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Abstract

Language models are increasingly being deployed for general problem solving
across a wide range of tasks, but are still confined to token-level, left-to-right
decision-making processes during inference. This means they can fall short in
tasks that require exploration, strategic lookahead, or where initial decisions play
a pivotal role. To surmount these challenges, we introduce a new framework for
language model inference, “Tree of Thoughts” (ToT), which generalizes over the
popular “Chain of Thought” approach to prompting language models, and enables
exploration over coherent units of text (“thoughts”) that serve as intermediate steps
toward problem solving. ToT allows LMs to perform deliberate decision making
by considering multiple different reasoning paths and self-evaluating choices to
decide the next course of action, as well as looking ahead or backtracking when
necessary to make global choices. Our experiments show that ToT significantly
enhances language models’ problem-solving abilities on three novel tasks requiring
non-trivial planning or search: Game of 24, Creative Writing, and Mini Crosswords.
For instance, in Game of 24, while GPT-4 with chain-of-thought prompting only
solved 4% of tasks, our method achieved a success rate of 74%. Code repo with all
prompts: https://github.com/princeton-nlp/tree-of-thought-11lm.

1 Introduction

Originally designed to generate text, scaled-up versions of language models (LMs) such as GPT [25|
26, [1} 23] and PaLM [3]] have been shown to be increasingly capable of performing an ever wider
range of tasks requiring mathematical, symbolic, commonsense, and knowledge reasoning. It is
perhaps surprising that underlying all this progress is still the original autoregressive mechanism for
generating text, which makes token-level decisions one by one and in a left-to-right fashion. Is such
a simple mechanism sufficient for a LM to be built toward a general problem solver? If not, what
problems would challenge the current paradigm, and what should be alternative mechanisms?

The literature on human cognition provides some clues to answer these questions. Research on “dual
process” models suggests that people have two modes in which they engage with decisions — a fast,
automatic, unconscious mode (“System 1) and a slow, deliberate, conscious mode (“System 2”")
[30L (31} [16, [15]. These two modes have previously been connected to a variety of mathematical
models used in machine learning. For example, research on reinforcement learning in humans and
other animals has explored the circumstances under which they engage in associative “model free”
learning or more deliberative “model based” planning [7]]. The simple associative token-level choices
of LMs are also reminiscent of “System 17, and thus might benefit from augmentation by a more
deliberate “System 2” planning process that (1) maintains and explores diverse alternatives for current
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Figure 1: Schematic illustrating various approaches to problem solving with LLMs. Each rectangle
box represents a thought, which is a coherent language sequence that serves as an intermediate
step toward problem solving. See concrete examples of how thoughts are generated, evaluated, and
searched in Figures 2J4][6]

choices instead of just picking one, and (2) evaluates its current status and actively looks ahead or
backtracks to make more global decisions.

To design such a planning process, we return to the origins of artificial intelligence (and cognitive
science), drawing inspiration from the planning processes explored by Newell, Shaw, and Simon
starting in the 1950s [21} 22]. Newell and colleagues characterized problem solving [21] as search
through a combinatorial problem space, represented as a tree. We thus propose the Tree of Thoughts
(ToT) framework for general problem solving with language models. As Figure|[I illustrates, while
existing methods (detailed below) sample continuous language sequences for problem solving, ToT
actively maintains a tree of thoughts, where each thought is a coherent language sequence that serves
as an intermediate step toward problem solving (Table[T). Such a high-level semantic unit allows the
LM to self-evaluate the progress different intermediate thoughts make towards solving the problem
through a deliberate reasoning process that is also instantiated in language (Figures 24[6). This
implementation of search heuristics via LM self-evaluation and deliberation is novel, as previous
search heuristics are either programmed or learned. Finally, we combine this language-based
capability to generate and evaluate diverse thoughts with search algorithms, such as breadth-first
search (BFS) or depth-first search (DFS), which allow systematic exploration of the tree of thoughts
with lookahead and backtracking.

Empirically, we propose three new problems that challenge existing LM inference methods even with
the state-of-the-art language model, GPT-4 [23]: Game of 24, Creative Writing, and Crosswords
(Table |I). These tasks require deductive, mathematical, commonsense, lexical reasoning abilities,
and a way to incorporate systematic planning or search. We show ToT obtains superior results on
all three tasks by being general and flexible enough to support different levels of thoughts, different
ways to generate and evaluate thoughts, and different search algorithms that adapt to the nature of
different problems. We also analyze how such choices affect model performances via systematic
ablations and discuss future directions to better train and use LMs.

2 Background

We first formalize some existing methods that use large language models for problem-solving,
which our approach is inspired by and later compared with. We use py to denote a pre-trained LM
with parameters 6, and lowercase letters x,y, z, s, - - - to denote a language sequence, i.c.x =
(z[1],- - -, z[n]) where each x[i] is a token, so that pp(z) = [, pe(z[i]|z[1...i]). We use uppercase
letters S, - - - to denote a collection of language sequences.

Input-output (I0) prompting is the most common way to turn a problem input = into output
y with LM: y ~ py(y|prompt,,(z)), where prompt;,(z) wraps input = with task instructions
and/or few-shot input-output examples. For simplicity, let us denote p§"*""*(output | input) =

po(output | prompt(input)), so that IO prompting can be formulated as y ~ pi© (y|z).



Chain-of-thought (CoT) prompting [38]] was proposed to address cases where the mapping of
input z to output y is non-trivial (e.g. when x is a math question and y is the final numerical answer).
The key idea is to introduce a chain of thoughts z1, - - -, z, to bridge = and y, where each z; is a
coherent language sequence that serves as a meaningful intermediate step toward problem solving
(e.g. z; could be an intermediate equation for math QA). To solve problems with CoT, each thought
Zp ~ pg"T(zi | x,21...i—1) is sampled sequentially, then the output y ~ pHCOT(y|x,zl...n). In
practice, [21...n,y] ~ P§°T (21..n,y|7) is sampled as a continuous language sequence, and the

decomposition of thoughts (e.g. is each z; a phrase, a sentence, or a paragraph) is left ambiguous.

Self-consistency with CoT (CoT-SC) [36] is an ensemble approach that samples £ i.i.d. chains

of thought: [z%b)n, y D] ~ p§°T (21..n,ylz) (i = 1---k), then returns the most frequent output:
arg max, #{i | y® = y}. CoT-SC improves upon CoT, because there are generally different
thought processes for the same problem (e.g. different ways to prove the same theorem), and the
output decision can be more faithful by exploring a richer set of thoughts. However, within each
chain there is no local exploration of different thought steps, and the “most frequent” heuristic only

applies when the output space is limited (e.g. multi-choice QA).

3 Tree of Thoughts: Deliberate Problem Solving with LM

A genuine problem-solving process involves the repeated use of available informa-
tion to initiate exploration, which discloses, in turn, more information until a way
to attain the solution is finally discovered. Newell et al. [21]

Research on human problem-solving suggests that people search through a combinatorial problem-
space — a tree where the nodes represent partial solutions, and the branches correspond to operators
that modify them [21} [22]]. Which branch to take is determined by heuristics that help to navigate the
problem-space and guide the problem-solver towards a solution. This perspective highlights two key
shortcomings of existing approaches that use LMs to solve general problems: 1) Locally, they do not
explore different continuations within a thought process — the branches of the tree. 2) Globally, they
do not incorporate any type of planning, lookahead, or backtracking to help evaluate these different
options — the kind of heuristic-guided search that seems characteristic of human problem-solving.

To address these shortcomings, we introduce Tree of Thoughts (ToT), a paradigm that allows LMs to
explore multiple reasoning paths over thoughts (Figure[I(c)). ToT frames any problem as a search
over a tree, where each node is a state s = [z, z1...;] representing a partial solution with the input and
the sequence of thoughts so far. A specific instantiation of ToT involves answering four questions:
1. How to decompose the intermediate process into thought steps; 2. How to generate potential
thoughts from each state; 3. How to heuristically evaluate states; 4. What search algorithm to use.

1. Thought decomposition. While CoT samples thoughts coherently without explicit decomposition,
ToT leverages problem properties to design and decompose intermediate thought steps. As Table [I
shows, depending on different problems, a thought could be a couple of words (Crosswords), a line of
equation (Game of 24), or a whole paragraph of writing plan (Creative Writing). In general, a thought
should be “small” enough so that LMs can generate promising and diverse samples (e.g. generating
a whole book is usually too “big” to be coherent), yet “big” enough so that LMs can evaluate its
prospect toward problem solving (e.g. generating one token is usually too “small” to evaluate).

2. Thought generator G(py, s, k). Given a tree state s = [, 21...;], we consider two strategies to
generate k candidates for the next thought step:

(a) Sample i.i.d.thoughts from a CoT prompt (Creative Writing, Figure E): 20) ~
ST (2i4118) = 5T (zi41|7, 21...4) (j = 1---k). This works better when the thought
space is rich (e.g. each thought is a paragraph), and i.i.d. samples lead to diversity;

(b) Propose thoughts sequentially using a “propose prompt” (Game of 24, Figure 2} Crosswords,
Figure |§): [z ... 2] ~ pgmpose(zi(ii'k) | s). This works better when the thought
space is more constrained (e.g. each thought is just a word or a line), so proposing different
thoughts in the same context avoids duplication.

3. State evaluator V' (pg, S). Given a frontier of different states, the state evaluator evaluates the
progress they make towards solving the problem, serving as a heuristic for the search algorithm
to determine which states to keep exploring and in which order. While heuristics are a standard
approach to solving search problems, they are typically either programmed (e.g. DeepBlue [3]]) or



learned (e.g. AlphaGo [29]). We propose a third alternative, by using the LM to deliberately reason
about states. When applicable, such a deliberate heuristic can be more flexible than programmed
rules, and more sample-efficient than learned models. Similar to the thought generator, we consider
two strategies to evaluate states either independently or together:

(a) Value each state independently: V(pp, S)(s) ~ pyi“c(v|s) Vs € S, where a value
prompt reasons about the state s to generate a scalar value v (e.g. 1-10) or a classifica-
tion (e.g. sure/likely/impossible) that could be heuristically turned into a value. The basis
of such evaluative reasoning can vary across problems and thought steps. In this work, we
explore evaluation via few lookahead simulations (e.g. quickly confirm that 5, 5, 14 can
reach 24 via 5 + 5 + 14, or “hot_1” can mean “inn” via filling “e” in “_") plus commonsense
(e.g. 12 3 are too small to reach 24, or no word can start with “tzxc”). While the former
might promote “good” states, the latter could help eliminate “bad” states. Such valuations

do not need to be perfect, and only need to be approximately helpful for decision making.

(b) Vote across states: V(pg, S)(s) = 1[s = s*], where a “good” state s* ~ pj°(s*|9) is
voted out based on deliberately comparing different states in S in a vote prompt. When
problem success is harder to directly value (e.g. passage coherency), it is natural to to instead
compare different partial solutions and vote for the most promising one. This is similar
in spirit to a “step-wise” self-consistency strategy, i.e. cast “which state to explore” as a
multi-choice QA, and use LM samples to vote for it.

For both strategies, we could prompt the LM multiple times to aggregate the value or vote results to
trade time/resource/cost for more faithful/robust heuristics.

Algorithm 1 ToT-BFS(z, pg, G, k, V, T, b) Algorithm 2 ToT-DFS(s, t, pg, G, k, V, T, vs3)
Require: Input z, LM py, thought generator G()Require: Current state s, step ¢, LM pj, thought
& size limit k, states evaluator V' (), step limit 7',  generator G/() and size limit k, states evaluator

breadth limit b. V(), step limit T, threshold vy,

So  {z} if ¢ > T then record output G(py, s, 1)

fort=1,---,T do end if
Si<{ls, 2] | s € Si—1,2 € G(po,s,k)}  fors’ € G(pg,s,k) do > sorted candidates
Vi« V(p97 Szlt) if V(pe, {3/})(3) > Vthres then > pruning
Sy < argmaxgcg;,|s)=b 2 geg Vi(5) DFS(s',t + 1)

end for end if

return G(py, arg maxses, Vr(s),1) end for

4. Search algorithm. Finally, within the ToT framework, one can plug and play different search
algorithms depending on the tree structure. We explore two relatively simple search algorithms and
leave more advanced ones (e.g. A* [[11], MCTS [2]) for future work:
(a) Breadth-first search (BFS) (Algorithm E) maintains a set of the b most promising states
per step. This is used for Game of 24 and Creative Writing where the tree depth is limit
(T < 3), and initial thought steps can be evaluated and pruned to a small set (b < 5).

(b) Depth-first search (DFS) (Algorithm [2) explores the most promising state first, until the
final output is reached (tf > T), or the state evaluator deems it impossible to solve the
problem from the current s (V' (pg, {s})(s) < vy, for a value threshold v,,). In the latter
case, the subtree from s is pruned to trade exploration for exploitation. In both cases, DFS
backtracks to the parent state of s to continue exploration.

Conceptually, ToT has several benefits as a method for general problem-solving with LMs: (1) Gener-
ality. 10, CoT, CoT-SC, and self-refinement can be seen as special cases of ToT (i.e. trees of limited
depth and breadth; Figure E). (2) Modularity. The base LM, as well as the thought decomposition,
generation, evaluation, and search procedures can all be varied independently. (3) Adaptability.
Different problem properties, LM capabilities, and resource constraints can be accommodated. (4)
Convenience. No extra training is needed, just a pre-trained LM is sufficient. The next section will
show how these conceptual benefits translate to strong empirical performance in different problems.

4 Experiments

We propose three tasks that are hard even when sampling from the state-of-the-art language model,
GPT-4 [23]], using standard 10 prompting or chain-of-thought (CoT) prompting. We show how



| Game of 24

Creative Writing

5x5 Crosswords

Input \ 4 numbers (4 9 10 13) 4 random sentences 10 clues (h1. presented;..)

Output An equation to reach 24 A passage of 4 paragraphs 5x5 letters: SHOWN;
(13-9)*(10-4)=24 ending in the 4 sentences ~WIRRA; AVAIL; ...

Thoughts 3 intermediate equations A short writing plan Words to fill in for clues:

(13-9=4 (left 4,4,10); 10-

(1. Introduce a book that

(h1. shown; v5.naled; ...)

4=6 (left 4,6); 4%6=24)
#ToT steps ‘ 3 1 5-10 (variable)
Table 1: Task overview. Input, output, thought examples are in blue.

connects...)

deliberate search in trees of thoughts (ToT) produces better results, and more importantly, interesting
and promising new ways to use language models to solve problems requiring search or planning.
Unless otherwise stated, we perform experiments using a Chat Completion mode GPT— with a
sampling temperature of 0.7.

4.1 Game of 24

Game of 24 is a mathematical reasoning challenge, where the goal is to use 4 numbers and basic
arithmetic operations (+-*/) to obtain 24. For example, given input “4 9 10 13”, a solution output
could be “(10 - 4) * (13 - 9) =24".

Input: 491013

________________ (a) Propose Prompt Thought Generation
! /l\ ! - 2+9-13 (et 10 1313)
-------------- Input: 491013 LM 10-4=6(left: 6 913)
10-4=6 4+9-13 . )
i f‘ lefe10131) Possible next steps:
13-6-7 13-9=4 (b) Value Prompt Thought Evaluation
(left:79) (lef Evaluate if given numbers can (13-10)*13=3*13=39
./1\ reach 24 (sure/likely/impossible) > 10+13+13 =36 There is no wa
1014:10 + 14 = 24. sure LM . . . Y
4+6=10 4*6=24 to obtain 24 with these big
(1eft: 10) 2 101313 numbers. impossible

Figure 2: ToT in a game of 24. The LM is prompted for (a) thought generation and (b) valuation.

Task Setup. We scrape data from 4nums.com, which has 1,362 games that are sorted from easy to
hard by human solving time, and use a subset of relatively hard games indexed 901-1,000 for testing.
For each task, we consider the output as success if it is a valid equation that equals 24 and uses the
input numbers each exactly once. We report the success rate across 100 games as the metric.

Baselines. We use a standard input-output (I0) prompt with 5 in-context examples. For chain-of-
thought (CoT) prompting, we augment each input-output pair with 3 intermediate equations, each
operating on two remaining numbers. For example, given input “4 9 10 13”, the thoughts could be
“13-9=4 (left: 44 10); 10 - 4 =6 (left: 4 6); 4 * 6 = 24 (left: 24)”. For each game, we sample IO
and CoT prompting for 100 times for average performance. We also consider a CoT self-consistency
baseline, which takes the majority output from 100 CoT samples, and an iterative-refine approach on
top of an IO sample for at most 10 iterations. At each iteration, the LM is conditioned on all previous
history to “reflect on your mistakes and generate a refined answer” if the output is incorrect. Note
that it uses groundtruth feedback signals about equation correctness.

ToT Setup. To frame Game of 24 into ToT, it is natural to decompose the thoughts into 3 steps,
each an intermediate equation. As shown in Figure[2(a), at each tree node, we exact the remaining
numbers and prompt the LM to propose some possible next steps. The same “propose prompt” is
used for all 3 thought steps, though it only has one example with 4 input numbers. We perform a
breadth-first search (BFS) in ToT, where at each step we keep the best b = 5 candidates. To perform
deliberate BFS in ToT, as shown in Figure 2[b), we prompt LM to evaluate each thought candidate as
“sure/maybe/impossible” with regard to reaching 24. The aim is to promote correct partial solutions
that can be verdicted within few lookahead trials, and eliminate impossible partial solutions based on
“too big/small” commonsense, and keep the rest “maybe”. We sample values 3 times for each thought.

"Experiments were done between May 5-16, 2023.
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Method Success (a) Success rate with nodes visited (b) Samples failed at each step

10 prompt 7.3% — WC':':(b=5)
CoT prompt 4.0% 0.6 0.6
CoT-SC =100 9.0%
ToT (ours) (b=1) 45% 0.4 0.4
ToT (ours) (b=5) 74 %
—— 10 (best of k)
10 + Refine k=100 27% 0.2 CoT (best of k) 0-2
1O (best of 100) 33% / —--- ToT (b=1...5)

oAl = =
0 25 50 75 100 1 2 3 4 Correct

CoT (best of 100) 49%

Table 2: Game of 24 Results. Figure 3: Game of 24 (a) scale analysis & (b) error analysis.

Results. As shown in Table[2] IO, CoT, and CoT-SC prompting methods perform badly on the task,
achieving only 7.3%, 4.0%, and 9.0% success rates. In contrast, ToT with a breadth of b = 1 already
achieves a success rate of 45%, while b = 5 achieves 74%. We also consider an oracle setup for
I0/CoT, by calculating the success rate using best of k samples (1 < k < 100). To compare [0/CoT
(best of k) with ToT, we consider calculating the tree nodes visited per task in ToT across b =1---5,
and map the 5 success rates in Figure [3{a), treating I0/CoT (best of k) as visiting & nodes in a bandit.
Not surprisingly, CoT scales better than IO, and best of 100 CoT samples achieve a success rate of
49%, but still much worse than exploring more nodes in ToT (b > 1).

Error analysis. Figure[3(b) breaks down at which step CoT and ToT samples fail the task, i.e. the
thought (in CoT) or all b thoughts (in ToT) are invalid or impossible to reach 24. Notably, around
60% of CoT samples already failed the task after generating the first step, or equivalently, the first
three words (e.g. “4 + 97). This highlights the issues with direct left-to-right decoding.

4.2 Creative writing

Next, we invent a creative writing task where the input is 4 random sentences and the output should
be a coherent passage with 4 paragraphs that end in the 4 input sentences respectively. Such a task is
open-ended and exploratory, and challenges creative thinking as well as high-level planning.

Task setup. We sample random sentences from randomwordgenerator.com to form 100 inputs, and
there is no groundtruth passage for each input constraint. As we find that GPT-4 can follow the
input constraints most of the time, we focus on evaluating passage coherency in two ways: using a
GPT-4 zero-shot prompt to provide a 1-10 scalar score, or using human judgments to compare pairs
of outputs from different methods. For the former, we sample 5 scores and average them for each task
output, and we find these 5 scores usually consistent, with a standard deviation of around 0.56 on
average across outputs. For the latter, we employ a subset of the authors in a blind study to compare
the coherency of CoT vs. ToT generated passage pairs, where the order of passages is random flipped
over 100 inputs.

Baselines. Given the creative nature of the task, both IO and CoT prompts are zero-shot. While the
former prompts the LM to directly generate a coherent passage given input constraints, the latter
prompts the LM to first make a brief plan then write the passage, i.e. the plan serves as the intermediate
thought step. We generate 10 IO and CoT samples per task. We also consider an iterative-refine
(k < 5) method on top of a random IO sample for each task, where the LM is conditioned on input
constraints and the last generated passage to decide if the passage is already “perfectly coherent”,
and if not generate a refined one.

ToT setup. We build a ToT with depth 2 (and only 1 intermediate thought step) — the LM first
generates k = 5 plans and votes for the best one (Figure ), then similarly generate k = 5 passages
based on the best plan then vote for the best one. Here the breadth limit b = 1, as only one choice is
kept per step. A simple zero-shot vote prompt (“analyze choices below, then conclude which is most
promising for the instruction”) is used to sample 5 votes at both steps.

Results. Figure[5(a) shows average GPT-4 scores across 100 tasks, where ToT (7.56) is deemed to
generate more coherent passages than IO (6.19) and CoT (6.93) on average. While such an automatic
metric might be noisy, Figure [5(b) confirms the finding by showing that humans prefer ToT over
CoT in 41 out of 100 passage pairs, while only prefer CoT over ToT in 21 (other 38 pairs are found
“similarly coherent”). Lastly, iterative-refine is more effective on this natural language task, where


https://randomwordgenerator.com/sentence.php

Write a coherent passage of 4 short paragraphs. The end sentence of each paragraph must be: 1. It isn't
(a) difficult to do a handstand if you just stand on your hands. 2. It caught him off guard that space smelled of

Input seared steak. 3. When she didn't like a guy who was trying to pick her up, she started using sign language. 4.
_________ | Each person who knows you has a different perception of who you are.
: Input 1 Plan1 Plan 2 Plan 3-5
1 1 1. Introduce and explain the technique 1. Introduction to an unusual self-help book,
1 m 1 (b) of doing a handstand 2. Switch to a mentioning a handstand as a metaphor for
1 1 Plans story about an astronaut's first time in embracing challenges. 2. Discuss the unexpected
1Plan1 Plan2 ... 1 space 3. Describe a situation where a things learned from astronauts, including the smell of
P bl woman uses sign language to avoid space. 3. Describe a woman's clever tactic for avoiding
unwanted attention 4. The final unwanted attention at a bar. 4. Contemplate how
paragraph explains how everyone has different perceptions of oneself can shape one's
Passage Passage . different perceptions of others identity.
1 2 0/5votes 1 3/5 votes n/5 votes
(C) Analyzing each choice in detail: Choice 1, while incorporating the required end sentences, seems to lack a
Votes clear connection between the paragraphs {..} Choice 2 offers an interesting perspective by using the
required end sentences to present a self-help book's content. It connects the paragraphs with the theme of
self-improvement and embracing challenges, making for a coherent passage. The best choice is 2.

Figure 4: A step of deliberate search in a randomly picked Creative Writing task. Given the input, the
LM samples 5 different plans, then votes 5 times to decide which plan is best. The majority choice is
used to consequently write the output passage with the same sample-vote procedure.

(a) GPT-4 cohereincy scores 4(;) Human coherency comparison Method Success Rate (%)
i Letter Word Game
8 i
i 30 10 387 14 0
6 i CoT 40.6 156 1
| ! ! 20 38 41 ToT (ours) | 78 60 20
4! ¢
4 v § e o I +best state | 82.4 67.5 35
i -prune 654 415 5
0 CoT ToT 10 ToT 0 -backtrack | 54.6 20 5
+refine +refine CoT > ToT Similar ToT > CoT

Figure 5: Creative Writing results. Table 3: Mini Crosswords results.
it improves 10 coherency score from 6.19 to 7.67, and ToT coherency score from 7.56 to 7.91. We
believe it could be thought of as a third approach to thought generation in the ToT framework, where
new thoughts can arise from refining old thoughts instead of i.i.d. or sequentially generated.

4.3 Mini crosswords

In Game of 24 and Creative Writing, ToT is relatively shallow — at most 3 thought steps are needed
to reach the final output. Here we explore 5 X 5 mini crosswords as a harder search problem involving
natural language. Again, the goal is not just to solve the task, as more general crosswords can be
readily solved with specialized NLP pipelines that leverages large-scale retrieval instead of LM.
Rather, we aim to explore the limit of LM as a general problem solver that explores its own thoughts
and guides its own exploration with deliberate reasoning as heuristics.

Task setup. We scrape data from GooBix, which contains 156 games of 5 x 5 mini crosswords. As
we observe adjacent games contain similar clues, we use 20 games with indices 1,6, - - -, 91, 96 for
testing, and games 136, 141, 146, 151, 156 for prompting. For each task, the input describes the 5
horizontal clues and 5 vertical clues, and the output should be a board of 5 x 5 = 25 letters to solve
the crosswords. For evaluation, we consider three levels of success: the portion of correct letters (25
per game), words (10 per game), and games.

Baselines. We provide 5 example input-output pairs in the IO prompt, and in the CoT prompt
additionally include intermediate words in the order h1..5 then v1..5. We run each prompt for 10
samples and average the results.

ToT setup. We leverage a depth-first search (Algorithm 2) that keeps exploring the most promising
subsequent word clue until the state is no longer promising, then backtrack to the parent state to
explore alternative thoughts. To make search tractable, subsequent thoughts are constrained not to
change any filled words or letters, so that the ToT has at most 10 intermediate steps. For thought
generation, at each state we translate all existing thoughts (e.g. “h2.motor; hl.tasks” for the state
in Figure[6{(a)) into letter constraints for remaining clues (e.g. “v1.To heap: tm___;...”) and prompt
a proposal prompt 5 times to come up with candidates for where and what to fill in the next word.
Importantly, we also prompt the LM to give a confidence level for different thoughts, and aggregate


https://www.goobix.com/crosswords/0505/

tasks | Input Clues @ (17 =N
motor ( ~ ( DFs )
_____ Thought Proposals Order
salon h2.motor h4. salon (sure) aggregate | h4.salon
----- V5. srdry (low) h3. grand

= = ——— _— v3. string (high) v3. string

I hitasks |« .. | |

I (b)

I (backtrack) State Evaluator (over each clue)

| Y | v3. Pretentious; flowery: _____ sure

I h3.grand , h4salon | v1. To heap: tm_s_ |} impossible

[ IR S (subtree pruned) I | v5. Desiccator; more dry: sr_n_ {..; maybe |

Figure 6: In Mini Crosswords, (a) how thoughts are proposed and aggregated in a priority queue
for depth-first search (DFS), and (b) how a state is evaluated based on the possibility of filling in
each remaining word clue, and pruned if any remaining clue is deemed not possible to fill by the LM.
Then DFS backtracks to the parent state and explore the next promising thought for clue.

these across proposals to obtain a sorted list of next thoughts to explore (Figure [6(a)). For state
evaluations, we similarly translate each state into letter constraints for remaining clues, then evaluate
for each clue if it is possible to fill given the constraints. If any remaining clue is deemed “impossible”
to fill in (e.g. “v1. To heap: tm_s_"), then the exploration of the state’s subtree is pruned and DFS
backtracks to its parent to explore the next promising thought. We limit DFS search steps to 100, and
simply render the deepest explored state (the first explored one if multiple) into the final output.

Results. As shown in Table[3, IO and CoT prompting methods perform poorly with a word-level
success rate less than 16%, while ToT significantly improves all metrics, achieving a word-level
success rate of 60% and solving 4 out of 20 games. Such an improvement is not surprising, given 10
and CoT lack mechanisms to try different clues, make changes to decisions, or backtrack.

Oracle and ablation studies. When outputting from the oracle best DFS state (instead of the
heuristically determined best state) per task, ToT performance is even higher and actually solves
7/20 games (Table 3] “+best state™), indicating our simple output heuristics can be readily improved.
Interestingly, sometimes when the crosswords game is actually solved, the state evaluator might still
deem some words as “impossible”” and prune — possibly because 5 x 5 crosswords by design have
some rare or obselete words that GPT-4 cannot recogniz Given the state evaluation as a pruning
heuristic is imperfect, we also explore ablating the pruning, and find the performance generally worse
(Table 3] “-prune™). However, it could actually find the correct solution for 4/20 games (though only
outputting 1 via heuristic), 3 of which are games ToT+pruning cannot solve within 100 steps. Thus,
better heuristics for DFS pruning are critical for problem solving in this case. Lastly, we confirm the
importance of backtracking by running an ablation that keeps filling the most promising clue for at
most 20 steps, allowing overwrites. This is similar to a “greedy” BFS search with breadth limit of
b = 1, and performs poorly with a word level success of only 20% (Table “-backtrack”).

5 Related Work

Planning and decision making. Smart planning and decision making are critical to achieving
predefined goals. As they are trained on vast amount of world knowledge and human examples, LMs
are known to have already absorbed rich commonsense that makes it possible to propose reasonable
plans conditioned on problem setting and environmental states [12} 142} 37, [13) 35| 41} 40]. Our
proposed ToT approach extends existing planning formulations by considering multiple potentially
feasible plans simultaneously at each problem-solving step, and proceeding with the most promising
ones. The integration between thought sampling and value feedback organically integrates planning
and decision-making mechanisms, enabling effective search inside a solution tree. On the other hand,
traditional decision-making procedures usually require training dedicated reward and policy models
as in reinforcement learning (for example CHAI [33]), whereas we use the LM itself to provide
the value estimates for decision making. RAP [9] is a concurrent work that treats language model

2For example, “agend” is an obsolete form of “agendum”, but GPT-4 deems it a typo for “agenda”. External
retrieval or web interaction could augment LM for problem solving under knowledge uncertainty.



reasoning as planning with its internal world model, and proposes a MCTS-based method similar to
ToT. However, its tasks are simpler than ours, and its framework lacks the modularity to incorporate
different tree search algorithms.

Self-reflection. Using LLMs to assess the viability of their own predictions is becoming an in-
creasingly important procedure in problem solving. [28} 20, [24] introduced the “self-reflection”
mechanism, in which LMs provide feedback to their generation candidates. [4] improves LMs code
generation accuracy by injecting feedback messages generated by the LM itself based on its code
execution results. Similarly, [[17] also introduces “critic” or review steps over the actions and states,
deciding the next action to take in solving computer operation tasks. Another recent work very
relevant to ours is “self-eval guided decoding” [39]. Similar to our method, self-eval decoding
also follows a tree-search procedure with leaves sampled from stochastic beam search decoding,
which are then evaluated by LLM itself with carefully prepared self-eval prompts. Their approach
however, uses the PAL formulation [8] which represents thoughts as codes, which makes it difficult
to tackle challenging tasks like creative writing which we consider in this paper. Our Tree-of-Thought
formulation is thus more versatile and handles challenging tasks on which GPT-4 only achieves very
low accuracy with standard prompts.

Program-guided LLM generation. Our proposal is also related to recent advancements that organize
LM’s behavior with systematic procedures [14}144}16}/43]] or symbolic program guidance. For example,
Schlag et al. [27]] embeds LMs in an algorithmic search procedure to help solve problems like question
answering step-by-step, in which the search trees are expanded by relevant paragraphs that might
provide answers. This approach however differs from ours in that trees are expanded by sampling
external paragraphs instead of the LM’s own thoughts, and there is no reflection or voting steps.
Another approach, LLM+P [[18]], goes one step further and delegates the actual planning process to a
classical planner.

Classical search methods. Last but not least, our approach can be treated as a modern rendition
of classical search methods for problem solving. For example it can be considered as a heuristic
search algorithm like A* [[10], in which the heuristic at each search node is provided by the LM’s self-
assessment. From this perspective, our method is also related to NeuroLogic A*esque decoding [19],
which is inspired by A* search but introduces look-ahead heuristics that are efficient for LMs to
improve the beam-search or top-k sampling decoding. This method however is constrained to
sentence generation tasks, whereas our framework are designed for complex, multi-step problem
solving guarded by value feedback.

6 Discussion

Limitations and future directions. Deliberate search such as ToT might not be necessary for many
existing tasks that GPT-4 already excels at (see Appendix [B.T), and as an initial step this work only
explores three relatively simple tasks that challenges GPT-4 (see Appendix [B.2]for some GPT-3.5
experiment results) and calls of better search and planning abilities incorporated with LMs. However,
as we begin to deploy LMs for more real-world decision making applications (e.g. coding, data
analysis, robotics, etc.), more complex tasks could emerge and present new opportunities to study
these research questions. Also, search methods like ToT requires more resources (e.g. GPT-4 API
cost) than sampling methods in order to improve task performances, but the modular flexibility of
ToT allows users to customize such performance-cost tradeoffs, and ongoing open-source efforts [32]]
should readily reduce such costs in the near future. More details about cost and efficiency are in
Appendix [B.3] Lastly, this work focuses on using an off-the-shelf LM, and fine-tuning LMs using
a ToT-style high-level counterfactual decision making (e.g. deliberating over potential choices for
the next paragraph, instead of predicting the next token) might present opportunities to enhance the
problem-solving capabilities of LMs.

Conclusion. The associative “System 1 of LMs can be beneficially augmented by a “System 2”
based on searching a tree of possible paths to the solution to a problem. The Tree of Thoughts
framework provides a way to translate classical insights about problem-solving into actionable
methods for contemporary LMs. At the same time, LMs address a weakness of these classical
methods, providing a way to solve complex problems that are not easily formalized, such as creative
writing. We see this intersection of LMs with classical approaches to Al as an exciting direction.



Broader Impact

ToT is a framework that empowers LMs to more autonomously and intelligently make decisions
and solve problems. While current tasks are limited to reasoning and search problems, future
applications involving interaction with external environments or humans could bring potential danger,
e.g. facilitating harmful uses of LMs. On the other hand, ToT also improves the interpretability
of model decisions and the opportunity for human alignment, as the resulting representations are
readable, high-level language reasoning instead of implicit, low-level token values.
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A Code, Prompts, Trajectories

All code is available at https://github.com/princeton-nlp/tree-of-thought-11lm,

All prompts are available at https://github.com/princeton-nlp/tree-of-thought-11lm/
tree/master/src/tot/prompts

Trajectories are available at https://github.com/princeton-nlp/tree-of-thought-11m/
tree/master/logs!

B Additional Experiment Results

Given the motivation of exploring and extending the capability frontier of language models, our
experiments in the main paper have focused on a setup with the state-of-the-art language model
(GPT-4), and three hard tasks invented to challenge it. Here, we report additional experiments with
weaker LLM or easier tasks, and discuss cost and efficiency.

GSMS8K StrategyQA GPT-4 GPT-35 GPT4 GPT-35
(0] 51 73 10 7.3% 6% (0] 6.19 4.47
CoT 86 82 CoT 4.0% 3% CoT 6.93 5.16
ToT 90 83 ToT 74% 19% ToT 7.56 6.62
Table 4: New tasks with Table 5: Game of 24 with Table 6: Creative Writing with
zero-shot ToT and GPT-4. GPT-4 vs GPT-3.5. GPT-4 vs. GPT-3.5.

B.1 Extension to new tasks (GSMS8Kk, StrategyQA) with zero-shot ToT

While more common NLP tasks might be too easy for GPT-4 and do not require ToT (which is why
we considered harder new tasks), we believe applying ToT to new tasks could be straightforward.
For example, we implemented a simple and generic zero-shot ToT-BFS similar to creative writing
(sample 5 problem solving strategies then vote for the best one; then sample 5 solutions based on the
best strategy then vote for the best one) for GSM8K and StrategyQA with few extra lines of code:

# define the answer format of new tasks
gsm8k_format = ‘"the answer is n" where n is a number’
strategyqa_format = ‘either "the answer is yes" or "the answer is no"’

# define zero-shot io prompting
standard_prompt = ‘Answer the following question with {formatl}: {input}’

# define thought format for zero-shot cot and zero-shot tot
cot_prompt = ¢‘‘Answer the following question: {input}

Make a strategy then write. Your output should be of the following format:

Strategy:
Your strategy about how to answer the question.

Answer:
Your answer to the question. It should end with {format}.

)2

# define zero-shot voting used for zero-shot tot

vote_prompt = ‘‘‘Given an instruction and several choices,
decide which choice is most promising.

Analyze each choice in detail, then conclude in the last line
"The best choice is {s}", where s the integer id of the choice.

) )
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We evaluated on a subset of 100 random GSMSK test and StrategyQA dev questions. As shown
in Table [ and as expected, ToT improves over CoT on both tasks (but only slightly, given GPT-4
+ CoT is already very good on such tasks, and StrategyQA’s bottleneck is external knowledge, not
reasoning). Considering computational costs, it is more suitable to try smaller LLMs + ToT for
traditional NLP tasks, or GPT-4 + ToT for hard tasks that challenge GPT-4 + CoT’s reasoning.

B.2 Extension to new LMs (GPT-3.5)

To understand how ToT works with other LLMs, we also ran GPT-3.5-turbo for Creative Writing
(Table[6) and Game of 24 (Table[3). On both tasks, “ToT > CoT > I0” remains true for GPT-3.5. On
Creative Writing, we find GPT-3.5+ToT outperform GPT-4+I0, and similar to GPT-4+CoT, which
suggests ToT could also work well on weaker language models.

On Game of 24 (we changed 1-shot proposal prompt to 3-shot to make it work), GPT-3.5+ToT’s
19% is far worse than GPT-4+ToT’s 74%. To further understand the importance of generation
vs. evaluation, we ran GPT-4 generation + GPT-3.5 evaluation (64%) and GPT-3.5 generation +
GPT-4 evaluation (31%). This suggests the game’s bottleneck is thought generation, and different
generation/evaluation language models might attain decent results while reducing costs.

B.3 Cost and efficiency

Running ToT requires significantly more computations than IO or CoT prompting. For example, in
Game of 24 (Table[7 below), solving a problem with ToT requires 5.5k completion tokens, close to
100 CoT trials (6.7k tokens). But the performance of ToT is better than best of 100 independent CoT
trials.

Game of 24 Generate/Prompt tokens Cost per case  Success
IO (best of 100) 1.8k / 1.0k $0.13 33%
CoT (best of 100) 6.7k / 2.2k $0.47 49%
ToT 5.5k / 1.4k $0.74 74%

Table 7: Cost analysis on Game of 24.

On Creative Writing (Table [8|below), we found ToT takes around 5x completion tokens and money
cost, which is intuitive as b = 5 and most tokens are generated passages.

Creative Writing Generate/Prompt tokens Cost per case

10 0.9k / 0.4k $0.06
CoT 0.9k / 0.4k $0.07
ToT 4k / 2.9k $0.32

Table 8: Cost analysis on Game of 24.

So completing Game of 24 and Creative Writing’s main ToT experiments cost around 0.74 x 100 +
0.32 x 100 = 106 dollars. Crosswords’ DFS experiments should be also within 100 dollars. In
general, cost and efficiency of ToT highly depend on the prompts and search algorithms used, and
could require 5-100 times more generated tokens than CoT. Some actionable insights:

* We recommend using ToT on tasks requiring deliberate reasoning, on which CoT struggles.

* Flexibility of ToT allows some performance-cost tradeoff, e.g., change beam size or vote
number in BFS, few-shot vs. zero-shot prompting, GPT-3.5 vs. GPT-4, etc. One could
configure the setup based on some resource constraints or performance goal.

* There is much space for improving efficiency, e.g., BFS could early stop when solution is
found, or trim down beam size to when some thoughts are “impossible”.

* We believe that more computation is indeed required in order for the model to achieve
stronger intelligence, and this should not become a blocking issue as in the long run, (open-
source) LMs will become much cheaper and more efficient. It is also a great direction how
to better train/finetune LMs for thought generation and/or evaluation.
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