈
δϕ(hℓ(x, t′))

δrℓ(x′, s)

〉
. (37)

Since δϕ(h)
δr = ϕ̇(h) δhδr , it suffices to consider the scale of the derivative δhℓ(x,t′)

δr(x′,s)

Aℓ(x,x′; t, s) =
1√
L

ℓ∑
k=1

∫
dx′′dt′Ak(x,x′′; t, t′)

〈
ϕ̇(hℓ(x, t))

δgk+1(x′′, t′)

δrℓ(x′, s)

〉

+
η0γ0
L

ℓ−1∑
k=0

Ex′

∫ t

0

dt′∆(x′, s)Φk(x,x′; t, s)

〈
ϕ̇(hℓ(x, t))

δgk(x′′, t′)

δrℓ(x′, s)

〉
(38)

Next, we use the fact that δgk(x′′,t′)
δrℓ(x′,s)

∼ O(L−1/2). Therefore, the second sum (the one which depends

on η0γ0L
−1) scales as O(η0γ0L−1/2). Solving the Aℓ recursion iteratively from the first layer, we

arrive at the conclusion that

Aℓ(x,x′; t, s) ∼ O(η0γ0L−1/2). (39)

Indeed, as a sanity check, plugging this in gives a consistent solution to the above equation. Repeating
an identical argument for the backward pass reveals an identical scaling for Bℓ with depth L

Bℓ(x,x′; t, s) ∼ O(η0γ0L−1/2) (40)

We therefore need to introduce a rescaled version of the response functions

Aℓ(x,x′, t, s)←
√
L

η0γ0
Aℓ(x,x′, t, s) (41)

Bℓ(x,x′, t, s)←
√
L

η0γ0
Bℓ(x,x′, t, s) (42)

After this rescaling, we have

Aℓ(x,x′, t, s) =

√
L

η0γ0

〈
δϕ(hℓ(x, t))

δrℓ(x′, s)

〉
(43)

To calculate this rescaled response function, we can derive a closed set of equations for all of the
cross layer correlators

δhℓ(x, t)

δrℓ′(x′, s)
=

η0γ0
L

ℓ∑
k=1

∫
dx′′ds Ck

h(x,x
′′, t, s)

δgk(x′′, s)

δrℓ′(x′, s)

δgℓ(x, t)

δrℓ′(x′, s)
=

1√
L
Θ(ℓ′ − ℓ)δ(x− x′)δ(t− s)ϕ̇(hℓ′(x, t))

+
1√
L

L∑
k=ℓ

rk(x, t)
δϕ̇(hk(x, t))

δrℓ′(x′, s)

+
η0γ0
L

L∑
k=ℓ

ϕ̇(hk(x, t))

∫
dx′′dsCk

g (x,x
′′, t, s)

δϕ(hk(x′′, s))

δrℓ′(x′, s)

+
η0γ0
L

L∑
k=ℓ

δϕ̇(hk(x, t))

δrℓ′(x′, s)

∫
dx′′dsCk

g (x,x
′′, t, s)ϕ(hk(x′′, s)) (44)

where we introduced the shorthand

Cℓ
h(x,x

′, t, s) = Aℓ−1(x,x′, t, s) + Φℓ−1(x,x′, t, s)∆(x′, s)p(x′)

Cℓ
h(x,x

′, t, s) = Bℓ(x,x′, t, s) +Gℓ+1(x,x′, t, s)∆(x′, s)p(x′) (45)

Similar equations exist for all derivatives with respect to uℓ(x, t). Once the above equations are solved,
then one can compute the response functions Aℓ, Bℓ by averaging the necessary field derivatives.
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E.3 Continuum Layer-time Limit at Infinite Depth

In this section, we argue the infinite depth limit can be viewed as a continuum limiting process defined
by ODEs for the kernels and SDEs for the preactivation and gradient fields for a layertime τ = ℓ/L.
We start by examining the asymptotic structure of the preactivation hℓ dynamics

hℓ(x; t) ∼ h1(x; t) +
1√
L

ℓ∑
k=1

uk(x; t)

+
η0γ0
L

ℓ−1∑
k=0

∫ t

0

ds Ex′Ck
h(x,x

′; t, s) gk+1(x′, s)∆(x′; s) (46)

The Gaussian source variables uk are all uncorrelated across layers. So the first sum is also a mean
zero Gaussian with variance〈(

1√
L

ℓ∑
k=1

uk(x, t)

)(
1√
L

ℓ∑
k=1

uk(x′, s)

)〉
=

1

L

ℓ∑
k=1

Φk−1(x,x′; t, s) ∼ O(1) (47)

At large depth L, this term will behave as integrated Brownian motion since each layer’s contribution
is independent and order

√
dτ ∼ 1√

L
. Next, we reason about the scale of feature learning update

η20γ
2
0

L2

ℓ−1∑
k=0

ℓ−1∑
k′=0

∫ t

0

ds′
∫ t

0

ds Ex′,x′′ ∆(x′; s)∆(x′′; s′)

× Ck
h(x,x

′; t, s) Ck′

h (x,x′; t, s)
〈
gk+1(x′, s)gk

′+1(x′′, s′)
〉
∼ O(1) (48)

The above double sum is O(1) because we have
〈
gkgk

′
〉
∼ O(1) for all k, k′. This fact arises from

the skip connections, which generate long-range correlations across layers. This behavior is very
different from non-residual networks where gℓ and gℓ

′
are independent for all ℓ ̸= ℓ′ [6].

To take the continuum limit, we define functions of a continuous layer time variable τ ∈ [0, 1],

h(τ,x, t) = hℓ(x, t)|ℓ=τL , g(τ,x, t) = gℓ(x, t)|ℓ=τL

Φ(τ ;x,x′; t, s) = Φℓ(x,x′; t, s)|ℓ=τL , G(τ ;x,x′; t, s) = Gℓ(x,x′; t, s)|ℓ=τL. (49)

The key idea when taking the continuum limit is the following relations based on a notion an
infinitesimal layer increment dτ ∼ 1

L . Let F ℓ be a deterministic function of the layer index and let
F (τ) be its continuous analogue which satisfies F (τ) = F ℓ|ℓ=τL. Then,

lim
L→∞

1

L

τL∑
ℓ=1

F ℓ →
∫ τ

0

dτ ′F (τ)

lim
L→∞

L
[
F τL+1 − F τL

]
→ ∂

∂τ
F (τ). (50)

We will use these relations when deriving continuum limits of the DMFT process. We note that
standard error analysis for Euler discretizations can be used to argue that finite depth averages
converge to the τ integral at rate∣∣∣∣∣ 1L

τL∑
ℓ=1

F ℓ −
∫ τ

0

dτ ′F (τ ′)

∣∣∣∣∣ ∼ O(L−1) (51)

This is merely the approximation error of a Riemann sum which is proportional to the step size [47],
which in this case is 1/L. This idea can be used to generate a convergence rate of the NTK and the
network output predictions at large depth as we discuss in I.
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E.4 Preactivation Dynamics

As discussed in the main text, the large L limit for the dynamics of hℓ can be viewed as a stochastic
integral over τ and over Brownian motion for the uk sum

h(τ ;x, t) = h(0;x, t) +

∫ τ

0

du(τ ′,x, t)

+ η0γ0

∫
dx′

∫ t

0

ds

∫ τ

0

dτ ′ [Φ(τ ′;x,x′; t, s)∆(x′; s)p(x′) +A(τ ′,x,x′; t, s)] g(τ ′,x′, s)

(52)

where du is Brownian motion term with covariance structure

⟨du(τ,x, t)du(τ ′,x′, s)⟩ = δ(τ − τ ′)Φ(τ,x,x′, t, s)dτ. (53)

Similarly, the gradient fields have an analogous structure

g(τ ;x, t) = g(τ ;x, t) +

∫ 1

τ

dr(τ ′,x, t)ϕ̇(h(τ ′,x, t))

+ η0γ0Ex′

∫ t

0

ds

∫ 1

τ

dτ ′ϕ̇(h(τ ′,x, t))G(τ ′;x,x′; t, s)∆(x′; s)ϕ(h(τ ′;x′, s))

+ η0γ0

∫
dx′

∫ t

0

ds

∫ 1

τ

dτ ′ϕ̇(h(τ ′,x, t))B(τ ′,x,x′; t, s)ϕ(h(τ ′;x′, s)). (54)

where dr is Brownian motion with covariance structure

⟨dr(τ,x, t)dr(τ ′,x′, s)⟩ = δ(τ − τ ′)G(τ,x,x′, t, s)dτ. (55)

We note that, due to the nonlinearities, the h, g fields are non-Gaussian at finite γ0 as in the case of
mean field networks [6]. We note that an alternative to the above integral formulation is a stochastic
differential equations

dh(τ,x, t) = du(τ,x, t)

+ dτ η0γ0

∫
dx′

∫ t

0

ds [Φ(τ ;x,x′; t, s)∆(x′; s)p(x′) +A(τ ;x,x′; t, s)]g(τ,x′, s)

(56)

The γ0 → 0 limit of the h equation at t, s = 0 coincides with the SDE derived at initialization by
[22, 23]. However, we now see that feature learning term (the term which depends on γ0) adds a drift
term to the layerwise dynamics compared to the diffusion term from the initial weights.

E.5 Kernel Layerwise ODEs in τ in Feature Learning Regime

We can start from the stochastic difference equation

dh(τ,x, t) = du(τ,x′, t) + dτ η0γ0

∫
dx′

∫ t

0

ds Ch(τ,x,x
′, t, s)g(τ,x′, s)

Ch(τ,x,x
′, t, s) = A(τ,x,x′, t, s) + Φ(τ,x,x′, t, s)∆(x′, s)p(x′). (57)

and derive an ODE for the feature kernel at layer-time τ . Applying Ito’s lemma [28], we obtain the
following feature kernel dynamics

∂

∂τ
Φ(τ,x,x′, t, s) =

1

2

∫
dx̃dx̃′dt′ds′Φ(τ, x̃, x̃′, t′, s′)

〈
∂2

∂h(τ, x̃, t′)∂h(τ, x̃′, s′)
[ϕ(h(τ,x, t))ϕ(h(τ,x′, s))]

〉
+ η0γ0

∫
dx′′dt′Ch(τ,x,x

′′, t′)
〈
g(τ,x′′, t′)ϕ̇(h(τ,x, t))ϕ(h(τ,x′, s))

〉
+ η0γ0

∫
dx′′ds′Ch(τ,x

′,x′′, s′)
〈
g(τ,x′′, s′)ϕ(h(τ,x, t))ϕ̇(h(τ,x′, s))

〉
(58)

22



The first term on the right hand side comes from signal propagation, which persists even in the lazy
limit. The second set of terms come from feature learning corrections. This equation should be
integrated from τ = 0 to τ = 1. Similarly, there is a backward pass ODE for the G kernel

∂

∂τ
G(τ,x,x′, t, s) = −

〈
ϕ̇(h(τ,x, t))ϕ̇(h(τ,x′, s))

〉
G(τ,x,x′, t, s)

− η0γ0

∫
dx′′

∫ t′

0

dt′Cg(τ,x,x
′′, t, t′)

〈
ϕ̇(h(τ,x, t))ϕ(h(τ,x′, s))g(τ,x′′, t′)

〉
− η0γ0

∫
dx′′

∫ s′

0

ds′Cg(τ,x,x
′′, t, t′)

〈
ϕ(h(τ,x, t))ϕ̇(h(τ,x′, s))g(τ,x′′, s′)

〉
Cg(τ,x,x

′, t, s) = B(τ,x,x′, t, s) +G(τ,x,x′, t, s)∆(x′, s)p(x′) (59)

which should be integrated from τ = 1 to τ = 0.

We note again, that convergence to the ODE will occur at rate O(L−1) in absolute error.

E.6 Response Function Equations in the Continuum Limit

The response functions can also be determined in the L→∞ limit using the following relations

A(τ,x,x′, t, s) =
1

η0γ0

〈
δϕ(h(τ,x, t))

δ dr(τ,x′, s)

〉
, B(τ,x,x′, t, s) =

1

η0γ0

〈
δg(τ,x, t)

δ du(τ,x′, s)

〉
(60)

The reason that the variation is computed with respect to the differential Brownian motion du, dr
is to match the scale of the increment 1√

L
, which appears in the finite L response functions Aℓ =

√
L

η0γ0

〈
δϕ(hℓ)
δrℓ

〉
. Using our continuum limit equations, we obtain the following field derivatives

δh(τ,x, t)

δdu(τ ′,x′, s)
= Θ(τ − τ ′)δ(x− x′)δ(t− s)

+ η0γ0

∫
dτ ′′

∫
dx′′

∫
dt′Ch(τ

′′,x,x′′, t, t′)
δg(τ ′′,x′′, t′)

δdu(τ ′,x′, s)

δg(τ,x, t)

δdu(τ ′,x′, s)
= η0γ0

∫
dτ ′′ϕ̇(h(τ ′′,x, t))

∫
dx′′

∫
dt′Cg(τ

′′,x,x′′, t, t′)
δϕ(h(τ ′′,x′′, t′))

δdu(τ ′,x′, s)

δh(τ,x, t)

δdr(τ ′,x′, s)
= η0γ0

∫
dτ ′′

∫
dx′′

∫
dt′Ch(τ

′′,x,x′′, t, t′)
δg(τ ′′,x′′, t′)

δdr(τ ′,x′, s)

δg(τ,x, t)

δdr(τ ′,x′, s)
= Θ(τ ′ − τ)δ(x− x′)δ(t− s) ϕ̇(h(τ,x, t))

+ η0γ0

∫
dτ ′′ϕ̇(h(τ ′′,x, t))

∫
dx′′

∫
dt′Ch(τ

′′,x,x′′, t, t′)
δϕ(h(τ ′′,x′′, t′))

δdr(τ ′,x′, s)
(61)

Once these recursions are solved, the response functions can be computed by averaging the necessary
field derivatives at each layer time τ

A(τ,x,x′, t, s) =

〈
δϕ(h(τ,x, t))

δdr(τ,x′, s)

〉
, B(τ,x,x′, t, s) =

〈
δg(τ,x, t)

δdu(τ,x′, s)

〉
. (62)

E.7 Final Result: Infinite Width and Depth Limit

In this section we combine the results obtained in the preceeding sections to state our main theoretical
result which is the infinite width and depth limit of the learning dynamics in our ResNet. Below we
state the result for gradient flow, but minor modifications can also characterize discrete time SGD,
momentum, weight decay etc as we discuss in Appendices K.

Proposition 2 Consider the N,L → ∞ limit of the ResNet µP- 1√
L

model presented in the main
text trained with gradient flow on data distribution p(x). The preactivation h(τ,x, t) and gradient
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g(τ,x, t) stochastic fields obey the equations

h(τ,x, t) = h(0,x, t) +

∫ τ

0

du(τ ′,x, t) + η0γ0

∫ τ

0

dτ ′
∫

dx′
∫ t

0

ds Ch(τ
′,x,x′, t, s)g(τ ′,x′, s)

g(τ,x, t) = g(1,x, t) +

∫ 1

τ

ϕ̇(h(τ ′,x, t))dr(τ ′,x, t)

+ η0γ0

∫ τ

0

dτ ′ϕ̇(h(τ ′,x, t))

∫
dx′

∫ t

0

ds Cg(τ
′,x,x′, t, s)ϕ(h(τ ′,x′, s)) (63)

where the zero mean Brownian motions du(τ,x, t), dr(τ,x, t) have the following covariance struc-
ture

⟨du(τ,x, t)du(τ ′,x′, s)⟩ = Φ(τ,x,x′, t, s)δ(τ − τ ′)dτ

⟨dr(τ,x, t)dr(τ ′,x′, s)⟩ = G(τ,x,x′, t, s)δ(τ − τ ′)dτ, (64)

the deterministic kernels Ch and Cg have the form

Ch(τ,x,x
′, t, s) = Φ(τ,x,x′, t, s)∆(x′, s)p(x′) +A(τ,x,x′, t, s)

Cg(τ,x,x
′, t, s) = G(τ,x,x′, t, s)∆(x′, s)p(x′) +B(τ,x,x′, t, s) (65)

where the kernels Φ, G and response functions A,B are computed as averages over the h, g stochastic
process

Φ(τ,x,x′, t, s) = ⟨ϕ(h(τ,x, t))ϕ(h(τ,x′, s))⟩ , G(τ,x,x′, t, s) = ⟨g(τ,x, t)g(τ,x′, s)⟩

A(τ,x,x′, t, s) =
1

η0γ0

〈
δϕ(h(τ,x, t))

δdr(τ,x′, s)

〉
, B(τ,x,x′, t, s) =

1

η0γ0

〈
δg(τ,x, t)

δdu(τ,x′, s)

〉
. (66)

From the feature and gradient kernels, we can compute the dynamical NTK and the dynamics of
network predictions

K(x,x′, t) =

∫ 1

0

dτ G(τ,x,x′, t, t)Φ(τ,x,x′, t, t)

d

dt
f(x, t) = η0

∫
dx′p(x′)K(x,x′, t)∆(x′, t) , ∆(x, t) = − ∂L

∂f(x, t)
. (67)

This is a closed system of equations relating preactiation and gradient marginals, the kernel dynamics
and the network prediction dynamics. In this limit, the kernels, response functions and network
outputs are all deterministic.

F Infinite Depth then Infinite Width Limit

In this section, we compute the limiting process in the other direction, by directly working with
the distribution of order parameters q at finite N . We show that at large depth L the DMFT action
converges to a limiting object S∞(q). We the show that the large N limit of the distribution recovers
the same saddle point derived in Appendix E for the large N then large L limit. Thus, this section
constitutes a theoretical argument that the width and depth limits commute for the whole course of
training dynamics. The derivations are performed at the level of rigor of physics, and we leave open
for future work a rigorous result about commutativity of limits throughout training.

F.1 Large L Limit at Fixed N

We derived the finite N,L distribution of order parameters in Appendix Section D. The result was
that the log-density of the order parameters q over random initialization of network weights was
given by the DMFT action ln p(q) ∝ NSL(q). Suppressing unnecessary (for the purposes of this
section) sample and time indices, the action at depth SL had the form

SL =
∑
ℓ

[
ΦℓΦ̂ℓ +GℓĜℓ −AℓBℓ

]
+ Z[q] (68)
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where the single site density Z has the form

Z =

∫ ∏
ℓ

dhℓdĥℓdgℓdĝℓ

E{uℓ,rℓ} exp

(
i
∑
ℓ

ĥℓ

(
hℓ+1 − hℓ − 1√

L
uℓ − 1√

L
Aℓgℓ+1 − ηγ

L
Φℓ∆gℓ+1

))

exp

(
i
∑
ℓ

ĝℓ
(
gℓ − gℓ+1 − 1√

L
rℓϕ̇(hℓ)− 1√

L
ϕ̇(hℓ)Bℓϕ(hℓ)− η0γ0

L
ϕ̇(hℓ)Gℓ+1∆ϕ(hℓ)

))

exp

(
−
∑
ℓ

ϕ(hℓ)Φ̂ℓϕ(hℓ)−
∑
ℓ

gℓĜℓgℓ

)
(69)

where the averages are over uℓ, rℓ which are Gaussians with covariances Φℓ−1 and Gℓ+1 respectively.
In the above equation we work with h, g directly rather than working with the intermediate fields χ, ξ
which only depend on the initialization.

To obtain a proper large depth limit, we rescale the conjugate order parameters as

Φ̂ℓ → 1

L
Φ̂ℓ , Ĝℓ → 1

L
Ĝℓ , Aℓ → η0γ0√

L
Aℓ , Bℓ → η0γ0√

L
Bℓ (70)

We note that such a rescaling will not alter the distribution of real network observables
{Φ, G,K, f, ...} [6, 7]. After this rescaling, we take L → ∞ which gives a continuum limit of
the resulting layer sums, we obtain the following simplified infinite depth action in terms of the
kernels and features at layer time τ ∈ [0, 1]

S∞ =

∫
dτ [Φ(τ)Φ̂(τ) +G(τ)Ĝ(τ)− η20γ

2
0A(τ)B(τ)] + lnZ

Z =

∫
DĥDĝDhDg Eu(τ),r(τ) exp

(
i

∫
ĥ(τ)[dh(τ )− du(τ)− η0γ0Ch(τ)g(τ)dτ ]

)
exp

(
i

∫
ĝ(τ)[−dg(τ)− dr(τ)ϕ̇(h(τ))− η0γ0ϕ̇(h(τ))Cg(τ)ϕ(h(τ ))dτ ]

)
exp

(
−
∫

dτ [ϕ(h(τ ))Φ̂(τ)ϕ(h(τ )) + g(τ)Ĝ(τ)g(τ)]

)
. (71)

where Ch, Cg are given in the main text and the du(τ), dr(τ) are Brownian motion processes over
layer time τ . We therefore find that the distribution of order parameters at finite width N and infinite
depth L→∞ is

lim
L→∞

pL(q) = p∞(q) ∝ exp (NS∞(q)) (72)

This constitutes taking the infinite depth limit L→∞ at fixed N . At this stage, the order parameters
do not obey a deterministic set of equations, but are samples from the above density. In the next
section, we study infinite width of this density and find that we recover the same result that we derived
previously in the other direction.

F.2 Saddle Point Equations on Infinite Depth Action

This section considers the large N limit of the infinite depth stochastic process. In particular, we
evaluate the saddle point of S∞ and show that it recovers the same limit as we obtained by first taking
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a saddle point and then taking the large L limit. This shows that the limits commute.

δS∞
δΦ̂(τ)

= Φ(τ)− ⟨ϕ(h(τ ))ϕ(h(τ ))⟩ = 0

δS∞
δĜ(τ)

= G(τ)− ⟨g(τ)g(τ)⟩ = 0

δS∞
δA(τ)

= −η20γ2
0B(τ)− iη0γ0

〈
ĥ(τ)g(τ)

〉
= 0

δS∞
δB(τ)

= −η20γ2
0A(τ)− iη0γ0

〈
ĝ(τ)ϕ̇(h(τ))ϕ(h(τ ))

〉
= 0 (73)

For the last two expressions, we recognizing that

δ

δdu(τ ′)
exp

(
−i
∫

ĥ(τ)du(τ)

)
= −iĥ(τ) exp

(
−i
∫

ĥ(τ)du(τ)

)
δ

δdr(τ ′)
exp

(
−i
∫

ĝ(τ)ϕ̇(h(τ))dr(τ)

)
= −iĝ(τ)ϕ̇(h(τ)) exp

(
−i
∫

ĝ(τ)ϕ̇(h(τ))dr(τ)

)
(74)

We can thus express the saddle point equations in terms of the left hand side derivatives with respect to
Gaussian sources. Performing integration by parts, we arrive at the usual response function formulas

A(τ) = η−1
0 γ−1

0

〈
δϕ(h(τ))

δdr(τ))

〉
, B(τ) = η−1

0 γ−1
0

〈
δg(τ)

δdu(τ)

〉
(75)

Lastly, we can integrate over ĥ(τ) and ĝ(τ) which give Dirac-Delta functions that define the h and g
stochastic processes

dh(τ) = du(τ) + η0γ0Ch(τ)g(τ) , dg(τ) = −dr(τ)ϕ̇(h(τ))− η0γ0ϕ̇(h(τ))Cg(τ)ϕ(h(τ ))dτ
(76)

The rest of the indices (over samples and training times) can be incorporated into the above argument
and the result is easily verified to match that derived in Appendix E from the large width then large
depth limit. This exercise thus verifies that the large width and large depth limit continue to commute
throughout training, extending the commutativity at initialization proven by [23].

G Exactly Solveable Cases

In this section, we give exact solutions to the dynamics which do not require any non-Gaussian
integrals. The two cases where this can be achieved are

1. the lazy limit γ0 → 0 of network training where the features are frozen

2. networks with linear activations, which preserve Gaussianity of h, g at any γ0.

We discuss these two limits in great detail below.

G.1 Lazy Limit

In the lazy limit γ0 → 0, the flow for the preactivations h(τ,x, t) = h(τ,x) and the gradient fields
gℓ(τ,x, t) = gℓ(τ,x) are constant over training time. Similarly, the kernels Φℓ, Gℓ are also constant
throughout the dynamics. We thus have the following forward and backward dynamics

h(τ,x) = h(0,x) +

∫ τ

0

du(τ ′,x) (77)

g(τ,x) = g(1,x) +

∫ 1

τ

ϕ̇(h(τ ′,x))dr(τ ′,x) (78)
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Figure G.1: We plot the feature kernels H(τ) = Hℓ|ℓ=τL in width N = 1000 residual linear
networks before and after taking a gradient step in our parameterization. The kernel profiles at
initialization H0(τ) and the kernel changes H1(τ)−H0(τ) converge for large L. We compare to the
theoretical result expected from the L→∞ limit of the DMFT equations (dashed black).

We note that the above equations indicate that h(τ,x) are all jointly Gaussian with zero mean.
Since h is Gaussian, it makes sense to characterize its covariance H(τ,x,x′) = ⟨h(τ,x)h(τ,x′)⟩ at
layer-time τ . This object satisfies the differential equation

∂

∂τ
H(τ,x,x′) = Φ(τ,x,x′)

Φ(τ,x,x′) = ⟨ϕ(h(τ,x))ϕ(h(τ,x′))⟩
h(τ,x,x′) ∼ N (0,H(τ)) (79)

Since h(τ,x) are zero-mean jointly Gaussian random variables, the average to compute Φ can be
computed in closed form for polynomials and several practically used nonlinearities (ReLU, ERF,
etc) [11]. Now, to compute the backward pass, we must

∂

∂τ
G(τ,x,x′) = −

〈
ϕ̇(h(τ,x))ϕ̇(h(τ ′,x′))

〉
G(τ,x,x′) (80)

Again, the bivariate Gaussian integral
〈
ϕ̇(h(τ,x))ϕ̇(h(τ ′,x′))

〉
has a closed form expression for

many regularly used activation functions ϕ. Given that we have solved for Φ(τ) and G(τ), the
dynamics of the predictor is

d

dt
f(x, t) = η0Ex′K(x,x′)∆(x′, t) , ∆(x, t) = − ∂L

∂f(x, t)

K(x,x′) =

∫ 1

0

dτ G(τ,x,x′)Φ(τ,x,x′). (81)

This is an exact description of the network predictor dynamics in the N →∞, L→∞ and γ0 → 0
limit. However, the γ0 → 0 limit lacks a fundamental phenomenon of deep neural networks, namely
feature learning. To gain analytical insight into the feature learning dynamics, we will study linear
networks in the next section.

G.2 Infinite Depth ResNets with Linear Activations

In the case where the activations are linear, we can also close the equations at the level of the kernels
(since activations remain Gaussian even after feature learning). To provide an exactly solveable
model of the dynamics, we consider computing the kernels after one step of feature learning.
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G.2.1 Full DMFT equations in Deep Linear Networks

The DMFT equations for the preactivation processes have the form

h(τ,x, t) = h(0,x, t) +

∫ τ

0

du(τ ′,x, t) + η0γ0

∫ τ

0

dτ ′
∫

dx′
∫

ds Ch(τ
′,x,x′, t, s)g(τ ′,x′, s)

g(τ,x, t) = g(1,x, t) +

∫ 1

τ

dr(τ ′,x, t) + η0γ0

∫ 1

τ

dτ ′
∫

dx′
∫

ds Cg(τ
′,x,x′, t, s)h(τ ′,x′, s)

(82)
where Ch, Cg have the usual expressions. The field derivatives (to get the response functions) have
the form

δh(τ,x, t)

δdu(τ ′,x′, s)
= Θ(τ − τ ′)δ(x− x′)δ(t− s)

+ η0γ0

∫ τ

0

dτ ′′
∫

dx′′
∫

dt′Ch(τ
′′,x,x′′, t, t′)

δg(τ ′′,x′′, t′)

δdu(τ ′,x′, s)

δg(τ,x, t)

δdu(τ ′,x′, s)
= η0γ0

∫ 1

τ

dτ ′′
∫

dx′′
∫

dt′Cg(τ
′′,x,x′, t, t′)

δh(τ ′′,x′′, t′)

δdu(τ ′,x′, s)

δh(τ,x, t)

δdr(τ ′,x′, s)
= η0γ0

∫ τ

0

dτ ′′
∫

dx′′
∫

dt′Ch(τ
′′,x,x′, t, t′)

δg(τ ′′,x′′, t′)

δdr(τ ′,x′, s)

δg(τ,x, t)

δdr(τ ′,x′, s)
= Θ(τ ′ − τ)δ(x− x′)δ(t− s)

+ η0γ0

∫ 1

τ

dτ ′′
∫

dx′′
∫

dt′Cg(τ
′′,x,x′, t, t′)

δh(τ ′′,x′′, t′)

δdr(τ ′,x′, s)
(83)

Since the activations are linear, these derivatives are no longer stochastic and we have the equal layer
time τ = τ ′ derivatives as the response functions

A(τ,x,x′, t, s) =
δh(τ,x, t)

δdr(τ,x′, s)
, B(τ,x,x′, t, s) =

δg(τ,x, t)

δdu(τ,x′, s)
(84)

Next, we compute the kernels as simple Gaussian averages
H(τ,x,x′, t, s) = ⟨h(τ,x, t)h(τ,x, t)⟩ , G(τ,x,x′, t, s) = ⟨g(τ,x, t)g(τ,x, t)⟩ (85)

In the next section, we show a simple example where these equations become simple linear differential
equations.

G.2.2 One step One Sample Feature Kernel Equations

Before training, the initial conditions for the kernels H0(τ) and G0(τ) are
∂τH0(τ) = H0(τ) , ∂τG0(τ) = −G0(τ)

=⇒ H0(τ) = eτ , G0(τ) = e−τ + 1− e−1 (86)
After a step of gradient descent, the preactivation at layer time τ has the form

h(τ) = h(0) +

∫ τ

0

du(τ ′) + η0γ0

∫ τ

0

dτ ′[A(τ ′) +H0(τ
′)y]g0(τ

′) (87)

We let H(τ), G(τ) represent the kernels after one step. The response function after one step has
satisfies the differential equation

∂τA(τ) = A(τ) +H0(τ)y , A(0) = 0 =⇒ A(τ) = τeτ y (88)
The kernel H(τ) after one step therefore satisfies

H(τ) = H(0) +

∫ τ

0

dτ ′H(τ ′)

+ η20γ
2
0

∫ τ

0

∫ τ

0

dτ ′dτ ′′G0(τ
′, τ ′′)[A(τ ′) +H0(τ

′)y][A(τ ′′) +H0(τ
′′)y]

= H(0) +

∫ τ

0

dτ ′H(τ ′) + η20γ
2
0y

2

∫ τ

0

∫ τ

0

dτ ′dτ ′′G0(τ
′, τ ′′)eτ

′+τ ′′
[τ ′ + 1][τ ′′ + 1]. (89)
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where G0(τ, τ
′) = ⟨g0(τ)g0(τ ′)⟩. Differentiating both sides with respect to τ gives the integro-

differential equation

∂τH(τ) = H(τ) + 2η20γ
2
0y

2eτ [τ + 1]

∫ τ

0

dτ ′G0(τ, τ
′)eτ

′
[τ ′ + 1] (90)

Note that G0(τ, τ
′) = G0(τ) = e−τ + 1 − e−1 for τ ′ < τ . So we can pull this out of the integral

and we are left with ∫ τ

0

dτ ′eτ
′
[τ ′ + 1] = τeτ (91)

We are finally left with the ODE

∂τH(τ) = H(τ) + 2η20γ
2
0y

2 e2τ [e−τ + 1− e−1][τ2 + τ ] (92)

Integrating gives

H(τ) = eτH(0) + 2η20γ
2
0e

τ

[
1

3
τ3 +

1

2
τ2 + (1 + e−1)(τ2eτ − τeτ + eτ − 1)

]
(93)

This solution gives the profile of the feature kernels after a single step of gradient descent. This is
verified numerically in Figure G.1. At small τ this goes as H(τ)−H0(τ) ∼ η20γ

2
0 [1 + (1 + e−1)]τ2.

H Finite Width Convergence: Fluctuations do not scale with L

At fixed L, one can compute systematic asymptotic corrections in ON (N−1) to the statistical
properties of q. This follows closely from the finite width analysis around mean field dynamics
performed by [7]. The idea of their expansion is to extract from S information about finite size
deviations from the infinite width DMFT process. The key fact which appears in the next to leading
order terms is that at finite width N , the order parameters q become random with covariance

Cov(q) ∼ 1

N
ΣL +ON (N−2) , ΣL =

[
−∇2S(q∞)

]−1
(94)

The matrix 1
NΣL gives the leading order (in powers of 1/N ) covariance of the order parameters over

random initialization at width N depth L. The goal of this section is to show that the entries of this
covariance matrix ΣL that correspond to the NTK and (consequently the predictor f ) do not diverge
with L for the architecture of this paper (residual networks with 1/

√
L branch scaling), but rather

approach a well defined limit at rate O(L−1). We again stress that this is unique to this architecture.
Non-residual deep networks networks have propagator entries which scale linearly with L since
variances accumulate rather than average out over layers [5, 7]. We note that the predictor f can be
included in the set of order parameters q at depth L, so that the finite width deviation scales as〈

(fN,L − f∞,L)
2
〉
∼ 1

N
ΣL

f (95)

where averages are taken over random initialization.

H.1 Components of the Hessian

Since we are primarily interested in the scaling of the finite width effects with respect to N and L, we
will suppress the sample and time indices of the kernels and instead focus on the dependence of the
fluctuations on layer index ℓ. This will not change the analysis of the scaling but will save us from
tracking a tremendous amount of indices. We will let Φℓ to represent the feature kernel at layer ℓ and
Gℓ the gradient kernel at layer ℓ with no time or sample indices. Under this simplified notation, the
Hessian has entries of the form

∂2S
∂Φ̂ℓ∂Φ̂ℓ′

=
〈
ϕ(hℓ)ϕ(hℓ)ϕ(hℓ′)ϕ(hℓ′)

〉
− ΦℓΦℓ′ ≡ κℓ,ℓ′

Φ

∂2S
∂Φ̂ℓ∂Φℓ′

= δℓ,ℓ′ −
∂

∂Φℓ′

〈
ϕ(hℓ)ϕ(hℓ)

〉
≡ δℓ,ℓ′ −

1

L
Dℓ,ℓ′

Φ

∂2S
∂Φℓ∂Φℓ′

= 0 (96)
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First, we note that since the hℓ fields have long-range correlations, the κℓ,ℓ′ is non-vanishing for all
ℓ, ℓ′. We next note that Dℓ,ℓ′

Φ ∼ O(1) since ∂hℓ

∂Φℓ′ ∼ O(L−1) and by Price’s theorem,

Dℓ,ℓ′

Φ =
1

2

〈
∂2

∂uℓ′∂uℓ′
[ϕ(hℓ)ϕ(hℓ)]

〉
+ 2L

〈
ϕ̇(hℓ)ϕ(hℓ)

∂hℓ

∂Φℓ′

〉
∼ O(1) (97)

Similarly, we also need to calculate the terms involving Gℓ

∂2S
∂Ĝℓ∂Ĝℓ′

=
〈
gℓgℓgℓ

′
gℓ

′
〉
−GℓGℓ′ ≡ κℓ,ℓ′

G

∂2S
∂Ĝℓ∂Gℓ′

= δℓ,ℓ′ −
∂

∂Gℓ′

〈
gℓgℓ

〉
≡ δℓ,ℓ′ −

1

L
Dℓ,ℓ′

G

∂2S
∂Gℓ∂Gℓ′

= 0 (98)

Lastly, we must consider the cross terms involving both {Φℓ} and {Gℓ}
∂2S

∂Φ̂ℓ∂Ĝℓ′
=
〈
ϕ(hℓ)ϕ(hℓ)gℓ

′
gℓ

′
〉
− ΦℓGℓ′ ≡ κℓ,ℓ′

Φ,G

∂2S
∂Φ̂ℓ∂Gℓ′

= − ∂

∂Gℓ′

〈
ϕ(hℓ)ϕ(hℓ)

〉
≡ − 1

L
Dℓ,ℓ′

Φ,G

∂2S
∂Ĝℓ∂Φℓ′

= − ∂

∂Φℓ′

〈
gℓgℓ

〉
≡ − 1

L
Dℓ,ℓ′

G,Φ

∂2S
∂Φℓ∂Gℓ′

= 0 (99)

The κ tensor represents an instantaneous source of variance for the kernels, while the D tensor
represents the sensitivity of the kernel at layer ℓ to a perturbation in the kernel at layer ℓ′. All entries
of each D matrix are O(1). Now, to compute the propagator, we construct block matrices

κ =

[
κΦ κΦ,G

κG,Φ κG

]
, D =

[
DΦ DΦ,G

DG,Φ DG

]
(100)

Now, to obtain the propagator Σ, we must compute the inverse of the Hessian∇2S

Σ = −
[

0 (I − 1
LD)⊤

I − 1
LD κ

]−1

=

(I − 1
LD

)−1
κ
[(
I − 1

LD
)−1
]⊤

−
(
I − 1

LD
)−1

−
[(
I − 1

LD
)−1
]⊤

0


(101)

The observables of interest are the top-left block which gives the joint covariance over all {Φℓ, Gℓ}
variables. We introduce the following 2× 2 block matrices

κℓ,ℓ′ =

[
κℓ,ℓ′

Φ κℓ,ℓ′

ΦG

κℓ,ℓ′

GΦ κℓ,ℓ′

G

]
, Σℓ,ℓ′ =

[
Σℓ,ℓ′

Φ Σℓ,ℓ′

ΦG

Σℓ,ℓ′

GΦ Σℓ,ℓ′

G

]
, Dℓ,ℓ′ =

[
Dℓ,ℓ′

Φ Dℓ,ℓ′

ΦG

Dℓ,ℓ′

GΦ Dℓ,ℓ′

G

]
(102)

The above equation gives us we get the following 2× 2 matrix equations

Σℓ,ℓ′ − 1

L

∑
k

Dℓ,kΣk,ℓ′ − 1

L

∑
k

Σℓ,k[Dℓ′,k]⊤ +
1

L2

∑
kk′

Dℓ,kΣk,k′
[Dk′,ℓ′ ]⊤ = κℓ,ℓ′ (103)

We see that the solutions Σℓ,ℓ′ to the above equation will be OL(1). This is precisely due to the
factors of 1/L which appear in the above sums. One way to see this is to consider a large L ≫ 1
limit where the above layer sums converge to integrals over τ

Σ(τ, τ ′)−
∫

dτ ′′D(τ, τ ′′)Σ(τ ′′, τ ′)−
∫

dτ ′′Σ(τ ′′, τ ′)D(τ, τ ′′)⊤

+

∫
dτ ′′dτ ′′′D(τ, τ ′′)Σ(τ ′′, τ ′′′)D(τ ′, τ ′′′)⊤ = κ(τ, τ ′) (104)

So we find that the covariance of kernels at each pair of layers Σ(τ, τ ′) is OL(1).
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H.2 Variance of the NTK and Predictor

Using the above fact that Σℓ,ℓ′ ∼ OL(1), we can reason about the variance of the neural tangent
kernel K

Var(K) =
1

NL2

∑
ℓℓ′

Σℓ,ℓ′

Φ Gℓ+1Gℓ′+1 +
1

NL2

∑
ℓℓ′

Σℓ,ℓ′

G Φℓ−1Φℓ′−1

+
2

NL2

∑
ℓℓ′

Σℓ,ℓ′

ΦGG
ℓ+1Φℓ′−1 ∼ OL,N (N−1). (105)

This demonstrates that the NTK will have initialization variance that scales only with the width N
but not the depth L. Using the fact that ∂f

∂t = K∆, we see that f will inherit fluctuations on the same
scale of ON,L(N

−1/2). The depth L NTK and predictor covariance converge to the infinite depth
propagator with rate O(L−1).

I Finite Width And Depth Error Analysis

In this section, we combine the results of the previous sections. We consider the following error
decomposition where we introduce the norm ||z|| =

√
⟨z2⟩ and ⟨⟩ denotes an average over random

initializations of the network. Applying the triangle inequality on this norm, we have

||fN,L − f∞,∞|| ≤ ||fN,L − ⟨fN,L⟩ || (Finite Width Variance)
+ || ⟨fN,L⟩ − f∞,L|| (Mean Predictor Finite Width Error)
+ ||f∞,L − f∞,∞|| (Finite Depth Error at Infinite Width) (106)

From the preeceeding section H, the first term has asymptotic behavior〈
(fN,L − ⟨fN,L⟩)2

〉
∼ 1

N
ΣL

f +O(N−2) =
1

N
Σ∞

f +O
(

1

NL
+

1

N2

)
(107)

where the last term comes from the fact that ΣL approximates the infinite depth propagator Σ∞

with error 1/L. Next, we can apply results developed from [7] which show that the mean predictor
satisfies ⟨fN,L⟩ = f∞,L +O(N−1) to find that mean finite width error scales as

| ⟨fN,L⟩ − f∞,L|2 ∼ O(N−2) (108)

Lastly, the finite depth error in the infinite width DMFT arises from the 1/L discretization effect.
Thus the square error goes as

|f∞,L − f∞,∞|2 ∼ O(L−2). (109)

which follows from the discretization error of the limiting large depth process for the NTK and thus
the predictor. Altogether, we have

||fN,L − f∞,∞|| ∼

√
1

N
Σ∞

f +O
(

1

NL

)
+O

(
1

N

)
+O

(
1

L

)
(110)

We see that at large width and depth this is dominated by the first term which comes from the finite
width fluctuations. However, if the model is ensembled, then we expect a faster rate of convergence
from the last two sources of error. Indeed, we provide an experiment verifying that ensembling
improves the rate of convergence in Figure C.8.

J Why Parameterization Influences Hyperparameter Transfer at Finite
Widths and Depths

One may wonder why other parameterizations which also admit a scaling limit (such as Neural
Tangent Parameterization) do not transfer as well as networks in µP or why our proposal transfers
over depth but others do not. To achieve successful transfer across finite widths, it is insufficient to
reason about the infinite width/depth scaling limit, rather one needs to identify a parameterization that
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minimizes the approximation error between finite networks and the scaling limit (of course subject to
the obvious constraints of training in finite time, learning features at the desired rate etc).

Alternative parameterizations that do not keep feature updates constant, can be thought of as choosing
a function γ0(N,L) which describes how much the features evolve with N,L. Suppose further that
this has a limiting value limN,L→∞ γ0(N,L) = γ⋆

0 . For example, neural tangent parameterization in
our 1√

L
ResNet corresponds to γ0 = 1√

N
with γ⋆

0 = 0. We let the logits for a finite width/depth model

in this parameterization be fγ0(N,L)
N,L represent a finite width N and depth L network predictions with

feature learning scale γ0(N,L). The approximation error this (N,L) network and another (N ′, L′)
network has two potential sources of error

||fγ0(N,L)
N,L − f

γ0(N
′,L′)

N ′,L′ || ≤ ||fγ0(N,L)
N,L − fγ0(N,L)

∞,∞ ||+ ||fγ0(N,L)
N ′,L′ − fγ0(N

′,L′)
∞,∞ ||

+ ||fγ0(N,L)
∞,∞ − fγ0(N

′,L′)
∞,∞ || (111)

Heuristically, one can eliminate the final approximation error by choosing a parameterization where
γ0(N,L) = γ0 is a width/depth-independent constant. Then one is left with finite approximation
errors to an infinite model with the same rate of feature learning.

K Architectural + Optimization Extensions

In this section, we explore various extensions of the model written in the main text. Most of these
extensions do not modify the scaling rule or the procedural ideas which we used to characterize the
limit. We will explore convolutions, multiple layers per block, training read-in and read-out matrices,
discrete time training dynamics (finite step size SGD), momentum, and LayerNorm.

K.1 Convolutional Models

A DMFT for convolutional ResNets can be easily obtained by introducing spatial coordinates a, b of
each layer’s representation [6]. The preactivation vectors hℓ

a(x, t) ∈ RN represent the activity of
all N channels in layer ℓ at spatial position a. The trainable weights take the form W ℓ

a ∈ RN×N

describe the filter at a spatial displacement a from its center. The recursion of the ResNet is

hℓ+1
a (x, t) = hℓ

a(x, t) +
1√
NL

∑
b

W ℓ
bϕ(h

ℓ
a+b(x, t)) (112)

where the sum over b runs over all valid spatial positions in the filter. The relevant order parameters
are still feature-feature correlations, but now with additional spatial indices

Φℓ
a,b(x,x

′, t, s) =
1

N
ϕ(hℓ

a(x, t)) · ϕ(hℓ
b(x

′, s)) (113)

A similar gradient-gradient kernel is also crucial Gℓ
a,b(x,x

′, t, s). From these objects, one can
construct a limiting DMFT at N →∞

K.2 Multiple Layers Per Residual Block

Many residual neural networks, including the popular ResNet-18 and ResNet-50 models, there are
more than a single convolution layer on a residual branch. In this section, we show that this does
not alter the scaling rule or the convergence to a well defined large width and depth limit provided
the number of branches L goes to infinity with number of layers per block K fixed. We therefore
work with the case of K ∼ O(1) hidden layers on each branch and still take the branch number L to
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infinity. The recurrence of interest is

f =
1

γ0N
wL · ϕ(hL)

hℓ+1 = hℓ +
1√
L
h̃ℓ,K , ℓ ∈ {1, ..., L− 1}

h̃ℓ,k+1 =
1√
N

W ℓ,kϕ(h̃ℓ,k) , k ∈ {1, ...,K − 1}

h̃ℓ,1 =
1√
N

W ℓ,0ϕ(hℓ)

h1 =
1√
D
W 0x (114)

The goal is to verify that gradient based learning on {W ℓ,k}ℓ∈[L],k∈[K] gives a well defined infinite
width and depth limit N →∞ and L→∞. The weight dynamics are

d

dt
W ℓ,k =

η0γ0√
NL

Ex ∆(x, t) g̃ℓ,k+1(x, t)ϕ
(
h̃ℓ,k(x, t)

)⊤
, k ∈ {1, ...,K − 1}

d

dt
W ℓ,K =

η0γ0√
NL

Ex ∆(x, t) gℓ+1(x, t)ϕ
(
h̃ℓ,k(x, t)

)⊤
(115)

where we have defined the gradient fields

g̃ℓ,k(x, t) = Nγ0
√
L

∂f(x, t)

∂h̃ℓ,k(x, t)
∼ ON,L(1)

gℓ(x, t) = Nγ0
∂f(x, t)

∂hℓ(x, t)
∼ ON,L(1) (116)

We next examine the scale of the updates to preactivation features h̃ℓ,k and hℓ

h̃ℓ,k+1(x, t) =
1√
N

W ℓ,k(0)ϕ(h̃ℓ,k) +
η0γ0√

L
Ex′

∫ t

0

ds ∆(x′, s)Φℓ,k(x,x′; t, s)g̃ℓ,k+1(x′, s)

hℓ+1(x, t) = hℓ(x, t) +
1√
LN

W ℓ,K(0)ϕ(h̃ℓ,K−1)

+
η0γ0
L

Ex′

∫ t

0

ds ∆(x′, s)Φℓ,K(x,x′, t, s)gℓ+1(x′, s) (117)

We see that the h̃ℓ,k features will be uncorrelated across k since there are no skip connections within
a block. However, the hℓ exhibit long range correlations as before. To understand the cumulative
impact of the feature learning corrections to the preactivations, we must reason about how correlated
the gradient signals gℓ and g̃ℓ,k are across different layers. We

g̃ℓ,k(x, t) =
1√
N

ϕ̇(h̃ℓ,k(x, t))⊙W ℓ,k(t)⊤g̃ℓ,k+1(x, t)

gℓ(x, t) = gℓ+1(x, t) +
1√
NL

ϕ̇(hℓ(x, t))⊙
[
W ℓ,0(t)⊤g̃ℓ,1(x, t)

]
(118)

We see that the skip connections keep long range correlations in the gℓ signals, however, the g̃ℓ,k are
uncorrelated with one another, as in a standard feedforward network.

K.2.1 The Limiting Behavior of Multi-layer per Block Model

Based on the correlation structures, of the gℓ and g̃ℓ,k gradient featuers, we have the following DMFT
equations at infinite width and large depth

hℓ+1(x, t) = h1(x, t) +
1√
L

ℓ+1∑
ℓ′=1

uℓ′(x, t)

+
η0γ0
L

ℓ+1∑
ℓ′=1

Ex′

∫ t

0

ds ∆(x′, s)Φℓ′−1,K(x,x′, t, s)gℓ
′
(x′, s) +O(L−1/2) (119)
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where the Gaussian source has the form

uℓ+1(x, t) ∼ GP(0,Φℓ,K) (120)

where Φℓ,K is determined through the lazy within-block recursion

Φk,ℓ(x,x′, t, s) =
〈
ϕ(uℓ,k(x, t))ϕ(uℓ,k(x, t))

〉
uℓ,k∼N (0,Φℓ,k−1)

, k ∈ {1, ...,K − 1}. (121)

Though all of the kernels are dynamical, it is as if the weights W ℓ,k are static for k ∈ {1, ...,K − 1}.
This is a consequence of the decorrelation of g̃ℓ,k across k. We leave as a future problem whether
it is possible to reparameterize the intermediate weights so that each of the internal block weight’s
dynamics move by OL(1) and contribute additional feature learning terms in the dynamics.

K.3 Effect of Training Read-in Weights

If in addition to training the weights of the ResNet “body" we also train the readout and readin
weights, they will also contribute to the total NTK

K(x,x′) =
1

L

L∑
ℓ=1

Gℓ+1(x,x′)Φℓ(x,x′) +G1(x,x′)Kx(x,x′). (122)

where Kx(x,x′) = 1
Dx · x′ is the input kernel. We see that the addition of these two layers does not

change the fact that the NTK is OL(1) in this parameterization. Now, we need to verify that the first
layer weights move by the appropriate scale

d

dt
W 0

ij(t) =
η0γ0√
D

Ex∆(x, t)g1i (x, t)xj ∼ OL,N (1) (123)

These equations lead to the following base case equations for the fields gL(x, t) and h1(x, t)

h1(x, t) = u1(x, t) + η0γ0Ex′

∫ t

0

ds∆(x′, s)g1(x′, s)Kx(x,x′)

gL(x, t) = ϕ̇(hL(x, t))rL(x, t) + η0γ0ϕ̇(h
L(x, t))Ex′

∫ t

0

ds ΦL(x,x′, t, s)∆(x′, s) (124)

These fields will therefore evolve by ON,L(1) in this parameterization.

K.4 Discrete Time Updates

DMFT for feedforward networks can also be modified for discrete time [6, 7]. A straightforward
extension of these results will give discrete time dynamics for the field dynamics hℓ, gℓ for our
ResNet. The one subtlety about discrete time is that the neural tangent kernel no longer governs the
evolution of the predictor f . Instead,

f(x, t) = η0
∑
s<t

Ex′∼Bs
∆(x′, s)ΦL(x,x′, t, s) + η0

∫
dx′

∑
s<t

AL(x,x′, t, s), (125)

where Bs is the minibatch at timestep s and AL(x,x′, t, s) =
√
L

η0γ0

〈
δϕ(hL(x,t))
δrL(x′,s)

〉
is the final layer

response function. These are now evaluated for t, s integer rather than real numbers.

K.5 Momentum

Momentum can be easily handled within our framework. Let θ = Vec{W 0,W 1, ...,WL−1,wL}
represent the concatenation of all trainable network parameters. The momentum update is controlled
by a momentum parameter α which controls the exponential moving average of gradients

θ(t+ 1) = θ(t) + η0γ0v(t)

v(t) = α v(t− 1)− (1− α)Nγ0∇θExL[f(x, θ(t))]. (126)
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Writing this out for a particular hidden layer yields

W ℓ(t+ 1) = W ℓ(t) + η0γ0V
ℓ(t)

V ℓ(t) = αV ℓ(t− 1) + (1− α)
1√
LN

Ex∆(x, t)gℓ+1(x, t)ϕ(hℓ(x, t))⊤ (127)

We can unfold the recurrence for V ℓ(t) to get the expression

V ℓ(t) =
(1− α)√

LN

t∑
s=0

αt−s Ex∆(x, s)gℓ+1(x, s)ϕ(hℓ(x, s))⊤ (128)

Plugging this into the update equations for W ℓ(t) we get

W ℓ(t+ 1) = W ℓ(t) +
η0γ0(1− α)√

LN

t∑
s=0

αt−s Ex∆(x, s)gℓ+1(x, s)ϕ(hℓ(x, s))⊤ (129)

From this equation, we can again unfold the recurrence for W ℓ(t) and write the recurrence equations
for hℓ, gℓ, verifying that we get feature learning updates of the correct scale

hℓ+1(x, t) = hℓ(x, t) +
1√
L
χℓ+1(x, t)

+
η0γ0(1− α)

L

∑
t′<t

∑
s<t′

αt′−sEx′Φℓ(x,x′, t, s)∆(x′, s)gℓ+1(x′, s) (130)

where χℓ+1(x, t) = 1√
N
W ℓ(0)ϕ(hℓ(x, t)). We see that this update has the correct scaling structure,

the random (uncorrelated across layers) field χ has a scale of 1√
L

and will behave as a Brownian
motion and the feature learning update with the gradient field (strongly correlated across layers) has
the correct 1

L scaling. The normal DMFT procedure can now be carried out on the χ fields and the
corresponding ξ fields for the backward pass.

L Weight Decay

Weight decay dynamics can also be analyzed with DMFT. The gradient flow dynamics with weight
decay with parameter λ have the form

d

dt
W ℓ(t) =

η0γ0√
LN

Ex ∆(x, t)gℓ+1(x, t)ϕ(hℓ(x, t))⊤ − η0λW
ℓ(t) (131)

The dependence of W ℓ(t) on the initial condition can be isolated with a simple integrating factor

W ℓ(t) = e−η0λtW ℓ(0) +
η0γ0√
NL

∫
ds e−η0λ(t−s)Ex ∆(x, s)gℓ+1(x, s)ϕ(hℓ(x, s))⊤ (132)

Computing the forward pass recursion we find

hℓ+1(x, t) = hℓ(x, t) +
1√
L
e−η0λtχℓ(x, t)

+
η0γ0
L

∫
ds e−η0λ(t−s)Ex′ ∆(x′, s)gℓ+1(x′, s)Φℓ(x,x′, t, s) (133)

This clearly will admit an infinite width and depth limit following the arguments in Appendices D
& E. The difference is the presence of factors of e−η0λt, which suppress the influence of the initial
condition at late time.
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