
The Perils of Learning From Unlabeled Data:
Backdoor Attacks on Semi-supervised Learning

Virat Shejwalkar
UMass Amherst

vshejwalkar@cs.umass.edu

Lingjuan Lyu
Sony AI

lingjuan.lv@sony.com

Amir Houmansadr
UMass Amherst

amir@cs.umass.edu

Abstract

Semi-supervised learning (SSL) is gaining popularity as
it reduces cost of machine learning (ML) by training high
performance models using unlabeled data. In this paper, we
reveal that the key feature of SSL, i.e., learning from (non-
inspected) unlabeled data, exposes SSL to strong poisoning
attacks that can significantly damage its security. Poisoning
is a long-standing problem in conventional supervised ML,
but we argue that, as SSL relies on non-inspected unlabeled
data, poisoning poses a more significant threat to SSL.

We demonstrate this by designing a backdoor poisoning
attack on SSL that can be conducted by a weak adversary
with no knowledge of the target SSL pipeline. This is un-
like prior poisoning attacks on supervised ML that assume
strong adversaries with impractical capabilities. We show
that by poisoning only 0.2% of the unlabeled training data,
our (weak) adversary can successfully cause misclassifica-
tion on more than 80% of test inputs (when they contain
the backdoor trigger). Our attack remains effective across
different benchmark datasets and SSL algorithms, and even
circumvents state-of-the-art defenses against backdoor at-
tacks. Our work raises significant concerns about the secu-
rity of SSL in real-world security critical applications.

1. Introduction
Machine learning (ML) models perform better with in-

creased amounts of training data [13, 12]. However, con-
ventional supervised ML requires labeling large amounts of
training data, an expensive [11] and error prone [31, 26]
process that makes it prohibitively expensive, especially
with today’s exploding training data sizes.

Semi-supervised learning (SSL) addresses this major
challenge by significantly reducing the need for labeled
training data: SSL uses a combination of a small, high-
quality labeled data (expensive data) with a large, low-
quality unlabeled data (cheap data) to train models. For
instance, the FixMatch [40] SSL algorithm combines only

40 labeled with 50k unlabeled data to achieve a 90% ac-
curacy on CIFAR10. Training SSL involves two loss func-
tions: a supervised loss (e.g., cross-entropy [30] over true
labels) on labeled training data and an unsupervised loss
(e.g., cross-entropy over pseudo-labels [22]) on unlabeled
training data. Different SSL algorithms primarily differ in
terms of how they compute their unsupervised losses.

SSL has gained popularity in both academia [52, 46, 47]
and industry [40, 41, 3, 2], as recent SSL algorithms offer
state-of-the-art performances comparable or even superior
to supervised techniques—but with no need of large well-
inspected labeled data. For instance, due to their effective
use of unlabeled data, with less than 10% of training data
labeled, FixMatch [40] outperforms supervised ML.
Unlabeled data enables poisoning by weak adversaries:

Multiple researches have demonstrated the data poisoning
threat to supervised ML [18, 28, 34, 36, 50, 44, 38]. How-
ever, as the training data in supervised ML undergo an ex-
tensive and careful inspection, these attacks assume strong
adversaries with the knowledge of model parameters [28],
training data [44, 4, 29], its distribution [50], or the ML al-
gorithm. Such strong adversaries are important to evaluate
worse-case security of a system, but are irrelevant in prac-
tice [38]. On the other hand, the key feature of SSL that
makes it attractive to real-world applications is its ability to
leverage large amounts of—raw, non-inspected—unlabeled
data, e.g., the data scraped off the Internet. We argue that
the use of non-inspected data by SSL presents a unique
threat to its security, as it allows even the most naive
adversaries (with no knowledge of training algorithm,
data, etc.) to poison SSL models by simply fabricating
malicious unlabeled data. Unfortunately, this ostensible
threat is largely unexplored in the SSL literature.

To address this gap, in this paper, we take the first step
towards understanding this threat by studying the possibil-
ity of backdoor attacks against SSL in real-world settings.
Backdoor attacks aim to install a backdoor function in the
target model, such that the backdoored target model will
misclassify any test input to the adversary chosen target
class when patched with a specific backdoor trigger, but

This ICCV paper is the Open Access version, provided by the Computer Vision Foundation.

Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.

4730

will correctly classify test inputs without the trigger.
Existing backdoor attacks fail on SSL: There exist numer-
ous backdoor attacks in the literature, however, except one
attack—DeHiB [48], all of the prior attacks consider super-
vised ML. Our preliminary evaluations show that all of the
existing state-of-the-art (SOTA) attacks, including DeHiB,
completely fail against SSL under our realistic threat model
(Section 3.1). Hence, to learn from these failures, we first
systematically evaluate five SOTA backdoor attacks from
three categories against five SOTA SSL algorithms, under
our practical, unlabeled data poisoning threat model.

Our systematic evaluation leads to the following three
major lessons that not only guide our attack design, but
can be useful building blocks for (future) backdoor attacks
against SSL: (1) Backdoor attacks on SSL should be clean-
label style attacks, i.e., poisoning data should be selected
from the distribution of target class y

t; (2) Backdoor trig-
gers should be of the same size as the poisoning sample, to
circumvent strong augmentations, e.g., cutout [15], that all
modern SSL algorithms use; (3) Backdoor triggers should
be resistant to noise and with repetitive patterns1 to with-
stand large amounts of random noises due to strong aug-
mentations, e.g., RandAugment [10], in SSL.
Our SSL-tailored backdoor method: The high-level intu-
ition behind our backdoor attack is as follows. All modern
SSL algorithms learn via a self-feedback mechanism, called
pseudo-labeling, i.e., if current state of target model f✓ has
high confidence prediction ỹ for an unlabeled sample x,
then they use (x, ỹ) as a labeled sample for further training.
We exploit pseudo-labeling and design a clean-label attack
that poisons unlabeled data only from the distribution of y

t.
Our attack patiently waits for f✓ to correctly label a poison-
ing sample (x + T) as y

t, where T is our pre-determined
backdoor trigger. As f✓ trains further on ((x + T), yt), our
attack forces f✓ to associate features of our simple trigger
T , instead of the complex features of x, with y

t, thereby
installing the backdoor in the target model.

Note that, we consider the most challenging setting for
designing attacks with the least capable and knowledgeable
data poisoning adversary. Generally, trigger generation for
data poisoning backdoor attacks is formalized as a bi-level
optimization problem [29], however such attacks are well-
known to be very expensive, and yet ineffective [29, 38].
Instead, our lessons lead us to a simple yet effective static,
repetitive grid pattern backdoor trigger (Figure 2).
Evaluations: We demonstrate the strength of our attack via
an extensive evaluation against five SOTA SSL and one su-
pervised ML algorithm, using four benchmark image clas-
sification tasks commonly used in the SSL literature. We
note that our attack significantly outperforms prior attacks
from both SSL and supervised ML literature.

1Repetitive pixel patterns are the patterns on which if we zoom in on
any part, we get similar pattern. For examples, check Figures 1 and 10.

We measure success of our attacks using ASR metric:
ASR measures the % of test inputs from non-target classes
that the backdoored model classifies to the target class when
patched with backdoor trigger. For the most combinations
of algorithms and datasets, our attacks achieve high at-
tack success rates (ASRs) (>80%), while poisoning just
0.2% of entire training data. For instance, our attacks
have more than 90% ASR against CIFAR100 and more
than 80% ASR against CIFAR10. For SVHN and STL10,
our attack has more than 80% ASR with two exceptions
each. While, under our practical threat model, DeHib at-
tack achieves 0% ASR even with 20⇥ more poisoning data.
Through a systematic experiment design in Section 5.1.4,
we show that our intuition aligns with the dynamics of our
attacks and justify their strength. Our attack is highly
stealthy, as (1) according to L1-norm metric commonly
used [50] for stealth measurement, it minimally perturbs
the poisoning data and (2) it produces backdoored models
which have high accuracy (close to non-backdoored mod-
els) on non-backdoored test inputs. We perform compre-
hensive ablation study (Section 5.2) to demonstrate the high
efficacy of our attacks as we vary (1) size of labeled data,
(2) backdoor target class, and (3) size of poisoning data.

Finally, we show that our attack remains highly ef-
fective even when SSL is paired individually with five
SOTA defenses against backdoor attacks that are agnostic
to learning algorithms. To defend against such unlabeled
data poisoning, we argue for SSL to depart from its philos-
ophy of not inspecting unlabeled training data, and instead,
pre-process/inspect the unlabeled data and/or design SSL
algorithms that are robust-by-design to such poisoning.

2. Preliminaries and Related Work
2.1. Semi-supervised Learning (SSL)

Supervised ML requires completely labeled data, D
l,

which can be prohibitively expensive due to expensive man-
ual labelling involved. SSL reduces this cost by using very
few labeled D

l and plenty of unlabeled data D
u. SSL uses

a convex combination of a supervised loss Ll on D
l and

an unsupervised loss Lu on D
u. Modern state-of-the-art

SSL algorithms rely on two key building blocks: pseudo-
labeling [22] and consistency regularization [14, 35, 21].

Pseudo-labeling uses the current model, f✓, to obtain ar-
tificial pseudo-labels for D

u and only retains the data on
which f✓ has high confidence. Assume qb = f✓(y|ub)
are the predictions of f✓ on the batch ub of unlabeled
data. Then pseudo-labeling loss can be formalized as:

1
|ub|

P|ub|
b=1 (max(qb) � ⌧)H(q̂b, qb); q̂b = argmax(qb),

H(.) is cross-entropy and ⌧ is confidence threshold.
Consistency regularization trains f✓ to output similar

predictions for perturbed versions of the same input. It uses
stochastic augmentations a(xu) to perturb an unlabeled

4731

sample xu and forces f✓ to have similar outputs on multi-
ple a(xu)’s using the following loss:

P|ub|
b=1 kf✓(y|a(ub))�

f✓(y|a(ub))k2
2, where a(.) produces different output every

time it is applied to a batch ub of unlabeled data. Below we
describe the five SOTA SSL algorithms we consider in this
work.
(1) MixMatch [3] combines various prior semi-supervised
learning techniques. For an unlabeled sample, MixMatch
generates K weakly augmented versions of the unlabeled
sample, computes outputs of the current model f✓ for the K

versions, averages them, and sharpens the average predic-
tion by raising all its probabilities by a power of 1/temper-
ature and re-normalizing; it uses the sharpened prediction
as the label of the unlabeled sample. Finally, it uses mixup
regularization [53] on the combination of labeled and unla-
beled data and trains the model using cross-entropy loss.
(2) Unsupervised data augmentation (UDA) [46] shows
significant improvements in semi-supervised performances
by just replacing the simple weak augmentations of
MixMatch with a strong augmentation called Randaug-
ment [10]. In an iteration, Randaugment randomly selects
a few augmentations from a large set of augmentations and
applies them to images.
(3) ReMixMatch [3] builds on MixMatch by making mul-
tiple modifications, including 1) it replaces the simple weak
augmentation in MixMatch with Autoagument [9], 2) it
uses augmentation anchoring to improve consistency regu-
larization, i.e., it uses the prediction on a weakly augmented
version of unlabeled sample as the target prediction for a
strongly augmented version of the unlabeled sample, and
3) it uses distribution alignment, i.e., it normalizes the new
model predictions on unlabeled data using the running av-
erage of model predictions on unlabeled data. This signifi-
cantly boosts the performance of resulting model.
(4) FixMatch [40] simplifies the complex ReMixMatch
algorithm by proposing to use a combination of Pseudo-
labeling and consistency regularization based on augmen-
tation anchoring (discussed above). FixMatch significantly
improves semi-supervised algorithms, especially in the low
labeled data regimes.
(5) FlexMatch [52] proposes curriculum pseudo labelling
(CPL) approach to leverage unlabeled data according to
model’s learning status. The main idea behind CPL is to
flexibly adjust the thresholds used for pseudo-labeling for
different classes at each training iteration in order to select
more information unlabeled data and their pseudo-labels.
CPL can be combined with other algorithms, e.g., UDA.

2.2. Backdoor Attacks
A backdoor adversary aims to implant a backdoor func-

tionality into a target model. That is, given an input (x, y
⇤)

with true label y
⇤, the backdoored target model f

b
✓ should

output an adversary-desired backdoor target label y
t for

the input patched with a pre-specified backdoor trigger T ,
but it should output the correct label for the benign in-
put, i.e., f

b
✓ (x + T) 7! y

t and f
b
✓ (x) 7! y

⇤. There are
two major types of backdoor attacks: (1) dirty-label at-
tacks [19, 7, 36, 51, 33, 23] that poison both the features
x and labels y

⇤ of benign, labeled data to obtain poisoning
data D

p. (2) On the other hand, clean-label attacks obtain
D

p by poisoning only the features x of benign data.
Backdoor attacks on SSL, unfortunately, have not re-

ceived significant attention from the scientific community.
[48, 49, 16] study backdoor attacks against SSL. However,
all of these attacks assume access to D

l, the labeled train-
ing data of SSL. This assumption renders their applicability
questionable in realistic settings. For clarity of presentation,
we discuss the details of these attacks in Appendix A.1,
where we demonstrate (Table 2) and justify why these at-
tacks fail to backdoor SSL.

3. Our Backdoor Attack Methodology
We first discuss threat model of our attack, followed by

our intuition behind backdoor attacks on SSL. Next, we
note that, effectively backdooring semi-supervised learning
(SSL) does not need a new backdoor attack, but requires
careful adoption of existing backdoor attacks. We discuss
three major lessons learned from systematically evaluating
SOTA attacks under our threat model (Section 3.1). Finally,
we detail our SOTA backdoor attack based on our intuition
and the lessons learned.

3.1. Threat Model

We consider a victim model trainer who collects data
from multiple, potentially untrusted sources to train a ML
model using SSL for a classification task with C classes.
Adversary’s goal: A backdoor adversary aims to install
a backdoor function in the victim’s target model. We de-
note the models without (benign) and with backdoor by f

b
✓

and f✓, respectively. Adversary’s backdoor goal is to force
f
b
✓ to incorrectly classify all the test inputs from non-target

classes to the adversary-desired target class y
t, when they

are patched with a pre-specified backdoor trigger, T . Ad-
versary’s stealth goal aims that f

b
✓ should correctly classify

all the benign test inputs, i.e., any input without T .
Adversary’s knowledge: As discussed in Section 1, we
consider the most naive, real-world adversary with mini-
mum knowledge of the SSL pipeline. More specifically,
we assume that the adversary has no knowledge of the la-
beled or unlabeled training data and does not posses any
data from true distribution; they just know the classifica-
tion task, i.e., CIFAR10 or SVHN. Our adversary knows
the details of the target SSL algorithm, but does not know
model architecture, e.g., ResNet or VGG, i.e., our attacks
are model architecture agnostic.

4732

Adversary’s capabilities: Due to our emphasis on prac-
ticality of our threat model, we consider a data poisoning
adversary [38]. Specifically, our adversary can poison only
the unlabeled data of SSL pipeline, and cannot poison or
even access the model, code or the labeled data of SSL.

3.2. Intuition behind our backdoor attack
For brevity, we discuss our intuition for FixMatch [40],

but it applies to any SSL algorithms that use pseudo-
labeling and consistency regularization (Section 2.1).

As explained in Section 2.1, FixMatch trains parameters
✓ to learn a function f✓ from the labeled data D

l and assigns
a pseudo-label ŷ to an unlabeled sample x 2 D

u. Then it
further trains ✓ using (x, ŷ) to improve f✓. As the training
progresses, the confidence of f✓ on the correct label of x
increases which leads to better pseudo-labeling of D

u and
further improvements in the accuracy of f✓. In other words,
FixMatch learns via a self-feedback mechanism.

Recall that, our realistic data poisoning adversary cannot
alter either the SSL training pipeline or the well-inspected
labeled training data D

l. Now, the first part of our intu-
ition is that our attacks should be of clean-label type, i.e.,
we select unlabeled data X

yt

from the target class, y
t,

and patch it with backdoor trigger T to obtain X
p, i.e.,

X
p = X

yt

+ T ; next section demonstrates the necessity
of this condition. The second part of our intuition is that
in initial part of training, FixMatch will assign the desired
pseudo-labels y

t to X
p due to the original features X

yt

of
X

p. However, due to the presence of backdoor trigger, T ,
on all X

ps, the model will be forced to eventually learn a
much simpler task of associating T to y

t.
To further understand this, consider three benign sam-

ples xi2{1,2,3} with target class y
t as their true label. The

adversary adds a trigger T to these samples to obtain X
p:

{xi2{1,2,3} + T} and inserts X
p in D

u. Note that, initially
during training, FixMatch learns the association f✓ : X 7!
Y between feature and label spaces only through D

l. And as
our threat model assumes that D

l is benign (not poisoned),
initially FixMatch focuses only on the benign features of
X

p, i.e., on xi2{1,2,3} and assigns the correct label y
t to

all X
p samples. This in turn forces FixMatch to learn from

(xi2{1,2,3} + T, y
t). As T is present in all X

p samples,
FixMatch incorrectly learns the simpler task of associat-
ing the static trigger T with y

t, instead of the difficult task
of associating the complex and dynamic benign features of
xi2{1,2,3} with y

t; we very our intuition in Section 5.1.4.

3.3. Lessons from systematic evaluation of existing
backdoor attacks against SSL

In Table 1, we categorize existing SOTA attacks on su-
pervised ML and SSL in three types: dirty label, clean la-
bel small trigger and clean label adversarial samples. We
evaluate representative attacks from each category and pro-

Trigger
Benign sample from

target class
Poisoning

sample

Figure 1: Our backdoor trigger and a poisoning sample.

Pixel gap

Pixel intensity Pixel width

Figure 2: Our backdoor trigger has three parameters: pixel inten-
sity ↵, pixel gap g, and pixel width w. For presentation clarity,
we use high pixel intensity here, but in experiments we use low
intensities to ensure attack stealth.

vide justification for their failure against SSL, and the cor-
responding lesson that will guide future attack designs on
SSL. Due to space limit, we present the key lessons here
and defer detailed discussions to Appendix A.
Lesson-1: Backdoor attacks against semi-supervised

learning should be clean-label type, i.e., the poisoning

samples should be from the backdoor target class. With-
out this condition, model will be forced to learn to associate
T with different classes (i.e., original classes of poisoning
data X

p), and effectively, model will simply ignore T .
Lesson-2: The trigger should have same size as the entire

sample (images in our case), to ensure that all the aug-

mented instances of a poisoning sample contain majority

of the trigger. This is necessary due to augmentations in
SSL that occlude part of an image, e.g., cutout and cutmix,
which all the modern SOTA SSL algorithms use.
Lesson-3: The trigger should be noise-resistant and with a

repetitive pattern.2 This is necessary, again, to circumvent
the occluding augmentations described above.

We believe that the above lessons give the minimum con-
straints to design backdoor attacks on SSL. But, they need
not be exhaustive and may need modifications, e.g., based
on different threat models and SSL algorithms.

3.4. Our State-of-the-art backdoor attack
Based on our intuition and the three lessons detailed

above, we develop a clean-label style backdoor attack using
a specific static trigger pattern. Figure 1 depicts our static
backdoor trigger and a corresponding poisoning image;
we present more images for CIFAR, SVHN, and STL10

2Repetitive pixel patterns are the patterns on which if we zoom in on
any part, we get similar pattern. For examples, check Figures 1 and 10.

4733

Table 1: The left column shows types of backdoor attacks based on specific characteristics, middle column lists existing
attacks of each type. Right-most column presents lessons we learn from evaluating one/two representative attacks (in bold)
of each type.

Attack characteristic/ type Existing attacks of given type Lesson from evaluations
Dirty label DeHiB [48], DL-Badnets [18],

DL-Blend [7], Facehack [36]
Attack should be a clean-label attack, i.e.,

poisoning samples should be from
backdoor target class.

Clean-label small trigger CL-Badnets [50], CL-Blend [7] Trigger should span the entire
sample/image to avoid cropping/covering

by strong augmentations.
Clean-label adversarial samples Narcissus [50], Label consistent [44],

non-repeating trigger patterns,
HTBA [34], SAA [42],

Embedding [54]

Trigger should be noise-resistant and its
pattern should be repetitive so that even a

part of trigger can install a backdoor.

Table 2: Impacts of existing backdoor attacks (Section 2.2) on various semi-supervised algorithms for CIFAR10 data. We
poison 0.2% (100 samples) of all the training data. DeHib⇤ is the original attack with the knowledge of labeled training data
D

l while DeHib is the attack without the knowledge of D
l.

Algorithm DeHiB⇤ DeHiB CL-Badnets LC Narcissus
ASR (%) ASR (%) ASR (%) ASR (%) ASR (%)

Mixmatch [3] 22.0 1.0 9.1 1.1 2.2
Remixmatch [2] 10.9 0.9 0.0 0.0 0.0

UDA [46] 21.2 1.2 5.1 0.0 0.0
Fixmatch [40] 35.8 0.9 10.2 0.1 1.3
Flexmatch [52] 16.9 1.2 9.1 0.1 1.1

datasets in Figures 14, 15, and 16 in Appendix C. Our back-
door trigger pattern has three parameters: intensity ↵, gap
g, and width w. ↵ is the intensity of the bright pixels in
the trigger and intensity of the rest of the pixel is 0; g is the
distance between two adjacent set of bright pixels and w is
the width of each set of bright pixels. Note that the size of
our trigger is the same as that of the sample and has a fairly
repetitive pattern, hence it satisfies both Lessons-2 and 3.

To summarize our attack: we select a set of samples from
the target class (to satisfy Lesson-1, poison them by adding
the trigger to them, and inject these poisoned samples into
the unlabeled data. As we will show in Section 5.1.1 (Ta-
ble 3), with poisoning just 0.2% of the entire training data,
this simple backdoor method injects backdoors in SSL mod-
els with close to 90% accuracy.

Finally, it is worth mentioning that, there are many possi-
ble triggers that follow aforementioned lessons, but choice
of our specific trigger is based on various triggers patterns
we investigated in our initial explorations (Figure 10). Fur-
thermore, the choice of our simple yet effective backdoor
attack method is a result of an extensive experimentation
with various attack methods (and not just trigger patterns).
In Appendix C.1, we discuss alternate attack methods we
explored but found them unsuccessful at backdooring SSL.

4. Experimental setup
We evaluate our backdoor attacks using four datasets

(CIFAR10, SVHN, CIFAR100 and STL10) commonly used
to benchmark semi-supervised algorithms. Due to space
limits, we defer the details of datasets, model architectures
and hyperparameters to Appendix B.

4.1. Performance metrics
Clean accuracy (CA) [18] measures the accuracy of a
model on clean test data without any backdoor trigger T .
Backdoored models should have high CA to ensure that the
backdoor attack does not impact their benign functionality
to ensure the attack stealth.
Backdoor attack success rate (ASR) [18] measures the ac-
curacy of a model on the backdoored test data from the non-
target classes patched with T . For a successful backdoor
attack, backdoored model should have high ASR.
Target class accuracy (TA) [50] measures the accuracy of
the clean test data from the target backdoor class which
does not contain any T . For a backdoored model, TA should
be high to ensure the attack stealth.

5. Empirical Results
5.1. Our attacks effectively backdoor SSL

In this section, we demonstrate the superiority of our
backdoor attacks over various baseline attacks in terms of
three metrics from Section 4.1. Note that, we poison at
most 0.2% of the entire unlabeled data, which is signifi-
cantly lower than what prior attacks use, e.g., 10% in De-
HiB [48, 49]. Backdoor injection at such low poisoning
percentages is extremely challenging as we aim to backdoor
the entire test data and not just a single sample as in [5].

5.1.1 High attack success rate (ASR)

In Table 3, “p%” column shows poisoning percentage and
ASR columns show the results. Our backdoor attacks out-

perform all the baseline backdoor attacks by very large

4734

Table 3: Impacts of backdoor attacks on various semi-supervised (SSL) algorithms (Section 2.1) under the unlabeled data
poisoning threat model (Section 3.1). For all datasets, our attack (Section 3.4) significantly outperforms the baseline backdoor
attack (DeHiB) against SSL and various clean-label attacks against supervised learning (Section 2.2). Best results are in bold.

C
IF

A
R

10

Algorithm No attack p% CL-Badnets Narcissus DeHiB Our attack
CA ASR TA CA ASR TA CA ASR TA CA ASR TA ↵ CA ASR TA

Mixmatch [3] 92.2 0.0 93.5 0.2 92.1 15.3 94.2 91.1 0.0 94.9 91.1 1.4 92.1 30 92.2 96.8 94.6
Remixmatch [2] 91.3 0.0 94.9 0.2 91.0 1.1 95.0 91.3 0.0 95.9 90.8 2.1 94.8 30 90.6 84.3 94.5

UDA [46] 89.5 0.0 97.4 0.1 88.1 8.2 96.9 89.1 1.0 98.6 89.1 1.1 97.2 20 89.6 81.5 96.7
Fixmatch [40] 91.1 0.0 97.5 0.2 91.9 10.1 97.8 91.2 0.0 98.0 90.9 1.1 95.8 20 93.5 88.1 97.6
Flexmatch [52] 94.3 0.0 97.1 0.2 93.9 6.4 97.0 94.1 0.0 98.5 94.2 2.3 97.0 20 93.8 87.9 96.9

SV
H

N

Algorithm No attack p% CL-Badnets Narcissus DeHiB Our attack
CA ASR TA CA ASR TA CA ASR TA CA ASR TA ↵ CA ASR TA

Mixmatch [3] 94.4 0.0 95.4 0.2 94.5 5.4 93.8 94.5 0.0 96.1 94.4 3.2 95.0 30 93.2 83.7 95.8
Remixmatch [2] 87.6 0.0 95.5 0.2 88.0 1.2 95.4 87.1 0.0 95.9 88.1 1.7 95.9 30 87.6 51.1 95.4

UDA [46] 95.0 0.0 96.3 0.2 94.9 1.1 96.0 94.2 0.0 96.0 94.8 1.1 96.6 20 94.9 95.5 95.8
Fixmatch [40] 94.5 0.0 96.3 0.2 94.9 3.1 97.1 94.2 0.0 97.0 94.8 3.2 96.4 20 94.5 97.1 93.9
Flexmatch [52] 85.4 0.0 96.3 0.2 88.9 1.2 96.9 86.1 0.0 96.7 86.8 2.2 96.4 20 83.9 50.1 96.6

ST
L1

0

Algorithm No attack p% CL-Badnets Narcissus DeHiB Our attack
CA ASR TA CA ASR TA CA ASR TA CA ASR TA ↵ CA ASR TA

Mixmatch [3] 86.7 0.0 86.3 0.2 86.3 9.2 86.7 87.1 1.1 87.0 86.1 1.1 86.1 40 86.4 86.2 87.9
Remixmatch [2] 91.7 0.0 90.6 0.2 91.2 4.1 90.6 91.9 0.9 91.1 91.3 1.1 91.0 40 91.2 82.2 91.4

UDA [46] 88.1 0.0 77.5 0.2 88.1 5.5 77.1 89.0 0.1 77.9 88.5 1.7 77.4 30 88.6 57.1 80.4
Fixmatch [40] 92.1 0.0 86.1 0.2 92.2 13.1 86.6 92.1 0.0 86.9 92.0 2.2 86.2 30 91.8 92.4 87.3
Flexmatch [52] 88.1 0.0 88.8 0.2 88.1 6.5 88.1 88.4 0.9 88.0 87.8 1.7 87.9 30 87.8 49.8 85.8

C
IF

A
R

10
0 Algorithm No attack p% CL-Badnets Narcissus DeHiB Our attack

CA ASR TA CA ASR TA CA ASR TA CA ASR TA ↵ CA ASR TA
Mixmatch [3] 71.6 0.0 67.2 0.2 71.9 30.1 67.5 72.0 1.5 68.3 72.3 1.1 68.1 30 71.6 92.8 69.0

Remixmatch [2] 73.3 0.0 59.1 0.2 73.3 18.9 59.3 73.2 1.1 60.2 73.2 0.5 59.9 30 73.1 97.1 58.2
Fixmatch [40] 71.3 0.0 49.3 0.2 70.6 22.0 49.8 71.4 1.1 50.1 71.4 2.3 49.8 10 71.1 91.8 48.9

margins for all the combinations of datasets and algorithms.
More specifically, for various settings, ASRs of our attacks
are at least 80% more than ASRs of Narcissus and DeHiB
attacks, while they are at least 60% more than clean label
(CL)-Badnets attacks. Due to space limits, we discuss all
the baseline attacks in Appendix A. For UDA + CIFAR10,
ASR is 81.5% with poisoning just a 0.1% of training data.

Narcissus and DeHiB3 attacks achieve close to 0% ASR
for most combinations of datasets and SSL algorithms. As
discussed in Appendix A.3, this is expected because all SSL
algorithms use strong augmentations which easily obfuscate
the dynamic backdoor triggers of these attacks. CL-Badnets
attack exhibits relatively higher ASR performances, which
is due to the static pattern of its triggers. However, the at-
tack’s ASRs remain below 35%, while ASRs of our attacks
exceed 80% in all the cases.

5.1.2 Negligible impact on clean accuracy (CA)

“CA” columns in Table 3 show the results. First note that,
as Table 6 shows, we use significantly more labeled data for
MixMatch than for the other semi-supervised algorithms,
and therefore, for some datasets, MixMatch achieves higher
accuracy than ReMixMatch or FixMatch. Note from Ta-
ble 3 that our attacks are highly stealthy as they reduce CA

by less than 1.5%. Baseline attacks also reduce CA negli-
gibly, but their ASRs are very low. Interestingly, for some
combinations of dataset and algorithms, we observe an in-

3Note that, the original DeHib attack makes an unrealistic assumption,
i.e., access to the labeled portion, Dl, of the training data. Hence, for a fair
comparison, instead of exact Dl, we assume that the attacker has some
labeled data with same distribution as Dl.

crease in CA when we mount our attacks, e.g., for CIFAR10
+ FixMatch, CA increases from 91.1% in the benign setting
to 93.5%, i.e., 2.4% absolute increase. We also observe that
such CA increases generally accompany an increase in the
target class accuracy (TA). This is because our attacks add
a specific trigger to a subset of target class data and give the
model an extra signal to better learn the target class. This
improves the TA, and hence, also increases CA.

5.1.3 Negligible impact on target class accuracy (TA)

“TA” columns in Table 3 show the results. Our attacks re-

main stealthy with respect to TA as well, as they incur neg-

ligible (<3%) reduction in TA. The baseline attacks also do
not reduce TAs, but their ASRs are very low. For STL10 +
FlexMatch, we observe the maximum, 3%, reduction in TA.
This is because the number of samples for a class that Flex-
Match uses during training is inversely proportional to the
confidence of the model on that class; the addition of back-
door trigger to the target class data increases the models’
confidences on the target class and reduces the target class
data that FlexMatch uses for training. On the other hand, in
some cases, TA increases as discussed above.

5.1.4 Why and how our attacks work against SSL?

Below, we explain why and how our attack backdoors
SSL. For brevity, we limit our discussions to FixMatch and
ReMixMatch on CIFAR10 data with target class, y

t=7, i.e.,
“horse”, but the insights apply to other SSL algorithms.
FixMatch: FixMatch (as discussed in Section 3.2) uses the
current model, f✓ and assigns hard pseudo-labels to unla-
beled data, D

u, on which f✓ has high confidences. Hence,

4735

0.0 0.5 1.0 1.5 2.0

Train iteration ⇥105

0

20

40

60

80

A
tt

ac
k

su
cc

es
s

ra
te

(%
)

CIFAR10 + FixMatch

Backdoor ASR

Average pseduo-label

0.0 0.5 1.0 1.5 2.0

Train iteration ⇥105

0

20

40

60

80

CIFAR10 + ReMixMatch

Backdoor ASR

Target class confidence

0

1

2

3

4

5

6

7

A
ve

ra
ge

ps
eu

do
-l
ab

el
0.0

0.2

0.4

0.6

0.8

1.0

C
on

fid
en

ce
on

ta
rg

et
cl

as
s

Figure 3: Dynamics of our backdoor attacks: Initially, SSL
assigns the backdoor target class y

t as pseudo-labels to poi-
soning data. Then, our attack forces the model to learn sim-
pler task of associating the backdoor trigger to y

t.

Table 4: Backdoor attacks’ invisibility as L1-norm of their
trigger for CIFAR10. Stealthy attacks have small norms.

CL-Badnets Narcissus DeHiB Ours
At train time 255/255 32/255 32/255 30/255
At test time 255/255 32/255 32/255 30/255

to understand why and how our attacks work against Fix-
Match, in Figure 3-(left), we plot averages of hard pseudo-
labels of FixMatch on backdoored (poisoning) unlabeled
data, X

p and our attack’s ASRs as SSL progresses. As
training progresses, FixMatch assigns the y

t to more and
more of X

p. This forces f✓ to shift its objective from learn-
ing the difficult salient features of the target class to learn-
ing much simpler backdoor trigger. Hence, backdoor ASR
increases as the average pseudo-label shifts to y

t=7.
ReMixMatch: As detailed in Section 2.1, ReMixMatch av-
erages predictions on a few augmented versions of an x
2X

p and then uses distribution alignment to compute a pre-
diction vector that it uses as a soft label to train f✓. Hence,
to understand our backdoor attack on ReMixMatch, in Fig-
ure 3-(right), as the training progresses, we plot the average
of f✓’s confidences on y

t for X
p, and backdoor ASRs. Ini-

tially ReMixMatch assigns low confidences to y
t that is due

to the distribution alignment, which ensures that ReMix-
Match does not assign very high confidence to any single
class. However, note from Figure 3 that, once f✓ learns the
salient features of y

t from X
p (with y

t as true label), f✓

assigns very high confidences to y
t. Next, similar to Fix-

Match, f✓ is forced to learn to associate trigger with y
t.

Summary: Our backdoor attacks exploit the high perfor-

mance of modern SSL algorithms: As our intuition hy-
pothesized in Section 3.2, once they achieve high confi-
dences on y

t, our attack forces f✓ to associate the simple
trigger pattern of our attack with the target class, thereby
installing the backdoor.

5.1.5 Additional effectiveness metrics

Visibility of backdoor trigger: The unlabeled data of SSL
pipeline is never inspected, hence we believe that the visi-

bility of our backdoor triggers is not a significant concern.
Nevertheless, following [50], we measure the visibility of
backdoor attack as the L1-norm of their backdoor trigger
T . The lower the L1-norm of a trigger, the more stealth-
ier the backdoor attack. Table 4 shows the L1-norms of T

used for CIFAR10. We note that L1-norm, i.e., visibility,
of our T is lower than that of all the baseline attacks. For
many combinations of dataset and SSL algorithms, we need
even lower L1-norm triggers, e.g., to attack CIFAR10 with
FixMatch, UDA and FlexMatch, we use L1=20/255, while
attack on CIFAR100 with FixMatch uses L1=10/255.
Efficacy against strong augmentations: In this section, we
show that our attacks not only work against SSL, but gen-
erally perform well against strong augmentations (SA). To
this end, we evaluate CL-Badnets, Narcissus and our attack
against supervised ML (SML) with and without SAs (we
use RandAugment [10]) and provide results in Table 5 for
CIFAR10 and CIFAR100. We poison 0.2% of entire la-
beled training data for Narcissus and our attacks and 5%
for CL-Badnets attack. We note that although CL-Badnets
works well against SML without SAs, it completely fails
when we use SAs. On the other hand, our attack works
well against SML with and without SAs. Interestingly, Nar-
cisuss also works against SML with SAs, but completely
fails against SSL (Section 5.1.1 and Appendix A.3). This
is because, unlike in SSL, in SML, Narcissus already has
the target label for its poisoning data. To summarize, our

static pattern backdoor attack is a general attack against

strong augmentations and can serve as a building block of
backdoor attacks on numerous learning paradigms that use
strong augmentations, e.g., self-supervised learning [6].

5.2. Ablation study

(1) Impact of sizes of labeled training data (D
l
): Figure 4

plots ASR, CA and TA for our backdoor attacks when we
vary |Dl|. Due to resource constraints, we experiment with
a subset of combinations from Table 3 and use trigger in-
tensities as reported in Table 3 for the combinations.

We note that ASRs remain above 70% in almost all
cases, however we observe a dataset dependent pattern: in-
creasing |Dl|, ASRs first reduce and then increase for CI-
FAR10, but vice-versa for SVHN (Figure 11). We leave
analyses of this phenomena to future work. For FixMatch,
we observe that ASRs are almost always above 90%. This is
because FixMatch has high TA and uses hard pseudo-labels,
and hence, all poisoning data, X

p, is correctly pseudo-
labeled as the backdoor target class, y

t. Consequently, the
model learns to associate the trigger pattern with y

t. For CI-
FAR10 + ReMixMatch, we see that TAs are comparable to
FixMatch but ASRs are lower. This is because ReMixMatch
uses multiple regularizations, including mixup [53] that
uses a convex combination of two randomly selected sam-
ples and their labels from training data to train the model,

4736

Table 5: Efficacy of various backdoor attacks against supervised ML (SML) with and without strong augmentations (SA).

Algorithm
CIFAR10 CIFAR100

CL-Badnets Narcissus Our attack CL-Badnets Narcissus Our attack
CA ASR TA CA ASR TA CA ASR TA CA ASR TA CA ASR TA CA ASR TA

SML 94.7 83.4 95.7 94.6 100.0 96.5 94.5 99.8 95.3 80.2 75.3 79.0 80.1 98.1 86.2 80.2 96.8 90.0
SML + SA 94.4 0.0 96.7 94.4 99.5 96.8 94.4 88.9 94.9 80.4 0.0 76.0 80.0 92.1 84.3 80.2 80.2 89.0

50 100 250 500
50

60

70

80

90

100

A
tt

ac
k

su
cc

es
s

ra
te

(%
)

CIFAR10 + FixMatch

Our backdoor attack

50 100 250 500
50

60

70

80

90

100
CIFAR10 + ReMixMatch

50 100 250 500

Size of labeled data

75

80

85

90

95

100

C
le

an
/

T
ar

ge
t

ac
cu

ra
cy

(%
)

CIFAR10 + FixMatch

CA(Benign model)

CA(Backdoored model)

TA(Benign model)

TA(Backdoored model)

50 100 250 500

Size of labeled data

75

80

85

90

95

100
CIFAR10 + ReMixMatch

Figure 4: Impacts of varying labeled training data size, |Dl|,
for CIFAR10 and {FixMatch, ReMixMatch} algorithms.
Upper row shows ASRs and lower row shows CAs and TAs.

which reduces the effective trigger intensity and hence re-
duces the ASR. Due to space limits, we defer SVHN results
and their discussion to Appendix C.
(2) Impact of backdoor target class (y

t
): Figure 5 plots

ASR, CA and TA of our backdoor attacks for different back-
door target classes, y

t; poisoning data X
p is 0.2% of the

total training data.
With two exceptions, we observe that lower TA for a tar-

get class leads to lower ASR. For instance, in CIFAR10 with
FixMatch, when y

t is 2 and 3, TAs are 72% and 65%, re-
spectively. Due to low TAs, FixMatch assigns y

t to smaller
proportions of X

p, which reduces ASRs. Note that, Car-
lini [5] also observed that targeted attacks are more effec-
tive against better performing SSL algorithms. We observe
similar phenomena for CIFAR10 with ReMixMatch and
y
t 2 {3, 5}, and SVHN with FixMatch and y

t 2 {3, 5}.
However, we observe that for some classes, e.g., CIFAR10
with FixMatch and y

t 2 {6, 8}, TAs are high but ASRs
are close to 65%. We suspect that this is because features
of these y

ts are too simple to learn, and hence, model cor-
rectly ignores the backdoor pattern. Finally, we note that for
majority of classes, our attack’s ASRs remain above 60%.
(3) Varying the size of unlabeled poisoning data (X

p
):

Figure 6 plots ASR, CA and TA for our backdoor attacks

0 1 2 3 4 5 6 7 8 9
0

20

40

60

80

A
tt

ac
k

su
cc

es
s

ra
te

(%
)

CIFAR10 + FixMatch

0 1 2 3 4 5 6 7 8 9
50

60

70

80

90

100

C
le

an
/

T
ar

ge
t

ac
cu

ra
cy

(%
)

CIFAR10 + FixMatch

0 1 2 3 4 5 6 7 8 9
0

20

40

60

80

A
tt

ac
k

su
cc

es
s

ra
te

(%
)

CIFAR10 + ReMixMatch

0 1 2 3 4 5 6 7 8 9
50

60

70

80

90

100

C
le

an
/

T
ar

ge
t

ac
cu

ra
cy

(%
)

CIFAR10 + ReMixMatch

CA(Benign model)

CA(Backdoored model)

TA(Benign model)

TA(Backdoored model)

0 1 2 3 4 5 6 7 8 9

Data classes

0

20

40

60

80

100

A
tt

ac
k

su
cc

es
s

ra
te

(%
)

SVHN + FixMatch

0 1 2 3 4 5 6 7 8 9

Data classes

70

75

80

85

90

95

100

C
le

an
/

T
ar

ge
t

ac
cu

ra
cy

(%
)

SVHN + FixMatch

Figure 5: ASR, CA and TA of our backdoor attacks for dif-
ferent backdoor target classes, y

t.

with varying |Xp|. More specifically, we vary |Xp| 2
{0.1, 0.15, 0.2, 0.3, 0.4, 0.5}% of the entire training data
size. Here, we use labeled data sizes as in Table 6. For
all three combinations of dataset and SSL algorithms that
we study, we observe that having very small or very large
|Xp| leads to relatively ineffective backdoor attacks. This is
because at low |Xp|, although almost all of the X

p get the
target label, y

t, they are not sufficient to install a backdoor
in the target model. While, for large |Xp|, not all of the X

p

samples get y
t and some of them get arbitrary labels that are

not y
t. This forces model to associate a single trigger pat-

tern with multiple labels and effectively model completely
ignores the trigger, which reduces backdoor ASR.

Throughout our evaluations, we found that our at-
tacks have high performances (ASR>60%) for |Xp| 2
[0.2, 0.4]% of the entire training data size. Furthermore,

4737

0.1 0.15 0.2 0.3 0.4 0.5

20

40

60

80

A
tt

ac
k

su
cc

es
s

ra
te

(%
)

CIFAR10 + FixMatch

Our backdoor attack

0.1 0.15 0.2 0.3 0.4 0.5

82

84

86

88

90

92

94

C
le

an
/

T
ar

ge
t

ac
cu

ra
cy

(%
)

CIFAR10 + FixMatch

0.1 0.15 0.2 0.3 0.4 0.5

55

60

65

70

75

80

85

A
tt

ac
k

su
cc

es
s

ra
te

(%
)

CIFAR10 + ReMixMatch

0.1 0.15 0.2 0.3 0.4 0.5

91

92

93

94

95

C
le

an
/

T
ar

ge
t

ac
cu

ra
cy

(%
)

CIFAR10 + ReMixMatch

CA(Benign model)

CA(Backdoored model)

TA(Benign model)

TA(Backdoored model)

0.1 0.15 0.2 0.3 0.4 0.5

Percentage of poisoning data (%)

60

65

70

75

80

85

90

95

A
tt

ac
k

su
cc

es
s

ra
te

(%
)

SVHN + FixMatch

0.1 0.15 0.2 0.3 0.4 0.5

Percentage of poisoning data (%)

92

93

94

95

96

C
le

an
/

T
ar

ge
t

ac
cu

ra
cy

(%
)

SVHN + FixMatch

Figure 6: Impact of varying the sizes of poisoning data on
ASR, CA and TA of our backdoor attacks.

within these ranges, our attacks remain stealthy and do not
significantly impact CA or TA of the backdoored models.

5.3. Defenses against backdoor attacks on SSL

Due to space limits, here we give highlights of our evalu-
ations of efficacy of five existing backdoor defenses against
our attack and defer detailed discussion to Appendix C.2;
Table 7 and Figure 12 in Appendix C.2 show the results.
(1) Fine-tuning (FT) and fine-pruning (FP) both can reduce
ASR of our backdoor attack, however it comes at a signifi-
cant reduction in CA of the resulting models.
(2) Neural attention distillation (NAD) [24] performed best
among the defenses we evaluate: for CIFAR10, NAD re-
duces ASR by 22.1% for FixMatch and by 23% for ReMix-
Match, but it does not perform as well for SVHN. Nonethe-
less, even with NAD, our attack still raises significant con-
cerns as its ASR against NAD is always > 60%.
(3) Strip [17] works well when backdoor ASR is very
high but for moderate ASRs 2 [80, 90]%, it fails to detect
backdoor. For instance, Strip successfully identifies over
90% of the backdoored test inputs, but it completely fails
against CIFAR10 + FixMatch/ReMixMatch and SVHN +

MixMatch.
(4) Anti-backdoor learning [25] (ABL) completely fails
against SSL, because, SSL training extensively uses strong
augmentations, and hence, the unsupervised loss on poison-
ing unlabeled data remains almost the same as that on be-
nign unlabeled data (Figure 13 in Appendix C.2).
How to defend SSL from unlabeled data poisoning? We
find that some of the SOTA post-processing (FT, FP, NAD,
Strip) or in-processing (ABL) defenses cannot defend SSL
from our attacks. In other words, current SSL practice of
using non-inspected unlabeled training data makes it highly
vulnerable to poisoning. Hence, we argue for SSL to depart

from its philosophy of not at all inspecting its unlabeled

training data and pre-process the unlabeled data to thwart

poisoning attacks. Such pre-processing can be tailored to
our attack, e.g., check for existence of patterns that follow
our three lessons, or check for any abnormal frequency arti-
facts [51]. We leave pursuing this direction to future work.

6. Conclusions
Semi-supervised learning (SSL) allows training on large

unlabeled data without any inspection, thereby significantly
reducing the cost of ML training. Unfortunately, as we
show, this key feature can facilitate strong data poisoning at-
tacks on SSL: a naive adversary, without any knowledge of
training data or model architecture, can poison just 0.2% of
the entire training data to install a strong backdoor function-
ality in SSL models. Our attack remains effective against
various SSL algorithms and benchmark datasets, and even
circumvents state-of-the-art defenses against backdoor at-
tacks.

Note that, in contrast to numerous prior works [37, 48,
50, 44, 7, 4, 5, 29], in this work we considered a much
weaker, hence more realistic, adversary. Due to our weak
adversarial assumptions and simple attack methodology, all
of the existing and future SSL applications can use our at-
tack to measure and enhance their robustness against back-
door poisoning.

Backdoor attacks can have severe consequences in prac-
tice, e.g., gaining unauthorized access to a system [7] or
denying services to minorities [38]. Hence, a major im-
plication of our study is that real-world SSL applications
cannot rely on non-inspected unlabeled data and must pre-
process/inspect unlabeled training data and/or design SSL
algorithms that are robust to unlabeled data poisoning.

Acknowledgements
This work was supported in-part by the NSF grants

2131910 and 1953786 and by DARPA under Agreement
No. HR00112190125. Approved for public release; distri-
bution is unlimited. This work was also supported in-part
by Sony AI.

4738

References
[1] Anish Athalye, Logan Engstrom, Andrew Ilyas, and Kevin

Kwok. Synthesizing robust adversarial examples. In Inter-
national conference on machine learning, pages 284–293.
PMLR, 2018. 12

[2] David Berthelot, Nicholas Carlini, Ekin D Cubuk, Alex Ku-
rakin, Kihyuk Sohn, Han Zhang, and Colin Raffel. Remix-
match: Semi-supervised learning with distribution matching
and augmentation anchoring. In International Conference on
Learning Representations, 2019. 1, 5, 6

[3] David Berthelot, Nicholas Carlini, Ian Goodfellow, Nicolas
Papernot, Avital Oliver, and Colin A Raffel. Mixmatch: A
holistic approach to semi-supervised learning. Advances in
Neural Information Processing Systems, 32, 2019. 1, 3, 5, 6,
14

[4] B. Biggio, B. Nelson, and P. Laskov. Poisoning attacks
against support vector machines. In Proceedings of 29th In-
ternational Conference on Machine Learning, 2012. 1, 9

[5] Nicholas Carlini. Poisoning the unlabeled dataset of {Semi-
Supervised} learning. In 30th USENIX Security Symposium
(USENIX Security 21), pages 1577–1592, 2021. 5, 8, 9, 14,
15

[6] Ting Chen, Simon Kornblith, Mohammad Norouzi, and Ge-
offrey Hinton. A simple framework for contrastive learning
of visual representations. In International conference on ma-
chine learning, pages 1597–1607. PMLR, 2020. 7

[7] Xinyun Chen, Chang Liu, Bo Li, Kimberly Lu, and Dawn
Song. Targeted backdoor attacks on deep learning systems
using data poisoning. arXiv preprint arXiv:1712.05526,
2017. 3, 5, 9

[8] Adam Coates, Andrew Ng, and Honglak Lee. An analysis of
single-layer networks in unsupervised feature learning. In
Proceedings of the fourteenth international conference on
artificial intelligence and statistics, pages 215–223. JMLR
Workshop and Conference Proceedings, 2011. 14

[9] Ekin D Cubuk, Barret Zoph, Dandelion Mane, Vijay Vasude-
van, and Quoc V Le. Autoaugment: Learning augmentation
policies from data. arXiv preprint arXiv:1805.09501, 2018.
3

[10] Ekin D Cubuk, Barret Zoph, Jonathon Shlens, and Quoc V
Le. Randaugment: Practical automated data augmen-
tation with a reduced search space. In Proceedings of
the IEEE/CVF conference on computer vision and pattern
recognition workshops, pages 702–703, 2020. 2, 3, 7

[11] Aron Culotta and Andrew McCallum. Reducing labeling ef-
fort for structured prediction tasks. In AAAI, volume 5, pages
746–751, 2005. 1

[12] Jia Deng. A large-scale hierarchical image database. Proc. of
IEEE Computer Vision and Pattern Recognition, 2009, 2009.
1

[13] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li,
and Li Fei-Fei. Imagenet: A large-scale hierarchical image
database. In 2009 IEEE conference on computer vision and
pattern recognition, pages 248–255. Ieee, 2009. 1

[14] Emily Denton, Sam Gross, and Rob Fergus. Semi-supervised
learning with context-conditional generative adversarial net-
works. arXiv preprint arXiv:1611.06430, 2016. 2

[15] Terrance DeVries and Graham W Taylor. Improved regular-
ization of convolutional neural networks with cutout. arXiv
preprint arXiv:1708.04552, 2017. 2, 12

[16] Le Feng, Sheng Li, Zhenxing Qian, and Xinpeng Zhang.
Unlabeled backdoor poisoning in semi-supervised learning.
In 2022 IEEE International Conference on Multimedia and
Expo (ICME), pages 1–6. IEEE, 2022. 3

[17] Yansong Gao, Change Xu, Derui Wang, Shiping Chen,
Damith C Ranasinghe, and Surya Nepal. Strip: A defence
against trojan attacks on deep neural networks. In Pro-
ceedings of the 35th Annual Computer Security Applications
Conference, pages 113–125, 2019. 9, 16

[18] Tianyu Gu, Brendan Dolan-Gavitt, and Siddharth Garg. Bad-
nets: Identifying vulnerabilities in the machine learning
model supply chain. arXiv preprint arXiv:1708.06733, 2017.
1, 5

[19] Tianyu Gu, Kang Liu, Brendan Dolan-Gavitt, and Siddharth
Garg. Badnets: Evaluating backdooring attacks on deep neu-
ral networks. IEEE Access, 7:47230–47244, 2019. 3, 13

[20] Alex Krizhevsky. Learning multiple layers of features from
tiny images. Technical report, University of Toronto, 2009.
14

[21] Samuli Laine and Timo Aila. Temporal ensembling for semi-
supervised learning. arXiv preprint arXiv:1610.02242, 2016.
2

[22] Dong-Hyun Lee et al. Pseudo-label: The simple and effi-
cient semi-supervised learning method for deep neural net-
works. In Workshop on challenges in representation learn-
ing, ICML, volume 3, page 896, 2013. 1, 2

[23] Yuezun Li, Yiming Li, Baoyuan Wu, Longkang Li, Ran
He, and Siwei Lyu. Invisible backdoor attack with sample-
specific triggers. In Proceedings of the IEEE/CVF Interna-
tional Conference on Computer Vision, pages 16463–16472,
2021. 3

[24] Yige Li, Xixiang Lyu, Nodens Koren, Lingjuan Lyu, Bo Li,
and Xingjun Ma. Neural attention distillation: Erasing back-
door triggers from deep neural networks. In International
Conference on Learning Representations, 2020. 9, 16

[25] Yige Li, Xixiang Lyu, Nodens Koren, Lingjuan Lyu, Bo Li,
and Xingjun Ma. Anti-backdoor learning: Training clean
models on poisoned data. Advances in Neural Information
Processing Systems, 34:14900–14912, 2021. 9, 16

[26] Yuncheng Li, Jianchao Yang, Yale Song, Liangliang Cao,
Jiebo Luo, and Li-Jia Li. Learning from noisy labels with
distillation. In Proceedings of the IEEE International Con-
ference on Computer Vision, pages 1910–1918, 2017. 1

[27] Kang Liu, Brendan Dolan-Gavitt, and Siddharth Garg. Fine-
pruning: Defending against backdooring attacks on deep
neural networks. In International Symposium on Research in
Attacks, Intrusions, and Defenses, pages 273–294. Springer,
2018. 16

[28] Yingqi Liu, Shiqing Ma, Yousra Aafer, Wen-Chuan Lee,
Juan Zhai, Weihang Wang, and Xiangyu Zhang. Trojaning
attack on neural networks. In 25th Annual Network And Dis-
tributed System Security Symposium (NDSS 2018). Internet
Soc, 2018. 1

[29] Luis Muñoz-González, Battista Biggio, Ambra Demontis,
Andrea Paudice, Vasin Wongrassamee, Emil C Lupu, and

4739

Fabio Roli. Towards poisoning of deep learning algorithms
with back-gradient optimization. In Proceedings of the 10th
ACM Workshop on Artificial Intelligence and Security, pages
27–38. ACM, 2017. 1, 2, 9

[30] Kevin P Murphy. Machine learning: a probabilistic perspec-
tive. MIT press, 2012. 1

[31] Nagarajan Natarajan, Inderjit S Dhillon, Pradeep K Raviku-
mar, and Ambuj Tewari. Learning with noisy labels. Ad-
vances in neural information processing systems, 26, 2013.
1

[32] Yuval Netzer, Tao Wang, Adam Coates, Alessandro Bis-
sacco, Bo Wu, and Andrew Y. Ng. Reading digits in natural
images with unsupervised feature learning. In NIPS Work-
shop on Deep Learning and Unsupervised Feature Learning
2011, 2011. 14

[33] Tuan Anh Nguyen and Anh Tran. Input-aware dynamic
backdoor attack. Advances in Neural Information Processing
Systems, 33:3454–3464, 2020. 3

[34] Aniruddha Saha, Akshayvarun Subramanya, and Hamed Pir-
siavash. Hidden trigger backdoor attacks. In Proceedings of
the AAAI conference on artificial intelligence, volume 34,
pages 11957–11965, 2020. 1, 5

[35] Mehdi Sajjadi, Mehran Javanmardi, and Tolga Tasdizen.
Regularization with stochastic transformations and perturba-
tions for deep semi-supervised learning. Advances in neural
information processing systems, 29, 2016. 2

[36] Esha Sarkar, Hadjer Benkraouda, and Michail Mani-
atakos. Facehack: Triggering backdoored facial recogni-
tion systems using facial characteristics. arXiv preprint
arXiv:2006.11623, 2020. 1, 3, 5

[37] Virat Shejwalkar and Amir Houmansadr. Manipulating the
byzantine: Optimizing model poisoning attacks and defenses
for federated learning. In The Network and Distributed Sys-
tem Security Symposium (NDSS), 2021. 9

[38] V. Shejwalkar, A. Houmansadr, P. Kairouz, and D. Ramage.
Back to the drawing board: A critical evaluation of poisoning
attacks on production federated learning. In 2022 2022 IEEE
Symposium on Security and Privacy (SP) (SP), pages 1117–
1134, Los Alamitos, CA, USA, may 2022. IEEE Computer
Society. 1, 2, 4, 9

[39] Connor Shorten and Taghi M Khoshgoftaar. A survey on
image data augmentation for deep learning. Journal of big
data, 6(1):1–48, 2019. 12

[40] Kihyuk Sohn, David Berthelot, Nicholas Carlini, Zizhao
Zhang, Han Zhang, Colin A Raffel, Ekin Dogus Cubuk,
Alexey Kurakin, and Chun-Liang Li. Fixmatch: Simpli-
fying semi-supervised learning with consistency and confi-
dence. Advances in Neural Information Processing Systems,
33:596–608, 2020. 1, 3, 4, 5, 6, 14

[41] Kihyuk Sohn, Zizhao Zhang, Chun-Liang Li, Han Zhang,
Chen-Yu Lee, and Tomas Pfister. A simple semi-supervised
learning framework for object detection. arXiv preprint
arXiv:2005.04757, 2020. 1

[42] Hossein Souri, Micah Goldblum, Liam Fowl, Rama Chel-
lappa, and Tom Goldstein. Sleeper agent: Scalable hidden
trigger backdoors for neural networks trained from scratch.
arXiv preprint arXiv:2106.08970, 2021. 5

[43] Luke Taylor and Geoff Nitschke. Improving deep learning
with generic data augmentation. In 2018 IEEE Symposium
Series on Computational Intelligence (SSCI), pages 1542–
1547. IEEE, 2018. 12

[44] Alexander Turner, Dimitris Tsipras, and Aleksander
Madry. Label-consistent backdoor attacks. arXiv preprint
arXiv:1912.02771, 2019. 1, 5, 9, 13

[45] Yidong Wang, Hao Chen, Yue Fan, Hao Wu, Bowen Zhang,
Wenxin Hou, Yuhao Chen, and Jindong Wang. Torchssl:
A pytorch-based toolbox for semi-supervised learning.
https://github.com/TorchSSL/TorchSSL, 2021.
[Online; accessed 03-July-2022]. 14

[46] Qizhe Xie, Zihang Dai, Eduard Hovy, Thang Luong, and
Quoc Le. Unsupervised data augmentation for consistency
training. Advances in Neural Information Processing Sys-
tems, 33:6256–6268, 2020. 1, 3, 5, 6

[47] Qizhe Xie, Minh-Thang Luong, Eduard Hovy, and Quoc V
Le. Self-training with noisy student improves imagenet
classification. In Proceedings of the IEEE/CVF conference
on computer vision and pattern recognition, pages 10687–
10698, 2020. 1

[48] Zhicong Yan, Gaolei Li, Yuan TIan, Jun Wu, Shenghong Li,
Mingzhe Chen, and H Vincent Poor. Dehib: Deep hidden
backdoor attack on semi-supervised learning via adversarial
perturbation. In Proceedings of the AAAI Conference on Ar-
tificial Intelligence, volume 35, pages 10585–10593, 2021.
2, 3, 5, 9, 12

[49] Zhicong Yan, Jun Wu, Gaolei Li, Shenghong Li, and Mohsen
Guizani. Deep neural backdoor in semi-supervised learning:
threats and countermeasures. IEEE Transactions on Infor-
mation Forensics and Security, 16:4827–4842, 2021. 3, 5

[50] Yi Zeng, Minzhou Pan, Hoang Anh Just, Lingjuan Lyu,
Meikang Qiu, and Ruoxi Jia. Narcissus: A practical
clean-label backdoor attack with limited information. arXiv
preprint arXiv:2204.05255, 2022. 1, 2, 5, 7, 9, 12, 13

[51] Yi Zeng, Won Park, Z Morley Mao, and Ruoxi Jia. Rethink-
ing the backdoor attacks’ triggers: A frequency perspective.
In Proceedings of the IEEE/CVF International Conference
on Computer Vision, pages 16473–16481, 2021. 3, 9

[52] Bowen Zhang, Yidong Wang, Wenxin Hou, Hao Wu, Jin-
dong Wang, Manabu Okumura, and Takahiro Shinozaki.
Flexmatch: Boosting semi-supervised learning with curricu-
lum pseudo labeling. Advances in Neural Information Pro-
cessing Systems, 34, 2021. 1, 3, 5, 6

[53] Hongyi Zhang, Moustapha Cisse, Yann N Dauphin, and
David Lopez-Paz. mixup: Beyond empirical risk minimiza-
tion. In International Conference on Learning Representa-
tions, 2018. 3, 7

[54] Haoti Zhong, Cong Liao, Anna Cinzia Squicciarini, Sencun
Zhu, and David Miller. Backdoor embedding in convolu-
tional neural network models via invisible perturbation. In
Proceedings of the Tenth ACM Conference on Data and Ap-
plication Security and Privacy, pages 97–108, 2020. 5

4740

