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DIAMETER ESTIMATES IN KAHLER GEOMETRY
BIN GUO*, DUONG H. PHONG!, JIAN SONG! AND JACOB STURM'*

ABSTRACT. Diameter estimates for Kahler metrics are established which require only
an entropy bound and no lower bound on the Ricci curvature. The proof builds on
recent PDE techniques for L™ estimates for the Monge-Ampere equation, with a
key improvement allowing degeneracies of the volume form of codimension strictly
greater than one. As a consequence, diameter bounds are obtained for long-time
solutions of the Kahler-Ricci flow and finite-time solutions when the limiting class is
big, as well as for special fibrations of Calabi-Yau manifolds.

1. INTRODUCTION

The diameter is one of the most important geometric invariants defined by a met-
ric. Bounds for the diameter are for example essential in the study of convergence
of manifolds, which is of particular interest in moduli problems and geometric flows,
where one hopes to arrive at a canonical model by taking limits. Unfortunately, in
Riemannian geometry, there are very few tools for estimating the diameter, besides
comparison theorems and the Bonnet-Myers theorem which require that the Ricci cur-
vature be strictly positive. The situation did not seem markedly different in Kéhler
geometry, although we can exploit there the fact that the potential can be viewed as
the solution of a complex Monge-Ampere equation with right hand side given by its
volume form (see e.g. [11, 37, 23, 17]). However, there has been considerable progress
recently in PDE methods for L* estimates for fully non-linear equations [15, 12, 13].
These new methods turn out to be particularly amenable to geometric estimates, and
have been shown to imply some promising estimates for non-collapse [18] and for the

Green’s function [14].

The main goal of the present paper is to develop a general theory of diameter es-
timates in Kahler geometry. We shall be particularly interested in estimates which
require only an upper bound for the entropy of the volume form, but not a lower

bound for the Ricci curvature. For geometric applications, it is also important that
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the diameter estimates be uniform with respect to suitable subsets which can ap-
proach the boundary of the Kéahler cone. To obtain such estimates, we build on the
PDE methods mentioned above [15, 18, 14], but with an essential improvement. These
methods originally applied to fully non-linear elliptic equations which satisfy a specific
structural condition, corresponding to a condition of nowhere vanishing of the volume
form in the case of Monge-Ampere. It has been recently shown by Harvey and Law-
son [19] that this condition is natural and applies to very broad classes of equations.
Nevertheless, for many applications which we shall consider in this paper, notably the
Kahler-Ricci flow and the analytic Minimal Model Program, it is necessary to allow
the volume form to be arbitrarily close to vanishing along subsets which are suitably
small, such as a proper complex subvariety. It turns out that such a generalization is

indeed possible, and it plays a major role in this whole paper.

We now state our general diameter estimates more precisely. Let (X,wy) be an
n-dimensional compact Kéhler manifold equipped with a Kahler metric wx. Let K(X)
be the space of Kahler metrics on X. We define the p-Nash entropy of a Kahler metric
w € K(X) associated to (X,wx) by

(1) Nxuyp(w) = V%/X log <(V“)_1%)

for p > 0. If we write e/’ = V%%, then

NX7WX7P(W) = /);_eF |F‘pw?( = HeFHLl log LP (X ,wx)

p
wt, V, = / w" = [w]",
X

and
Nx oy pw) < / e FPu% + C

F>0

for some C' = C(X,wx,p) > 0.
We introduce the following set of admissible functions for given parameters A, B, K >

0, p>n,

(12) V(X ,wx,n, A, p K)={weK(X): [w] [wx]"" <A Nxweplw) <K}.

Let - be a non-negative continuous function. We further define a subset of V(X, wx, n, A, p, K)
by

(13) W(XvwX7n7A7p7 K77) = {w S V(XvwXunuAvpu K) : (Vw>_1:j_n Z 7} .
X

We also define the Green’s function G(x, y) associated to a Riemannian manifold (X, g)
by (see e.g. [26])
NyG(z,-) = =6,(-) + (Voly (X)),
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where A, is the Laplace operator associated to g. The following is the main theorem

of our paper:

Theorem 1.1. Let X be an n-dimensional connected Kdahler manifold equipped with

a Kdahler metric wx and let v be a nonnegative continuous function on X satisfying
(1.4) dimy{y =0} <2n—-1, v >0,

where dimy, is the Hausdorff dimension. Then for any A, K > 0 and p > n, there exist
C=CX,wx,n,Ap,K,v) >0, c=c(X,wx,n, A p, K,7y) >0 and a« = a(n,p) > 0
such that for any w € W(X,wx,n, A, p, K;7), we have the following bounds for

(a) The Green’s function:

/X|G(:c, )|w™ + /X VG (z,)|w™ + <— ;g{ G(x,y)) Vol,(X) < C

for any x € X;
(b) The diameter:
diam(X, w) < C;
(¢) The volume element: for any x € X and any R € (0, 1],
Vol (B, (z, R))
Vol,(X)

> cR°.

This is the first general result on uniform diameter bounds and volume non-collapsing
estimates for Kahler manifolds without any curvature assumption. We note that the
assumption on the Hausdorff dimension of the set {v = 0} can be replaced by the
weaker assumption that this set have small measure together with the connectedness
of {y > 0} (c.f. Proposition 5.1 and Proposition 6.1), and that this is in fact how the
theorem is proved. In practice, the theorem is often applied with {7y = 0} supported
on a proper analytic subvariety of X. It may be instructive to compare it with the
situation in Riemannian geometry. There the sharp result is the theorem of S.Y. Cheng
and P. Li [6], where a lower bound for the Green’s function requires a lower bound on
the Ricci curvature. Since Ric(w) = —iddlog w” in Kihler geometry, and we allow
the lower bound v for the volume form w™ to vanish, we see that Theorem 1.1 can
give lower bounds for the Green’s function even when no lower bound for the Ricci
curvature is available. As we shall see, this flexibility is particularly important in the
study of the Kahler-Ricci flow and of fibrations of Calabi-Yau manifolds.

As a consequence of Theorem 1.1, we obtain the following theorem, which can be

viewed as a Kahler analogue of Gromov’s precompactness theorem for metric spaces:
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Theorem 1.2. Let X be an n-dimensional connected Kdahler manifold equipped with

a Kdhler metric wx and let v be a nonnegative continuous functionon X with
dimy{y =0} <2n —1.

Then for any A, K > 0, p > n and any sequence {w;}52, C W(X,wx,n, A,p, K;7),
after passing to a subsequence, (X,w;) converges in Gromov-Hausdorff topology to a

compact metric space (X0, doo)-

Geometric compactness is fundamental for understanding degeneration and moduli
problems for complex Riemannian manifolds. Curvature bounds are usually necessary
such as in the general theory of Cheeger-Colding [4]. Theorem 1.2 bypasses the cur-
vature requirement to provide boundedness for families of Kahler manifolds. It might
also be combined with techniques from [5] to explore formation of singularities and

achieve stronger geometric regularity for the limiting metric spaces.

2. APPLICATIONS TO THE KAHLER-RICCI FLOW AND cscK

We describe now the applications of Theorem 1.1 to the Kahler-Ricci flow and con-
stant scalar curvature Kahler metrics. We shall be particularly interested in the ana-
lytic Minimal Model Program introduced in [33] in relation to the formation of both

finite time and long time singularities in the Kahler-Ricci flow.

We first consider the following unnormalized Kéhler-Ricci flow on a Kéhler manifold

X with an initial Kahler metric g

dg .
— = —Ric(g),
) 2 (9)
9li=o = 9o
Let
(2.2) T =sup{t > 0| [go] + t[Kx] > 0} € RU {o0}.

It is shown in [41, 39] that the K&hler-Ricci flow has a maximal solution g(t) for
te[0,T).

2.1. The case of finite-time singularities. If 7" < oo, the flow (2.1) must develop
singularities at ¢ = T'. In this case, ar = [go] + T[Kx]| is a nef class on X. If [go] €
H?*(X,Q), ar is semi-ample by Kawamata’s base point free theorem and the numerical
dimension of ar coincides with its Kodaira dimension. In general, it is unclear if there

exists a smooth semi-positive closed (1,1)-form in az. The most interesting case is
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when a7 is big, i.e., there exists a Kéhler current in ar or equivalently, (ar)™ > 0. Such
a bigness condition can be also interpreted by the total volume along the Kahler-Ricci

flow as
(2.3) (o)™ = }1_):(1% Voly) (X) > 0.

This bigness assumption for the limiting class is in fact generic for finite-time singu-
larities.

It is conjectured in [33] as part of the analytic minimal model program that when
ar is big, (X, g(t)) should converge to a compact Kéhler variety and the flow will
extend uniquely through the singular time through a canonical metric surgery. Such a
surgery corresponds to either a divisorial contraction or a flip in birational geometry.
After suitable blow-ups, the singularity model is expected to be a transition from a
shrinking soliton to an expanding soliton (c.f. [28]). This is confirmed in the case
of Kéhler surfaces by [37, 38], where it is shown that the Kahler-Ricci flow contracts
finitely many holomorphic S? of (—1) self-intersection in Gromov-Hausdorff topology.
The following diameter bound is the first step to understand formation of finite time

singularities of the Kahler-Ricci flow in general dimension:

Theorem 2.1. Let (X, go) be a Kdhler manifold equipped with a Kdhler metric gq.
If g(t) is the maximal solution of the Kdhler-Ricci flow (2.1) for t € [0,T) for some
T € R* and if the limiting class [go] + T[Kx] is big, then there exist C = C(X, go) > 0,
c=c(X,90) >0 and a = a(X, go) > 0 such that for any t € [0,T),

diam(X, g(t)) < C,
/ |Gi(, ) [dV) +/ IVGy(,-)|dVyq + <— inf Gt(x,y)) Voly(X) < C,
b b yex

VOlg(t) (Bg(t) (SL’, R))
Voly) (X)

> cR”,
for any x € X and R € (0, 1], where Gy is the Green’s function for (X, g(t)).

We stress that Theorem 2.1 holds for general Kéahler manifolds, and no projectiveness
assumption is needed. We prove it in section 8 by establishing a uniform upper bound
for the p-Nash entropy for any p > 0 and a lower bound for the volume form along the

flow.
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2.2. The case of long-time solutions. It is well-known that the Kahler-Ricci flow
has a long-time solution if and only if the canonical bundle Kx is nef. The underflying
manifold X is then called a minimal model. The Kodaira dimension of X is defined
by

log h°(X, mK
Kod(X) = lim ‘087X mEx)
m—00 logm
if h°%(X,mKx) # 0 for some m € Z*. The Kodaira dimension of X is always no

greater than n and is nonnegative as long as there exists one holomorphic pluricanonical
section. The abundance conjecture predicts that if X is minimal, Ky must be semi-
ample and hence the Kodaira dimension is always nonnegative. We would like now to

obtain a uniform diameter bound for long time solutions of the Kahler-Ricci flow.

We consider the following normalized Kahler-Ricci flow with initial metric gq if the

Kodaira dimension of X is nonnegative.

0 .
_g = —RIC(g) -9,

(2.4) ot
9li=o = go-
Obviously, the flow (2.4) exists for ¢ € [0, 00) since Ky is nef.

Theorem 2.2. Let (X, go) be an n-dimensional Kihler manifold with nef Kx and non-
negative Kodaira dimension. Let g(t) be the solution of the normalized Kdhler-Ricci
flow (2.4). Then there exist C = C(X, g9) >0, c = c(X,g0) > 0 and o = a(X, gg) > 0
such that for any t > 0,

diam(X, g(t)) < C,

/ ‘Gt(xv ')|dv;l(t) +/ ‘VGt(xv ')‘dvg(t) + (_ inf Gt(xvy)) VOlg(t)(X) < C?
X X yex

Voo (Byw (: B)) - o
VOlg(t) (X)
for any x € X and R € (0, 1], where Gy is the Green’s function for (X, g(t)).

The diameter is optimal for X with positive Kodaira dimension. When ¢;(X) = 0
and hence x(X) = 0, the diameter of (X, g(t)) decays at the exact rate e™*/2. The
uniform diameter bound in Theorem 2.2 is proved in [21] in the case when Ky is
semi-ample, and the proof is built on works of [35, 1], relying on the uniform scalar
curvature bound obtained in [34, 46] (see also [42] in the case of general type). Our
proof in the present case is based rather on Theorem 1.1. This has many advantages,

since we do not need then any assumption on the scalar curvature (for which bounds
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are not available in the nef case), nor on the projectiveness of X, nor on the abundance

conjecture.

Next, we discuss the behavior of the flow near a singular fiber in the case of collapse.
If Kx is semi-ample, the pluricanonical system of X induces a unique holomorphic
fibration

7 X — Xean,

where X4, is the unique canonical model of X *. The Kodaira dimension of X coincides
with the complex dimension of X,.,,. The general fibre of 7 is a smooth Calabi-Yau
manifold. It is proved in [31, 32] that the normalized Kéhler-Ricci flow converges

weakly to a twisted possibly singular Kahler-Einstein metric go, on X4, satisfying

Rlc(goo) = 0 + gwp,

where gy p is the Weil-Petersson metric for the Calabi-Yau fibration 7 : X — X ..,
while the fibre metrics collapses along the normalized Kéahler-Ricci flow. In particular,
if X, = 77'(Y) is a smooth fibre, it is shown in [40] that e’g(t)|x, converges to
the unique Ricci-flat Kéhler metric in [g(0)|x,]. The following theorem describe the

asymptotic behavior near the singular fibre with at worst canonical singularities.

Theorem 2.3. Let (X, gy) be an n-dimensional projective manifold with semi-ample
Kx and Kod(X) = 1. Let g(t) be the solution of the normalized Kdhler-Ricci flow
(2.4). If every fibre of m : X — Xean has at worst canonical singularities, then there
exists C' = C(X, go) such that for allt >0 and y € Xg,,,, we have

t

(2.5) diam(X,, g(t)[x,) < Ce™ 2.

The fibre diameter estimate (2.5) is intrinsic as the diameter is achieved by a minimal
geodesic in the fibre. It immediately implies that the extrinsic fibre diameter estimate

holds uniformly for all fibres of 7 : X — X, since X

omn 1s an open dense subset of

Xcan- Theorem 2.3 can be compared with the diameter estimates in Li [23, 24] for
fibres of collapsing Ricci-flat Kéahler metrics on a projective Calabi-Yau manifold. In
fact, the proof of Theorem 2.3 based on Theorem 1.1 can serve as an alternative proof
and improvement of the diameter estimates in [23, 24] (c.f. Theorem 11.1). One can
further derive uniform bounds for the Green’s function and volume non-collapsing on
each smooth fibre with respect to the rescaled metric e'g(¢) (c.f. Theorem 11.2).

More generally, the abundance conjecture predicts that Kx is nef if and only if it is semi-ample
when X is projective.



8 BIN GUO, DUONG H. PHONG, JIAN SONG AND JACOB STURM

2.3. The case of constant scalar curvature Kahler metrics. Finally, we would
like to extend our results to families of cscK metrics with bounded p-Nash entropy for

p < n. We will apply Theorem 1.1 to cscK metrics on smooth minimal models.

Theorem 2.4. Let X be an n-dimensional smooth minimal model of general type. For
any Kdhler class A of X, there exist 69 = do(A) > 0, C = C(A,d) >0, a = (A, dp)
and ¢ = ¢(A,dy) > 0 such that for any 0 < § < dy, there exists a unique cscK metric
ws in Kx + 0A satisfying

diam(X,ws) < C,

/ |Gs(z, -)|wys +/ \VGs(z,-)|ws + (— inf G(;(x,y)) Vol (X) < C,
b's X yeX

Vol, (B, (x, R))
Vol (X)

for any x € X and R € (0,1), where Gs(z,y) is the Green’s function of (X,ws).

In particular, if the canonical model X ., of X has only isolated singularities, then

> cR“,

(X, ws) converges to the Kahler-Einstein metric space (Xcan, dig) in Gromov-Hausdorff
topologgy as § — 0, where (Xean, dip) is the metric completion of the unique smooth

Kihler-FEinstein metric on the reqular part of Xean in [29].

The existence of cscK metrics in a Kéhler class near [Kx| on a minimal model is
proved in [43, 36, 20, 27, 30]. When X is a minimal model of general type, there exists
a unique Kéahler-Einstein current with bounded potentials by the work of [22, 8, 45]

and it is a smooth Kéahler-Einstein metric gxg on X2 . the regular part of X.,,. It

is proved in [29] that the metric completion of (X¢,,, gxg) is a compact metric space
homeomorphic to X, itself.

It is conjectured in [20] that if X is a minimal model, then the cscK metric spaces
near the canonical class [Kx| converge geometrically to the twisted Kéhler-Einstein
space (Xean, dean)- Theorem 2.4 can be viewed as a partial confirmation of this conjec-

ture.

3. BOUNDED SETS IN THE KAHLER CONE

Notational convention: if w = (g;5) is a Kéhler metric and 6 = (6;5) is a (1, 1)-form, we
denote tr,(6) = g6

denote by p* the conjugate exponent of p, i.e., % + :z% =1.

;7> Where (g7) is the inverse of (gi7)- For a number p € (1,00), we
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Proposition 3.1. Let (X, wx) be an n-dimensional compact Kdhler manifold equipped
with a Kdhler metric wx in a Kdhler class a. For any k > 0, and a cohomology class
B € HYY(X,R), there exists a smooth representative 6 € 3 such that

(31) ||9||Ck(X,wX) < Ca

for some constant C' = C(X,wyx, k, |8 - a1, 5% a"2]) > 0.

Proof. We will take 6 to be the unique harmonic (1, 1)-form in the class /3, relative to
the Kahler metric wy, i.e.

Az = 0.
By the standard Bochner-Kodaira-Lichnerowicz formula, we have

1 1 1
5(91'1243 + 0i5.57) + Omj Rimjk — §9mERim — §9imRmEa

R;; denote the Riemann and Ricci curvatures of the fixed metric wy,

(32)  0=—-As; =

where R,z i,
and 6 Ok 75
induced by wyx. It is well-known that equation (3.2) is a linear elliptic equation of the
(1,1)-form 6;;.

7> denote the covariant derivatives of 6,; with respect to the connection

Taking traces on both sides of (3.2), we obtain
A,y (tru,0) =0,

hence tr,, 0 must be a constant. Then we have

v
c = / 0 N w}_l = —tr,, 0,
X n

where V = [, w% = [wx]". On the other hand, we also have

(3.3) Cy = /)(92 A (wx)"% = C(n) /X((trwxe)2 — |9|ix)w3‘(.
From this we see that
(3.4) [ 16, %

X

is uniformly bounded depending only on ¢;, ¢, and wy. Applying Moser iteration
to the equation (3.2) we get an L* bound for #. The uniform C*® estimates of
then follow from the standard elliptic estimates applied to the linear elliptic equation
(3.2). O

Note that when [ is Kéhler, ¢, in (3.3) is positive and so (3.4) is uniformly bounded
depending only on ¢; and wyx. The following corollary is then an immediate conse-

quence of Proposition 3.1.
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Corollary 3.1. Let (X,wx) be an n-dimensional Kdhler manifold equipped with a
Kahler metric wx. Then the following hold.
(1) For any bounded set U in the Kdhler cone of X, there exists C = C(U) > 0
such that for any Kdhler class p € U,
B lwx]" ™t < C.
(2) For any A > 0 and a Kdhler class B with
B lwx]" < A,
there exists C'= C(A) > 0 such that
Clox] =8

1s a Kahler class.

Corollary 3.2. Let (X,wx) be an n-dimensional Kdhler manifold equipped with a
Kahler metric wx. For any bounded set U in the Kdhler cone of X, there exists a

smooth closed (1,1)-form 0 € 5 for any 5 € U with the following uniform properties.
(1) There exists C = C(U) > 0 such that ||0]|cs(xwy) < C,
(2) There exist « = a(U) > 0 and C = C(U,«a) > 0 such that for any ¢ €
PSH(X,0),

e~ alp—supx ¢) (wx)" < C,
X

Proof. 1t suffices to prove (2). By Proposition 3.1, there exists B = B(U) > 0 such that
0 < Bwx. Then for any ¢ € PSH(X,6), we have ¢ € PSH(X, Bwx). The corollary
then follows by applying the a-invariant of Bwx. O

4. L*°-ESTIMATES FOR COMPLEX MONGE-AMPERE EQUATIONS

Proposition 4.1. Let (X, wx) be an n-dimensional compact Kdhler manifold equipped
with a Kdhler metric wx. For any K > 0, p > n, there exist C = C(X,wx,n,p, K) >0
such that if 0 a smooth closed (1,1)-form with 6 < wx and if w = 0 + /=100y is a
Kahler form satisfying
Nx oy p(w) < K,
then
¢ — Sl)1<p80 — Vollpeexy < C,

where Vg = sup{u : v € PSH(X,0), u < 0} is the envelope of non-positive 0-psh

functions.
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Proof. By the assumption on 6, we have PSH(X,0) C PSH(X,wx). Therefore there
exists &« > 0 and C, > 0 such that for any ¢ € PSH(X,0),

/ e~ alp—supx so)w?( <,
X

Then the proposition follows from the uniform L*>-estimates from [8, 7, 2, 11, 16] which

generalize Kolodziej’s L™ estimates in the case of a fixed background metric [22]. O

Corollary 4.1. Let (X,wyx) be an n-dimensional compact Kdihler manifold equipped
with a Kdhler metric wx. For any A, K > 0 and p > n, if two Kahler forms w, and

wy belong to the same Kahler class and
Wi, W € V(X>WX>n>Aap> K)>
then there ezist C = C(X,wx,n, A,p, K) > 0 and ¢ € C>*(X) such that

(4.1) wy = wy + V=180, lo = suppll=cx) < €

Proof. Let v be the Kihler class of w; and wy. Then v-[wx]"™! < A by our assumption.
By Proposition 3.1, we can choose a smooth closed (1, 1)-form 6 € ~ (not necessarily
positive) such that
1013 (x.ox)
is uniformly bounded by a constant that only depends on A. Furthermore, We define
@i € C*(X) by
w; = 0 ++/—100¢;, 81)1(pg0i =0,i=1,2.

Then (; satisfies the following complex Monge-Ampere equation

= e l(
(6]
Since w; € V(X,wx,n, A, p, K),

(4.2) wx)", sup y; = 0.

€5 21 10g Lo (xwy) < K, i =1,2.
Let Vy = sup{u : u € PSH(X,#), u < 0}. Proposition 4.1 implies that there exists
C =C(X,wx,n, A, p, K) > 0 such that
loi = VollL=(x) < C,
and so
o1 — @allLe(x) < 2C.
The corollary is proved, with ¢ = ¢ — s. 0
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5. ESTIMATES FOR THE GREEN’S FUNCTIONS

Throughout this section, we fix the n-dimensional Kéhler manifold (X, wy) and
constants A, K > 0 and p > n.

The following lemma is a natural extension of Lemma 2 in [14].

Lemma 5.1. Suppose w € V(X,wyx,n, A,p,K). Let v € L'(X,w") be a function that

satisfies [, vw™ =0 and
(5.1) veC*D), A,v>—ain

for some a > 0 and Qs = {v > s} is the super-level set of v. Then there is a uniform
constant C = C(X,wx, A, p, K) > 0 such that

1
(5.2) supv < C(a + —/ lv|w™).
X W™ Jx
For the convenience of the readers, we sketch the proof of Lemma 5.1.

Proof. We follow closely the arguments in [14].

First, we observe that it suffices to prove the lemma in the case a = 1. This
is because both the equation (5.1) and the desired inequality (5.2) are homogenous
under a simultaneous rescaling of a and v, a — 1, v — 7.

Next, we may assume ||v||z1(x ) < [w]", otherwise, replace v by © := v-[w]"/||v]| L1 (x wn)
which still satisfies (5.1) with the same @ = 1 and ||0||z1(xwn) = [w]™. It thus suffices
to show supy v < C for some C > 0 with the dependence as stated in the lemma. By

Proposition 3.1, we can choose a smooth closed (1, 1)-form 6 € [w] with ||0||cs(x.wy)
uniformly bounded. We let w = 6 4+ /—109¢p for ¢ € PSH(X, #) and supy ¢ = 0.

(1). We fix a sequence of positive smooth functions 7, : R — R such that n(x)
converges uniformly and monotonically decreasingly to the function z - xgr, (z), as
k — oo. We may choose ni(x) = 1/k for any z < —1/2. As in [15] we make use of
auxiliary Monge-Ampere equations. More precisely, for each s > 0 and large k, we

consider the following specific complex Monge-Ampere equations [14]

(53) 6+ V10000 = W U= eFur supy =0,

where

(5.4) Asp = / (v —s)ef'wh — [ (v—s)efwhy = A, as k — oo.
X Qs

We have assumed that the open set €, # () so A, > 0. The assumption that
]| L1 (xwny/[w]™ < 1 implies that A, < 1, hence A, ) < 2 for large k.
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(2). Recall that we have assumed that a = 1. We denote A = C' + 1 where C' > 0 is

the constant in Corollary 4.1. Consider the test function
D= —c(—thsp + @+ A)F + (v —3),
where ¢ > 0 is chosen such that

1\m
(5.5) et — (”:2 ) (1 +enra,

It follows easily from A;; < 2 and equation (5.5) that
1/(n+1
(5.6) e < O(n)AY"Y,

for some C'(n) > 0 depending only on n. The function ® is a C* function on £, and
—rx+@e+A > 1. As shown in [14], it follows from the maximum principle, the choice
of € in (5.5) and the equations of 95 and ¢ that ® <0 on X.

(3). From ® < 0 and (5.6), we have (v—s)A,, S < Oy (—the i+ o+ AV on X
for some C > 0 depending only on n. This together with the a-invariant and Holder-
Young inequality (see [14] for more details) implies that for some uniform constant
Cg >0

(5.7) ré(s 4+ 1) < Cogp(s)' 1%, for Vs > 0and Vr > 0,
where we denote 6y = £ > 0 and ¢(s) = f efwh.
The assumption that ||UHL1(X7wn) < [w]™ implies that fQ vel'w% < 1. Hence for any

s > 0 we have
1 1
(5.8) o) = [ erur <2 [ ey <2
Qs Qo s

We can pick sg = (2C5)Y/% to ensure that ¢(sg)% < 1/(2C,). Given (5.7), we can apply
the De Giorgi type iteration argument of Kolodziej [22] to conclude that ¢(s) = 0 for
any s > S, with

1 15 1
Soo:30+m:(202> /O+1_2_50
This means that supy v < S, and the lemma is proved. OJ

The following corollary is an immediate consequence of Lemma 5.1.
Corollary 5.1. Suppose w € V(X,wx,n, A, p, K). If v e C*(X) satisfies

|Ayv| <1 and / vw" =0,

X
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then there is a uniform constant C = C(X,wx,n, A, p, K) > 0 such that
1
sup |v §C1+—/ vlw™).
wplol £ 00+ = [ fole)

In order to bound ﬁ Jx [v|w™, we will have to impose a uniform lower bound for
the normalized volume form
il

([w]™)

In particular, we will consider w € W(X,wx, n, A, p, K,~y) for some nonnegative con-

—.
Wx

tinuous function ~.

Lemma 5.2. Suppose v > 0 is a continuous function on X with {y > 0} being
connected. Then for any open subset V. CC {v > 0}, there exists a connected open
subset U of X with

VccUcc{y>0}.

Proof. Obviously, {7 > 0} is path connected since it is open and connected. We choose
a fixed base point p € V. For any ¢ € V, there exists a continuous path C joining
p and ¢ in {y > 0}. We can find an open tubular neighborhood U, of C such that
U, CC {y > 0}. Then
VC ququ
and we can find finitely many ¢, ¢a, ..., gy C V such that
7 N

Then U CC {7y > 0} is open and connected since every Uy, is path connected with a

common point p. The lemma is then proved. U

Lemma 5.3. There exists ¢ = (X, wx,n, A,p, K) > 0 such that if
(1) v > 0 is a continuous function on X such that
H{y =0}wy <€ {v >0} is connected,
(2) we W(X,wx,n, A, p, K;7),
(3) v e C*(X) satisfies

|Ayv] <1 and / vw" =0,
X

then there ezists C' = C(X,wx,n, A, p, K,e,7v) > 0 such that

1
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Proof. The proof is by contradiction. Suppose Lemma 5.3 fails. Then there exist a

sequence of w; € W(X,wx,n, A,p, K;v) and v; € C?(X) satisfying
ijl)j = hj, / ij;L = O,
X
for some |h;| <1, and as j — oo
1 n
(59) W/X|Uj|wj =: Nj — 00.
We define F; by

e = ([w;]") ™

><€3 ‘“-83

and immediately we have
efi > .

We now consider 9; defined by ©; = v;/N;. Clearly we have

- 1 “n
80,5l = I/ = 0, [ ol = 1.
[w;]™ Jx
Applying Lemma 5.1 to 9, there exists a uniform C' > 0 such that for all j > 1,
(5.10) sup 0| < C.
X
From the equation of ; and integration by parts, we see that

~ in 1 ~ n
(5.11) /X\ijﬁjeFJwX = W/)vaj‘ijwj — 0.

Let Uy = {7y > 0}. Suppose [{y = 0}|,, < € for some sufficiently small € > 0 to be
determined. Then for any € > 0, we can pick open connected subsets Us. CC Uy CC
{7 > 0} as in Lemma 5.2 such that

‘X \ U2€|wX < 2¢, |X\U3€‘MX < 3e.

Without loss of generality, we can assume both Us. and Us. have smooth boundaries.
Let

(5.12) 0 = 1{257

Then we have infy,_ ef7 > 61 and

1/2 1/2
[ Wikt < ([ 19aRenar) ([ e Ptaes)
UQE U2s UQE
5—1/2 V~'2 Fj, n 1/2 n—1 ) 1/2
e V5, e wk Wy = AWw;
X X

1/2
< (Aaa)—1/2(/x|wj|gje%}) 0

IA



16 BIN GUO, DUONG H. PHONG, JIAN SONG AND JACOB STURM

by (5.11) as j — oo. Therefore ¥, is uniformly bounded in W'(Us,wx) by the
above estimate and (5.10). By the Sobolev embedding theorem, after passing to a
subsequence, we can assume that ©; converges to U, in Ll(U—gE, wx). Furthermore,
since ¥; is uniformly bounded in L>(Us.) and converges almost everywhere to 0, in
Us., U is also bounded in L>(Us,, wx).

Since lim; o [, |Vjluxwk = 0, we have for any test function f € C§°(Us:)

[ oans

= '/<v®j>vf>wxwg(
X

< (0 VL) [ |Vl >0

U2s
as j — oo, where A is the Laplace operator with respect to wy. Therefore by Weyl’s
lemma for the Laplace equation, U4, solves the Laplace equation A, = 0 on Us. and
U0 € C°(Us,). For any smooth vector field Y € C§°(Us.), we have

/X(Vfioo,Y>wa§‘< = —/Xfioo-divwXYw?(

_ . - n
= —lim [ 0;-div,, Ywy
J—00 X

= lim [ (V0;,Y), wy =0.
J7eo Jx

Here the first and third lines follow from the divergence theorem, and the second
equality holds since @; converge in L' (Us.) to U, and the function div,,, Y is compactly
supported in Us.. By taking Y = nV,, for any nonnegative function n € C§°(Uss),
we see immediately that Vi, = 0 on Us., and hence 74, is constant on Us. since Us.
is connected.

We first derive a uniform positive lower bound for ngg |0j|w%. In fact, by the Holder-
Young inequality, there exists C' > 0 such that for any ¢ > 0 and smooth functions u

and F', we have
(5.13)  |ulef = |67 tulef 180 < §ef' (1 + | F| 4 |logd]) + COHule? 1

Applying (5 13), we have

U= = [l = [ lenon

5/ eFa'(1+\Fj|+|1og5|)w_’;<+05—1/ |0;1e 1Pl

X X

5/ (
X

et (14 |Fy| + | log 6w’ + 05_1/ |0;]€? 1l + Ce@ / W
Use X\U35

IA

IA
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. _ ~ —1|5. -1
< 6/ el (1 + || + | log§|)ws + C§ 1/ |5;]e® ilwt 4+ 2eCe®?
X Use

1 ~ n
< 5 Culox) [l
Use

for all j and some uniform constants C' = C(A,p, K) and Cs = Cs(A, p, K) > 0, if we
choose § = 0(A, p, K) > 0 sufficiently small such that

1
5/ P (1 + |Fy| + |log 8 ) < =,
¥ 4

and then choose

6—0571
5.14 o=
(5.14) FSSIT TR0
Immediately we have
(5.15) (lox]™) / 55w > (2C5)™
3e

for sufficiently large j.

On the other hand, we can extend v, to a constant function on X. By applying
the Holder-Young inequality again and by the fact that on Us. is connected, for any
¢ > 0, there exists C; > 0 and Cy = Cy(A, p, K) > 0 such that for sufficiently large j,

we have

|Osc |

ﬁ/){(@m — U)Wy

1 / 1
< |00 — U;| wWT + / [Voo — Oj|w?
[w;]™ o, T ] s 7
= / |@Oo—f1j|eFjw_§‘<+/ [V — ;)W
Use X\USE
< ¢ [ BB+ ol + Cue) el et [ g g o
X USE
_‘_Cl(el)—le(e’)fl sup x (|veo —0;]) / |’Uoo _ ,aj|w;b(
X\Ugg
< 02(61)1/2 + 602(5/)—1&j
< (405)_1,

if we choose € and ¢ with

N —1
(5.16) ¢ < (8CyC5)2, and € < &5 = (8602(6) 105) ,
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Since 9; converges to U, in L'(Us.), for sufficiently large j, we have

(o) [ fole < Q) [ il + (407 < (207

This contradicts the lower bound (5.15). From now on, we will fix the choice for
min(eq, €9)
=
from (5.14) and (5.16) for the parameter € in the assumption of the lemma.
We have now completed the proof of the lemma. O

Let w be a Kéhler metric on X. We let G(z,-) be the Green’s function of (X, w)
with base point z, for any x € X.

Lemma 5.4. There exists ¢ = (X, wx,n, A, p, K) > 0 such that if
(1) v > 0 is a continuous function on X such that
{7y =0}wyx <&, {y> 0} is connected,
(2) w € W(X,wx,n, 4, p, K37),

then there ezists C = C(X,wx,n, A,p, K,e,7v) > 0 such that for any v € X

/X|G(:c, Nw™ < C, and ylg)f{ G(z,y) > —%,

where G(x,-) is the Green’s function of (X,w).

Proof. We now fix w € W(X,wx,n, A, p, K;~) satisfying the assumption and = € X.
Take a sequence of smooth functions h; which are uniformly bounded and converge
: : 1 n
in L9(X,w) for some fixed sufficiently large ¢ > 0, to —x{g(z,)<0} + g f{G(;p,-)go} w",
where we denote yg to be the characteristic function of a Borel set E. We can also

choose hy, to satisfy
1
sup |hx] <2, and —/ hiw™ = 0.
X wi™ Jx
Immediately, there exists a unique smooth solution solving the linear equation

1
Aw’l}k = hk, —/ vkw" =0.
W™ Jx
By Lemma 5.3, there exists C' > 0 independent of k£ such that
sup |vg| < C.
X

Applying the Green’s formula, we have by the dominated convergence theorem

wmzﬁc@wemmw@% Gz, )"

{G(=,)<0}
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as k — oo. Combining this with the fact that

/ G(z, )w" = —/ G(z, - )w".
{G(=,)>0} {G(=,)<0}

we easily find that [, |G(z,-)lw™ < C.

For the lower bound of the Green’s function, we apply Lemma 5.1 to the function

v:=—[w|" - G(x,-) and a = 1. It then follows that
—[w]™ mf G(z, / |G(z, -)|w")
This completes the proof of the lemma. U

We observe that Lemma 5.4 implies a lower bound of the first nonzero eigenvalue
of the Laplacian operator A,. To see this, suppose A\; > 0 is such an eigenvalue
and f € C*(X) is an associated eigenfunction normalized by [ f*w" = [w]". Then

Auf=—=Mf. If welet xyg € X be a maximum point of |f|, by the Green’s formula we

/GZIZ(],'Afwt —>\1/G.§L’0,

| (zo)| < Ml f (o) /X |G (o, -)[w" < CLf (o) A1,

by Lemma 5.4. This immediately gives the uniform positive lower bound of ;.

have

0# f(wo) =

Hence

For convenience of notation, we write

(5.17) G(z,")=G(x,-) — inf G(z,y)+1>0.

z,yeX

It is clear that [ G(x,-)w" < C.

Lemma 5.5. There exist ¢ = (X, wx,n, A,p, K) > 0 and € = &'(n,p) > 0 such that
if
(1) v > 0 is a continuous function on X such that
H{y = 0}wy <e, {7 >0} is connected,
(2) w e W(Xvw)ﬁnvAava;fy%
then there exists C' = C(A,p, K,e,7,¢") > 0 such that for any v € X, we have

/x G, ) w" < O(lw]") ™
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Proof. We fix x € X and a small constant ¢’ > 0 to be determined. Fix a large k > 1
and consider a smooth positive function Hy which is a smoothing of min{G(z,-), k}.
Without loss of generality, we can assume that Hj converges increasingly to G(z,-) as

k — oo. In particular, there exists C' = C'(A,p, K, e,7) > 0 such that for any k

O</er X
X

where F' = ([w]") 71 4:.
X
We now consider the following linear equation on X

AW'U/k Hk) ,,L fXka
[w]” fxukw —0

] :

(5.18)

Equation (5.18) admits a unique smooth solution since the smooth function on the
right-hand side of the first equation has integral 0. We cannot apply the maximum
principle to uy directly since the term —H ,i' on the right-hand side of 5.18 is unbounded.

We will let x € [w] be a smooth closed (1, 1)-form such that ||x||cs(x.w,) is uniformly
bounded some constant that only depends on A. We let

w=x+ V-1, supp = 0,

and let

Hk = [u)]” . Hk

Then we consider the following auxiliary complex Monge-Ampere equation which ad-

mits a smooth solution by [44]

(5.19)

Ty = L
[w] Iy (&

w el W,
)=~ R
with

sup ¢ = 0, By I/((ﬁ )"+ 1)ef Wy

X X

By the Holder inequality, there exists C' = C'(A,p, K,&’,v) > 0 for sufficiently small
0 < ¢’ < n~! such that for all k£, we have

1 —ne’
(5.20) C‘lgfyw}gBkS/er}jL(/ewX /er SC’.
b b b

For fixed p/ € (n,p), the p/-th entropy of the function ((H;)" + 1)ef' /B on the
right-hand side of (5.19) satisfies

/

F . n

L A
(5.21)3—/((Hk)"6 +1)] ~log By + F +-log(1+ (8, e
kJX
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log By |V’ - 1
< M/((H)ne +efu+ 5 [
k

/

~ ’ A ’ p
()™ +1) (1o ()™ + 1)) ey
+—/ Hy)™ + 1)|F|P'efwh.

The first integral on the right hand side in (5.21) is bounded due to the estimate of
the constant By, in 5.20, the Holder inequality and the uniform L!-bound of

/f]ker}S/g(:z
X X

The second integral on the right hand side in (5.21) is also uniformly bounded by a

by Lemma 5.4.

similar argument since

]. l ! il !
5 [ U+ Dot + e < € [ B ety <,
k X
by the Holder inequality and the calculus inequality (log(1 + z))? < Cz'/" for any
x > 0. We have also chosen ¢ > 0 small so that (n + 1)’ < 1.
To deal with the last integral in (5.21), we observe that by Young’s inequality
Fali N (Hpe' + 1)/
p/v (/)

where (p/p')* > 1 is the conjugate exponent of p/p’ > 1. Hence the last term in (5.21)

(Hy)™ +1|FP <

satisfies

1 .
((H )"+ DI FPefwy

< / IFPera +C [ (=27 + 1)eug
<
if we choose ¢’ small so that ne’(p/p')* < 1.
From now on we fix a small ¢/ > 0 that meets the requirements above and so the

p/-th entropy of the function on the right-hand side of (5.19) is uniformly bounded.
We apply Corollary 4.1 to conclude that

(5.22) Sup [ — | < C,

for some uniform constant C' = C'(A,p, K,e,7,¢") > 0.

We now consider the function

(523) Vg = (Qﬂk — QO) — L / (Qﬂk — QO)CU” + 8//uk,

Wl Jx
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where 5” > () is a suitable constant to be chosen later. It follows from the definition
that fX vpw™ = 0 and vy, 1s a smooth function.

Let w¢k = x + v/ —190%;,. We then calculate the Laplacian of v in (5.23) and there
exists C' > 0 such that

Ayvp = try(wy,) —n+e"Ayug

wn l/n ’ 5” ’
n(ﬂ) —n—¢e"Hj +—/ H{ w"
wn [w]™ Jx

"
= B, MHPE + D)V —n— " H + ([:TW /X Hi w"

v

> nC (W) Hf —n—&"Hf > —n,

if we choose £” = nC~([w]")¥. We apply the Green’s formula to the function vy, at =

(@) = i / wer+ [ Gla) - = [ Gla.)(-A0"
< /Q Jw" < C,

where the last inequality follows from the uniform L'(X,w")-bound of G(x,-). It then
follows from (5.22) that

’

ur(z) < C([w]") ™

for a uniform constant C' > 0. We now apply the Green’s formula to u, at x € X

ug(x) = n/ Upw +/ Gz, ) (—Ayup)w"

— - H "
/ G o /X( )
It then follows that

/X Gla, ) Hy) W < <>+CH / () w"

C([w]™) /ka
< 20wl

IN

for some uniform constant C' > 0. Letting £ — oo and applying the monotone conver-

gence theorem, we can conclude that

/X Gz, )+ < O(l]")

for some uniform constant C' > 0. The proof of the lemma is now complete. U
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We observe the following elementary estimate which follows easily from the Green’s

formula.

Lemma 5.6. Under the same assumptions of Lemma 5.5, for any B > 0 we have
IVyG(z. )2 w]")?
W) 1 (y) < (fw])”
g
Proof. Fix 8 > 0 and a point z € X. The function u(y) := G(z,y)7? is a continuous

function with u(z) = 0 and v € C*(X\{z}). By the definition of G in (5.17), for any
y € X, we have

5.24 su
( ) xeg X g(l’, y)1+6

(5.25) 0 <u(y) < (W7
Applying the Green’s formula, we have

0=u(zx) =

wtt)w"

T / / i 1+ﬁ“ "

In the last inequality, we apply the integration by parts using the asymptotic behavior

uw+

of G(z,y) near y = x. The lemma then follows easily from 5.25. O

Finally we are ready to derive the uniform L'(X,w") bound for the gradient of

G(z,-).

Lemma 5.7. Under the same assumptions of Lemma 5.5, for any s € [1, 221256' ) there

is a uniform constant C' = C(s) > 0 such that for any x € X, we have
(5.26) / VG, ) < — S
(Wt ]”)s v

Proof. 1t suffices to prove the same estimate for G(z,-). For fixed x € X, we regard

2+4-2¢’
> 2+4€’

|Vg| / gl-i—e $)/2

)L ()

G(y) := G(x,y) as a function of y. By fixing s € [1 ) and applying Holder

inequality, we have

(5.27) / VG (x

A
—~
P
Q
+
|5

I
2 2

where > 0 is chosen by 1+ 3 = (1+¢’)2=2. We apply the estimates in Lemmas 5.5
and 5.6 for the second inequality in (5.27). O
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Combining the estimates above, we have established the following main result of this

section.

Proposition 5.1. For any A, K > 0 and p > n, there exist ¢ = (X, wx,n, A, p, K) >
0 and &' = €'(n,p) > 0 such that if

(1) v > 0 is a continuous function on X such that
H{y=0}w, <e, {v>0} is connected,

(2) we W(X,wx,n, A,p, K;7),
(3) s €[1,32),

there exist C; = C(X,wx,n, A, p, K,7v,e) > 0, Cy = Co(X,wx,n, A, p, K,v,e,¢') > 0
and C3 = C3(X,wx,n, A, p, K,v,¢,¢',s) > 0 such that

. > ny—1
;g)f(G(z,y) > —C ([w]") 7,
/ |G(ZL’, ')|1+Elwn < 02,

X

/ VG (x, )| ow" < C,
X

for any x € X.

6. DIAMETER AND VOLUME ESTIMATES

In this section, we will establish the following diameter and volume estimates by

applying Proposition 5.1.

Proposition 6.1. For any A, K > 0 and p > n, there exist e = (X, wx,n, A, p, K) >
0 and &’ = €'(n,p) > 0 such that if

(1) v >0 is a continuous function on X such that
{7y =0}wy <e, {y>0} is connected,
(2) w e W(X>WX>n>A7p>K;7)7

there exist« = a(n,p), C = C(X,wx,n, A, p, K,v,e) >0 andc = ¢(X,wx,n, A,p, K,7v,¢e,a) >
0 such that

(6.1) diam(X,w) < C,
62 Volw([B:igx, R) S g

for any x € X and R € (0, 1].
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Proof. We first prove the diameter bound. Since (X,w) is compact and complete,
there exist a pair of points zg,yo € X such that d,(z¢,yo) = diam(X,w). We define
the 1-Lipschitz function d(-) on X by

d(y) = du(0,y)-

Apply the Green’s formula to d at a point € X. We obtain

ﬁ /X d(y)w"(y) + /X (VyG(2,y), Vd(y))wwmw" (y)-

By letting = = o, we have d(xy) = 0 and

! /X dy)"(y) = — /X (V,Clx0,9), Vd(y)uiny" (4)

W]

(6.3) d(z) =

< /X IVyG (20, Y) | (y)-

Finally we establish the uniform diameter by applying 6.3 to x = 2z, with

diam(X,w) = d(yo)
1

/ d(y)er(y) + /X (V,G (10,9, V()" (v)

IN

W™ Jx
/X 1V,6 (0, )™ () + /X IV, G 0r 9l ()
< C,

for some uniform constant C' > 0 by Proposition 5.1.

We now turn to the non-collapsing estimate for metric balls in (X,w). Fix a point

x € X and a number R € (0,1]. Let B(z, R) C X be the geodesic ball in (X,w) with

center x and radius R > 0. We choose a smooth cut-off function n with support in

B(z, R) satisfying

R 4

n=1, on B(x, 5), sg{p V|, < =

We let d(y) = d,(z,y) be the geodesic distance from x to y € X. Applying the Green’s
formula to the Lipschitz function d - n, we have for any z € X

(6.4)
d(2)n(z) = ﬁ /X dy)n(y)e"(y) + /X (V, G2, 9), () V() + d(y) V1))t ®).

Take s = 2J2riff > 1 for &’ from the assumption in Proposition 5.1. We apply (6.4) to

a point Z € X\B(z, R). Then d(Z)n(Z) = 0 and by Lemma 5.7, we have

! /X d(y)n(y)w"(y)

]
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< [ 19GE L (1) + d)Ta).,, ) "0
s s n /s
< 5( [ 96ELw®) " (Vob(Bl. R))
X

< ()= (VoL (B R))
C(Volw(B(x, R)) ) 1/s* |

]

1/s*

where s* = 5 is the conjugate exponent of s. Next we apply (6.4) to a point

1
z € 0B(x, R/2) where d(2)n(2) = R/2. Applying the above estimate along with the
same argument, we have

g - [j]n /X )" () + /X VG )l (ny) + ) [Tn(y)L.s,, ) " ()

. <v01w(B(x, R)))”s* |

[w]™
for some uniform constant C' > 0. This immediately gives a lower bound of the volume
of B(x, R),

Vol,(B(z, R

(B R) -
[w]

for some uniform constants o = s*(n,p) > 0 and ¢ = ¢(A,p, K,v,¢,¢', ) > 0. O

Remark. We briefly explain an application of the noncollapsing estimate (c) of The-
orem 1.1 to the pre-compactness in Gromov-Hausdorft (GH) topology. Let (X, w;) be
a sequence of Kahler metrics satisfying the assumptions in Theorem 1.1. By Gromov’s

precompactness theorem, it suffices to verify the following:

for any € > 0, there exists an N(e) > 0 which is independent of j such that there

exists an e-dense set {:L";}flvijl in the metric space (X,w;) with M; < N (e).

In fact, suppose {SL’(;}Q/ZI is an e-dense set in the metric space (X, w;), by which we
mean a maximal collection of points where any two of them have distance at least e.
By definition, the geodesic balls {B;(z§,¢/2)}, are pairwise disjoint, hence by (c) of
Theorem 1.1,

M;
cle/2)([W]")M; <Y Vol (B, (x5,€/2)) < ([w]") = Vol(X,wyp),

a=1
so M; < ¢ 1(e/2)™™ =: N(e).
This shows that up to a subsequence the metric spaces (X,w;) converge in GH

topology to a compact metric space (Z,dy).
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Now we can complete the proof of Theorem 1.1.
Proof of Theorem 1.1. It suffices to show that if S is a closed subset of X with
dimy S < 2n—1, then X \ S is connected. Since the Cech cohomological dimension is
always no greater than the topological dimension, which is no greater than Minkowski
dimension, we have
H*=YS) = H>™(S) =0

and so by Poincare-Alexander-Lefschetz duality Hy(X, X \ S) = H**~(S) = 0 and
Hy(X, X\S) = H*(S) = 0 (c.f. Theorem 8.3, Chapter VI, in [3]). The exact sequence
for reduced coholomology gives

0=H (X, X\S)— Hy(X \ S) = Hyo(X) = Hy(X, X\S) = 0.
Therefore Hy(X \ S) = Hy(X) = Z and so X \ S is connected. Then Theorem 1.1 is

a direct consequence of Proposition 5.1 and Proposition 6.1. O

7. A UNIFORM SOBOLEV INEQUALITY

In this section, we will prove a special Sobolev-type inequality for Kéahler metrics
satisfying the assumption in Proposition 5.1. The main feature of this inequality is the
uniformity of the constants.

We first improve Lemma 5.3 in the following lemma.

Lemma 7.1. For any A, K > 0 and p > n, there exist ¢ = ¢(X,wx,n, A,p, K) > 0
and &' = €'(n,p) > 0 such that if

(1) v >0 is a continuous function on X such that
H{y = 0}wy <e, {7 >0} is connected,

(2) w e W(XvvanvAava;fy%
then there ezists C = C'(A,p, K,e,7,€") > 0 such that for any v € C*°(X) satisfying

1 1y
/ |Ap|3F) < 1, / vw" =0,
w]™ Jx X

sup |v] < C.
X

we have

Proof. Let p =1+ ¢’ and ¢ = p*. Then applying Proposition 5.1, there exists C' =
C(A,p, K, e,7,e") > 0 such that

o@) = - /X G, y) Mo(y)"(y)
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(o) ()

< ([ 1ae) "
C ([W]n)—a’/pﬂ/q

< C,

IN

IA

. ’ /
since —£ + L =1— £+l —, 0
p q p

We can now apply Lemma 7.1 to derive a Sobolev-type inequality with large expo-

nents.

Lemma 7.2. For any A, K > 0 and p > n, there exist ¢ = ¢(X,wx,n, A,p, K) > 0
and €' = £'(n,p) > 0 such that if

(1) v >0 is a continuous function on X such that
{7y =0}wyx <&, {y> 0} is connected,

(2) w € W(X>WX>n>Aap>K;7)7
(3) s € (1 2+2e’)’

? 24-¢€’
then there exists C' = C(A,p, K,e,7,s) > 0 such that for any u € C*(X) satisfying

quw" =0,

s—1

1 s E
||u||Lw<X>s0(W /X |Vu|sw") .

Proof. By the Green’s formula and integration by parts, we have

ol = | f (GG, Tu

< ([weers) ([
oty ([ [wuriever)

s—1

= C( L /\Vu|s/(s_1)w") ) ,
W™ Jx

for some uniform constant C' = C(A,p, K,e,7,s) > 0, after applying Proposition
5.1. O

s—1

IA

We remark that Proposition 6.1 can also be proved by directly applying Lemma 7.2.
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8. FINITE TIME SOLUTIONS OF THE KAHLER-RICCI FLOW

We will prove Theorem 2.1 in this section by applying Theorem 1.1. The key is
to bound the p-Nash entropy from above and the volume form from below along the
Kéhler-Ricci flow.

We consider the unnormalized K&hler-Ricci flow (2.1) on a Kéhler manifold X with
an initial Kahler metric go. Suppose the flow develops finite time singularity. Without

loss of generality by rescaling, we can assume the singular time is given by
T =sup{t >0 | [wo] +t[Kx] >0} =1

By choosing a smooth closed (1,1)-form x € Kx, the Kahler-Ricci flow (2.1) is equiv-

alent to the following parabolic complex Monge-Ampere flow.

dp log (wo + tx + v/—=100¢)"
(8.1) ot 0 ’
4,0‘1;0 = 07

where €2 is a smooth volume form on X satisfying
V—190logQ = x € [Kx].
We let w; = wy + ty and w = w(t) = w; + v/—190p.

Lemma 8.1. There exists C > 0 such that
dp
<O, L<C
>0, ot =

on X x [0,1).

Proof. The upper bound for ¢ follows directly from the maximum principle. Let

Dy
—t27 _ p—nt.

Then w satisfies

0
(a — A) u = —tr,(wy) <0.

By the maximum principle,

sup u <supu(-,0)=0
X x[0,1) X
and so t% is also uniformly bounded from above. The lemma immediately follows by

considering t € [1/2, 1) since %—f is uniformly bounded for ¢ € [0,1/2]. O
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We can now view the Monge-Ampere flow as a family of complex Monge-Ampere

equations
(w; +V—100¢p)" = 5 Q)
for t € [0,1). If [wo] + [Kx] is big,

lim[w;]" = (Jwo] + [Kx])" > 0.

t—1

Lemma 8.2. There exists 1 € PSH(X, x) such that wy + x + v/—100% is a Kdihler
current on X. Furthermore, ¥ has analytic singularities and is smooth outside the

locus of its singularities.

Proof. The lemma is a consequence of [9] (The regularization theorem 3.2). O

We can assume that wy + x + /=109 > ewp for some € > 0.

Lemma 8.3. There exists C' > 0 such that on X x [0,1), we have
p2>9p—C.

Proof. Let u = ¢ — 1. Then u is bounded below and tends to oo near the singular

locus of ¥ for each t € [0,1). u satisfies the evolution equation

ou (wo + x + V=109¢% — (1 — t)x + /—190u)"
N = log O .

Let
t'=inf{0<t<1]|ewy>2(1—5s)x, forallse(t,1)}.
Obviously, ¢’ < 1. Suppose inf x xmax(1/2,¢),.t0) & = ©(20,%p). Then 1 is smooth at z.

By applying the maximum principle, we have at (2, to)

ou (w0+X+\/—185w— (1 —to)x)n
> log

ot - Q
(ewo — (1 —to)x)"
> ]
= log 0
w'ﬂ
> oo 22 —

for some uniform C' > 0. Therefore u is uniformly bounded below for ¢t € [0, 1).

principle. The lemma then immediately follows. O

Lemma 8.4. There exist A,C' > 0 such that

Dy
— > _ X
at_/w C
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Proof. Let u = %—f + 2A(p — ) for some fixed A > 2¢7! > 0. Then the evolution for

u is given by

(2 _ A) "y - 2,48_‘5 - tro (24w, + 2AV/=T09¢ + ) — 2nA

ot 0
= 2A%—f + tr,(2A(wy + V—100¢) + (1 — 2A(1 — t))x) — 2nA
> QAg—f +tr, (24ew + (1 — 2A(1 —1))x) — 2nA
> QAg—f + 2Aetr, (wo) — 2nA
> 2497 4 ac (w_) R
ot wn

> QA%—f LS —onA.

by choosing A >> ¢~ fort > 1—A~!. Let p be the minimum point of u at t > 1—A~1L,
Then p does not lie in the singular locus of ¥ and by applying the maximum principle,we

have

Op
_ >
ot ()2 -C

for some uniform constant C' > 0. Hence u(p) is uniformly bounded below by applying

Lemma 8.3. The lemma then immediately follows. U

Corollary 8.1. For any p > n, there exists C' > 0 such that for allt € [0, 1)
Nxwop(w(t)) < C.
Furthermore, for any p > n, there exist A, B, K > 0 such that for allt > 0,
w(t) € W (X, wo,n, A, p, K; eBw—B) ,

where 1 1s defined in Lemma 8.2.

Proof. By combining the previous lemmas, there exist C,Cy > 0 such that on X X
[0,1), we have

C’z_leclw(wo)" < w" < Coy(wp)™.

The corollary immediately follows.
O

Proof of Theorem 2.1. The assumption of Theorem 1.1 is satisfied due to Corollary
8.1. Theorem 2.1 immediately follows. O
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9. LONG TIME SOLUTIONS OF THE KAHLER-RICCI FLOW

We will prove Theorem 2.2 in this section as an application of Theorem 1.1. As in
the previous section, we will bound the p-Nash entropy from above and the volume
form from below along the Kéahler-Ricci flow.

Let X be a Kéhler manifold with nef Kx and nonnegative Kodaira dimension. For
any smooth closed (1, 1)-form y € Kx, we can find a smooth volume form € such that
x = v—1901log Q, / Q=1

b's

We let w; = (1 — e *)x + ¢ 'wp. The numerical dimension of Kx is defined by
k= r(X)=max{k >0:[Kx]* #0in H**(X R)}.

We will assume Kod(X) > 0, the numerical dimension x(X) > Kod(X) > 0. The
normalized Ké&hler-Ricci flow (2.4) is equivalent to the following parabolic complex
Monge-Ampere equation

Dy et (w, + /=100¢p)"
-, = log -,
(9.1) ot Q

¢li=o = 0.

We let w = w(-,t) = w; + /=190y solving the Monge-Ampere flow (9.1).
We first derive the volume growth for (X, g(t)).

Lemma 9.1. There exists C' > 0 such that for allt > 0, we have

C—le—(n—n)t < [Wt]n < 06_(n_’i)t.

Proof. Let a = [wy] — Kx. Then by the definition of x, we have
(I(X)’i " >0

and
e(n—ﬁ)t [Wt]n _ Zcile(l—ﬁ)t(KX)l . an—l

=0
K

_ Zcile(l—ﬁ)t(KX)l . an—l

1=0
= CFYKx)" - a" "+ 0(e™).

This proves the lemma. 0
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Lemma 9.2. There exists C > 0 such that for all t € [0,00),

X x \ Ot

Proof. By Jensen inequality and Lemma 9.1,

L) - L2
< log (/X e("_“)tw") —/Xw(-,t)Q

< log (™ [w,]") —/XSO(',t)Q
< C_/@('vt)Q'

Hence [, ¢(-,t)Q is uniformly bounded above. Since ¢ € PSH(X,w;) C PSH(X, Awy)
for some fixed sufficiently large A > 0, by the mean value theorem for plurisubharmonic
functions, there exists C' > 0 such that for any ¢ € [0,00) and z € X,

gp(a:,t)ﬁ/xgo(-,t)Q—I—C.

This proves the uniform upper bound for .

Now we let u = %—f — e tp. Then the evolution for u is given by
0 0
8_1; = Au—u—e_ta—f —e Mry(w+wo—x)+n—k+ne

Q
= Au—u+etlog— — e try(wy+ e H(wo — X))
wn
—t Oy

+e E—l—n—ﬂa—ire_t(n—(n—m)t).
Then there exist C7,Cy > 0 such that for all ¢ > 0,
ou 1 _ W
i < Au—u-— 56 t (trw(wo) — log w_gl) + C4
< Au—u—Ch.

The uniform upper bound for v immediately follows from the maximum principle.

Therefore.
dp

a+<p:u+(1+e_t)go

is uniformly bounded above.
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We now prove the lower bound for supy ¢(-,t). By the upper bound of %—f — ety
and by Lemma 9.1, there exist ¢y, ¢y > 0 such that for all £ > 0, we have

Ite ") supy o(t) > Cle(1+6’t)supx p+supx (22 —e~tp)

> / 3 +eQ
X

— / e(n—n)twn
X

el

> Co.
This completes the proof of the theorem. O
Let
(9-2) Vi(z) = sup{¢(2) | wi + V~199¢ > 0, ¢ < 0}

be the extremal function associated to w; for any ¢ € [0, 00). We let V,, be the extremal
function associated to x. Since we assume x > 0, there exists a holomorphic section
o € |[mK x| for some sufficiently large m. Let h be the hermitian metric on mKx with
Ric(h) = myx and supy |o|7 = 1. Then

1
9.3 Ve > —loglol?
(93) > log o}

because )
X + E\/—_lﬁglog o) = [o] > 0.
The following lemma is obvious by definition.
Lemma 9.3. For any t; < to,
Voo <V, < V.
Lemma 9.4. There exists C' > 0 such that on X X [0,00), we have
(9.4) o(t) >V, —C >V, —C.

Proof. By Lemma 9.1 and Lemma 9.2, There exists C' > 0 such that on X x [0, 00),

the normalized volume measure is uniformly bounded above by a smooth volume form

The lemma then follows from Proposition 4.1 and the uniform lower bound of sup y (-, t).
U
Lemma 9.5. There exists C > 0 such that on X x [0, 00), we have

Py Op
MRS AP ]
oz Tar =¢
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Proof. Let u = %—f + ¢. Let R be the scalar curvature of w. Since the scalar curvature
of the Kéahler-Ricci flow is uniformly bounded below, there exists C' > 0 such that on

X % [0,00), we have

Au=A <log %) =—R —try(x) < C —try(x).

On the other hand,

ou _ Py Oy
ot o2 ot

Au+tr,(x) — K
C — k.

IN

IA

This proves the lemma. U

Lemma 9.6. Suppose f = f(x) is a smooth function for x > 0 and it satisfies the
differential inequality

T+ <1 lf1<A

for all x > 0 and for some fired A > 1. Then for any x > 0, we have,
> —bA.
Proof. Suppose the lemma fails. Then there exists xy > 0, such that
f'(xg) < —HA.
Since |f| < A, there must exist an a € (0,1) such that
f(xo + a) = —2A.

Otherwise, f(z) < f(xy) —24 < —Afor x € (x¢, x9+1), contradicting the assumption.
By our assumption, (f'+ f — x)’ <0, and so

f'(xo+a) + fxo +a) — (vo +a) < f'(z0) + f(z0) — 2o
This implies that
—2A = f'(xzo+a) < f'(x0) + f(zo) — flro+a)+a < —D5A+2A+1=-3A+1.
This leads to contradiction as A > 1. O

Lemma 9.7. There exists C' > 0 such that on X X [0, 00), we have

% Ve —C
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Proof. By Lemma 9.6 and Lemma 9.4, there exists C' > 0 such that for any = € X and
t > 0,we have

Py | Op
— L4+ X0 Vo —C<p<C
oe T =C¢ 7Y =7=
The lemma is then proved by directly applying Lemma 9.6. 0

We then immediately have the following corollary by combining Lemma 9.2, Lemma
9.7 and (9.3).

Corollary 9.1. There exists C = C(X, go) > 0 such that on X x [0, 00), we have

_ 6 1w
C~exp (Elog|a|i> < PR <C.
Proof. By Lemma 9.1, there exists C' > 0 such that
B Op 1w oy
ct - < —<C — .
exp(at—l—go)_[w]ng_ exp(8t+g0)

The corollary is then a direct consequence of Lemma 9.7, Lemma 9.4 and (9.3). O

Corollary 9.1 implies the bound for p-Nash entropy and a pointwise lower bound for
w(t).
Corollary 9.2. For any p > n, there exists C' > 0 such that for allt > 0
Nx o p(w(t)) < C.
Furthermore, for any p > n, there exist A, B, K > 0 such that for allt > 0,
w(t) € W(X,wo,n, A, p, K; B~ Yo [;P),
where 1 1s defined in Lemma 8.2.

Proof of Theorem 2.2. The assumption of Theorem 1.1 is satisfied due to Corollary
9.2. Theorem 2.2 immediately follows. 0

10. FAMILY OF PROJECTIVE MANIFOLDS

In this section, we will extend Theorem 1.1 to a projective family with not only
varying Kahler classes but also complex structures. Such extensions will allow us to
obtain fibre diameter estimates for degeneration of canonical Kahler metrics on special
fibrations.

Let

(10.1) T:XCCPYxD—=D
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be a projective family over a unit disk D with X; = 7 '(¢) being a smooth n-
dimensional projective manifold for each ¢ € D*. We further assume that 7 is proper
and flat, and the central fibre Xy = 77%(0) is reduced and irreducible. Let 6; be the
restriction of the Fubini-Study metric 6 of CPY to X,.

Theorem 10.1. Let 7 : X € CPY x D — D be a projective family defined as above in
(10.1). Let vy be a nonnegative continuous function on CPY x D such that {y = 0} is
a proper subvariety of CPY x D and {y = 0} does not contain X, for anyt € D. Then
for any A >0, p>mn and K >0, there exists C = C(A,p, K,v) > 0 such that for any
te %]D)* and any Kahler metric w on X, if

1 w™
10.2 <K < Al4,|, —— >
( 0 ) NXt,GmID(w) = ) [w] = [ t]7 VOlw(Xt) 9? =7
then
diam (X}, w) < C,
and

/X (\G(m, N+ |VG(z, )\)w" + (— inf G(m,y)) Vol, (X;) < C,

yeXy
for any x € X, where G is the Green’s function of (X;,w). Moreover, there exist a
uniform constant ¢ = c¢(A,p, K,v) > 0 and o = a(n,p) > 0 such that for any v € X,
and R € (0,1],
Vol, (B, (z, R o
V(olw(()(t) s

The proof of Theorem 10.1 is almost identical to the proof of Theorem 1.1 except

for a few technical differences as presented below.

Lemma 10.1. Let 7 : X € CPY x D — D be a projective family defined as above
in (10.1) and let S be a subvariety of CPY x D. If S does not contain X, for any
t € D and Sing(Xy) x {0} C S, then for any € > 0 and K CC X \ S, there exists
pe € C®((CPY x D) \ S) such that

(1) 0<pe <1,

(2) Suppp. CC (CPY x D) \ S,

(3) pe=1on K,

(4) [y [Vpl0p < ¢, for any t € JD.

Proof. We can assume S is a union of smooth divisors after replacing CPY x I by its

blow-ups ). Let ¢ be the defining section for S and h be a smooth hermitian metric
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on the line bundle associated to S. Without loss of generality, we can assume that
|o|2 < 1. We can always pick a Kihler metric 7 on ) such that 7 > Ric(h) = —idd log h

and Tepny > 0 after slightly shrinking . For simplicity, we identify 6 with its pullback
from CPY x .

Let F' be the standard smooth cut-off function on [0, 00) with £ =1 on [0,1/2] and
F =0on [1,00). We then let

ne = max(log |o|?,loge).

For € < 1, we have loge < n. < 0. Then obviously, n. € PSH(),7) N C°(Y). Now we

let
pe:F< e )
log €

Then p. = 1 on K if € is sufficiently small. Let X/ be the proper transform of &; by

the blow-up and pc; = pelx,s Met = Nela,s 7 = T|x,. For simplicity, we identify p. and
0, with their pullbacks from X; to X/. Straightforward calculations give
V—=10pes N Opey NOF"

X

= (loge)™? / (') =100.: A One s AN O

t

< C(log e)_z/ (—Ne)V—=100nc4 A O
x;

= C(log e)_2/ (—Net) (T + \/—1857@) A0t 4+ C(log e)_2/ Net Tt N gr—t
X! X/

t

IA

C(—loge)™! / (1 + \/—185776715) A Gt

C(—loge) [r]" - X/
< CO(=loge)™ =0

IN

as € — 0, where the constant C' is independent of t &€ %]D). Therefore we obtain
p. € C°(X)) satisfying the conditions in the lemma. The lemma is then proved by
smoothing p. on (Supp p.) \ K. O

Lemma 10.2. Let 7 : X C CPY x D — D be a projective family defined as above.
Then there exist a« > 0 and C' > 0 such that for any t € %]D)* and ¢ € PSH(X,,0,), we

have

(10.3) / emaleswa ) gn < ¢
X
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Proof. The lemma is an immediate consequence of the results in [10] (c.f. Theorem 3.4
in [10]). O

Lemma 10.3. Let 7 : X € CPY xD — D be a projective family defined as above. For
any A >0, p>n, K >0, there exists C = C(A,p, K) > 0 such that for any t € %]D)*,
if n is a smooth closed (1,1)-form on X; with n < Af, and if w = n+ /—100yp is a
Kahler form on X; satisfying

(10.4) N, 0,p(w) < K,
then
¢ — S;P@ —Villze) < C,
where V,, = sup{u € PSH(X};,n) : u < 0} is the envelope of non-positive n-PSH

functions.

Proof. By Lemma 10.2, the a-invariant for PSH(AX}, Af;) is uniformly bounded for
all t € 1D*. Since [w] < A[f;], we can choose a smooth closed (1,1)-form n € [w]
with n < A#; and then PSH(AX;,n) C PSH(X}, Af;). We can consider the following

Monge-Ampere equation
(n + v/ —100¢)" = W™, sup ¢ = 0.
X
The right hand side has uniformly bounded p-Nash entropy with respect to 6, for some

p > n. The lemma follows the work of [8, 7, 2, 11, 16] as generalizations of Kolodziej’s
work [22] (c.f. Proposition 4.1). O

Lemma 10.4. Let 7 : X € CPY x D — D be a projective family defined as above.
Then for any A >0, p > n, K > 0, there is a uniform constant C = C(A,p, K) > 0
such that for any t € %]D)*, any Kdahler metric w on X; satisfying

(10.5) Nz oop(w) < K, [w] < Al6],
and v € C*(X,) satisfying

|Ayv] <1 and / vw" =0,

X

1
sup jv] < C <1 + / |v|w"> :
X, wl™ Jx,

Proof. The lemma can be proved by the same argument for Lemma 5.1 and Corollary
5.1 with the estimate established in Lemma 10.3. U

we have
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Lemma 10.5. Let 7 : X C CPY x D — I be a projective family defined as above. Let
v be a nonnegative smooth function on CPY x I such that {y = 0} is a subvariety of
CPY x D and {7 = 0} does not contain X, for anyt € D. Then for any A >0, p > n,
K > 0, there exists C = C(A,p,K,7v) > 0 such that for any t € %]D*, any Kdhler

metric w on X; satisfying
(10.6) Nxopw) < K, [w] < A0, - =1,
and v € C*(X,) satisfying

|Ayv| <1 and / vw™ =0,

Xt
we have
L lvjw™ < C.
W™ Jx,
Proof. . We will follow the same proof of Lemma 5.3 by the argument of contradiction.
Suppose Lemma 10.5 fails. Then there exist a sequence of t; € %]D), Kahler metric w;

of &, and v; € C*(X;,) satisfying

w’ﬂ
NXt Ot p(wj> < K [WJ] < A[et ] ‘9_7]1 2 s
tj
and
ijUj = h,j, / ij;L = O,
b's
for some |h;| <1, and as j — oo
1
(107) —/ |vj|w;-L = Nj — 00,
ViJx
where V; = = x, wj. We consider ¢; defined by ©; = v;/N;, which clearly
satisfies

1
|Aw-6j‘ = |h,j|/NJ — O, and —/ ‘6§‘W;L =1.
’ Vi Jx
We define F; on &}, by

Wi = [w;]"e"7 0}
Applying Lemma 10.4 to 9, we get supy |0;| < C for some uniform C' > 0. From the

equation of ¥; and integration by parts, we see that
—/ |Vv]| FJQ" = — . |Vﬁj|itjw;‘ — 0.

Let S = {y = 0}U(SingX,y x {0}). For each k£ > 0, we pick a sequence of a pair open
subsets Uy CC Vi, CC (X x D)\ S and cut-off functions py in Lemma 10.1 satisfying

the following conditions.
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1) Vie C Vi1, Uk C Upya,

(1)
(2) limyyo0 Uy = (X x D)\ S and Voly, (X, \ Uy) < ¢ for each ¢ € 1D,
(3) pp =1 on Uy and p, =0 on (X x D)\ V4,

(4)

4) [5, IV pil5,07 < gz, for each t € D.
Let

Cr = sup sup e 7.
te%]D) XNV,

Then for any j and t € %]D), we have

inf e > (C,) 7"
VieNX:

After passing to a subsequence and relabelling 7, we can assume that

/th V)2 wi < 57%C5
We now define
uj = pjU;-
Then there exists C' > 0 such that for all j, we have
w;lg, 67
/ T,

S T W T
tj

/2 1/2
i+ / V2,0 ) ( / gl P, ()0
X, X

J
1, 1 n-1)"/?
< Cj 7+ ( wj N Oy, )
Xy

J

IN

< 2057h

Without loss of generality, we can assume that ¢; — 0. For any K CC (X x D)\ S,
we can pick a sufficiently small 0 € A € D such that 77}(A) N K C U; (W; x A), with
holomorphic local coordinates (z1, ..., z,,t) with ¢ € A. Since u; is uniformly bounded

in lel()(tj, 0,), by Sobolev embedding theorem, after passing to a subsequence, we

1
loc

uniformly bounded in L*(AX;) and L>(&}; ).
Since lim; o0 [, [Vujle,, 67 = 0, for any test function f € C*°(Xp\S) with compact

can assume that u; converges to ue in L (X \ S, 6p). Furthermore, uo and u; are

support in Ay \ S, we can extend f to C*° ((X x D)\ S) with compact support in
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(X xD)\ S and

[ wi@a,ne;
Xy

J

= [ 190, 19510,

J

< (sup |Vf|et> | 1vu,er
tED,th X

J
— 0

as j — o0o. Therefore

/ oo (g f) 62 = 0
Xoﬂ(Wi XA)

and by Weyl’s lemma for the Laplace equation, u, solves the Laplace equation Aus, =
0on &y \ S and uy € C°(Xy \ S). This immediately implies that

/X‘ (pj,0)2 uOO (Aeouoo) 98 — O

for any j, where p; o is the restriction of p; to &y. Then

/ (P02 IVt 2,60 < 85up [uc (/ |vpj,0\3oeg) 0
Xo Xo Xo

as j — oo by the choice of p;. Therefore u is a constant on Xj.
Following the same argument in the proof of Lemma 5.3, we can show that wus,

cannot be 0 by the assumption

1 wi|lwt = 1.

7 )t
On the other hand, X \ S is connected because Xj is irreducible and Xy NS is a
subvariety of X. By the same argument in the proof of Lemma 5.3, we can also show
that u., must vanish everywhere in X, \ S. This leads to contradiction and we have

completed the proof for the lemma. O

With Lemma 10.5, we can complete the proof of Theorem 10.1 by the same argument
for Theorem 1.1.

11. CALABI-YAU FIBRATIONS

In this section, we will apply Theorem 10.1 to collapsing Kahler metrics on a fibration
of Calabi-Yau manifolds. Our first result is to extend the results of [24] for collapsing

Ricci-flat Kahler metrics on a fibred Calabi-Yau manifold.
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Theorem 11.1. Let (X,wx) be an n-dimensional projective Calabi-Yau manifold and
m: X — Y be a holomorphic fibration over a Rieman surface Y. Suppose each fibre
X, = 7 Yy) is normal and has at worst canonical singularities. Let wy be a fized
Kahler metric on'Y and let w, be the unique Ricci-flat Kahler metric in € [wy —l—e_lwy]
for each e € (0,1). Then there exist « > 0 and C > 0 such that for any € > 0, any
smooth fibre X, of m and any x € X,

diam(X,, we|x,) < C,

[ G+ 196, )) (di) "+ (= I Gl 2)) Vol () < C.

VOlwley (BUJEIXy (':C7 R))
Vol,, . (X)

where Gy is the Green’s function for (Xy,we|x,) and B,y (z, R)) is the geodesic ball

> C 'R,

m (Xy,we|Xy).

Proof. Let n be a non-where vanishing holomorphic volume form on X and let 7, be
the relative holomorphic volume form defined by 1 = n, A dy locally on D C Y. Then

w, satisfies

w? = AE” AT,

where A, = 24~ = O (¢1).

- fX nATY
Let 0, = wx|x, be the restriction of wy to X,. It is proved in [24] (c.f. Proposition
2.1 and Proposition 2.3 in [24]) that there exist p > 1 and C' > 0 such that for any
y €Y and € € (0,1), we have

Ny N1y P

n—1 <
(118) /Xy (Hy)n—l (ey) — 07
(11.9) sup tI‘we(E_le) <C.
X

(11.9) implies that on each X,, we have on X,

wg—lAwy:wg—l/\wY W o AT G ATl

n—1 n n—1 — n—1 — n—1
wy - Awy wr wy Awy wy - Awy oy

Then (11.8) immediately gives the uniform upper bound for the ¢-Nash entropy N, g, .¢(we|x,)
for any € € (0,1) and fixed ¢ > 0.
By Theorem 2.5 of [24] as a refined Schwarz lemma, there exists C' > 0 such that

We Z C’_le,
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and so

is uniformly bounded away from 0.
Therefore we can directly apply Theorem 10.1 to complete the proof of Theorem
11.1. O

In the setting of Theorem 11.1, it is proved in [24] that the extrinsic diameter of a
smooth fibre X, is uniformly bounded, i.e., any two points on a smooth fibre X, can
be joined by a path in X with uniformly bounded arc length with respect to w, for all
e > 0. The stronger intrinsic diameter bound for X, is achieved in Theorem 11.1.

We will also apply Theorem 10.1 to the long time collapsing solutions of the Kahler-
Ricci flow. Let X be an n-dimensional projective manifold of nef Ky. Suppose Ky is

semi-ample and the Kodaira dimension of X is one. The pluricanonical map
m: X = Xoan

is a holomorphic fibration over the canonical model X.,,. The general fibre of 7 is a

smooth Calabi-Yau manifold of dimension n — 1. We consider the Kahler-Ricci flow
0 )

(11.10) = = —Ric(g), 9(0) = go

for a given Ké&hler metric go. Then (11.10) admits a smooth solution g(t) for all £ > 0.

We would like to investigate the geometric behavior of ¢(t) near a singular fibre with

mild singularities.

Theorem 11.2. Let X be an n-dimensional projective manifold with semi-ample Kx
and Kod(X) < 1. Let g(t) be the solution of the Kdhler-Ricci flow (11.10). Suppose

each fibre of m : X — X4 has at worst canonical singularities. Then there exists
C > 0 such that for any t > 0, any smooth fibre X, of ™ and any x € X,

diam (X, g(1)|x,) < C,

/X (‘Gt,y(xv )‘ + ‘VGmy(SL’, ')|)dvg(t)|xy + <_ inf Gt,y(xv Z)) VOlg(t)|Xy (Xy) < Cv

z€Xy
Vol (B, (@, R))
VOlg(t)\Xy (X)

where Gy, is the Green’s function for (X, g(t)|x,) and Byw)y, (7, R)) is the geodesic
ball in (Xy, welx,). -

> C7 'R,
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Proof. When the Kodaira dimension is 0, ¢;(X) = 0 and the flow (11.10 converges
smoothly to a Ricci-flat Kahler metric in the initial Kahler class. Therefore it suffices
to prove the theorem in the case of Kodaira dimension equal to one.

Let X2 . be the regular values of 7 : X — X, and X4, \ X2, is a finite set of
points since X4, is a smooth Riemann surface. We follow the same argument in the
proof of Theorem 11.1. The estimate (11.8) still holds due to the fibration structure
of m: X — X 4. Since X, is smooth, we can choose a smooth Kéhler metric g
on Xeu, such that 7*¢ € [Kx]. Let x, wy and w(t) be the smooth closed (1,1)-forms
corresponding to 7*g, go and g(t). We let w; = wp + tx and (11.10) can be reduced to
a complex Monge-Ampere flow

Iy
ot
where ) is the volume form on X with /—1001log Q = .

Since Kx is semi-ample, the Schwarz lemma analogous to (11.9) also holds from the

general estimate in [31, 32|, i.e. there exists C' > 0 such that for all ¢ > 0,

= log

(w + \/(?8&0)"7 5(0) = 0,

tl"g(t) (tX) < C.

By the same argument in the proof of Theorem 11.1, for any fixed ¢ > 0, there exists
C = C(go,q) > 0 such that for all t > 0 and y € X,,, we have

Nx,g0.0 (90)]x,) < C.

where go, = go|x,. Since X, is normal, the uniform Nash entropy bound (for ¢ > n)
above implies that there exists C' > 0 such that for all t > 0 and y € X 4.,

(11.11) le®lx, —supe(®)lx, | < €.
Y
If we let ¢(t) = Xy f x, $dVg,, be the average of ¢ along the fibre, then (p(t) —
o(t)) is unlformly bounded due to (11.11).
Let

1
H = log tryu(tgo) — 2A<g0 v (X ] / gpdVgO’y)
90 y

for some A > 1 to be determined. Since Vg, (X,) is mdependent of y € X.un and

Y

I EH oo (x) is uniformly bounded for all ¢ > 0 by [34], we can apply the similar second

order calculations in [31] to the evolution of H by

2A =
DtH S Ctrg(t) (go) — 2Atrg(t) (gt) - mtrg(t) (\/ —100 SOW(T)L_1> + CA
go.y \ Py Xy
2A
S Ctrg(t) (go) — 2Atrg(t) (gt) — mtrg(t) </)< (W - wt) A UJg_l) + CA
90,y Yy Y
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< Ctrym(go) — 2Atr,0(g) — — (/ ) +0A

> Tgw)\9o0) — Tg)\9t) — 777+~ Wyt W )

0 0 Vo () M0\,

for some uniform constant C' > 0 independent of A. We define a closed (1,1) form as
the push-forward of wj to X, by
. fxy i
X=o v
VOlgo,y (Xy>

It is proved in [31, 32] that
X
f==
X
is smooth away from the singular fibres and f is LY( X, ) integrable for some ¢ > 1.

There exists a unique solution ) € L>®(X,,,) to the following linear equation

fxm fx . mef(

S X Jxn X
since f is L%-integrable for some ¢ > 1. Furthermore, both f and ¢ are smooth on
X2 .., and

can’

Ax,lvb:f_f_> .f:

V=199 = X — fx.
Let o be a defining section of points corresponding to Xq, \ X2, and let h be a

can

smooth hermitian metric on the line bundle associated to [o]. Then we let

1
H, = log |o|7try (tgo) — 240 — 2A( o — 7/ dV, 5
h ttg)\tyo < Vgo,y(Xy> X, go,y|Xy>

for any sufficiently small € > 0. Then there exists C' > 0 such that for all £ > 0 and
ee€ (0,1),

0.H < —Atrg(t)(gt)-i-QCA

for a fixed sufficiently large A > 0. Applying the maximum principle, H. < C' for a
uniform constant C' > 0 independent of € € (0, 1). Letting € — 0, try(g¢) is uniformly
bounded above, or equivalently, there exists ¢ > 0 such that for all ¢ > 0,

g 2 Cgy.

Therefore we have derived a uniform positive lower bound of

(w(®)"
wy
on each fibre X.
Combining the above estimates, we can apply Theorem 1.1 to complete the proof.

O

Theorem 2.3 immediately follows from Theorem 11.2 by parabolic scaling.
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12. CONSTANT SCALAR CURVATURE KAHLER METRICS WITH BOUNDED NASH
ENTROPY

In this section, we will obtain geometric estimates for cscK metrics near the canonical
class of a smooth minimal model of general type.

Let X be an n-dimensional Kéhler manifold with big and nef Kx, i.e. a minimal
model of general type. It is well-known in birational geometry that Kx is semi-ample
and the pluricanonical system of X induces a unique surjective birational morphism
7 X = Xegn from X to its unique canonical model X,,. In particular, 7 is iSsomorphic
between X¢, and X°, where X¢, is the set of regular values of 7 and X° = 7= 1(X¢,).
We choose € to be a smooth volume form on X on X such that y = v/—19091og€) €
[K x| is a semi-positive (1, 1)-form. It is proved in [8] that there exists a unique ¢xp €

PSH(X, x) N L>(X) solving the complex Monge-Ampere equation
(X + V=100¢kp)" = e#%2Q, sup pxp =0
X

on X. If we let wxp = x + V—100¢xE, then wig descends to X, as a Kihler-
If we let

gk be the smooth Kahler-Einstein metric on X7 associated to the Kahler-Einstein

Einstein current since Ky = 7*Kx,,,. Furthermore, wk g is smooth on X

can*

current wgp, then it is proved in [29] that the metric completion of (X2 ., 9xE) is a
compact metric space homeomorphic to X q,.
The following result of [20] shows that there always exists a unique cscK metric in

a Kahler class near the canonical class.

Lemma 12.1. For any Kdhler class A of X, there exists dg = 6o(A) > 0 such that for
any 0 < & < &g, there exists a unique cscK metric gs € [Kx + d.A].

Let ws be the Kéhler form associated to gs in Lemma 12.1 and wy4 € [A] be a fixed

Kahler form. Then we can write
ws = X + 6w + V—100¢;

for a unique @5 € C*°(X) with supy ¢s = 0.

The following estimates are proved in [25].

Lemma 12.2. Let A be a Kdhler class of X and 69 = do(A) > 0 as in Lemma 12.1.
Then there exists C' > 0 such that for any 0 < § < dy,

C <inf L < sup L < O sl < C
Furthermore, @5 converges to g in C*°(X°) as d — 0.
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Lemma 12.2 implies that the cscK metrics g5 converge to the Kahler-Einstein metrics

g e on X° smoothly.

Proof of Theorem 2.4. The uniform estimates for the diameter, Green’s function and
volume non-collapsing follows immediately by applying Lemma 12.2 to Theorem 1.1.

It remains to prove that (X, gs) converges to (Xeun,dxp) as 6 — 0, if X4, has
only isolated singularities. Suppose not. We can choose a sequence d; — 0 such that
(X, gs,) converges to a compact metric space (Y, dy) not isomorphic to (Xeun, dxE)-
(X2, 9x ) can be embedded in (Y, dy)

Since gs; converges smoothly to gxr on X s
with local isomorphisms. Then there must be a point p € Y such that

can’

dy (p, X2, ) > 0.

can

Otherwise, (Y, dy) will be isomorphic to (X, dx g) because Y is compact and (X un, dxp)
is the compactification of (X2, gxr) by adding finitely many points from X, \ X2,,,.
We can pick a sequence of points p; € (X, gs,) such that p; converges to p € Y in
Gromov-Hausdorff distance. After possibly passing to a sequence, p; must also con-
verge to a singular point ps, of X4, with respect to any fixed metric on X,,, (for
example, the Fubini-Study metric from a projective embedding of X ).

We choose an exhaustion of X = with a sequence of open sets U; CC Uy CC ... CC
U, CcC...C X2 _such that

can

lim Uk =X

can’
k—o0

kh_{(r)lo VOIQKE(Uk) = VOngE (XO ) = [KX]n

can

From the above assumption, there exists € > 0 such that for any k£ > 0, there exists
j > 0 such that

dgéj (pj’ Uk) > €,
and so
Bg5j (pj, 6) c X \ Uk

By the uniform volume non-collapsing, there exists 0 > 0 such that for any £ > 0,

there exists 7 > 0 such that
By, (pj,€) > 6
and
Volgéj (Up) < [Kx]" —6.

This leads to contradiction by choosing sufficiently large k. U
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