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Abstract

We analyze the dynamics of finite width effects in wide but finite feature learning
neural networks. Starting from a dynamical mean field theory description of
infinite width deep neural network kernel and prediction dynamics, we provide a
characterization of the O(1/+/width) fluctuations of the DMFT order parameters
over random initializations of the network weights. Our results, while perturbative
in width, unlike prior analyses, are non-perturbative in the strength of feature
learning. In the lazy limit of network training, all kernels are random but static in
time and the prediction variance has a universal form. However, in the rich, feature
learning regime, the fluctuations of the kernels and predictions are dynamically
coupled with a variance that can be computed self-consistently. In two layer
networks, we show how feature learning can dynamically reduce the variance
of the final tangent kernel and final network predictions. We also show how
initialization variance can slow down online learning in wide but finite networks. In
deeper networks, kernel variance can dramatically accumulate through subsequent
layers at large feature learning strengths, but feature learning continues to improve
the signal-to-noise ratio of the feature kernels. In discrete time, we demonstrate
that large learning rate phenomena such as edge of stability effects can be well
captured by infinite width dynamics and that initialization variance can decrease
dynamically. For CNNs trained on CIFAR-10, we empirically find significant
corrections to both the bias and variance of network dynamics due to finite width.

1 Introduction

Learning dynamics of deep neural networks are challenging to analyze and understand theoretically,
but recent progress has been made by studying the idealization of infinite-width networks. Two
types of infinite-width limits have been especially fruitful. First, the kernel or lazy infinite-width
limit, which arises in the standard or neural tangent kernel (NTK) parameterization, gives prediction
dynamics which correspond to a linear model [1-5]. This limit is theoretically tractable but fails
to capture adaptation of internal features in the neural network, which are thought to be crucial to
the success of deep learning in practice. Alternatively, the mean field or p-parameterization allows
feature learning at infinite width [6-9].

With a set of well-defined infinite-width limits, prior theoretical works have analyzed finite networks
in the NTK parameterization perturbatively, revealing that finite width both enhances the amount of
feature evolution (which is still small in this limit) but also introduces variance in the kernels and
the predictions over random initializations [10-15]. Because of these competing effects, in some
situations wider networks are better, and in others wider networks perform worse [16].
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In this paper, we analyze finite-width network learning dynamics in the mean field parameterization.
In this parameterization, wide networks are empirically observed to outperform narrow networks
[7, 17, 18]. Our results and framework provide a methodology for reasoning about detrimental finite-
size effects in such feature-learning neural networks. We show that observable averages involving
kernels and predictions obey a well-defined power series in inverse width even in rich training regimes.
We generally observe that the leading finite-size corrections to both the bias and variance components
of the square loss are increased for narrower networks, and diminish performance. Further, we show
that richer networks are closer to their corresponding infinite-width mean field limit. For simple tasks
and architectures the leading O(1/width) corrections to the error can be descriptive, while for large
sample size or more realistic tasks, higher order corrections appear to become relevant. Concretely,
our contributions are listed below:

1. Starting from a dynamical mean field theory (DMFT) description of infinite-width nonlinear
deep neural network training dynamics, we provide a complete recipe for computing fluctuation
dynamics of DMFT order parameters over random network initializations during training. These
include the variance of the training and test predictions and the O(1/width) variance of feature
and gradient kernels throughout training.

2. We first solve these equations for the lazy limit, where no feature learning occurs, recovering a
simple differential equation which describes how prediction variance evolves during learning.

3. We solve for variance in the rich feature learning regime in two-layer networks and deep linear
networks. We show richer nonlinear dynamics improve the signal-to-noise ratio (SNR) of kernels
and predictions, leading to closer agreement with infinite-width mean field behavior.

4. We analyze in a two-layer model why larger training set sizes in the overparameterized regime
enhance finite-width effects and how richer training can reduce this effect.

5. We show that large learning rate effects such as edge-of-stability [19-21] dynamics can be well
captured by infinite width theory, with finite size variance accurately predicted by our theory.

6. We test our predictions in Convolutional Neural Networks (CNN5s) trained on CIFAR-10 [22]. We
observe that wider networks and richly trained networks have lower logit variance as predicted.
However, the timescale of training dynamics is significantly altered by finite width even after
ensembling. We argue that this is due to a detrimental correction to the mean dynamical NTK.

1.1 Related Works

Infinite-width networks at initialization converge to a Gaussian process with a covariance kernel that
is computed with a layerwise recursion [23-26, 13]. In the large but finite width limit, these kernels
do not concentrate at each layer, but rather propagate finite-size corrections forward through the
network [27-30, 14]. During gradient-based training with the NTK parameterization, a hierarchy
of differential equations have been utilized to compute small feature learning corrections to the
kernel through training [10-13]. However the higher order tensors required to compute the theory are
initialization dependent, and the theory breaks down for sufficiently rich feature learning dynamics.
Various works on Bayesian deep networks have also considered fluctuations and perturbations in the
kernels at finite width during inference [31, 32]. Other relevant work in this domain are [33-39].

An alternative to standard/NTK parameterization is the mean field or pP-limit where features evolve
even at infinite width [6-9, 40-42]. Recent studies on two-layer mean field networks trained online
with Gaussian data have revealed that finite networks have larger sensitivity to SGD noise [43, 44].
Here, we examine how finite-width neural networks are sensitive to initialization noise. Prior work
has studied how the weight space distribution and predictions converge to mean field dynamics
with a dynamical error O(1/+/width) [40, 45], however in the deep case this requires a probability
distribution over couplings between adjacent layers. Our analysis, by contrast, focuses on a function
and kernel space picture which decouples interactions between layers at infinite width. A starting
point for our present analysis of finite-width effects was a previous set of studies [9, 46] which
identified the DMFT action corresponding to randomly initialized deep NNs which generates the
distribution over kernel and network prediction dynamics. These prior works discuss the possibility
of using a finite-size perturbation series but crucially failed to recognize the role of the network
prediction fluctuations on the kernel fluctuations which are necessary to close the self-consistent
equations in the rich regime. Using the mean field action to calculate a perturbation expansion around
DMEFT is a long celebrated technique to obtain finite size corrections in physics [47-50] and has been
utilized for random untrained recurrent networks [51, 52], and more recently to calculate variance of



feature kernels ® at initialization ¢ = 0 in deep MLPs or RNNs [53]. We extend these prior studies
to the dynamics of training and to probe how feature learning alters finite size corrections.

2 Problem Setup

We consider wide neural networks where the number of neurons (or channels for a CNN) /N in
each layer is large. For a multi-layer perceptron (MLP), the network is defined as a map from input
x,, € R” to hidden preactivations h!, € R" in layers £ € {1, ..., L} and finally output f,,
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where - is a scale factor that controls feature learning strength, with large ~ leading to rich feature
learning dynamics and the limit of small v — 0 (or generally if y scales as N~* for a > 0 as
N — oo, NTK parameterization corresponds to o = %) gives lazy learning where no features are
learned [4, 7, 9]. The parameters § = {W° W .. w’} are optimized with gradient descent or
gradient flow %9 = —N~*VgL where L = Eg,ep (f(2,,0),y,) is a loss computed over dataset
D = {(x1,y1), (®2,92),...(xp,yp)}. This parameterization and learning rate scaling ensures
that & f,, ~ Oy (1) and %hfl = On () at initialization. This is equivalent to maximal update
parameterization (P)[8], which can be easily extended to other architectures including neural
networks with trainable bias parameters as well as convolutional, recurrent, and attention layers [8, 9].
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3 Review of Dynamical Mean Field Theory

The infinite-width training dynamics of feature learning neural networks was described by a DMFT
in [9, 46]. We first review the DMFT’s key concepts, before extending it to get insight into
finite-widths. To arrive at the DMFT, one first notes that the training dynamics of such net-
works can be rewritten in terms of a collection of dynamical variables (or order parameters)
q = Vec{f,(t), @fbu(t, s),G% (t,5), ...} [9], which include feature and gradient kernels [9, 54]
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where gﬁ(t) =yN g}:‘é ((?) are the back-propagated gradient signals. Further, for width-V networks

the distribution of these dynamical variables across weight initializations (from a Gaussian distribution
0 ~ N(0,1)) is given by p(q) o exp (N S(q)), where the action S(q) contains interactions between
neuron activations and the kernels at each layer [9].

The DMFT introduced in [9] arises in the N — oo limit when p(q) is strongly peaked around
the saddle point g, where ‘g—g|qoo = 0. Analysis of the saddle point equations reveal that the
training dynamics of the neural network can be alternatively described by a stochastic process. A
key feature of this process is that it describes the training time evolution of the distribution of neuron
pre-activations in each layer (informally the histogram of the elements of hfl (t)) where each neuron’s
pre-activation behaves as an i.i.d. draw from this single-site stochastic process. We denote these
random processes by hfl (t). Kernels in (2) are now computed as averages over these infinite-width

single site processes ¢, (t, s) = ((hf,(t))p(hL(s))). G', (t,s) = (g, (t)g(s)). where averages
arise from the N — oo limit of the dot products in (2). DMFT also provides a set of self-consistent
equations that describe the complete statistics of these random processes, which depend on the kernels,
as well as other quantities. To make our notation and terminology clearer for a machine learning

audience, we provide Table 1 for a definition of the physics terminology in machine learning language.

Order params. q Action S(q) Propagator X Single Site Density
Concentrating variables | g’s log-density | Asymptotic Covariance | Neuron Marginals

Table 1: Relationship between the physics and ML terminology for the central objects in this paper.
The g which concentrate at infinite width, but fluctuate at finite width N. This paper is primarily
interested in X, the asymptotic covariance of the order parameters.

4 Dynamical Fluctuations Around Mean Field Theory

We are interested in going beyond the infinite-width limit to study more realistic finite-width networks.
In this regime, the order parameters g fluctuate in a O(1/ VN ) neighborhood of g, [55, 51, 53, 46].



Statistics of these fluctuations can be calculated from a general cumulant expansion (see App. D) [55,
56, 51]. We will focus on the leading-order corrections to the infinite-width limit in this expansion.

Proposition 1 The finite-width N average of observable O(q) across initializations, which we denote
by (O(q)) n» admits an expansion of the form whose leading terms are

[ dgexp (NS[q)) O(q)
(O(@))n = [ dgexp (NS[q])

= (0(@)) oo + N[(V(9)0(@)) oo = V(@)oo (O(@)) o] + -+,
3)

where () __ denotes an average over the Gaussian distribution q ~ N (qoo7 — (V25[gx)) _1)

and the function V(q) = S(q) — S(g) — 2(q — do0) ' V25(qos)(q — goo) contains cubic and
higher terms in the Taylor expansion of S around q... The terms shown include all the leading
and sub-leading terms in the series in powers of 1/N. The terms in ellipses are at least O(N 1)
suppressed compared to the terms provided.

The proof of this statement is given in App. D. The central object to characterize finite size effects

is the unperturbed covariance (the propagator): 3 = — [V2S (qoo)] ~'. This object can be shown to
capture leading order fluctuation statistics <(q — Q) (g — qoo)T> = 42 +O(N2) (App. D.1),
N
which can be used to reason about, for example, expected square error over random initializations.
Correction terms at finite width may give a possible explanation of the superior performance
of wide networks at fixed v [7, 17, 18]. To calculate such corrections, in App. E, we provide a
complete description of Hessian VZS (g) and its inverse (the propagator) for a depth-L network.
This description constitutes one of our main results. The resulting expressions are lengthy and are
left to App. E. Here, we discuss them at a high level. Conceptually there are two primary ingredients
for obtaining the full propagator:

* Hessian sub-blocks « which describe the uncoupled variances of the kernels, such as

4
Fvap(t,s,t',8") = (0, ()0 (I, (5)) ¢ (he (1) $(h5(s)))) — By (1, 5)Pas(t' ") ()
Similar terms also appear in other studies on finite width Bayesian inference [13, 31, 32] and in
studies on kernel variance at initialization [27, 14, 29, 53].
* Blocks which capture the sensitivity of field averages to pertubations of order parameters, such as

DEY oy = COBLOIBRS) o,y _ AoWAE)
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where A, (t) = —M%ff“) f,.(¢) are error signal for each data point.
. . Order Parameters
Abstractly, we can consider the uncoupled variances k as “sources” of Fields
of finite-width noise for each order parameter and the D blocks as P
summarizing a directed causal graph which captures how this noise ¢ @
propagates in the network (through layers and network predictions). ot @ g
In Figure 1, we illustrate this graph showing directed lines that pet
represent causal influences of order parameters on fields and vice ¢t @ ,
¢ +1

versa. For instance, if ®¢ were perturbed, D®2 would quantify Kk @ @

the resulting perturbation to ®* through the fields h*1.

In App. E, we calculate x and D tensors, and show how to use them

to calculate the propagator. As an example of our results: Figure 1: The directed causal
graph between DMFT order
parameters (blue) and fields
(green) defines the D tensors

Proposition 2 Partition q into  primal q1
Vec{f,(t),®',(t,s)..} and conjugate variables qs

Vec{fu (1), (i’fw (t,8)...}. Let &k = 78(126;1; S[q1,q2] and of our theory. Each arrow rep-
D — 92 S| I, then th tor fi has th resents a causal dependence.
T Oqoq; 091, G2}, fhen fhe propagator jor qu has e g genotes the NTK.

form X4, = D 'k [Dil] T (App E). The variables qi are

related to network observables, while conjugates qo arise as Lagrange multipliers in the DMFT
calculation. From the propagator 34, we can read off the variance of network observables such as
NVar(f,) ~ Zy,.



The necessary order parameters for calculating the fluctuations are obtained by solving the DMFT
using numerical methods introduced in [9]. We provide a pseudocode for this procedure in App. F.
We proceed to solve the equations defining 3 in special cases which are illuminating and numerically
feasible including lazy training, two layer networks and deep linear NNs.

5 Lazy Training Limit

To gain some initial intuition about why kernel fluctuations alter learning dynamics, we first analyze
the static kernel limit v — O where features are frozen. To prevent divergence of the network in this

limit, we use a background subtracted function f(x, 8) = f(x,0) — f(x, 8,) which is identically

zero at initialization [4]. For mean square error, the N — oo and v — 0 limit is governed by o7 (m)

Eo~pA(x') K (x, ') with A(x) = y(x) — f(z) (for MSE) and K is the static (finite width and ran-
dom) NTK. The finite-/V initial covariance of the NTK has been analyzed in prior works [27, 13, 14],
which reveal a dependence on depth and nonlinearity. Since the NTK is static in the v — 0 limit, it has
constant initialization variance through training. Further, all sensitivity blocks of the Hessian involv-

ing the kernels and the prediction errors A (such as the D¢27A) vanish. We represent the covariance
of the NTK as k(x1, €2, 2, x3) = NCov(K (x1,x2), K(x3,x4)). To identify the dynamics of the
error A covariance, we relate K, the finite width NTK, to K., which is the deterministic infinite
width NTK K.,. We consider the eigendecomposition of the infinite-width NTK K, (x,z’') =
>k MWk () (2") with respect to the training distribution D, and decompose & in this basis.

REktmn = <Ii(.’1}1, 2, T3, 334)1/)k (wl)wﬁ(m2)wn(m3)¢m(m4)>w1,m27¢3,m4~’p , (6)

where averages are computed over the training distribution D.

Proposition 3 For MSE loss, the prediction error covariance 2 (t,s) = NCovo(A(t), A(s))
satisfies a differential equation (App. H)

0 0
<8t “r)%) (88 +)\g> Zké t S Z’W@m@n oo( ) @)
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where A7 (t) = exp (—Ait) (Vi (x)y(x)),, are the errors at infinite width for eigenmode k.
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Figure 2: We show the accuracy of the lazy-limit ODE in equation (where) comapared to a two-layer
finite width N = 100 ReLU network trained with v = 0.05 on P = 10 random training data points.
(a) The average dynamics over an ensemble of £ = 500 networks (solid colors) compared to the
infinite width predictions (dashed black). (b) The predicted finite size variance for each eigenmode of
the error Ak (t) = A(t) - ¢x. These are not ordered simply by magnitude of eigenvalues or the target
projections y; = vy - ¢y, but rather depend on all eigenvalue gaps A\, — Ay for k£ # £ and also the
Kkenm tensor. (c) The total variance for all training points N >°  VarA,(t) = N >°, VarA(t) is
also well predicted by the DMFT propagator equations.

An example verifying these dynamics is provided in Figure 2. In the case where the target is an
eigenfunction y = )+, the covariance has the form Zﬁe(t, s) = nkek*k*%. If
the kernel is rank one with eigenvalue )\, then the dynamics have the simple form X2 (t,s) =
ky® t s e M) We note that similar terms appear in the prediction dynamics obtained by truncating
the Neural Tangent Hierarchy [10, 11], however those dynamics concerned small feature learning
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Figure 3: An ensemble of E = 1000 two layer N = 256 tanh networks trained on a single training
point. Dashed black lines are DMFT predictions. (a) The square deviation from the infinite width
DMFT scales as O(1/N) for all order parameters. (b) The ensemble average NTK (K (¢)) (solid
colors) and (c) ensemble average test point predictions f, () for a point with 5= = 0.5 closely
follow the infinite width predictions (dashed black). (d) The variance (estimated over the ensemble)
of the train error A(t) = y — f(¢) initially increases and then decreases as the training point is fit.
(e) The variance of f, increases with time but decreases with «y. (f) The variance of the NTK during
feature learning experiences a transient increase before decreasing to a lower value.

corrections rather than from initialization variance (App. H.1). Corrections to the mean (A) are
analyzed in App. H.2. We find that the variance and mean correction dynamics involves non-trivial
coupling across eigendirections with a mixture of exponentials with timescales {)\,;1}.

6 Rich Regime in Two-Layer Networks

In this section, we analyze how feature learning alters the variance through training. We show a
denoising effect where the signal to noise ratios of the order parameters improve with feature learning.

6.1 Kernel and Error Coupled Fluctuations on Single Training Example

In the rich regime, the kernel evolves over time but inherits fluctuations from the training errors A.
To gain insight, we first study a simplified setting where the data distribution is a single training
example @ and single test point x, in a two layer network. We will track A(t) = y — f(x,t) and
the test prediction f,(t) = f (x4, t). To identify the dynamics of these predictions we need the NTK
K (t) on the train point, as well as the train-test NTK K, (¢). In this case, all order parameters can be
viewed as scalar functions of a single time index (unlike the deep network case, see App. E).

Proposition 4 Computing the Hessian of the DMFT action and inverting (App. I), we obtain the
following covariance for q1 = Vec{A(t), f.(t), K(t), K.(t)}ier,

I+©®x 0 ®x 0 7' 0 0 07[M+©®x 0 O 0 7747
5 _|©®x I 0 -O4 00 0 0 —Ox. I 0 -O©,
@«~ | -D 0 I 0 00 k K/ -D 0 I 0 ’
-D, 0 0 I 0 0 Ky Koy -D, 0 O I
(8)

where [Ok|(t,s) = O(t — 8)K(s), [Oa](t,s) = O(t — s)A(s) are Heaviside step functions
and D(t, 5) = (525 ((h(1)? + g(t)?) ) and D (t, ) = (52 (6(h(1) 6 (ha(£)) + 9(1)g (1))
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Figure 4: Large input dimension or multiple samples amplify finite size effects in a simple two layer
model with unstructured data. Black dashed lines are theory. (a) The variance of offline learning with
P training examples in a two layer linear network. (b) The leading perturbative approximation to the
train error breaks down when samples P becomes comparable to N. (c)-(d) Richer training reduces
variance. (e)-(f) Online learning in a depth 2 linear network has identical dynamics and finite width
fluctuations, but with predictor variance ~ D /N for input dimension D (Appendix K).

quantify sensitivity of the kernel to perturbations in the error signal A(s). Lastly k and &, are the
uncoupled variances of K (t) and K, (t) and k, is the uncoupled covariance of K (t), K, (t).

In Fig. 3, we plot the resulting theory (diagonal blocks of 34, from Equation 8) for two layer neural
networks. As predicted by theory, all average squared deviations from the infinite width DMFT scale
as O(N~1). Similarly, the average kernels (K) and test predictions (f,) change by a larger amount
for larger vy (equation (79)). The experimental variances also match the theory quite accurately. The
variance of the train error A(¢) peaks earlier and at a lower value for richer training, but all variances
go to zero at late time as the model approaches the interpolation condition A = 0. As v — 0 the
curve approaches N Var(A(t)) ~ k y* t? 2!, where & is the initial NTK variance (see Section
5). While the train prediction variance goes to zero, the test point prediction does not, with richer
networks reaching a lower asymptotic variance. We suspect this dynamical effect could explain lower
variance observed in feature learning networks compared to lazy networks [7, 18]. In Fig. A.1, we
show that the reduction in variance is not due to a reduction in the uncoupled variance x(t, s), which
increases in . Rather the reduction in variance is driven by the coupling of perturbations across time.

6.2 Offline Training with Multiple Samples or Online Training in High Dimension

In this section we go beyond the single sample equations of the prior section and explore training
with multiple P examples. In this case, we have training errors {A,(¢)}/_; and multiple kernel
entries K, (t) (App. E). Each of the errors A, (t) receives a O(N ~1/2) fluctuation, the training
error » u <Ai> has an additional variance on the order of O(%). In the case of two-layer linear
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Figure 5: Depth 4 linear network with single training point. Black dashed lines are theory. (a) The
variance of the training error along the task relevant subspace. We see that unlike the two layer model,
more feature learning can lead to larger peaks in the finite size variance. (b) The variance of the NTK
in the task relevant subspace. When properly normalized against the square of the mean (K (t))z, the
final NTK variance decreases with feature learning. (c) The gap in feature kernel variance across
different layers of the network is amplified by feature learning strength ~.

networks trained on whitened data (%az u - T, = 0,,,), the equations for the propagator simplify and
one can separately solve for the variance of A(t) € R¥ along signal direction y € RY and along
each of the P — 1 orthogonal directions (App. J). At infinite width, the task-orthogonal component
A | vanishes and only the signal dimension A () evolves in time with differential equation [9, 46]

4

dt
However, at finite width, both the A, (¢) and the P — 1 orthogonal variables A | inherit initialization
variance, which we represent as ¥a (¢, s) and ¥ (¢, s). In Fig. 4 (a)-(b) we show this approximate
solution {|A(£)[?) ~ A, ()% + ZALE)A, () + £3a, (1) + LD (t,8) + O(N~2) across
varying v and varying P (see Appendix J for XA, and ¥ formulas). We see that variance of
train point predictions f,(t) increases with the total number of points despite the signal of the
target vector ) _ | y?, being fixed. In this model, the bias correction %A;(t)Ay(t) is always O(1/N)
but the variance correction is O(P/N). The fluctuations along the P — 1 orthogonal directions
begin to dominate the variance at large P. Fig. 4 (b) shows that as P increases, the leading order
approximation breaks down as higher order terms become relevant. Analysis for online training
reveals identical fluctuation statistics, but with variance that scales as ~ D /N (Appendix K) as we
verify in Figure 4 (e)-(f).

Ay () = 24/1+72(y — Ay (5)2 Ay (1) , AL(t) =0. ©)

7 Deep Networks

In networks deeper than two layers, the DMFT propagator has complicated dependence on non-
diagonal (in time) entries of the feature kernels (see App. E). This leads to Hessian blocks with

four time and four sample indices such as D;fjaﬁ(t, s,t',8") = W (d(he,(£))p(hE(s)))s

rendering any numerical calculation challenging. However, in deep linear networks trained on
whitened data, we can exploit the symmetry in sample space and the Gaussianity of preactivation
features to exactly compute derivatives without Monte Carlo sampling as we discuss in App. L. An
example set of results for a depth 4 network is provided in Fig. 5. The variance for the feature kernels
H* accumulate finite size variance by layer along the forward pass and the gradient kernels G*
accumulate variance on the backward pass. The SNR of the kernels % improves with feature
learning, suggesting that richer networks will be better modeled by their mean field limits. Examples
of the off-diagonal correlations obtained from the propagator are provided in App. Fig. A.3.

8 Variance can be Small Near Edge of Stability

In this section, we move beyond the gradient flow formalism and ask what large step sizes do to
finite size effects. Recent studies have identified that networks trained at large learning rates can
be qualitatively different than networks in the gradient flow regime, including the catapult [57] and
edge of stability (EOS) phenomena [19-21]. In these settings, the kernel undergoes an initial scale
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Figure 6: Edge of stability effects do not imply deviations from infinite width behavior. Black dashed
lines are theory. (a) The average kernel over an ensemble of several N = 500 NN (solid color). For
small v, the kernel reaches its asymptote before hitting the edge of stability. For large -, the kernel
increases and then oscillates around 2/7. (b)-(c) Remarkably variance due to finite size can reduce
during training (for - smaller and larger than the critical value ~ 1/7), showing that infinite width
DMEFT can be predictive of finite NN trained with large learning rate.

growth before exhibiting either a recovery or a clipping effect. In this section, we explore whether
these dynamics are highly sensitive to initialization variance or if finite networks are well captured
by mean field theory. Following [57], we consider two layer networks trained on a single example
|¢|> = D and y = 1. We use learning rate 7 and feature learning strength . The infinite width mean
field equations for the prediction f; and the kernel K; are (App. M)

frer = fr + 0K + P A7 Kepr = K+ 4097 fi Ay + 1 AT K. (10
For small n, the equations are well approximated by the gradient flow limit and for small -y corresponds
to a discrete time linear model. For large iy > 1, the kernel K progressively sharpens (increases
in scale) until it reaches 2/n and then oscillates around this value. It may be expected that near the
EOS, the large oscillations in the kernels and predictions could lead to amplified finite size effects,
however, we show in Fig. 6 that the leading order propagator elements decrease even after reaching
the EOS threshold, indicating reduced disagreement between finite and infinite width dynamics.

9 Finite Width Alters Bias, Training Rate, and Variance in Realistic Tasks

To analyze the effect of finite width on neural network dynamics during realistic learning tasks,
we studied a vanilla depth-6 ReLU CNN trained on CIFAR-10 (experimental details in App. B,
G.2) In Fig. 7, we train an ensemble of £ = 8 independently initialized CNNs of each width N.
Wider networks not only have better performance for a single model (solid), but also have lower bias
(dashed), measured with ensemble averaging of the logits. Because of faster convergence of wide
networks, we observe wider networks have higher variance, but if we plot variance at fixed ensembled
training accuracy, wider networks have consistently lower variance (Fig. 7(d)).

We next seek an explanation for why wider networks after ensembling trains at a faster rate. Theo-
retically, this can be rationalized by a finite-width alteration to the ensemble averaged NTK, which
governs the convergence timescale of the ensembled predictions (App. G.1). Our analysis in App.
G.1 suggests that the rate of convergence receives a finite size correction with leading correction
O(N~1) G.2. To test this hypothesis, we fit the ensemble training loss curve to exponential function
L ~ Cexp (—Ryt) where C is a constant. We plot the fit Ry as a function of N ~! result in Fig.
7(e). For large N, we see the leading behavior is linear in N1, but begins to deviate at small N as a
quadratic function of N !, suggesting that second order effects become relevant around N < 100.

In App. Fig. A.4, we train a smaller subset of CIFAR-10 where we find that R is well approximated
by a O(N 1) correction, consistent with the idea that higher sample size drives the dynamics out
of the leading order picture. We also analyze the effect of v on variance in this task. In App. Fig.
A.5, we train N = 64 models with varying ~. Increased  reduces variance of the logits and alters
the representation (measured with kernel-task alignment), the training and test accuracy are roughly
insensitive to the richness +y in the range we considered.

10 Discussion

We studied the leading order fluctuations of kernels and predictions in mean field neural networks.
Feature learning dynamics can reduce undesirable finite size variance, making finite networks order
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Figure 7: Depth 6 CNN trained on CIFAR-10 for different widths N with richness v = 0.2, E = 8
ensembles. (a)-(b) For this range of widths, we find that smaller networks perform worse in train
and test error, not only in terms of the single models (solid) but also in terms of bias (dashed). The
delayed training of ensembled finite width models indicates that the correction to the mean order
parameters (App. G) is non-negligible. (c) Alignment of the average kernel to test labels is also not
conserved across width. (d) The ratio of the test MSE for a single model to the ensembled logit MSE.
(e) The fitted rate Ry of training width N models as a function of N ~!. We rescale the time axis by
Ry to allow for a fair comparison of prediction variance for networks at comparable performance
levels. (f) In rescaled time, ensembled network training losses (dashed) are coincident.

parameters closer to the infinite width limit. In several toy models, we revealed some interesting
connections between the influence of feature learning, depth, sample size, and large learning rate
and the variance of various DMFT order parameters. Lastly, in realistic tasks, we illustrated that bias
corrections can be significant as rates of learning can be modified by width. Though our full set of
equations for the leading finite size fluctuations are quite general in terms of network architecture and
data structure, they are only derived at the level of rigor of physics rather than a formally rigorous
proof which would need several additional assumptions to make the perturbation expansion properly
defined. Further, the leading terms in our perturbation series involving only 3 does not capture the
complete finite size distribution defined in Eq. (3), especially as the sample size becomes comparable
to the width. It would be interesting to see if proportional limits of the rich training regime where
samples and width scale linearly can be examined dynamically [58]. Future work could explore in
greater detail the higher order contributions from averages involving powers of V' (g) by examining
cubic and higher derivatives of S in Eq. (3). It could also be worth examining in future work how finite
size impacts other biologically plausible learning rules, where the effective NTK can have asymmetric
(over sample index) fluctuations [46]. Also of interest would be computing the finite width effects
in other types of architectures, including residual networks with various branch scalings [59, 60].
Further, even though we expect our perturbative expressions to give a precise asymptotic description
of finite networks in mean field/;/P, the resulting expressions are not realistically computable in deep
networks trained on large dataset size P for long times 7' since the number of Hessian entries scales
as O(T*P*) and a matrix of this size must be stored in memory and inverted in the general case.
Future work could explore solveable special cases such as high dimensional limits.

Code Availability
Code to reproduce the experiments in this paper is provided at https://github.com/

Pehlevan-Group/dmft_fluctuations. Details about numerical methods and computational
implementation can be found in Appendices F and N.
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A Additional Figures
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Figure A.1: The x and D functions for varying ~y in Figure 3. (a) The uncoupled kernel variance
k(t,t) increases monotonically with ~. This reveals that the dynamical filtering of & is what is
responsible for the late time decrease in variance during feature learning. (b) The tensor D(¢, s)
measures sensitivity of kernel at time ¢ to perturbation in A at time s. The D(¢, s) entries also
increase with ~y. This suggests that the reduction in variance of the training error and the kernel are
not due to reduction in &, but rather a dynamical filtering effect due to scale growth in K, and rapid
reduction in A..
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Figure A.2: A comparison of the bias and variance corrections in the toy model of Figure 4. At
small D/N (or P/N for offline training) the leading variance and the leading variance and leading
bias both track the experiment. Both the bias and the variance contribute positively towards the
total generalization error since the variance correction alone (orange) exceeds the DMFT limiting
error (dashed) and the variance and bias correction together (green) exceed variance alone (orange).
However, for large D/N (or P/N) the leading order picture fails to describe the finite width
experiment, indicating significant variance possibly at higher order scales (like D?/N?2, D3 /N3, ...).
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2.75

2.50

2.25

2.00

175

3.00

2.75

2.50

2.25

2.00

175

20.0
17.5
15.0
125
10.0
7.5

5.0

N Cov(H(t,t), H'(s,s)) for depth 4 linear network trained on whitened data. The variance

becomes increasingly localized in time as feature learning -y increases.

16



0.0035 153, ---- 0.0035 - 0.0581/N

4x1072 2

wn
S 10° 0.0030 s
—3x102 . LN
£ — N=32 XN =1 -
[ == exp(=Rxt) NN X[F 10 & 0.0025 o
= L, — N=64 B N
@ 2x10  N=128
& — N=256 10t 0.0020 =
N =512 Y
0 -
0 100 200 300 10 0 100 200 300 0.000 0.005 0.010 0.015 0.020 0.025 0.030
Steps Steps Nt
: : : ATKA p
(a) Ens. Averaged Train Loss (b) Raleigh Quotient INE (c) Rates as Function of N

Figure A.4: The ensemble averaged train loss for the same depth 6 CNN trained on a random
subsample of P = 64 CIFAR-10 points. Training is full batch gradient descent with v = 0.05. (a)
The ensemble train accuracy for this subset of CIFAR-10 is well modeled as an exponential in time
L(t) x exp (—Ryt) with arate R that depends on width. (b) The projection of the errors A on
the average NTK (K') (which is related to the rate of decay of the training loss, see Appendix G)
reveals that wider networks are more aligned with their instantaneous error signals. (c¢) The rates Ry
are indeed a linear functions of N~1, with Ry = Roo + RWI, consistent with the average NTK (K)
receiving a N ! correction. Using ensembling to find a scaling law like that above can thus allow
one extrapolate the training rate of infinite width mean field models.
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Figure A.5: Width N = 64 depth 6 CNNs trained on the full CIFAR-10 with MSE. An ensemble of
size £ = 10 randomly initialized networks are trained. (a) Training MSE for varying ~. (b) Final
layer kernel-task alignment does strongly depend on ~y, despite similar train dynamics. (c) Top-1
classification test accuracy is only slightly different across . A small benefit from ensembling is
visible late in training. (c) Initialization variance (measured by the ratio of single model to ensembled
MSE) for training and test losses. Richer networks have lower variance throughout training. (b)
Networks have distinct kernel dynamics when trained with different ~y as evidenced by the alignment
(cosine similarity) between the final layer feature kernel ®% and the target test labels y.
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B CIFAR-10 Experimental Details

We trained the following depth 6 CNN architecture in the mean field parameterization using FLAX
[61] on a single GPU. The bias parameters were zero in each hidden Conv layer, but were used for
the readout weights. The networks were trained with MSE loss on centered 10 dimensional targets
y, € R for 1 € [P]. Each convolution was followed by an average pooling operation. To obtain
mean field behavior, NTK parameterization with a modified final layer is used [7, 9].

I from flax import linen as nn
2> import jax.numpy as jnp

4 class CNN(nn.Module):
6 width: int

8 def setup(self):

9 kif = nn.initializers.normal(stddev = 1.0) # 0_N(1) entries
self.convl = nn.Conv(features = self.width, kernel_init = kif,
use_bias = False, kernel_size = (3,3))
self.conv2 = nn.Conv(features = self.width, kernel_init = kif,
use_bias = False, kernel_size = (3,3))
self.conv3 = nn.Conv(features = self.width, kernel_init = kif,
use_bias = False, kernel_size = (3,3))
self.conv4d = nn.Conv(features = self.width, kernel_init = kif,
use_bias = False, kernel_size = (3,3))
self.convb = nn.Conv(features = self.width, kernel_init = kif,
use_bias = False, kernel_size = (3,3))
self.readout = nn.Dense(features = 10, use_bias = True,
kernel_init = kif)
return

def __call__(self, x, train = True):

19 N = self.width
D =3
x = self.convi(x) / jnp.sqrt(D * 9)

X = jnp.sqrt(2.0) * nn.relu(x)
x = nn.avg_pool(x, window_shape=(2,2), strides = (2,2)) # 32 x 32
-> 16 x 16
x = self.conv2(x) / jnp.sqrt(N*9) # explicit N~-{-1/2}
X = jnp.sqrt(2.0) * nn.relu(x)
x = nn.avg_pool(x, window_shape=(2,2), strides = (2,2)) # 16 x 16
-> 8 x 8
7 x = self.conv3(x)/jnp.sqrt (N*9)
X = jnp.sqrt(2.0) * nn.relu(x)
x = nn.avg_pool(x, window_shape=(2,2), strides = (2,2)) # 8 x 8 ->
4 x 4
x = self.conv4(x) / jnp.sqrt (N*9)
X = jnp.sqrt(2.0) * nn.relu(x)

2 X = nn.avg_pool(x, window_shape=(2,2), strides = (2,2)) # 4 x
-> 2 x 2
x = self.conv5(x) / jnp.sqrt(Nx*9)
X = jnp.sqrt(2.0) * nn.relu(x)
x = nn.avg_pool(x, window_shape=(2,2), strides = (2,2)) # 2 x
-> 1 x 1

36 x = x.reshape ((x.shape[0], -1)) # flatten

7 x = self.readout(x) / N # for mean field scaling

return x

All models were trained with standard SGD with a batch size of 256. Each element in the ensemble of
FE networks is trained on identical batches presented in identical order. For the Figure 7 experiments,
the raw learning rate is scaled as n = 10N ,/y with v = 0.2 (note that mean field theory requires
scaling the raw learning rate linearly with IV since the raw NTK is O(N 1) [9]). For Figure A.5, the
learning rate is n = 5V ,/7. We find that choosing n o< /7 gives approximately conserved training
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times across y (though distinct representation dynamics). The Figure A.4 shows the dynamics of
fitting P = 64 training points with full batch gradient descent and v = 0.1.

C Review of DMFT: Deriving the Action

In this section we derive the DMFT action which contains all of the necessary statistical information
about randomly initialized finite width /N networks. From the action .S the DMFT saddle point and
the propagator can be computed. This derivation follows closely the original derivation by Bordelon
& Pehlevan [9]. We start by writing the gradient flow dynamics on weight matrices

d
- W Z At (B, (£) " (11)
dt \F =
where A, (t) = ——6]‘?“[% 77 are the error signals and g.(t) = Ny g,{i' ((?) are the back-propagation
"
signals. The prediction dynamics satisfy
f,i Z Ky (H)A,( (12)

where K, (t) is the instantaneous neural tangent kernel (NTK). At finite width IV all of the above
quantities depend on the precise initialization of the network. We transform the weight dynamics into
an integral equation and use the recurrence for h’ to obtain the following

R (t) = \/%W (0)p(hL, (t) / dsZCI) 5)git(s)
g,.(t) = d(hi,(1)) © z,(1)
z,(t) = TNW”( ) gt () +y /O dszyj Gt (t,5)b(hy,(5)) (13)

where we introduced the feature and gradient kernels

1 1
op, (1 5) = Né(hﬁ(t)) ~d(hy(5)) , Gl (t,s) = Ngf;(t) -9, (s). (14)
Written this way, we see that the source of the disorder which depends on the initial random weights
W*(0) comes through the fields
1 1
VN VN
If we can characterize the distribution of the fields xﬁ(t) and ££(t), then we can consequently

characterize the distribution of hfl (1), gﬁ (t). We therefore choose to study the moment generating
functional

E+1( ) _

Xy WH0)o(hy, (1), €71 (t) = —=W*(0)" g,,(t). (15)

Z[{jévf}}—<exp 3 / dt [3L(0) - X4 (1) + vL(t) - X4 (0)] > (16)
Ly

6o
Moments of these fields can be computed through differentiation with respect to the sources 7, v near
zero-source (j = v = 0)
(i ()X, (E)Eg (1) 657 ()
B 0 ) ) )
0t (t1) 8 (tn) G0k (t1) 603 (tm)

To average over the initial weights, we introduce a Fourier representation of the Dirac-Delta function

1= [dzi(= d;‘fz exp(iZ2z). We perform this transformation for each of the fields to enforce

Z[{5*, v Ylj=v=0- 17
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their definition

5 (0~ W oomm) = [Tl ey (10 [ - w00 ))

5 (60~ wiooh0) = [ B ey (110 [e1 - wiogr))
(18)

We insert these Dirac delta functions so that we can directly average over the weights
InEyye (o) exp (—TrW[ /dt Z “‘1 t)) Z'H( )ﬁe( t) ])
=3 Z / dtds X () - X (5) 0L, (1 8) + €6.(1) - EL(s) Gl )|

N Z / dids(x;;H (1) - 95,7 (5)) (6(hi, () - €(5)) (19)
pnv
where we introduced the kernels ®*, G*. We next introduce the order parameter

AL (t,5) = - o(hL (1)) - €L(5) 0)

To enforce the definitions of the new order parameters {®, G, A} we again introduce Dirac-delta
functions

§ (VO (1) — 6(RL (1) - 6(hL(5)
= [T e (8,0,0) (N0 (10) - SLW) RGD]) 2D

Analogous constraints for G and A are enforced with conjugate variables G, B. After introducing
these variables, we find that the moment generating functional has the form

/ H adt, (t, s) dcbf Lt 8) dGY, (¢, 8)dGY, (t,5) dGY, (t, 5)dGY, (¢, s) A", (¢, s)dBL, (¢, s)

21 2m 2m
Luvts

exp (NS[{@Z LB GG AL BZ}}) (22)

where S is the O(1) DMFT action which defines the statistical distribution over the dynamics. The
action takes the form

S = Z/dt ds J(t,5)®h, (t,5) + Gl (t,s) — AL (¢, 8) B, (5,1)

Luv

Z Z In Z[{j;, vi} (23)

2111

where Z; is the single site stochastic process for layer £ which defines the marginal distribution of
X, €, with the following form

ol 4 L 14
Z{55 ), v (1)} = / 11 dx“(tz)ix“(t) dg"(gf*‘(t) exp ( / dt > [jn )Xk () + vf;(t)gf;(t)]>
exp <—§ S [ dtas [0, (612084 5) + G s>£ﬁ<t>éﬁ<s>}>

exp (—zz [ dtas [ Bl (e )00 5) + AL 6 5)8L 0L >})

exp (iZ/dthﬂ(t)Xﬁ(t) + éﬁ(t) ﬁ(ﬂ]) (24)
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where in the above, the {h, g} fields should be regarded as functionals of {x,{}. At zero source
4%, v* — 0 this function S can be regarded as the log density for the complete collection of order
parameters g = {<i>, ®,G,G, A, B} which collectively control the dynamics. Concretely, we have
that p(q) o exp (IVS(q)). In the next section we explore an approximation scheme for averages
over this distribution at large N.

D Cumulant Expansion of Observables

We are interested in a principled power series expansion (in 1/N) of any observable average (O(q))
that depends on DMFT order parameters q. At any width NV the observable average takes the form

J dgexp (NS(q)) O(q)
0q))y = (25)
DIy =g exp (VS ()
As discussed in the main text, the N — oo limit gives (O(q))y ~ O(go) Where 85|q =0

by a steepest descent argument [55]. We assume that S’s Hessian is negative semidefinite so
that ¥ = — [V25(q)|q.. | ' = 0and Taylor expand S(q) around the saddle point g, giving
5(q) = S(goo) + 3(@— go0) "V25(q)(q — goo) + V(g — goo). We note that the remainder function

V contains only cubic and higher powers of ¢ — g, = 6/v/N. The variable & will be order O(1).
This will allow us to verify that additional terms are suppressed in powers of 1/N. Expanding both
the numerator and denominator’s integrands in powers of V', we find

0@ _Jdgexp (-5 (g —gs) "2 (g — g0) + NV (g — 4)) O(q)
Jdgexp (—5(q — g0) TE(q — goc) + NV (q — g0))
[déexp (~16TE16) (1 4+ NV + E2V2 4 )O(goo + N71/28)

- [ déexp (—15T2715) (1+NV+ Nryay )

(O) +N(VO)  + 5 <V20> + & <V3O> + ...
N+ + <V3>oo

L+ N(VO). /{0)s + 57 (V20)  / (O) + Ar (VZO)_, / (O)
L+ N (V) + 57 (V2 + 57 (V3) o +

+ ...

oo

=(0)so
(26)

where () _ represents an average over the Gaussian fluctuation N/ (qoo, - [VZS (qoo)] _1). We

see that the series in the denomlnator contains terms of the form - <Vk> while the numerator

depends on terms of the form £ o <Vk O> /(O) .- In either of these power series, the k-th term
can contribute at most

(0) ’

o0

NE(VE) s

—(k+1)/2
N{O(N ) kodd o

O(N~F/2) k even

since V' contributes only cubic and higher terms. Thus each term in the numerator and denominator’s
series contains increasing powers of 1/N. Concretely, each of the two series have terms of order

{NY N-Y N1 N=2/N—2..}. Thus any quantity of the form <<OO>> admits a ratio of power series

in powers of 1/N. One could truncate each of the series in the numerator and denominator to a
desired order in N. Alternatively, the denominator could be expanded giving a single series (the
cumulant expansion [56]). The first few terms in the cumulant expansion have the form

2
+ N7 [<V20>OO —2(VO) (V) +2(V)2 (0) — (V2) <O>Oo} fo. (28

In this work, we mainly are interested in the leading order correction to (O) which can always be
obtained with the truncation after the terms linear in V' for any observable O.
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D.1 Square Deviation from DMFT

We will now analyze the fluctuation statistics of our order parameters around the saddle point
((@ — g)(q — goo) ")\, Which has the form

((@=05)(@—q0) ")+ NV (g—qc)(@—qoc) ")+ -
TNV + .

((@—ax)(@—ax) ")y =

LY+ O(N72?) 1 _
_| N -~ 2
_[ 1+O(N-T) ] NS TOWT), @

as stated in the main text and verified empirically in Figure 3 (a). The reason that the terms in the
numerator involving V can be no larger than O(N ~2) comes from vanishing of odd moments for
q — g in the unperturbed distribution. Thus the leading expression for ((q — goc)(q — goc) ') only
depends on X and not on V.

D.2 Mean Deviation from DMFT

Although the square displacement from DMFT only depended on ¥ and not on V, we note that the
average order parameter displacement (q — o) does receive a O(1/N) correction that depends on
the perturbed potential V'

(@ — o) T N (0= :)V) oo + 2 (@ — @) V) + -
1+ N(V) + 22 (V2 +..
2(55) _+0W av .

where in the last line we used Stein’s lemma (Gaussian integration by parts) for the Gaussian

<q - qoo>N =

distribution over q. Note that <%—Z> ~ O (+) since the derivative of the cubic term in V' gives a
oo

quadratic function of ¢ — g.., whose average must be O(N~1). In this work, we focus primarily on
the structure of the propagator, but outline a general recipe for getting the leading mean correction in
Appendix G and H.2.

D.3 Covariance of Order Parameters
Lastly, we combine the previous two observations to reason about the scaling of the order parameter

covariance over initializations. We note that the leading covariance of the order parameters over
random initializations is also given by the propagator: Cov(q) ~ %E + O(N~2), since

Covla) = ((a— (@) la— @) ") |
- <(q —gs0) (g — qoo)T>N - <(Q<x> —{@)n) (g — <q>N)T>

1 -2
~ B+ O 31)

N

due to the arguments above which showed that ((q — ¢oo)(q — @oo) T ) ~ &3 + O(N~2) and that
ds — (@) 5 ~ O(N™!). Therefore, in the leading order picture, it is safe to associate X with the
covariance of order parameters over random initializations of the network weights.

E Propagator Structure for the full DMFT Action

In this section, we examine the propagator structure for the full DMFT action. This action is modified
from other prior works [9, 46] to include the evolution of the network prediction errors A(t). Those
prior works noted that A and the NTK K are deterministic functions of deterministic order parameters
{®*,G*} inthe N — oo limit so those authors did not explicitly include A or K in the action. At
finite width NV, including A, K in the action is crucial as the fluctuation in prediction errors A
has significant consequences for dynamical fluctuations of kernels through the preactivation and
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pre-gradient fields. In this section, we will mainly focus on gradient flow, but we describe large step
size in Appendix M.

S =30 [ dtds [0, (90 (1:5) + Gl (1,56 (1:5) — 7740, 5. 0B (1.5

Luv

+> / dtA,(t)
+) / dtK . (t)

+) I ZA, @G e G AT BY (32)

ot Y [0l - 9K ()8 (5)

Ku(t) =) Gﬁﬁl(t)éﬁu(t)l

14

where the single site moment generating functionals Z, have the form

20 =E(n (6,541 X (— > / dtds |6 (hf, (1)) (ke (5) D, (8, 5) + gh ()b (5) Gl (1, s>}>

B0 =0+ [ s 3 B0 98006) + AT 4 9)] 66) (0} ~ GP0, 2

0

v

2, (t) :rﬁ(t)+fy/o ds Y [GuE (8 9)Au(s) + By, (1 5)] o(hy(s)) » {r(8)} ~ GP(0,GY)
(33)

v

with gf, (t) = (;S(hf ())z/,(t). The saddle point equations give the infinite width evolution of our order
parameters.

aq)aftf (t,5) — (S ()RS () = O

mi‘f)ﬂ# (t.5) — (gL (Dgt()) = 0

<> it s>+r<§i§f3>:0

a}gj@ K ZG”ltt@Z (t,t) =0

aff(t) = Au(t) = yu + /0 ds}V:Kw(s)Au(s) =0 (34)

These equations exactly recover the mean field description obtained [9]. Note that () for field averages
is an average defined by Z, and is distinct from the types averages () , (), we have been considering
over the order parameters q. The complementary set of equations for the primal variables, such as

m = 0, give that K =A =& =@ =0 at the saddle point. We now set out to compute the

Hessan V2 S. To simplify the set of expressions, we will only explicitly write out the nonvanishing
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blocks. We will start with second derivatives involving only pairs of dual variables {@ G, A, B}

05 = ¢ £ Lo 14 1o
3@@675)3%5@,75,)—<¢(hu(t))¢(hy(8))¢(ha(t))¢ §)) — @, (£, 5)Phy(t',s')

= nfiaﬁ(t, s,t', ")
0% Cony ol (Yol (4L ¢ ¢
= (9,(1)9,,(5)90(t)95(5")) — G (£, 5)Gop(t',s")

t s)@Ge ', s")

oG

/LV(
= Hftfaﬁ(tv S, t/, S/)

0%S N 0 14 Loy Lo N\ _ Gl el 'y
3(1>W(t S)aGe (t', ') = <¢(hu(t))¢(hy(3))ga(t )g5(s ) D, (t,5)Gop(t',s)

=k G (, s,t’,s/)

Oé

028 B 8¢he ¢y
0L, (t,5)0A5 (s, 1) < ga(t)>

<¢<h" (®) 6;5"”“” i <t'>>
B

~
—~
Vo)
~
~—
Q

-1 <¢<hﬁ<t>>¢<h£<s>> 5o > 20, (4. 9)BL (¢ )

= b (ts)
9?8 R ALUAG)
0%L,,(t,$)0BS, (s, 1) orh(s))

¢(hf(8))¢(hﬁ(t’))>

4
<W O T o <tf>>>
£ (41
3 (ot enomt(s) 22D ogr 158, )
I (s')
= —yrpmas(t.s)
o5 o o D80
8C (1, 9)0AT (5. ) - <aug(s/)g”(s)g“(t )> - <gu(t) aug(s/)ga(t)

dgs(t') 1
e e YRR R
= G5y (t,9)
9*S . dg,(t) , Comy \ e 09 e
T < B (e L) ) = (a0 5T o)
] e 98(he () 2 o
- ’Y<gu(t)g,/(5) 87‘2(8/) > Y GHV( )A (t S)
= —ykGda(t,s)
028 _ 2 ’ ’
DAL (LB (5,7 | ettt =l =)
%S 2 0? ¢ a _ AAnpt-1 L /oo
DAL (s, 0)0B (5, 1) <au‘;(s)arf;(s’) 9. (00 (at ))]> T B (69 Aas 05
=kl N (s, 8 (35)
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Next, we consider the second derivatives involving only primal variables {®*, G*, K, A} which all

vanish

%S B
0L, (t, s)a@gﬂ(t’,s’) N
928 -
OG!, (t,5)0GE (1, s")
%S B
3f1)ﬁy(t, s)aGgﬁ(t’, s') o
%S
0%/, (t,5)0Kap(s")
0%S
oG, (t,5)0Kap(s")
%S
0L, (t,5)00(s")
%S
oG, (t,5)0A4(s")
%S
aKW,(t)aKaﬁ(S)
0?8
0K 1, ()00 (5)
%S
OA,(t)0A(s)

=0

=0

=0

=0

=0

=0

=0

(36)

Now we consider all derivatives which involve one of the dual variables {@Z, G‘Z, At Bf} and the
primal variable A

a@guufg%(t,) - <5Af(t,) [¢(h,€(t))¢(h’i(s))1> = DY A(t,s,1)
e (ta; = g Oebe)) = DL 8. 0)
8Az‘iu1(i§8Aa(tf> - <3Aa(t’?8u£(s) 9ﬁ<’f)> =D A (k5,1
aBﬁu(jj)%Aa(t’) =7 <8Aa(t§ 5 0) ¢(hﬁ(t))> = DA (15,1



Now, we consider the second derivatives involving one derivative on a dual variable {@Z, (;27 A, B}
and one of the primal variables {®*, G*}.
%S

- =0p 00,0t —t)5(s— s
0L, (1, 5)00 (t',s) (t=1)3(s =)

0
oL (t, ")
Lqpl—1

= (54’4/(51“,5(15 — t/)(S(S — SI) — 5471,E/D5V§B (t, s, t/, SI)

(G(h (1)) B(RE(3)))

—0p—1,0r

025 0

~ = 00000t —t)o(s — §') — bpp1.00 ———— (g, (t) g,

O0E 0G0, O I =) = e gy (909 )
= 60,00, 0(t — 1)8(s — 8') — 601,06 DSG5 7 (15,8, ')

s 0 et @)ehi(s) = —DES (15, )
a(i)fw (ta S)@Gi};l (t/, S/) 80@31 (t/7 s/) H v - nraf 3 Sy by
%S ) N o ot o
A == t = _D ; t7 >t )
0GL, (t, )0 (', s") 0Lt o) (919, (5)) pvap  (E5:t8)
%S 0 Bg" (t) 0—1 ge—1
8A£—1 =117 o1 =7 =141 o 5 = ‘Dfucxﬁ)(1> (tv S, tlv 3/)
Vi (Svt)a®a5 (t ;S ) 8(I)a3 (t , S ) TI/(S)
025 8 de(h’ () ¢ gt
6B/ =117 o1 =7 T F) Z“ = D/ijaq; (tvs,tlvs/)
,;H(s,t)&baﬁ (t', s 8(I)a6 (', s") ul ()
%S 0 8gﬁ(t) Bi-1 gttt ,
- = ta 7t )
DAL (5, )OG5t ) 7ac:ﬁj;;(t/, s) <arg(8) Dvag™  (t5,1,8)
0*8 0 A A
OB, (5, DIGLL (H, ) OGLL(t, o) < Gul(s) ) = Pwap (st (D

We note that terms such as W%(t”) <d>(hft (t))¢(h!(s))) can be further decomposed since the
apB »S
average over the {u/,(t)} ~ GP(0, ®“~') and h*’s explicit dynamics both depend on ¢!

0 1 0?
9o (1.5 ($(hy, (1) (hy (s))) = 3 <W¢(hﬂ(t))¢(hf(8))>

+ <aa¢(hﬂ(t))¢(hf(5))> (38)

—1
.5 (', s")
where the first term comes from differentiating the Gaussian probability density for u* (e.g. Price’s
theorem) and the second term is an explicit derivative of the preactivation fields with u* treated as

constant. Next we consider the nonvanishing terms which involve {A, K , A, K} which give

__ 5 s S(t — 8) + Ot — 8) K ua(5)
0N, (H)0AL(s) e
82

————————— = 0,.0(t — 5)A
DA, (1)K a5 (s) na®O(t — s)Ag(s)

2

= 075 = (;,u,aéuﬁ(s(t - t/)

0K, (t) 0K 5(t")

0’5 = 0,a0,3G N, )0 (t —t')o(t — &)
8Kuy(t)8<bg5(t’7s’) nalvBirap )

625 =141 1 ! /

= 8uad, @ (1, 8)3(t —)6(t — &) (39)

0K (1)0GE 4(t, 8')
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This enumerates all possible non-vanishing terms in the Hessian. We can now construct a block
matrix of these Hessians by partitioning our order parameters ¢ = [q1, g2] ' where

= Vec{®!,,(t,5), G, (. 5), K (t), Au(t), 8, (t,5), Ghy (t,5), K (8), Ap(t)} - (40)

:Vec{AW( , ),BW(t,s)}. 41)
This choice will become apparent shortly.

V2 S vz _S
VS = { 9392 } (42)
q V?DQIS V2 S
To calculate the full propagator 3 = — [V?J S} , we will assume invertibility of the upper block
30 =~ [V(QI L S] ~! and use this in the Schur complement
2171 _ | X1 X2
B [VqS] N [221 222]
Y= 20 -3 [vzllh ] (V2 S+ (v?lths)zo(vzllhs)) [v(212q15] =0
-1
Y = E;rl = -5 [v?hqu} (V2 S+ (V?I2Q1S)Eo(v31qgs))
Moo = — (V2,5 + (vfmlS)zzo(v;qQS))*1 (43)
We now need to solve for ¢ = [ ] . To perform this inverse, we again partition g; into
two sets of order parameters ¢i = [ql,ql] ere qi = Vec{®!(t,5),G", (t, ), K, (t), Au(t)}
and q% = Vec{q?ﬁ,,(t,s)7Gﬁy( ) ) ( ) ( )}
v25=|0 wr =V%L8, U=V2%,,S (44)
a®? T U k| BFEVeY V= Vel

We seek a physically sensible inverse where the variance of g? is vanishing [51, 53]. This leads to
the following sub-propagator ¢

- U-'slU YT —-U!

2 1_
—[VQIS] - |: —[UT]_I 0

Thus given &, U, we can solve for X9 and ultimately for the full propagator X. The relevant entries
in kK and U are given by those second derivatives calculated above. We note that each of the field
derivatives needed for U can be computed implicitly from the field dynamics. For example, for the
A, (t) derivatives we have

TR ) =18~ R ()l

/ dsz AL () 1 95 (1, ), ()] 20

(45)

OA, ()
9
t) =0t —t")GE (¢, ) p(hL (¢
557 (D) =10~ )G () o(h 1)
t ¢
9¢(h, (s))
4 +1 v
+ WA dS ; [B#V(t, S) =+ G,Ll.l/ (t, S)A,,(S)} W (46)
These can then be used in the averages such as <ﬁ¢(hﬁ(t))¢(hf(s))>. Similarly, we can
14
compute terms such as # through the following closed equations

aB(t!,s)
4
Oh,,(t)

W =0t = t')0,aO(t — 8 ) Ap(s’)

y/tdsZ[Af“jl(t,s)—&-A (5)0% (¢, )] 99, (s)
0 v

OBL (¢, ')
2L (1) t , . d¢(hy,(s))
_ TN\ 2 : B A +1 — v 4
0B (1 ') e B t0) 4 MG ) oy 7

These terms can then be used to compute quantities like D?",
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F Solving for the Propagator

In this section we sketch out the required steps to obtain the propagator X.

Step 1: Solve the infinite width DMFT equations for ¢, which include the prediction error
dynamics A, (t), the feature kernels <I>fw (t, s), gradient kernels wa(t7 s). This step corresponds
to algorithm in Bordelon & Pehlevan ’22 and defines the dynamics one would expect at infinite
width [9]. See below for more detail.

Step 2: Compute the entries of the Hessian of S evaluated at the ¢, computed in the first step.
Some of these entries look like fourth cumulants of features like & = ($(h)*) — <qb(h)2>2 and some
of them measure sensitivity of one order parameter to a perturbation in another order parameter
D® = M)z - {¢(h*)?). The averages () used to calculate x and D®* should be performed over
the infinite width stochastic processes for preactivations h¢ which are defined in equation (19).

Step 3: After populating the entries of the block matrix for the Hesssian V25, we then calculate the
propagator > with a matrix inversion. Since we discretized time, this is a finite dimensional matrix.

The step 1 above demands a solution to the infinite width DMFT equations (solving for the saddle
point g~.). We will now give a detailed set of instructions about how the infinite width limit for g,
is solved (step 1 above). This corresponds to the algorithm of Bordelon & Pehlevan 2022 to solve
the saddle point equations aq S(q)|q., = 0191

Step 1: Start with a guess for the kernels ® W(t, s), Gf”,(t, s) and for the predictions through time
f.(t). We usually use the lazy limit (e.g. @fw (t,s) = (I>f“,(0, 0) ...) as an initial guess.
Step 2: Sample Gaussian sources u, () and %, (t) based on the current covariances ®* and G*.

Step 3: For each sample, solve integral equations for h(t) and z(¢).

B (1) = g, (t) + 7/0 ds Y AL (ts) + 5 (¢, 8)][D(h (5)) 2, ()]

40 = rb) 47 [ s TIBL(49) + G 4 )60 o) @)

0 v

These will be samples from the single site distribution for h, z

Step 4: Average over the Monte Carlo samples to produce a new estimate of the kernels: ®*(¢, s) =
(p(R*(t))p(h*(s))). A similar procedure is performed for G* and the response functions A, B*.
Step 5: Compute the NTK estimate K (t) = >, G**1(¢,t)®*(¢,t) and then integrate prediction
dynamics from the dynamics of the NTK < f,,(t) = 3 K., (£) A, (t).

Repeat steps 2-5 until the order parameters converge.

Below we provide a pseudocode algorithm to solve for the propagator elements.

Algorithm 1: Propagator Solver

Data: K®, vy, Initial Guesses {®¢, G*}L_ |, {AY Bf}fz‘f, Sample count S, Update Speed 3
Result: Propagator Matrix 3
Solve DMFT equations with Algorithm 2 for order parameters fu(®),® (t 8), ..

2 Draw S samples {u!, ,, (t)}5_; ~ GP(0,®71), {r, ,()}5_; ~ 973(0 G”l)
Integrate dynamics for each sample to get {hl, ,(t), 2}, . () Y1
4 Estimate x functions with Monte Carlo integration, for instance

uua[‘}(t 5, t/ /) =
5 Lonels) O () DRy, (8))(he, 1 (8)) (R, (87)) — B (2, 8)‘I>e (t',5") 5
Ry n ()

6 For each sample, compute field sensitivities to error signals, such as 8 NOR and kernels

Ohy ()

T (1757) implicitly using equations (46) (47) ;

Use these sensitivities to compute the necessary D tensors such as

DEA = LS s 5aey (000 n ()R, (5)]:

Invert U matrix and compute X in equation (45);
Compute the Schur-complement in equation (43) to handle the response functions ;
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The above propagator solver builds on the solution to the DMFT equations which is provided below.

Algorithm 2: Alternating Monte Carlo Solution to Saddle Point Equations

Data: K®, vy, Initial Guesses {®¢, G*}L_ , {AY BZ}[L:_f, Sample count S, Update Speed 3
Result: Final Kernels {®*, G‘}L_ |, {A*, B* }ZL:_f, Network predictions through training f,(¢)
q,O =K*® 11T’ GL+1 — 11T :

while Kernels Not Converged do

From {®*, G*} compute KNTK (¢, ¢) and solve % f,(t) = >, Aq (K NTE(t,1);

/=1,

while ¢ < L +1do
Draw S samples {uﬂn(t) S_ ~GP(0,® 1), {rﬁ7n(t) S_ ~GP(0,GY,
Integrate dynamics for each sample to get {h!, ,,(t), 2}, ,,(t) o1
Compute new ®¢, G* estimates:
(bﬁa (t7 S) = é ZnE[S] ¢(h‘/€n(t))¢(h£z,ne(8))’ ?ﬁa(u S) = % ZnG[S] gi,n(t)gg,n(s) ;
Solve for Jacobians on each sample 8§£2+’L) , 8‘1‘75{% ;
Compute new A, B‘~! estimates:

i 96(h,) Re-1 _ 0g,,_ .

Al =53 e af{j) BT =5 s Tl
L+ 04+1;

end

=1,

while { < L + 1 do ) 3
Update feature kernels: ®¢ +— (1 — 8)®* + 3¢, G* «+ (1 — B)G* + BG*;
if / < L then . 3

Update A? « (1 — B)A* + BA*, B + (1 — B)B* + pB*

end
C+—10+1

end

end
return {‘I’Zsz}zeLzlv{Ae7Bé}zL;1l>{fu(t) 5:1

G Leading Correction to the Mean Order Parameters

In this section we use the propagator structure derived in the last section to reason about the leading
finite size correction to (g) at width V. Letting the indices ¢, j, k, n enumerate all entries of the order
parameters in q (technically this is a sum over samples and an integral over time for gradient flow),
we find the leading Pade Approximant for the mean has the form (App D)

N{(gi = ¢V + 5 ({0 — V) ..

G — G )N = 3
< N L+ N(V)  + 222+
1 03s
Y = (5;0,;010 O(N72). 49
3'N jkl aqjaqkaql < J k l>oo + ( ) ( )
1 938
=Y —— =N+ ON? 50
5N 2 90;00:0 w + O( ) (50)

where §; = VN (g5 — q;X’) and the derivatives are computed at the saddle point. In the last line, we

utilized Wick’s theorem and the permutation symmetry of the third derivative % to evaluate
iVdj 3

the four point averages in terms of the propagator >J;;, which was provided in the preceding section
E. In practice computing even the full set of second derivatives for the DMFT action to get X is
quite challenging. Despite the challenge of computing the mean order parameter correction, these
corrections are relevant in practice and crucially distinguish the training timescales of deep networks
at different widths as we show in Figures 7 and A .4.
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G.1 Correction to Mean Predictions and Full MSE Correction

Supposing that we solved for the propagator X, using the formalism in the preceeding section, we
can compute the O(IN 1) correction to the average network prediction error due to finite size. We let
(A(t)) represent the average of errors over an ensemble of width N networks.

7 (8u(0) = > (K (t)A,(1)
==Y (K () (A1) - Z Cov (K (1), Au(t))
~ =S K () (A 7f22ffyﬁ (t,t) + O(N~?) 5D

v

where Effy (t,t) is the leading covariance (propagator element) between the kernel K, (t) and
prediction error A, (t). We see that the average kernel (K, (t)) (which depends on the finite width
N) plays an important role in characterizing the timescales of the average prediction dynamics. Once

this equation is solved for (A, (t)), the square loss at width NV and time ¢ has the form

> (A1) ~ <1—>ZA°° +—Z<Au(t)) Zz (t,t) + O(N~?)
I Iz 52)

We will now comment on the structure of the cross term in this above solution. First, if (K) > K
and 2K2 is negligible then the average errors at finite width will decay more rapidly than the infinite
width model. However, we suspect that in general, (K') — K contains many negative eigenvalues
since signal propagation at finite width tends to reduce the scale of feature kernels [14]. We suspect
that this is the cause of the slower dynamics of ensembled predictors for narrower networks in Figure
7 and Figure A.4. Additionally, the term involving X% will generically increase the cross term
since the dynamics of A cause its fluctuations to become anti-correlated with the fluctuations in K.
In general, it is challenging to make strong definitive statements about the relative scale of these
competing effects on the cross term. However, we can say more about this solution in the lazy limit,
where we find that the cross term will generically be positive, leading to larger MSE (Appendix H.2).

G.2 Perturbation Theory in Rates rather than Predictions

In experiments on deep CNNs trained on CIFAR-10 in 7 and A.4, we find that the loss curves for
the ensemble averaged predictors are effectively time rescaled by a function of network width. In
this section, we argue that a proper way to account for this is to compute a perturbation expansion in
the exponent which defines the rate of decay of the training errors. To illustrate the point, we first
consider the case of a single training example before describing larger datasets. In this case, we
consider the change of variables A(t) = e~"(*)yy. We now treat 7 as an order parameter of the theory
with dynamics

d
St = K() (53)

Note that this equation is now a linear relation between two order parameters (r(t), K (t)), whereas
the relation was previously quadratic. In the lazy limit, if X' — K — e then r — r — €t, giving an
effective rescaling of training time by 1 — .

For multiple training examples, we introduce the notion of a transition matrix T'(t) € RP>*¥ which
has dynamics

d
dt

The solution to the training prediction errors can be obtained at any time ¢ by multiplying the initial
condition A(0) = y with the transition matrix A(t) = T'(t)y, where y are the training targets. In
this case, the relevant rate matrix, which would be an alternative order parameter is

R(t) = —logT(t) (55)

—T(t)=-K@t)T(t), T(0) =1 (54)
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where log is the matrix logarithm function. Note that in general T'(t) admits a Peano-Baker series

solution [62—64]. In the special case where K (t) commutes with K (t) = + fo dsK (s), we obtain
the following simplified formula for the rate matrix R

t
R(t) = / ds K (s) (56)
0

The benefit of this representation is the elimination of coupled order parameter dynamics which are
quadratic in fluctuations (in A and K) into a linear dynamical relation between order parameters R
and K. An expansion in R will thus give better predictions at long times ¢ than a direct expansion in
A. In the lazy v — 0 limit, the constancy of K (t) = K gives the further simplification R = Kt.
Working with this representation, we have the following finite width expression for the training loss

(IA®) =y " (exp (-2R(t))) y

~y' exp (2 <Roo(t) + ;Rl(t)>> y

o T 2
+ 5 M;ﬁzuuaﬁ my exp (=2R)ylp—pr.. )+ LRty T O(N ) (57)

where (R) ~ R + + R' + O(N~?) is the leading correction to the mean R. In this representation,
it is clear that finite width can alter the timescale of the dynamics through a correction to the mean of
R, as well as contribute an additive correction from fluctuations. This justifies the study perturbation
analysis of rates R as a function of 1/N in Figures 7 and A 4.

H Variance in the Lazy Limit

We can simplify the propagator equations in the lazy v — 0 limit. To demonstrate how to use our
formalism, we go through the complete process of inverting the Hessian, however, for this case, this
procedure is a bit cumbersome. A simplified derivation for the lazy limit can be found below in
section H.1 which relies only on linearizing the dynamics around the infinite width solution. In the
~ — 0 limit, all of the D tensors vanish and the x tensors are constant in time. Thus, it suffices to
analyze the kernels restricted to ¢ = 0 and study the evolution of the prediction variance A(t).

S = /dtZA#(t) (A#(t) — Yy, + /dsZ@(t —~ s)K,WAV(s)>
+ 303 (8.0l + GLuG ]+Zfﬂw[ = G

nv nv

+ Z In 2,
L
20 = By og) o5 ( > 0l Zawg,tgu) =) o9
g

where {ul} ~ N(0,®1), {r},} ~ N(0,G""). Taking two derivatives with respect to {®¢, G4
give terms of the form

Kiap = (Bl p(ul)d(ul)p(uf)) — @5, 0L,
74
Hgyaﬂ <gﬁgﬁgggg> G[VGQB
14 £
KIS = ((ul)o(ul)glal) — 20,Gly (59)
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Given these we also have the relevant non-vanishing sensitivity tensors

oitief 0 0+1 o+1 a0 0 e
D;u/aﬁ - 6(I)g <¢(uu )¢(U’l/ )> ’ D;,waﬁ - 8G5+1 <gugu>
af

qu:‘l 1 _
Duyaﬁ aq)g 1 <g;¢gu> (60)
£+1 KG* -1
Dp,uocﬁ 6#«0‘61’,80/1,1/ ) Dp,uocﬁ - 6#«0‘61’,8(1)/,1,1/
DAK (1) = /ds@(t  $)5pals(s) 61)
As before we let g = Vec{A,(t),!,,, G, K, } and gz = Vec{A,(t),!,,, G, K, }. The
propagator has the form
I+ 0Ok 0 0 DAK 0 o 0 O
2 0 I-D** 0 0 2 0 k™® K*¢ 0
U=VaaS=1| DG 1-DOG g | Vea®T g 00 kGG g
0 —-DX®  _DK¢ I 0 o 0 0

(62)

The propagator of interestis 34, = U~ [V2

2425] U1T. We can exploit the block structure of U
to find an inverse

-1 -1 -1 -1
UAA UA<I> UAG UAK
0 Ugp O 0
0 Ugs U5€1" 0
0 Ugy Uge 1

U= (63)

where each sub-block can be computed with the Schur-complement formula. Altogether, we multiply
through to get the propagator

[0 Ujgr®® +ULLEC?Y Ujpk®@ +ULLREY 0

0 U_ln‘M’ U:Z1lx®CG 0
E =

0 Uggr®® +Ug ? KT Uggk®™ +Ugar%Y 0

0 Ugah®® +UgrCY Uger®™ + Uik 0

(64)

[[Uxxl™ 0 0 I

Two of these blocks corresponding to K, A are especially important for characterizing the fluctuations
of network predictions. The covariance structure for K has the form

S = U [Ugt]" + UgbCP UL T + Ut e®CUE]T + Utk“ClURE]T (65)

Next we use the fact that U4 = U xUgs and that Ur S = Ux - Ux s, which follows from the
block structure of U. Consequently we arrive at the identity

Ta =Ujgk®[Uxg)l ' + UsahUxe) ! + UaahCPUrg) ! + UnarCOIURGT
= U i Zk[Ughl" (66)

Lastly, we note that, by the Schur-complement formula that U;; =-—(1+0© K)_1 DAX_ Thus,
writing (I+ @) Xa I+ Ok)| = DAKS[DAK]T as an integral equation, we find

S8 (8 s) + /dtZK o4t s) + /dsZKyﬁzwts
+/ dt’/ ds' > KuaKypXis(t',s) Z/ Aq /dsAﬁ K (67)
0 0 B
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Differentiation with respect to ¢ and s gives a simple differential equation

82
5155 S (1.5 +ZKW 52 (t,s) +ZK,,38 t,s)
+ Z KVBZOZB t S ZA ua,uﬂ (68)

Let {11} be the eigenvectors of the kernel matrix K. Projecting these dynamics on the eigenspace
Ske(t, s) = P, Z(t, s)1py recovers the equation in the main text

d d
<6t +>\k) (85 +Ag> Sre(t, s) %Ak/ () Ap (8)SE 00 (69)

Replacing ¥ = x recovers the equation (7) in the main text.

H.1 Perturbed Linear System

In this section, we provide a simpler derivation of the lazy limit training error variance dynamics. In
this case, we merely perturb the dynamics around its infinite width value A(t) = A, (t) + €2 (t)
and K = K, + €, and keep terms only linear in these perturbations. The perturbation €’ is fixed
in time and the dynamics of € (t) are

d
€ (1) = —Kce?(t) — e A (1) (70)
Projecting this equation on the eigenspace of K, gives
d
dtekA(t) = —Arer(t) = Y e AR (1) (71)

k'

This immediately recovers the final result of the last section

N (gt +>\k) (gt +/\k> (er(Wer(s)) = (gt +Ak> (gt +Ak) She(t,s)

= Z S ee AT (HAF (5) (72)

ke

Qualitatively, the process of computing this linear correction (in €X) to the dynamics of A is identical
to the argument utilized in prior work on perturbative feature learning corrections [11]. In that context,
the perturbation is caused by small amounts of feature learning, rather than initialization fluctuations.

H.2 Mean Prediction Error Correction in the Lazy Limit

Using a similar heuristic as in the preceeding section, we now consider the correction to the mean
predictor (A, (t)) in the lazy limit. Taylor expanding (A(t)) in powers of 1/N, we find

d d .. 1d
p (A(t)) = %A (t) + N%A (t) +

— (K — K*®+ K*) (A - A% + A™))
=-—K%A® - K* (A - A%)
— (K - K%))A* — (K - K™) (A - A%))
N 7gss ooii 0o 1,& 1 ooii K _A -2
K>®A NK A NKA N<e ) +ONT?)  (73)
From the previous section we have that
d A —

¢
pTe —K®e® — A — 2(t) = —/ dsexp (—K>(t — 5)) €® exp (~K>s) y
0

(74)
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Projecting these dynamics onto the eigenspace of the kernel gives
— Aot — gt
t)=— - 75
e (1) gﬁkz oy (75)
where ¢ = k should be seen as the limit where A\, — A, of the above. Thus we find that the leading
mean correction to the error solves the following differential equation
d e—Aglt _ e—Agt
— M ) AL(t) = — K} ype Mt S ———————— Y.
(dt + k) k(1) %: keYe +%/: weer T,
gt 1 K K e—Ag/t _ e—Agt
Z yee [— Koo + Sheeet] + Z Yoo ——— Yo (76)
Ao — Ao
¢ Al
We see that at late sufficiently large ¢, that the terms involving X will dominate. We can gain
more intuition by considering the special case of a single training data point where the mean error
correction has the form

1
<5t + A) Aty =ye ™ [-K' +12X] = Al(t) =y [—tKl + 2t22K] e M

= (A(t)%) ~ A™(t)* + % [Qyzte_z)‘t [—Kl + ;tzK} - EA(t,t)] +O(N7?)

2
~ A®()? + Ny2te_2)‘t [-K'+ 3%t + O(N7?) (77)

While the term involving =% is positive for all ¢, K! could be positive or negative for a given
1
architecture. If K'! is positive, then MSE is initially improved at early times but after ¢ > S—K the

MSE is worse than the infinite width. On the other hand, if K! is negative (as we suspect is typically
the case), then the MSE will strictly decrease with network width for any time ¢.

I Two Layer Equations and Time/Time Diagonal

In this section, we analyze two layer networks in greater detail. Unlike the deep network case, two
layer networks can be analyzed on the time-time diagonal: ie the dynamics only depend on ® (¢, t)
and G(t, t) rather than on all possible off-diagonal pairs of time points. Further, there are no response
functions A*, B* which complicate the recipe for calculating the propagator (Appendix E).

I.1 A Single Training Point

For a two layer network trained on a single training point with norm constraint |z|?> = D, we have
the following DMFT action

SKE (1), K(t), A(t), A(t)}] (78)
- / dt [K(t)f((t) +A®) <A(t) Y+ / ds O(t — S)A(S)K(s))}

+InZ[K,f], Z=E, exp <—/dtK(t)[¢(h(t))2 + g(t)2]) .

The saddle point equations are

K~ ol +9007) =0
62?1%) =AM -yt / ds ©(t — s)A(s)K (s) = 0

st = KO +a6) [arAwer -9 =0

aifs) = A(s) + K(s) /dt ABO(t —s) =0 9)
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From these equations, we can compute the entries in the Hessian of the DMFT action S. Letting

A(t . A(t
T o
0%S
da(D)da(=)T "
928 B 0(t—s5)+0O(t—3s)K(s Ot — s)A(s)
9400q(s)T |~ (ahm (G +9?) ot —s)
%S 0 0
T =19 w6 o0
where (t, s) = ((¢(h(t))? + g()*)(¢(h(s))* + g(s)?)) — K (t) K (s) is the NTK’s fourth cumulant.

We now vectorize our order parameters over time ¢ = Vec{q(t)}:cr, and ¢ = Vec{q(t)};cr, and
express the full Hessian

0 825 ( 3%s )—1 88285 ( 3%s )—1 —( %S )—1
2q 0q0q T 2a1—1 _ 0Goq " 50G \ 0q0q T 0qoq T
VS—[ qq]:_[VS] _[qq Bgsq q0q q0q ]

2°S 2’8 -1
9G0qT  0GOqT —(5qaaT) 0
C1Y)
The covariance matrix of interest (for g(t)) is thus
s _[1+0x @] 0 0] [T+ex @s] @)
4= | —-D I 0 K -D I )

where [@k]|(t,s) = O(t — s)K(s) and [Oa](t,s) = O(t — s)A(s). The above equations allow
one to use the infinite width DMFT dynamics for K (¢), A(t) to compute the finite size fluctuation
dynamics of the kernel K and the error signal A.

I.1.1 Computing Field Sensitivities

In this section, we compute D(t, s) by solving for the sensitivity of order parameters. We start with
the DMFT field equations

h(t) =u+ ’y/o dsA(s)g(s), z(t) =r+ 7/0 dsA(s)p(h(t)). (83)
Now, differentiating both sides with respect to A(s") gives
SR =700t =gl + / ds(s )(.fAES))
9z(t) d¢(h(s))
g =10l 90+ [ a0 GG oY

We can compute D Monte carlo by iteratively solving the above equations for each sampled trajectory
{h(t), z(t)} [65, 46]. Averaging the necessary fields over the Monte Carlo samples will give us the
final expressions for D(t, s).

D) = s U0+ 9(0°) ) 55)

Similarly, the uncoupled kernel variance «(t, s) can be evaluated via Monte Carlo sampling for
nonlinear networks.

L2 Test Point Fluctuation Dynamics

We now are in a position to calculate the test/train kernel and test prediction fluctuations. To do this
systematically, we augment S with the test point prediction f, and field h, and introduce the kernel
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K, (t) = (d(h(t)d(h(t)) + g(t)g«(t)). The test prediction f, and field h, have dynamics

holt) = us +4 / dsA($)d(ha () 2(5) KT , {upu) = K

2
ot
The augmented action for this DMFT has the form

fo(t) = Ku(H)A() , Ki(t) = (o(h(t) o (ha(t)) + 9(1)gx (1)) (86)

s— [avfo (n.0- [asei- s)A(s)K*<s>> + [k

+/th(t)( y+/ds@t—s ) /dtK

+Besp (- [ Ko - [ Rt <>>+g<t>g*<t>>) )
We let g(t) = [A(t), fu(t), K (1), K. (8)]T
00 0 0 I1+0x 0 ©r 0
. 00 0o o0 X Ok, I 0 -©,
VieSladl= |y o 7| VigSla.d D0 1 o
0 0 Ky K -D, 0 O I
_ 8 2 2
Dt.5) = (s (G(0(0)? + (0 59)
0
D.t:9) = a5 ORI (0) + 5(0)9.(0) ) 9)
Our total covariance matrix / propagator is thus
I+Ox 0 ®x 0 7°'10 0 0 07[I+O®x 0 ©®x 0 7'
s_|©x I 0 -©4 00 0 0[|]|-©8 I 0 -O,
| -D 0 I 0 00 kK K& -D 0 I 0
-D, 0 0 I 0 0 Ky Kux D, 0 0 I

(90)

This is the equation provided in the main text Equation (8).

I.3 Two Layer Linear Network Closed Form

For a linear network on a single data point, we can compute D(¢, s) and k(t, s) analytically. We start
from the field equations

MO amen . Z = awne oD

We can make a change of variables v, (t) = - (h(t) + z(t)) and v_(t) = %(h(t) — 2(t)). We

note that v4 (0) = ﬁ(u +r)and v_(0) = %(u — r) are independent Gaussians. These functions
v4(t), v_(t) satisfy dynamics

dvy dv_(t)

— =AM (t), — = —yA()- (1)

= vy (t) = exp (7/0/ dsA(s)) v4(0) = (312((;)) =yuL()O(t — s)

= v_(f) = exp (—'y/o dsA(s)) v_(0) = ‘272((;)) =—yu_(t)Ot —s) (92)
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Now, we use the fact that v (0) = %(u +7r)and v_(0) = \}E(u - r) are independent standard

normal random variables to compute K (t) = (h(t)? + z(t)?) = (v ()% +v_(1)?)

D(t,s) = 0 (h()* +2(t)%) = 27 [(v4(t)*) — (v_(1)*)] O(t — 3)
AA(s)

_ 9y |:eXp (27 /0 t dsA(s)) ~exp (—27 /0 t dsA(s))] ot —s) ©93)

This operator is causal (D(t, s) = 0 for s > t) as expected and vanishes as ¢ — 0. If we take v — 0,
we have D(¢, s) — 0 which agrees with our reasoning that fields /, z only depend on A in the feature
learning regime. Since all fields are Gaussian in the linear network case, we can use Wick’s theorem
to obtain the exact uncoupled kernel variance in the two layer case.

r(t,s) = ((h(t)* + 2()*) (h(s)* + 2(5)*)) — K(H) K (s)
=2 (h(t)h(s))* + 2 (h(t)=(s )> +2(z(t)h ( ) + 2 (2(t)=(s))”
= (01 (B)vs () + v- (D)o () + (01 (v (8) = v (D)o (5))” (94)

The v (t) functions are those given above. Using the fact that (v(0)?) = (v_(0)?) = 1 allows us
to easily compute the single site average above.

J Multiple Samples with Whitened Data

In this section, we analyze the role that sample number plays in dynamics in a simplified model of a
two layer linear network trained on whitened data. Concretely, we assume that w“bw” = 0. The
field equations for preactivations h,,(t) and pregradients z(t) obey

Dy (0 = 1000 . o) = 3 A 95)
dar e T s rac T it

p=1

We will assume the targets have unit norm |y|?> = 1 and we define the projection of A onto the
target as A, (t) = y - A(t). The other P — 1 orthogonal components are denoted A | (¢) so that
A=Ay (t)y+ AL(t) with A (t) -y = 0. At infinite width, A | = 0 and our field equations
become

d

dt
However, at finite width IV, the off-target predictions A | fluctuate over random initialization. To
model all of the fluctuations simultaneously, we consider the following action

S = 'y/dtZA —yu) +InEexp (/dtZA )) 97)

which enforces the constraint that A, (t) =y, — ; (z(t)h,(t)) at infinite width. The Hessian over

hylt) = By (02(0) . S2(1) = Ay (1), AL =0, by ~N(O.1)  ©96)

order parameters ¢ = Vec{A,,(t), A,,(t)} has the form
2 0 ('yI 4+ D)—r _ 0
vis= a0 p P Dt = (G5 Homa ©8)

We thus get the following covariance for predictions ¥a = (7I+ D) "'k [(71+ D)™ }] T We now
compute the necessary components of the D tensor

) s ot et [ty )220
SRl = 0w = () 4 [ A, () g
0z(t t
aA,,((l) 70t = s)h +V/ 4 ZA ((8;
=~0(t — s)h +7/ dt' Ay ( ((3 (99)
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In the last line, we used the fact that these equations are to be evaluated at the mean field infinite width
stochastic process where A (t) = 0. To compute the sensitivity tensor D, we find the following
equations for our correlators of interest:

<§Z/;((72) z(t)> = 0,70t — 8) (2(8)2(t)) , v #y

<86Azu(z(fl)hu(t)> =70t = 5)0uw , v #y o

<§ZZ((Z)) z(t)> =~0(t — s) (2(s)z(t)) + v /Ot dt' Ay, (t) <86Azit(/s)) z(t)>
<88Az(2) Z(t’)> =70(t — 5) (hy(s)z(t)) + /Ot dt" Ay (") <ZIZ’;E:)) z(t’)>

We therefore see that the components of D decouple over indices. In the y direction, we have the
following equations

Ohy(t) > < 0z(t) >
D,(t,s) = VA2 2(t) ) + hy(t (101)
(0.9 = (G0} + (i)
where the correlators must be solved self-consistently. We will provide this solution in one moment,

but first, we will look at the orthogonal directions. For the P — 1 orthogonal directions, we obtain the
explicit formula for D in each of these directions

pa(8lh) (0]
=70(t — 5) (2(t)2(s)) +7O(t — 5) (102)

Now, we return to D,,. To solve these equations we utilize the change of variables employed in the

single sample case v, (t) = %(hy(t) +2(t)),v_(t) = %(hy(t) — z(t)) (see Appendix 1.3). This

orthogonal transformation decouples the dynamics

%v+(t) = yA,(t)v4(t), div_ (t) = —yA,(t)v_(?) (103)

t

As a consequence, the field derivatives close

882:((?) =70(t — s)vy(s) + /0 a8y () g?:y((ts/;
gzygi)) = —O(t — s)v_(s) — /0 dt/Ay(t/) gzy((t‘;; e

The correlator of interest is

So we get that
D,(t.5)= 1 <8A8<) (040 = - (0))

v (t) Ov_(t)
= t —(v_(t 106
(v 035) (- Oa509 (106
Similarly, we can derive the on-target and off-target uncoupled variances «,, (¢, s) and « (¢, s), which
satisfy

ry(t,5) = (Ui (D)o (8) +v- (v (5) + (Vi (D)o (5) = v-(B)v(s))?

ki (t,s) = % (vy()vy(s) +v_(t)v_(s)) (107)
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Using these functions, we arrive at the following variance for each of the P dimensions
Yp, = (VI+ Dyr1 Ky (VI + Dy)71
Ya, =(I+D1) ki (yI+ D) (108)

Using the fact that all A, variables are independent and identically distributed under the leading
order picture, the expected training loss has the form

(|AP%) ~ Ay () + %A;(t)A;O(t) + %EAV (t,1) + %mlu,w +O(NT?).  (109)

where (A, — A%) = L AL(t) + O(N~2). We note that the bias correction if O(N ') while the
variance is O(P/N). We compare the above leading order theory with and without the bias correction
in Appendix Figure A.2.

K Online Learning

Our technology for computing finite size effects can easily be translated to a setting where the neural
network is trained in an online fashion, disregarding the effect of SGD noise. At each step, we
compute the gradient over the full data distribution p(x). Focusing on MSE loss, we study the
following equation

%A(w,t) = —Forope) K (z, ' t) A2, ) (110)

where K (x,2’;t) is the dynamic NTK and A(z,t) = y(x) — f(x,t) is the prediction error. In
general the distribution involves integration over an uncountable set of possible inputs x. To remedy
this, we utilize a countable orthonormal basis of functions for the data distribution {1 (x)}72 ;.
For example, if p(x) were the isotropic Gaussian density for A'(0, ), then 1 could be Hermite
polynomials. We expand A and K in this basis vy, and arrive at the following differential equation

—Ak ZKM )A(t (1)

By orthonormality, the average turned into a sum over all possible orthonormal functions {t}.
We note that since K is evolving in time, there is not generally a fixed basis of functions that
diagonalize K, resulting in the couplings across eigenmodes in Equation (111). Since, in online
learning, there is no distinction between the training and test distribution, our error of interest is
simply £(t) = Y, Ay(¢)?. To obtain the finite size corrections to this quantity, we compute the joint
propagator for all variables { Ky (t), Ag(t)}. If we wanted to pursue a perturbation theory in rates
(Appendix G.2), we could again define a transition matrix T" and rate matrix R(t) as

d
R(t) = —log T(t) , —TM ZKW )Thwre(t) , Tre(0) = Gre (112)

We can then obtain A = exp(—R(t))y, where y, = Ep1),(x)y(z). Since R has a finite size mean
correction and finite size fluctuations, so too does the error Ay (t) and the loss £ (Appendix G.2).

K.1 Two Layer Networks

In the two layer case, instead of tracking kernels, we could instead deal with the distribution over
read-in vectors w € R” and readout scalars a € R as in the original works on mean field networks
[6, 66]. When training on the population risk equations for  ~ N(0, I)

d - o 0A(=) ; -
aY= aBzA(x)p(w - x)x = ]EmaTMw cx) + EA(z)d(w - x)w
d
o= BoA(@)ow @) (113)

The action has the form

S = / dtdeA(t, ®)(A(t, ) — y(x)) + InEq 4 exp ( / dtdeA(t, x)a(t)d(w(t) - x)) (114)
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The Hessian over ¢ = {A,,(t), A, (1)} is

0 I+D
V28 = {HDA . A} . (115)
where Da(t,z;s,2’) = <ma(t)¢(w(t) . a:)> We can use the following implicit rule
aa(t) _ K / I N N A 8w(t)
SRy = 10 = p@)olw(s) )+ 1B [ WA 2w a)a’ 57D
ow(t .
A =0t - splala(s)dlw(s) o
! / o aa(t/) | / IAp / aw(t/) l
+7]Em//0 th(t,m){M¢(w'm)+a(t)¢(w~m)(ws7m)-:c (116)

The above equations could be solved and then used to compute Da (¢, x; s, ') which must then be
inverted to get the observed prediction variance.

K.2 Linear Activations

Using the ideas in the preceding sections, we can make more progress in the case of a two layer
linear network in the online learning setting. The key idea is to track the kernel and prediction error
projections onto the space of linear functions. In this case we get the following DMFT over the order
parameter 3(t) = + W Ta € RP.

%a(@ = 7(B. — B(1)) - w(t)
B(t) = % (a(t)w(t)) n

At infinite width, we see that the dynamics can be reduced to tracking the projection of the weights
w and B on the 3, direction. The D — 1 off-target dimensions vanish 3, (¢) = 0. At infinite width,
we arrive at the alignment dynamics studied in prior work [64, 9]

d
B0 = M(D)(B. - B1))

9 M (1) = +*B)(8. — 1) ++°B(1)(B, ~ A1)
+29(B. = B(t)) - BT (118)

We note that 3(¢t) = 5(t)3, and that M has only one special eigenvector 3, with eigenvalue m, (t).
It thus suffices to track evolution in this single direction

d d
LB = ma()(5 — B() ,

We note that this equation is identical to the differential equation for a single training example in
Appendix J. Here 3, — (t) plays the role of A, (t) and m.(¢) plays the role of the kernel K, (¢).

A key observation is the conservation law 4724 3(t)2 = £, (t)2, from which it follows that
my(t)? — 4 = 49253(t) [9]

m.(t) = 4y*B(t)(B. — B(t)) (119)

%ﬁ(t) =21+ +2B(t)2(8. — B(¢)) (120)

This is identical to the differential equations for a single sample (producing prediction f(¢) and kernel
K (t)) if the following substitutions are made

f@) & B(t), K(t) < mu(t) (121)
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We now proceed to compute finite size corrections starting from the action

S = w/dtﬁ(t) - B(t) + InEexp (-/dtﬁ(t) : w(t)a(t)) (122)
The necessary ingredients are

K(ts) = (a(t)a(s)w(H)w(s) ") — 1*B1)B(s)

= (a(t)a(s)) (w(H)w(s) ") + (a(s)w(t)) {a(t)w(s) ) € RP*P (123)
Similarly we have to compute the sensitivity tensor
D(t,s) = <8B?8)Ta(t)w(t)> € RP*P (124)
We start from the dynamics
D an(t) = a(t)(B. — B(0) , La(t) =18, — B1) - w(t) (125)

Next, we have to calculate causal derivatives for fields

‘%Z)Tw(t) = —vO(t — s)a(s)I + 7/0 ' (B, — ﬁ(t/))aa,f;’l((;;)T
c?ﬁa(s)a(t) =—0(t - s)w(s) + 7/0 dt'(B. — B(1')) - %E )) (126)

Following an identical argument as in J, we see that D has block diagonal structure with Dg, (¢, s)
on the 3,3, direction and D (¢, s) in any of the D — 1 remaining directions

D5.(t:9) = { aa®us. (0} Dufes) = (o salus0) a2

Similarly, k(¢, s) has a similar decomposition

rp, (t,8) = (a(t)a(s)) (wg, (Hwp, (s)) + (a(s)wg, (1)) (a(t)wg, ()

k1 (t,s) = (a(t)a(s)) (wi(t)wyi(s)) + {als)wi (1)) (a(t)wi(s)) (128)
The processes have the following equations at infinite width
s (6) =108~ 5(0) , () = s, (VB ~ 5O, TwiH)=0 (129

( )) = 0so that k1 (t,s) = (a(t)a(s)). Letting vy (t) =

)
As a consequence we note that (w (t)a
wg, (t)+a(t)), we find the same decoupled stochastic processes

5 (ws, (t)+a(t) andv_(t) = =

as in Appendix L.3.
d d
S0 (8) =B = BO1 (), Zv- () = =B — BE)0- (1) (130)
We can use these equations to perform the necessary averages for kg, and Dg, . Lastly, we use
7]
——w, (t) = —vO(t — s)a(s 131)
55, 1oy (1) = —10( — 9)als) (

to evaluate D (t, s). The observed covariances are just
25, =(11-Dp,) 'kp,(I—=Dp,) ", B =(1-D1) 'k (yI-Dy)" ' (132)

We note that these expressions are identical to those in Appendix J under the substitution 3, — 3(t) —
A(t) and D — P. Thus the expected test risk is

(180) =B.1%) ~ (B(t) = B)* + %Em (t,1) + %% () +O(N"2)  (133)

This recovers the variance we obtained in the multiple-sample whitened data case J.
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K.3 Connections to Offline Learning in Linear Model

Remark 1 The finite size variance of generalization error in an online learning setting with linear
target function y = 3* -  has an identical form as the model described above. In this setting, we
sample infinitely many fresh data points x ~ N(0,1) at each step leading to the flow %wi (t) =
va;()ExA(z)x and 2 a;(t) = yw;(t) - Ex A(x)x. The order parameter of interest in this setting is
B(t) = ,YLN 271\;1 w; (t)a;(t). The precise correspondence between this setting and the offline setting
is summarized in Table 2. We note that this argument could be extended to higher degree monomial
activations as well, at the cost of tracking higher degree tensors (eg for quadratic activations
M = % Zfil aw;w; € RP*P s sufficient).

Setting | Order Params. | Target | Off-target Dims. | Loss | Variance | Infinite Quantity
Offline | A=y f y P-1 Train [ O(%) D

Online By — 3 B D-1 Test O(%) P
Table 2: Summary of the equivalence between the leading 1/N correction in the offline setting and
the online setting for two layer linear networks. In the offline training setting, the order parameters

are the errors A = y — f € R” while in the online case they are 3, — 3 € RP.

As in the offline case, in Fig. 4 (c) and (d) we see that the variance contribution to test loss |3 — B, \2
increases with input dimension D. We note that this perturbative effect to the loss dynamics is
reminiscent of the deviations from mean field behavior studied in SGD [43, 44], though this present
work concerns fluctuations driven by initialization variance rather than stochastic sampling of data.
In Fig. 4 (e) we show that richer networks have lower variance at fixed IN. Similarly, leading order

theory for richer networks more accurately captures their dynamics as D /N increases (Fig. 4 (f)).

L. Deep Linear Networks

For deep linear networks, the fields £, (t), g/,(t) are Gaussian and have the following self-consistent
equations

hy (1) = () + 7/t ds Y [ALH (8 s) + Au(s) Hyp (1,9)] g0 (s) , () ~ GP(O, HY)

0 >

gﬁ(t) = rfb(t) + W/t ds Z [Bﬁl,(t, s) + Ay(s)Gﬁtl(u s)} hf(s) , rﬁ(t) ~ GP(0, GZ'H).

0 v
(134)
Oh (t)
where H/,(t,s) = (h.,(t)hi(s)) and G%,(t,5) = (g’ (t)g5(s)) and AL (t,s) = <arf(s)> and
12
Bf'“,(t7 s) = g}::((g [9]. Therefore, we express the action as a differentiable function of the

order parameters by integrating over the Gaussian field distribution. For concreteness, we vectorize
our fields over time and samples h® = Vec{h, ()} (.c(p] ter, 1. 9° = Vee{gy,(t)} {uelp) rer, y We
consider the contribution of a single hidden layer.

. 1o,e o X 17 m
Z, = / dh*dg‘dh*dg® exp <—2hfzuhZ + ik’ - (h* — C'g") — 2h”HW)

e 1 s
exp (—29‘55&1‘Z +ig" - (¢" — D'A’) — 29”G"95>

where Cf, (t,s) = 7Ot — s) [AL (t,s) + HS Mt s)A(s)] and Df,(t,s) = 7(?(t -
s) [Bf,(t,s) + GLE (¢, 5)A,(s)]. Performing the joint Gaussian integrals over (b, g, h*, g%)
we find

~H' 0 I -D'T
1 0 -G' —-C'T I
InZ, = —=Indet 135
tee=mgmetl 1 et 3, 0 (135)
-D' 1 0 s,
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We can then automatically differentiate the DMFT action to get the propagator. For example, for a
three layer linear network, the full DMFT action has the form

S = Tr H'H' + H?H? + G'G' + G2G2} —*TtAB

—H! 0 I —D'T]
1 0 -G' —-C'T I
— —Indet
g 1 ot 11T 0
-D' 1 0 G? |
—H2 0 I —D?7]
1 2 2T
~ 5 lndet | 752 < ' (136)
-D? I 0 117

where C! = 7@A and C? = 7yOA © H! + vA and D! = y®x © G? + vB and D? = vO.
This above example can be extended to deeper networks. The total size of the block matrices which
we compute determinants over is 4PT x 4PT for a dataset of size P trained for 7" steps.

M Discrete Time Dynamics and Edge of Stability Effects

Large step size effects can induce qualitatively different dynamics in neural network training. For
instance, if the step size exceeds that required for linear stability with the initial kernel, the kernel can
decrease in order to stabilize the dynamics [57]. Alternatively, during training the kernel may exhibit
a “progressive sharpening” phase where its top eigenvalue grows before reaching a stability bound
set by the learning rate [19]. It is therefore well motivated to study how dynamics in this regime alter
finite size effects in neural networks. We will first solve a special model which was considered in
prior work [57]: a two layer linear network trained on a single training point. We will then provide
the full DMFT equations for the discrete time case and provide an outline for how one could obtain
finite size effects in that picture.

M.1 Two Layer Linear Equations
In a two layer linear network, the DMFT equations are
h(t+1) = h(t) + nyA(t)z(t) , z(t + 1) = z(t) + nyA(t)h(t)
1
@) == (z(t)h(1)) (137)

The NTK has the form K (t) = (h(t)* 4 z(t)?). We can easily show that the kernel and error have
coupled dynamics

2

FE+1) = (&) +1(h(t)? + 2(6)%) Alt) + *vA1)? (h(t)2(t))
= f(t) + nK®)A®) +n*y A1) f(t) (138)
K(t+1) = K(t) + 4nyA(t) (h(t)2(1)) + n*y*A)? (h(t)® + 2(1)%)
= K(t) + 42 A®) f(t) + n°? A()* K (t) (139)

These equations define the infinite width evolution of A(t) and K (¢). Already at this level of analysis,
we can reason about the evolution of K (¢). In the small  limit, we could disregard terms of order

O(n?) and arrive at the following gradient flow approximation for K ~ 24/1+~2f(t)? [9]. This
evolution will not reach the edge of stability provided that n < \/ﬁ For large v and y = 1, this

leads to the constraint 77y < 1. However, if 7 exceeds this bound, the gradient flow approximation is
no longer reasonable and the system reaches an edge of stability effect as shown in Figure 6.

To calculate the finite size effects, we need to compute « and D(¢, s) = BAL(S) (h(t)? + 2(t)?). To

evaluate these quantities we utilize the same change of variables employed in Appendix 1.3. In
discrete time, these decoupled equations are

vi(t+1) = v (t) + AR v (t) , v-(t+ 1) = v_(t) — nyA(t)v—(¥). (140)

43



Given A(t), these can be expressed as linear systems of equations. Now, we can easily compute the
uncoupled kernel variance

r(t,s) = 2 (h(t)A(5))” +2 (2(D)2(5))* + 2 (h(t)=(s))” + 2 {z(t)h(s))”
— (s (B () + v (v (5))” + (0 oy (5) —v_(Bo_(s)>.  (141)
Similarly, we can calculate D(t, s) by using the fact (h(t)? + z(t)*) = (vy(t)* + v_(t)?)

D(t,s) =2 <v+(t) ?912((;)) > 42 <v(t) (?;JA((;)) >
G =100t = 5o (s) + ;A(tl)m
ZT’A((;) — O(t — s (s) — ;A(t')i;}A((:)) (142)

These can be directly solved as a linear system of equations.

N Computing Details

Experiments for Figures 3, 6 and 2 were conducted on a Google Colab GPU with JAX. Experiments
for Figures 5, A.3, 7 were performed on a NVIDIA SMX4-A100-80GB GPU. The total compute
required for all Figures in the paper took around 4 hours. Jupyter Notebooks to reproduce plots can
be found at https://github.com/Pehlevan-Group/dmft_fluctuations.
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