

1 An evaluation of phase, aerosol-cloud interactions and microphysical properties of single- and
2 multi-layer clouds over the Southern Ocean using in situ observations from SOCRATES **John J.**
3 **D'Alessandro**^{1,2,*}, **Greg M. McFarquhar**^{1,2}, **Jeffrey L. Stith**³, **Minghui Diao**⁴, **Paul J.**
4 **DeMott**⁵, **Christina S. McCluskey**⁶, **Thomas C. J. Hill**⁵, **Greg C. Roberts**^{7,8}, **Kevin J.**
5 **Sanchez**⁷

6 ¹*Cooperative Institute for Severe and High Impact Weather Research and Operations, University*
7 *of Oklahoma: Norman, OK, USA, 73072.*

8 ²*School of Meteorology, University of Oklahoma, Norman, OK, USA 73072*

9 ³*National Center for Atmospheric Research, Research Aviation Facility/Earth Observing*
10 *Laboratory: Boulder, CO, USA, 80307*

11 ⁴*Department of Meteorology and Climate Science, San Jose State University, San Jose, CA,*
12 *USA, 95192*

13 ⁵*Department of Atmospheric Science, Colorado State University, Fort Collins, CO, USA 80512*

14 ⁶*Climate and Global Dynamics Laboratory, National Center for Atmospheric Science, Boulder,*
15 *CO, USA*

16 ⁷*Scripps Institution of Oceanography, University of California in San Diego, La Jolla, USA*
17 *92093*

18 ⁸*Centre National de Recherches Météorologiques, Université de Toulouse, Météo-France,*
19 *CNRS, Toulouse, France*

20 **Current Affiliation: Department of Atmospheric Science, University of Washington, Seattle,*
21 *WA, USA, 98195*

22 Abstract

23 Single- and multi-layer clouds are commonly observed over the Southern Ocean in varying
24 synoptic settings, yet few studies have characterized and contrasted their properties. This study
25 provides a statistical analysis of the microphysical properties of single- and multi-layer clouds
26 using in-situ observations acquired during the Southern Ocean Cloud-Radiation Aerosol
27 Transport Experimental Study (SOCRATES).

28 The relative frequencies of ice-containing samples (i.e., mixed and ice phase) for multi-layer
29 clouds are 0.05 to 0.25 greater than for single-layer clouds, depending on cloud layer height. In
30 multi-layer clouds, the lowest cloud layers have the highest ice-containing sample frequencies,
31 which decrease with increasing cloud layer height up to the third highest cloud layer. This
32 suggests a prominent seeder-feeder mechanism over the region. Ice nucleating particle (cloud
33 condensation nuclei) concentrations are positively (negatively) correlated with ice-containing
34 sample frequencies in select cases.

35 Differences in microphysical properties are observed for single- and multi-layer clouds. Drop
36 concentrations (size distributions) are greater (narrower) for single-layer clouds compared with
37 the lowest multi-layer clouds. When differentiating cloud layers by top (single- and highest
38 multi-layer clouds) and non-top layers (underlying multi-layer clouds), total particle size
39 distributions (including liquid and ice) are similarly broader for non-top cloud layers.

40 Additionally, drop concentrations in coupled environments are approximately double those in
41 decoupled environments.

42 Significant findings:

43 - The occurrence frequency of ice is greater in multi-layer clouds than in single-layer
44 clouds.

45 - Drop number size distributions are broader in multi-layer clouds compared to single-layer
46 clouds.

47 - Liquid drop number concentrations are approximately double in environments coupled
48 with the surface compared to decoupled environments.

49 1. Introduction

50 Clouds over the Southern Ocean have been notoriously difficult to simulate in both climate
51 models (e.g., D'Alessandro et al., 2019; Kay et al., 2012; Matus & L'Ecuyer, 2017; McCoy et
52 al., 2014) and high resolution models (Huang et al., 2014, 2015; Naud et al., 2014). Climate
53 models have overestimated shortwave absorption over this region (Trenberth & Fasullo, 2010),
54 which has been attributed to the underestimation of liquid water content and cloud fraction (e.g.,
55 Bodas-Salcedo et al., 2016). This may be due in part to extremely low ice nucleating particle
56 (INP) concentrations (N_{INP}) present over the Southern Ocean as observed from ships
57 (McCluskey et al., 2018). While recent model changes have improved simulated clouds with an
58 increased frequency of supercooled liquid, work is still required to further improve the
59 representation of microphysical properties (e.g., Fiddes et al., 2022; Gettelman et al., 2020;
60 McCoy et al., 2021; Yang et al., 2021) and the understanding of processes producing and
61 sustaining supercooled water.

62 Single- and multi-layer clouds are commonly observed over the Southern Ocean, with prior
63 observations indicating multi-layer clouds accounted for 34% of cases when clouds were present
64 (Haynes et al., 2011). Multi-layer clouds refer to the presence of multiple cloud layers separated

65 by a cloud free interstice, containing either precipitation or clear-sky (e.g., Intrieri et al., 2002;
66 Liu et al., 2012). This is distinct from vertically heterogeneous clouds, in which cloud properties
67 embedded within a single-cloud layer vary (e.g., Verlinde et al., 2013). Although climate models
68 often fail to capture multi-layer clouds due to their coarse vertical resolution (e.g., Atlas et al.,
69 2020), multi-layer clouds occur frequently and substantially impact the radiative budget. Because
70 of this, climate models often parameterize vertical cloud overlap to adequately treat radiative
71 fluxes throughout vertical columns (e.g., Collins, 2001).

72 Although the reasons that multi-layer clouds form is still uncertain, multiple explanations have
73 been proposed. For example, Tsay & Jayaweera (1984) found that a combination of large-scale
74 processes can account for multi-layered stratus. Herman & Goody (1976) showed that shortwave
75 absorption by droplets within a cloud layer leads to evaporation within the cloud deck, which
76 along with destabilization due to longwave cooling at cloud top can lead to the formation of two
77 layers. Multiple cloud layers can also result from inhomogeneous temperature/moisture
78 horizontal advection (Luo et al., 2008). They are also associated with additional complexities
79 which do not need to be considered for single-layer regimes, such as seeder-feeder mechanisms
80 (e.g., Fleishauer et al., 2002; Hobbs & Rangno, 1998; Houze, 2014).

81 Differences in cloud layering can impact the zonally averaged top-of-atmosphere longwave and
82 shortwave radiative fluxes by the order of 10 W m^{-2} (Li et al., 2011), attributed in part to
83 differences in the cloud layer heights and thicknesses. Further, overlying cloud layers can
84 substantially impact the evolution of the underlying boundary layer clouds. Their presence
85 increases downward longwave radiative flux by an average of 30 W m^{-2} , impacting turbulent
86 mixing, vertical development and precipitation rates of the underlying cloud layers (Christensen
87 et al., 2013).

88 Cloud layer microphysical properties substantially impact turbulent, precipitation and radiative
89 properties. Thus, high vertical resolution measurements of cloud profiles are needed for both
90 single- and multi-layer clouds. A few studies showing vertical profiles of cloud microphysical
91 properties over the Southern Ocean using in situ observations have been performed (e.g., Ahn et
92 al., 2017, 2018; Boers et al., 1996, 1998; Chubb et al., 2016; Chubb et al., 2013). However, they
93 were primarily case studies lacking statistically significant datasets, and they primarily focused
94 on single-layer clouds. Little effort has been put towards contrasting the microphysical properties
95 of single-versus multi-layer clouds, and the dearth of prior in situ observations over the Southern
96 Ocean relative to the Arctic warrants a statistical analysis of the varying properties of single- and
97 multi-layer clouds. Further, satellite observations are often restricted to cloud top (Coopman et
98 al., 2020; Riedi et al., 2010), and there are uncertainties with low-level cloud retrievals due to
99 attenuation (Hu et al., 2009) and low solar zenith angles (Khanal & Wang, 2018). For these
100 reasons, in situ observations can be extremely beneficial towards analyzing both low-level cloud
101 layers as well as multi-layered clouds commonly observed over this region.

102 This study aims to produce a statistical overview of single- and multi-layer clouds over the
103 Southern Ocean using in situ observations. It extends the study of Schima et al. (2022) who used
104 a combination of in-situ and remote sensing data to identify common features of the vertical
105 cloud structure over the Southern Ocean, but who did not stratify clouds into single- or multi-
106 layers, and who did not examine how cloud properties varied with the concentration of ice
107 nucleating particles (INPs) or cloud condensation nuclei (CCN). The following section will
108 describe the instrumentation and the methodology used to obtain vertical profiles as well as
109 classify the measured profiles as either single- or multi-layer clouds. Section 3 presents the cloud
110 microphysical properties and phase occurrence frequencies for single- and multi-layer clouds, as

111 well as comparisons of cloud condensation nuclei (CCN) and INP in relation to cloud properties.
112 Section 4 discusses the significance of the results presented in Section 3, and Section 5 delivers
113 concluding remarks.

114 2. Methodology

115 2.1: Instrumentation and cloud presence/phase methodology

116 This study uses observations acquired with instruments onboard the National Science
117 Foundation/National Center for Atmospheric Research Gulfstream-V (G-V) aircraft during the
118 Southern Ocean Cloud-Radiation Aerosol Transport Experimental Study (SOCRATES).
119 SOCRATES was based out of Hobart, Tasmania and consisted of 15 research flights.
120 SOCRATES took place from 15 January to 28 February 2018, sampling the atmosphere over the
121 Southern Ocean from 42° to 62°S and from 133° to 163°W. Flight plans were designed to ideally
122 sample 10-minute level legs above cloud, in cloud, and below cloud, followed by sawtooth legs
123 (i.e., sawtooths) to obtain vertical profiles. A variety of synoptic conditions occurred during the
124 campaign, including the passage of multiple extra tropical cyclones as well as an atmospheric
125 river (1/28/2018, Finlon et al., 2020; Rauber et al., 2020). The aircraft primarily targeted cold
126 sector boundary layer clouds, although regions of both synoptic ascent and descent were
127 commonly sampled. Prevailing winds were primarily westerly and southwesterly. Additional
128 details on synoptic conditions, flight objectives and analyses can be found in McFarquhar et al.
129 (2021).

130 A suite of cloud probes and other instrumentation was installed on the G-V. The cloud droplet
131 probe (CDP) is a single-scatter particle probe which gives information of cloud particle size
132 distributions for particles with maximum dimension (hereafter size D) ranging from 2–50 μm .

133 Because the CDP sizes particles assuming Mie theory which corresponds to diameters of
134 spherical particles, there are large uncertainties in the derived particle sizes and mass contents for
135 ice clouds. The two-dimensional stereo probe (2DS) is an optical imaging array probe with a
136 photodiode array having a resolution of 10 μm from which particle number size distribution
137 information can be derived. Although the width of the photodiode array of the 2DS corresponds
138 to particles with maximum dimensions ranging from 10 to 1280 μm , only particles having
139 maximum dimension ($D_{2\text{DS}}$) greater than or equal to 50 μm were included in the derived particle
140 number size distributions because of its small and highly uncertain depth of field for $D_{2\text{DS}} < 50$
141 μm (e.g., Baumgardner & Korolev, 1997). The SOCRATES 2DS size distributions and particle
142 morphological data (Wu & McFarquhar, 2019) were determined using the University of
143 Illinois/Oklahoma Optical Probe Processing Software (UIOOPS; McFarquhar et al., 2018;
144 McFarquhar et al., 2017), and include corrections for removal of shattered artifacts (Field et al.,
145 2003, 2006). Particles larger than the width of the photodiode array are included due to the use of
146 particle reconstruction provided the particle center occurs within the array (Heymsfield &
147 Parrish, 1978). Mass distribution functions are determined using the habit-dependent mass-size
148 relationships summarized by Jackson et al. (2012, 2014) for the different particle habits that are
149 identified in UIOOPS (McFarquhar et al., 2018) following a modified Holroyd (1987) approach.
150 Hereafter, bulk properties of cloud particles measured by the CDP and 2DS correspond with the
151 properties of cloud particles with D less than and greater than 50 μm , respectively.

152 Samples are determined to be either in-cloud or clear-sky following D'Alessandro et al. (2021),
153 which utilizes measurements from the CDP and 2DS. Samples are considered in-cloud if the
154 derived mass content of CDP observations (M_{CDP}) is greater than 10^{-3} g m^{-3} or if any particles are
155 detected with $D_{2\text{DS}} > 50 \mu\text{m}$. These threshold values were selected to eliminate sea spray and other

156 large aerosols. The low threshold of M_{CDP} ensures that even optically thin clouds are included in
157 the sample. The phase of in-cloud samples is also determined following D'Alessandro et al.
158 (2021), which determines the phase of small cloud particles ($D < 50 \mu\text{m}$) using a set of threshold
159 values for the CDP and Rosemount Icing Detector measurements, whereas the phase of large
160 particles ($D > 50 \mu\text{m}$) uses a combination of multinomial logistic regression and visual
161 examination of particle imagery from the 2DS. The phase of large particles may be classified as
162 either liquid, ice or mixed (i.e., a sample volume containing both liquid and ice particles)
163 whereas the phase of small particles may only be classified as either liquid or ice. Number
164 concentrations of the CDP (N_{CDP}) greater than 10 cm^{-3} are generally liquid samples
165 (D'Alessandro et al., 2021; Finlon et al., 2019; Heymsfield et al., 2011; Lance et al., 2010).
166 Additional information of the phase classification and associated uncertainties can be found in
167 D'Alessandro et al. (2021).

168 Additional instrumentation to obtain measurements utilized in this study are described below.
169 Filters were collected using a forward-facing inlet (Stith et al., 2009) on the G-V for offline
170 immersion freezing measurements. INP number concentrations were determined from particles
171 collected onto the filters and released into suspensions that were analyzed using the Colorado
172 State University ice spectrometer (DeMott et al., 2017). The INP filter sample collection and
173 analysis approach similarly follows that of previous aircraft studies (Levin et al., 2019; Twohy et
174 al., 2016), wherein further details on the methodology can be found. Measurements of CCN were
175 obtained using two miniaturized stream-wise thermal gradient CCN counters (Roberts & Nenes,
176 2005; Sanchez et al., 2021). One gathered 1 Hz data at a constant supersaturation of 0.43%,
177 while the other operated with a scanning flow and temperature to measure CCN spectra from
178 0.06% to 0.87% supersaturation every five minutes. This study uses measurements from the

179 latter, but only CCN data with supersaturations between 0.26% to 0.34%. This range of
180 supersaturation is chosen since CCN concentrations at this are similar to observed NCDP
181 concentrations (Sanchez et al., 2021). Shortwave irradiance measurements were taken with a
182 Kipp and Zonen CMP22 Pyranometer. Infrared irradiance measurements were taken using two
183 Kipp and Zonen CGR4 Pyrgeometers. Temperature was measured using a fast-response
184 Rosemount temperature probe. For steady conditions the estimated accuracy and precision are
185 0.3K and 0.01K, respectively. Water vapor was measured using the 25-Hz Vertical Cavity
186 Surface Emitting Laser (VCSEL) hygrometer (Zondlo et al., 2010). Additional laboratory
187 calibrations of the VCSEL water vapor measurements were conducted in summer 2018, and the
188 final data were reprocessed (Diao, 2021). Relative humidity (RH) is calculated following
189 Murphy & Koop (2005). The combined uncertainties from temperature and water vapor
190 measurements results in the uncertainty of RH ranging from 6.3%–6.7% from 17° to -31°C,
191 respectively, which is the temperature range of the cloud layers in this study (discussed in more
192 detail in the following section). Vertical air motion was measured with the Radome Gust Probe
193 in combination with pitot tubes and the differential Global Positioning System. Cooper et al.
194 (2016) reports a net uncertainty in the standard measurements of vertical wind measurements to
195 be 0.12 m s^{-1} , although this represents ideal sampling conditions. Additional information on the
196 G-V gust probe performance and processing is provided in the manager's report (EOL, 2018;
197 <https://www.eol.ucar.edu/system/files/SOCRATES%20PM%20Report.pdf>). Remote sensing
198 platforms onboard the aircraft include the High-performance Instrumented Platform for
199 Environmental Research (HIAPER) Cloud Radar (Vivekanandan et al., 2015) and High Spectral
200 Resolution Lidar (Eloranta, 2006).

201 2.2: Cloud layer classification

202 Clouds measured during all sawtooth maneuvers, ascents and descents during SOCRATES are
203 classified as either single- or multi-layer clouds. In the analysis, transects are first defined as
204 ascending or descending legs, and included in the analysis provided the rate of altitude change
205 was consistently greater than 3 m s^{-1} for the transect. The typical ascent or descent rate of the G-
206 V during sawtooths was 5 to 7.5 m s^{-1} . Transects with vertical lengths less than 60 m are
207 removed from this analysis, all of which only contained one single-cloud layer. Level legs are
208 not included in the analysis because they do not provide information about the vertical profile.

209 An automated cloud layer classification method is introduced to provide an objective measure
210 for identifying individual layers within each transect. For data obtained during each transect, a
211 smoothing filter is applied to all 1-s in-cloud samples defined as having $M_{CDP} > 10^{-3} \text{ g m}^{-3}$. A
212 binary array is first created (a cloud flag) where samples with $M_{CDP} > 10^{-3} \text{ g m}^{-3}$ are set equal to
213 one and all other samples equal to 0. A Savitzky-Golay smoothing method (Savitzky & Golay,
214 1964) is applied with a moving window of 30 1-Hz samples to each binary array. The Savitzky-
215 Golay filter is used since it better preserves peak heights and widths of data features compared
216 with lower order moving averages. Individual layers are identified where consecutive samples of
217 the smoothed binary arrays exceed 0.5. Clear interstices between layers on the order of meters
218 can potentially be captured using this method, with the exact threshold dependent on the aircraft
219 rate of ascent or descent. The smallest distance between layers found here was 30 m. The vertical
220 extent of the cloud layer within an area where the smoothed binary array exceeds 0.5 is
221 determined to be between the highest and lowest in-cloud sample having $M_{CDP} > 10^{-2} \text{ g m}^{-3}$. The
222 lower M_{CDP} threshold applied prior to smoothing ensures cloud top and base is contained in each
223 area of the smoothed binary area exceeding 0.5. All layers identified using this method are
224 shown by the shaded rectangles in Figure 1. The CDP is solely used to identify cloud layers

225 without the use of the 2DS to ensure that the presence of precipitating ice or drizzle is not used to
226 identify a cloud layer when small droplets or ice crystals are not present. A cloud layer is only
227 included in the analysis if the entirety of the layer (cloud base to cloud top) is contained within
228 the transect. Sensitivity tests were performed to determine how cloud top and base changed when
229 the mass threshold was decreased to 10^{-3} g m⁻³ and increased to 0.05 g m⁻³ (not shown).

230 Although the lower (higher) threshold increased (decreased) the total number of cloud layer
231 samples by ~5% (~8%), the trends presented in the manuscript do not change regardless of the
232 threshold used.

233 Although flight plans were designed with the intent of sampling all cloud layers during sawtooth
234 maneuvers, it is possible that some layers were missed if the G-V did not ascend or descend to
235 the altitude where these layers were located. Furthermore, for transects where there was a very
236 narrow interstice between layers, the irregular clustering of CDP measurements make it difficult
237 to determine the number of layers. Thus, the G-V forward-facing camera was inspected for each
238 transect to evaluate the classification. This was additionally required for cases when the G-V
239 intersected the same cloud layer twice (e.g., protruding filaments of cloud below cloud base).

240 Reflectivity profiles from the HIAPER cloud radar and retrievals from the HSRL acquired
241 during the transects were similarly used to distinguish cloud layers and check for cloud layers
242 directly above and below the aircraft. Manual inspection of the layer classification resulted in
243 16% of the layers requiring correction.

244 Figure 1 shows M_{CDP} from vertical transects flown by the G-V aircraft, with layers indicated by
245 the coloring within each rectangular box. Each column represents a single-vertical transect,
246 arranged in the order they took place as shown by the research flight number (RF01–RF15)
247 underlying the respective columns. The color of the rectangular box surrounding the M_{CDP}

248 shading represents the identification of that profile as either a single-layer, or the lowest (Multi-
249 1st), second lowest (Multi-2nd), third lowest (Multi-3rd) or higher layer (Multi-grt3rd) in a
250 multi-layer cloud as determined from the cloud layer classification. Both single- and multi-layer
251 clouds were regularly encountered in approximately half the flights, whereas other flights
252 predominantly sampled either multi-layer or single-layer clouds (e.g., RF01 only has two-layer
253 clouds, RF12&13 primarily have single-layer clouds). The magnified panel in Figure 1 shows
254 profiles representative of most of the layers sampled and includes phase information as colored
255 markers immediately to the right of the transects. Cloud layers were typically composed of
256 supercooled liquid and mixed phase samples. A case of light ice precipitation ($M_{2DS} < 0.01 \text{ g m}^{-3}$)
257 is observed for the highest cloud layer in the middle transect, indicated by the blue phase
258 markers immediately to the right and underlying the top cloud layer. Cloud layers were often
259 found to precipitate either supercooled drizzle or ice, which has been previously documented
260 (Alexander et al., 2021; Schima et al. 2022). Overall, 55 single-layer clouds and 183 multi-layer
261 clouds were identified from 153 transects using this procedure. Only 63% of the cloud layers
262 obtained through the layer classification are shown in Figure 1, since Figure 1 only shows cloud
263 layers from transects which do not have an in-cloud sample at the highest nor lowest point.
264 Although cloud layers are included in the analysis regardless of their altitude, the vast majority
265 of sampling took place below 3 km (96% of single-layer clouds and 98% of multi-layer clouds).
266 Since M_{CDP} is solely used to determine in-cloud conditions, the cloud layer classification method
267 fails to capture ice cloud layers with M_{CDP} below the in-cloud threshold. One such layer is in the
268 magnified panel of Figure 1 as seen by the presence of $M_{2DS} > 0.01 \text{ g m}^{-3}$ (black shading and blue
269 markers). Note that the phase information is only visible for approximately half the length of the
270 layer since temperatures exceed 0°C below the markers and phase information is only provided

271 for temperatures less than 0°C. There were six such layers in total (2% of the observed layers),
272 which are not included in the analysis to be consistent with the in-cloud definition ($M_{CDP} > 10^{-3}$ g
273 m^{-3}) proposed to exclude precipitating particles. Additionally, the cloud layer classification
274 method may fail to accurately capture cloud layers which contain these ice layers embedded
275 within multiple liquid or mixed phase layers. However, there were only three such layers (1% of
276 the layers) embedded with multiple liquid layers as well as ice layers which were deep enough to
277 prevent the smoothing algorithm from adequately classify the cloud layers. These layers were not
278 included in the analysis.

279 3. Results

280 3.1: Cloud layer overview

281 Figure 2 shows the number of profiles with different layer depths (i.e., geometric thickness) for
282 the single- and multi-layered cases (Figure 2A), as well as the normalized occurrence frequency
283 of different phases that occur in single-layer and multi-layer clouds (Figure 2B). The number of
284 Multi-2nd layers (70) is greater than the number of Multi-1st (64) layers because every sawtooth
285 does not necessarily capture every cloud layer within a given atmospheric profile. Figure 2A
286 shows that relatively thin cloud layers with depths < 200 m are more frequent than deeper layers
287 for both single-layer and multi-layer clouds, and for all different layers of the multi-layer clouds,
288 with these thin cloud layers representing 59% of the layers sampled during SOCRATES. Cloud
289 layers with average temperatures less than 0°C make up 76% of all the layers sampled, with 63%
290 of all such layers having depths < 200 m. Here cloud layers above and within the boundary layer
291 are explored separately due to inherent differences in air properties and aerosol profiles at these
292 heights. Approximately 72% of the multi-layer clouds were observed within the boundary layer
293 and 28% above the boundary layer, and approximately 70% of single layer clouds were observed

294 within the boundary layer. The boundary layer heights were determined from dropsonde data
295 using a maximum gradient method developed by Hande et al., (2012) where boundary layer
296 heights are determined as the altitude where the maximum gradient of virtual potential
297 temperature occurs. The range of possible heights is restricted to 100 m and 2500 m, and the
298 virtual potential temperature is smoothed with a five-point moving average. Other methods have
299 been proposed for determining boundary layer heights using alternative gradient methods
300 utilizing other parameters (e.g., Engeln & Teixeira, 2013) or using a bulk Richardson number
301 (Seidel et al., 2012; Vogelezang & Holtslag, 1996) where the boundary layer height is the lowest
302 altitude where the bulk Richardson number exceeds 0.25. From visual inspection, it was
303 determined that the maximum gradient method produces better estimates of the boundary layer
304 height than the bulk Richardson method, possibly because the Richardson method is only a
305 measure of local turbulence, which may not be suitable for convective boundary layers. The
306 mean and median boundary layer heights using the maximum gradient method are both \sim 1450 m
307 with a standard deviation of 510 m. For flights without dropsonde data (dates 1/15,2/3,2/4),
308 boundary layer heights are estimated via visual inspection from in situ temperature
309 measurements acquired during sawtooths. Finally, boundary layer heights are interpolated using
310 a nearest neighbor method over each respective flight. Some layers could therefore be incorrectly
311 characterized as either above or within the boundary layer based on uncertainties or limitations
312 associated with the interpolation method.

313 Figure 2B shows that single-layer clouds contain the smallest percentage of ice-containing
314 samples (6%), where ice-containing samples are either ice-phase or mixed-phase clouds, whereas
315 the lowest layers of multi-layer clouds have the highest observed frequency of ice-containing
316 phases (32%). The frequency incrementally decreases with increasing multi-layer cloud height

317 up to the third lowest cloud layer. The highest layers of multi-layer clouds have nearly similar
318 frequencies of ice-containing samples (31%) as the lowest layers. The phase frequencies are
319 separately analyzed for above and within the boundary layer (not shown), and the trends
320 discussed above are observed in both cases (i.e., greatest liquid phase frequencies in single layer
321 clouds, lowest liquid phase frequencies in lowest multi-layer clouds and increasing liquid phase
322 frequencies up to the third highest cloud layers). Frequency values within the boundary layer are
323 all within 10% of those in Figure 2B, whereas values are much more variable above the
324 boundary layer. The fraction of samples that are mixed-phase compared to all ice containing
325 samples is greatest for single-layer clouds, with slightly lower frequencies for multi-layer clouds,
326 with the frequency decreasing with increasing cloud height (blue text within respective columns
327 of Figure 2B). Within all cloud layers, over 95% of ice-containing samples are mixed-phase
328 showing the dominance of supercooled water regardless of layering.

329 The vertical distances and properties between the layers of multi-layer clouds are also explored
330 in an effort to document differences in dynamical and precipitation characteristics. The
331 frequency distribution of distances between cloud layers is shown in Figure 3A. The distances
332 are skewed to the left, with approximately half less than 200 m and a median distance of 209 m.
333 A wide variety of synoptic conditions were sampled during SOCRATES, with winds primarily
334 westerly (~270°) or southwesterly (~220°). Figure 3B shows that winds were primarily
335 southwesterly for closely-residing cloud layers (i.e., distance between layers less than 200 m),
336 whereas they were primarily westerly for other multi-layer clouds, suggesting a dynamical link
337 for multi-layer clouds with varying distances in-between the layers.

338 Normalized frequency distributions of relative humidity between cloud layers in Figure 3C show
339 the air was often nearly saturated between all cloud layers, with peak occurrence frequencies of

340 90% to 95%. These peaks are greater for closely-residing cloud layers (~0.2) compared with
341 layers further apart (~0.1). To explore whether this is related to the presence of in-cloud samples
342 within the layers, clear-sky frequencies (number of clear-sky samples to all samples) and liquid
343 phase frequencies (number of liquid phase samples to all phases) are shown in Figure 3D for
344 temperatures from -20° to 0°C, which contained 99% of samples for depths less than 200 m and
345 95% for depths greater than 200 m. To determine the fraction of in-cloud samples that are
346 precipitating, the clear-sky and liquid phase frequencies are computed using only in-cloud
347 samples that contain particles with $D > 50 \mu\text{m}$. The clear-sky frequencies vary from ~0.7–0.95
348 for depths exceeding 200 m and 0.4–0.7 for depths less than 200 m. The relatively high clear-sky
349 frequencies may not necessarily indicate the top cloud layer never was precipitating, since the
350 aircraft may have penetrated the layers after the event. However, the clear-sky frequencies are
351 lowest from -5° to 0°C for closely-residing cloud layers, with over half of the samples within the
352 layers associated with precipitation. This is also the temperature range which contains half of all
353 closely-residing cloud layer samples.

354 The liquid phase frequencies of the precipitating samples vary from 0.25–0.75 for depths less
355 than 200 m and 0.05–0.45 for depths exceeding 200 m. The lowest liquid phase frequencies are
356 observed in the highest temperature bin consistent with precipitating ice beneath liquid topped
357 cloud layers. The liquid phase frequency from -20° to 0°C for both depth ranges is
358 approximately 0.32, highlighting a higher frequency of ice-containing samples relative to liquid-
359 only samples.

360 3.2.1: INP related to cloud phase

361 Determining the concentration of INP over the SO is difficult in part due to their relatively sparse
362 concentrations over the region (McCluskey et al., 2018; McFarquhar et al., 2021), which means

363 long averaging times are required to get statistically significant samples. The following
364 discussion provides context for the INP observations gathered from the G-V aircraft during
365 SOCRATES and used in this analysis. It is worth noting that these observations are the first
366 airborne INP measurements taken over the Southern Ocean region. Sampling of INP is taken
367 over continuous durations on the order of minutes, which here are defined as sample areas. To
368 accommodate the low aerosol loadings over the Southern Ocean, filters were collected during
369 periods (i.e., within given sample areas) of clear-air that were representative of the below-cloud
370 layer, above-cloud layer and in the free troposphere. The sample areas were often combined in
371 post-campaign processing accounting for flow rates which ranged from a few to 13 liters per
372 minute (depending on altitude). Sample areas above and within the boundary layer were
373 separately combined, with the combined areas spanning up to 15° latitude. This resulted in
374 accumulated sample volumes ranging from 129 to 840 standard liters of air per flight. The total
375 data acquisition time of all samples amounts to approximately 23 hours, with a total of 32 filter
376 samples obtained. Since the reported activation temperatures vary for different combined sample
377 areas, reported N_{INP} are averaged at 1°C intervals to obtain N_{INP} with a constant activation
378 temperature resolution of 1°C.

379 The following analysis relates N_{INP} with relative phase frequencies. To obtain adequate cloud
380 phase sample size(s), combined INP sample areas are interpolated using a nearest neighbor
381 method over the respective flights. Cloud phase data within the interpolated sample areas
382 (including sawtooth and level-leg data) is then related to N_{INP} from the same sample area(s). The
383 interpolation is separately performed for sample areas above the boundary layer and within the
384 boundary. This mostly results in interpolated sample areas derived from single sample areas
385 above and within the boundary layer spanning the entire research flights, with the exception of

386 research flights 1,3,4,10. Namely, with the exception of the research flights listed, all in-cloud
387 data above (within) the boundary layer is related with a single set of reported N_{INP} above (within)
388 the boundary layer.

389 Scatterplots relating N_{INP} and liquid phase frequency are shown in Figure 4. Results are
390 separately shown within the boundary layer (Figure 4A) and above the boundary layer (Figure
391 4B). The different colored markers denote cases where the liquid phase frequency is taken within
392 a specified temperature range (left-hand side of legend text) located within a given interpolated
393 sample area and relates it to N_{INP} having activation temperatures within a specified range (right-
394 hand side of legend text) associated with the same interpolated sample area. The N_{INP} values
395 over the specified activation temperature ranges are the sums of the averaged N_{INP} values
396 determined for the constant 1°C activation temperature bins. Measurements of INP are reported
397 with activation temperatures ranging from -30° to -10°C, noting N_{INP} is only measurable for
398 activation temperatures <-10°C. Phase data for temperatures below -20°C are not included
399 because D'Alessandro et al. (2021) previously showed there is a sharp decrease in supercooled
400 liquid below -20°C, with ~93% of samples between -30° and -20°C being ice phase. Strong
401 negative relationships would likely indicate a prevalence of primary nucleation over the region.
402 Perhaps the most likely temperature range and N_{INP} activation temperature range expected to
403 show such relationships would be those having similar ranges. However, data points representing
404 liquid phase frequencies from -20° to -10°C and N_{INP} with activation temperatures in the same
405 range (red points) are associated with low sample sizes (i.e., number of in-cloud samples). This
406 is observed with only three data points within the boundary layer, and seven above the boundary
407 layer (three of which have sample sizes less than 200; denoted by marker size). This is due in
408 part to the fact that the number of in-cloud samples from -10° to 0°C is more than a factor of two

409 greater than the number of samples from -20° to -10°C (D'Alessandro et al., 2021); N_{INP} have
410 their lowest concentrations at relatively higher activation temperatures which increase semi-
411 exponentially with decreasing activation temperatures (Järvinen et al., 2022).

412 There are a few N_{INP} ranges which capture negative relationships between liquid phase frequency
413 and N_{INP} associated with primary nucleation. One is for N_{INP} with activation temperatures from -
414 30° to -10°C within the boundary layer, where the correlation between N_{INP} and liquid phase
415 frequencies from -20° to -2°C is -0.41. This negative correlation may be related to the fact that
416 INP measurements below -20°C are more reliable, and thus may better reflect N_{INP} having higher
417 activation temperatures. The correlation is similar (-0.51 to -0.41) when decreasing the range of
418 activation temperatures towards those greater than -30°C, until activation temperatures exceed -
419 25°C (not shown). However, this negative correlation is only observed within the boundary
420 layer, which is unexpected since there were no in-cloud samples obtained below -20°C within
421 the boundary layer. Therefore, the correlation may be related to sedimenting INP from above the
422 boundary layer even though there is no notable relationship between similar N_{INP} and liquid
423 phase frequency temperature ranges above the boundary layer. One possible explanation for this
424 observation may be the prominence of efficient ice nucleation due to pre-activated INP (Mossop,
425 1956), whereby localized regions above the boundary layer may only experience significant
426 primary nucleation via pre-activated INP. Thus, primary ice nucleation may occur at lower
427 temperatures above the boundary layer, and contributions from alternative processes such as
428 accretion and seeding mechanisms may decrease liquid phase frequencies at higher temperatures
429 underlying the localized areas. There is indirect evidence for this when relating N_{INP} above the
430 boundary layer with phase frequencies within the boundary layer (Figure 4B; purple circles).
431 This is done by obtaining the phase frequencies below the boundary layer using the above

432 boundary layer interpolated sample areas. A correlation of -0.96 is observed between N_{INP} with
433 activation temperatures from -30° to -20°C and phase frequencies from -20° to -7°C for
434 datapoints exceeding 200 samples, and a correlation of -0.87 is observed by removing the only
435 datapoint with less than 200 samples having a liquid phase frequency of ~ 0.5 . This finding is not
436 directly indicative of a significant contribution from pre-activated INP, as results may also be
437 indicative of a seeding mechanism resulting from INP which are not pre-activated. Further, it is
438 important to note that to the authors' knowledge there are no prevailing studies which similarly
439 suggest the importance of pre-activated INP in any region globally.

440 All the other N_{INP} ranges are weakly correlated with liquid phase frequency ($|r|<0.2$), with the
441 exception of N_{INP} with activation temperatures from -20° to -10°C and liquid phase frequencies
442 within the same temperature range within the boundary layer, although this dataset only contains
443 three points. Aside from select combinations of N_{INP} and phase frequencies discussed above,
444 there are no clear relationships between most combinations of the listed phase frequencies and
445 N_{INP} , suggesting a prominence of alternative ice initiation/growth processes (secondary ice
446 nucleation, accretion, etc.). Relationships may be sensitive to whether INP sampling took place
447 above or below clouds, although it is at best extremely difficult to incorporate this distinction due
448 to the interpolated sampling area method discussed above. Additionally, results may be sensitive
449 to the fact that N_{INP} values in Figure 4 are biased towards reported N_{INP} at the lowest end of their
450 respective activation temperature ranges, due to the semi-exponential increase in reported N_{INP}
451 with decreasing activation temperatures. At the very least, results here provide a benchmark
452 analysis towards directly relating INP to the frequency of ice over the Southern Ocean.

453 3.2.2. CCN related to cloud phase

454 Liquid phase frequencies are also related to CCN number concentrations (N_{CCN}) to determine the
455 potential impacts of CCN on cloud phase. Due to the greater spatial resolution of CCN
456 measurements compared with INP sample areas, a method is derived to obtain a CCN number
457 concentration associated with each cloud sample. Since droplet shattering on the community
458 aerosol inlet of the CCN counter introduces error in its measurements (Hudson & Frisbie, 1991),
459 CCN measurements cannot be used within in-cloud samples. To avoid such errors, suitable CCN
460 concentration measurements (hereafter referred to as N_{CCN}) are determined using a moving
461 window $\pm n$ seconds (n ranges from 100 to 500 seconds) from each cloud sample. Within this
462 window, the average N_{CCN} is calculated only using clear-sky samples. The averaging method is
463 also restricted to samples above or within the boundary layer, depending on the location of the
464 in-cloud sample. Thus, each in-cloud sample is associated with a “background CCN
465 concentration” value based on the moving window average. Results applying this methodology
466 are shown in Figure 5, showing the liquid phase frequency for different temperature ranges
467 (where temperature values are used at the in-cloud location) above the boundary layer (5A–C)
468 and within the boundary layer (5D–F). The different color lines denote the liquid phase
469 frequencies for different terciles of N_{CCN} , where the red line denotes samples in the lower tercile,
470 the black line in the middle tercile and the blue line in the upper tercile. Terciles are determined
471 within the respective temperature bins, whereas terciles determined over the entire temperature
472 range (-20° to 0°C) are shown in the respective panels. Each column shows results using a
473 different moving average window size (100, 250 and 500 seconds), shown overlying the
474 respective columns. Results are relatively consistent over the different window sizes but not
475 location. Within the boundary layer, liquid phase frequencies are either relatively constant or
476 slightly increase with decreasing temperature for all the moving window sizes (5D–F). The

477 possible exception is the lower tercile at smaller windows, with an initially low liquid phase
478 frequency from -10° to -5°C which increases with increasing window size as the sample size
479 increases. Although inconsistent with observed increases in the frequency of ice-containing
480 cloud samples with decreasing temperatures (D'Alessandro et al., 2021), results here are
481 consistent with the increasing liquid phase frequencies with increasing cloud height (Figure 2B).
482 In contrast, most liquid phase frequencies generally decrease with temperature over all the CCN
483 percentiles above the boundary layer (5A–C). Stark contrasts in the liquid phase frequencies
484 above the boundary layer are observed for the different CCN percentiles which were not
485 observed within the boundary layer. Namely, liquid phase frequencies are much greater within
486 high N_{CCN} environments than low N_{CCN} environments at temperatures less than -10°C . In fact,
487 with the exception of one temperature bin (from -10° to -5°C for the ± 100 s window; 5A), the
488 liquid phase frequencies in the high N_{CCN} environments are greater than the low N_{CCN}
489 environments for all temperatures and moving window sizes. Liquid phase frequencies for the
490 middle tercile do not always lie between the upper and lower terciles, and are often closer to
491 frequencies of the lower terciles at temperatures less than -10°C . This suggests relatively high
492 CCN perturbations may be required to maintain the absence of ice at these relatively lower
493 temperatures. Previous studies have found high N_{CCN} environments correspond with increased
494 frequencies of supercooled liquid in low-level Arctic clouds, which has been suggested to be due
495 to increasing lifetimes of supercooled liquid clouds (Filioglou et al., 2019). Alternatively,
496 varying N_{CCN} environments may be representative of different air mass source regions, and
497 differences in phase frequencies may be the result of the different aerosol sources. Sanchez et al.
498 (2021) identified four aerosol regimes sampled during SOCRATES, and found environments
499 with high N_{CCN} commonly originated or passed over the Antarctic coast, where elevated

500 phytoplankton biomass (relative to the open ocean) is a major contributor of biogenic emissions
501 (Sanchez et al., 2016). Additional explanation(s) may be related to varying secondary ice
502 production mechanisms related to the presence of large droplets, which would be limited in a
503 high N_{CCN} environment. For example, drops having maximum dimensions exceeding ~50 μm
504 have been observed to eject small ice particles as they freeze (i.e., droplet fragmentation),
505 primarily at temperatures less than -10°C (Korolev & Leisner, 2020). However, Järvinen et al.
506 (2022) found little evidence to suggest this is a prominent secondary ice production mechanism
507 over the SOCRATES region. A more prominent mechanism is referred to as the Hallett-Mossop
508 process, which is characterized by splintering of small ice particles off of graupel during riming
509 (Hallett & Mossop, 1974). Previous studies have noted its likely presence over the Southern
510 Ocean (Huang et al., 2021; Järvinen et al., 2022), although this process is primarily restricted to
511 temperatures from -8° to -3°C where the greatest liquid phase frequency differences are not
512 observed.

513 An analysis comparing differences in drop concentrations in decoupled and coupled
514 environments is provided in Figure 6. Results separated in this manner can provide insight into
515 how surface-sourced parameters impact drop concentrations (e.g., sea spray acting as CCN).
516 Most of the boundary layers were decoupled with the exception of RF12 and RF13, where the
517 presence of coupling was determined using the dropsonde data following (Wang et al., 2016).
518 Figure 6 shows a distinct bimodality in N_{CDP} due to differences of N_{CDP} in the coupled and
519 decoupled environments. The mode of N_{CDP} for decoupled flights is 70 cm^{-3} and for coupled
520 flights 160 cm^{-3} , consistent with high aerosol number concentrations emitted from the ocean
521 serving as effective CCN in the coupled cases. Perhaps unexpectedly, average N_{CCN} within the
522 boundary layer is not the highest for either of the coupled research flights, but rather is highest

523 for RF09 (191 cm^{-3}), second highest for RF12 (175 cm^{-3}) and the third highest for RF13 and
524 RF08 (both are 136 cm^{-3}). Furthermore, average N_{CCN} for RF12&13 above the boundary layer
525 were the fifth and sixth highest of all 15 research flights. The tendency for RF12&13 not having
526 the highest average N_{CCN} is similarly observed when evaluating N_{CCN} at supersaturations greater
527 than and less than 0.3% (not shown). This is indicative of higher updraft speeds associated with
528 these two flights, which is consistent with a less kurtotic distribution of vertical air motions
529 (kurtosis=4.2) observed for in-cloud observations from these flights compared to the other
530 research flights (kurtosis=10.3; not shown). Note that kurtosis is used to capture the tail ends of
531 distributions (greater updraft and downdraft speeds) rather than skewness which may not capture
532 the greater updraft speeds if greater downdraft speeds are also present. However, Sanchez et al.
533 (2021) suggested that recent particle formation above the boundary layer and particle
534 growth/processing within the boundary layer are the primary source(s) of CCN in this region.
535 Alternatively, lower drop concentrations associated with decoupled flights could be related to
536 greater entrainment-mixing or precipitation scavenging.

537 3.3: Cloud layer properties and profiles of radiative fluxes and drop clustering
538 Figure 7 shows normalized frequency distributions of N_{CDP} , M_{CDP} , the standard deviation of D
539 from CDP drop size distributions (σ_{CDP}) and the mean volume weighted diameter (MVD_{CDP}) for
540 single-layer clouds and the different layers of multi-layer clouds using data from all flights. In
541 Figure 7A it is seen that the N_{CDP} mode for single-layer clouds is greater than 10^2 cm^{-3} ,
542 coinciding with the N_{CDP} mode for flights taken in coupled environments shown in Figure 6
543 (RF12 and RF13, both of which primarily sampled single-layer clouds as seen in Figure 1). To
544 examine the effect of coupling on the distribution of N_{CDP} , results for single-layer cases restricted
545 to decoupled environments are separately shown by the dashed line. When comparing the solid

546 and dashed black lines for the properties in all panels, N_{CDP} is the only property shown that
547 significantly diverges for the coupled and decoupled environments. N_{CDP} distributions in single-
548 layer decoupled environments are more similar to distributions of multi-layer clouds than to
549 single-layer cloud distributions in coupled environments. In contrast, the modes for M_{CDP} , σ_{CDP}
550 and MVD_{CDP} are relatively similar in coupled and decoupled environments (all of which are
551 between 0.1–0.3 g m⁻³, 3–4 μ m and \sim 16 μ m, respectively).

552 When comparing single-to multi-layer cases, single-layer cases are slightly skewed to larger
553 M_{CDP} values, whereas both σ_{CDP} and MVD_{CDP} (Figure 7C&D) are skewed to larger values for
554 multi-layer cases. These results suggest multi-layer clouds observed during SOCRATES had less
555 liquid water content than single-layer cases, but broader droplet distributions and larger mean
556 particle sizes. The significance of these differences is tested using Mann-Whitney U-Tests and
557 Kolmogorov-Smirnoff tests. Mann-Whitney U-test determines whether the median of one
558 distribution is significantly greater or less than the other, whereas the two-sample Kolmogorov-
559 Smirnov test determines the significance of the maximum absolute difference between the two
560 cumulative frequency distributions, both of which use lookup tables. These tests do not require
561 prior knowledge of the distributions' shapes. Every test comparing single-layer and the varying
562 multi-layer types' M_{CDP} , σ_{CDP} and MVD_{CDP} rejects the null hypothesis that both sample sets are
563 taken from the same population at a significance level of 10%. These tests were similarly
564 performed for only liquid phase samples to test whether differences are related to the relative
565 phase distributions of liquid and mixed phase samples. For example, available liquid in mixed
566 phase samples may be partitioned to large ice particles which often exceed sizes detectable by
567 the CDP (directly impacting M_{CDP}). However, with the exception of σ_{CDP} in Multi-1st, all the

568 tests reject the null hypothesis, signifying differences in M_{CDP} , σ_{CDP} and MVD_{CDP} for the
569 different cloud types are not related to cloud phase.

570 Parameters in Figure 7 are also separately evaluated within and above the boundary layer for
571 single- and multi-layered clouds in Figure 8 to determine if significant differences exist. Note the
572 relatively low sample size of single-layer samples above the boundary layer might contribute to
573 the multi-modal distributions for N_{CDP} and MVD_{CDP} , although uncertainties associated with the
574 interpolated boundary layer height may be significant as well. Distributions of N_{CDP} and M_{CDP}
575 are shifted towards larger values for multi-layered clouds within the boundary layer, consistent
576 with higher N_{CCN} within the boundary layer. Although distributions of σ_{CDP} and MVD_{CDP} appear
577 similar for both multi-layer cloud cases, Mann-Whitney U-tests and Kolmogorov-Smirnov tests
578 reject the null hypothesis that both sample sets are taken from the same population at a
579 significance level of 10%. Overall, distributions of σ_{CDP} and MVD_{CDP} are more positively
580 skewed for both multi-layer cases compared with the single layer cases, confirming differences
581 in the different cloud types is unrelated to differences in boundary layer and free tropospheric
582 conditions.

583 It is crucial to examine how the properties vary in relation to their location within the cloud layer
584 to get insight into physical processes occurring in the clouds and impacts on vertical profiles of
585 radiative heating. Figure 9 shows joint histograms of both shortwave (solar) and longwave
586 (terrestrial) irradiance as a function of the normalized height within a cloud layer, defined
587 following McFarquhar et al. (2007) as

588

$$1) \ z_n = \frac{(z - z_{Cloud_base})}{(z_{Cloud_top} - z_{Cloud_base})},$$

589 where z refers to the altitude of the local 1 Hz sample, $z_{\text{Cloud_top}}$ and $z_{\text{Cloud_base}}$ refer to the altitudes
 590 of cloud top and cloud base for a particular layer, respectively (i.e., the highest and lowest
 591 samples within a layer having $M_{\text{CDP}} > 0.01 \text{ g m}^{-3}$). Cloud layers are split into two categories:
 592 those that are the highest layer of their respective regime (top cloud layers; Figure 9A–C) and
 593 those that are underlying another cloud layer (non-top cloud layers; Figure 9D–F). Layers in the
 594 non-top category are only associated with multi-layer clouds and should receive less solar
 595 radiation than top layers. This is precisely what is observed when comparing the solar irradiance
 596 (F_{solar}) in Figure 9A&D: most measurements in the top cloud-layers occur between 400 and 600
 597 W m^{-2} at $z_n > 0.9$ whereas there are nearly zero (~ 10) cases of solar irradiance greater than 400
 598 W m^{-2} for the non-top cloud layer. Likewise, most measurements of net longwave irradiance
 599 ($F_{\text{terr_net}}$) ranges from -110–0 W m^{-2} for the top cloud layer at $z_n > 0.9$, with a mean value of -50
 600 W m^{-2} . In contrast, there are nearly zero cases of $F_{\text{terr_net}} < -50 \text{ W m}^{-2}$ for non-top cloud layers.
 601 The heating profiles shown in Figure 9C&F reveal relatively weak cloud top cooling associated
 602 with longwave radiation for both the top and lower layers. The terrestrial heating rate is
 603 computed as

$$2) \frac{\partial T}{\partial t} = - \frac{1}{\sum_{i=1}^3 \rho_i C_{p,i}} \frac{dF_{\text{terr_net}}}{dz}$$

604 where T is temperature, t is time, z is vertical distance, ρ_i is the total density of the air, liquid or
 605 ice mass, and $C_{p,i}$ is the specific heat of either air, water or ice at constant pressure (Braslau &
 606 Dave, 1975; Petty, 2006). In mixed phase samples, the specific heat of water at constant pressure
 607 is used for the entire cloud mass since efforts are not made to derive the cloud mass separately
 608 for the ice or liquid phase (therefore there are only two iterations in the summation). However,
 609 exchanging it for the specific heat of ice at constant pressure is inconsequential to the results as
 610

611 the air density is significantly greater than that of the cloud mass. Average cooling rates are ~ 0.5
612 K hr^{-1} for $z_n > 0.9$ for non-top cloud layers, and lower than $\sim 2.5 \text{ K hr}^{-1}$ for top cloud layers. Such
613 low cooling rates are associated with emitted longwave radiation from overlying cloud layers for
614 non-top cloud layers, as well as relatively low mass contents of clouds over this region, as seen
615 with M_{CDP} having modes ranging from $0.1\text{--}0.2 \text{ g m}^{-3}$ for all cloud layer types (Figure 7B).
616 Weaker cooling rates may result in weaker cloud top turbulent mixing for non-top cloud layers,
617 resulting in different lifetimes or evolutions for different cloud layer regimes. Higher cooling
618 rates are associated with greater average liquid mass of the top cloud layers. Specifically,
619 average cloud top cooling rates are 1.5 K hr^{-1} greater for cloud layers with average M_{CDP} above
620 the 50^{th} percentile (0.2 g m^{-3}) than below the 50^{th} percentile (not shown).

621 The clustering of droplets, which can have implications for many factors such as precipitation
622 onset (Raymond A. Shaw et al., 1998) and the evolution of raindrop size distributions
623 (McFarquhar, 2004), is evaluated using joint histograms in Figure 10A,B and Figure 10C,D for
624 all non-top cloud layers and all top cloud layers, respectively. Unlike Figure 9, results are
625 normalized over the respective z_n bins. The clustering index (CI) is a commonly used metric
626 (e.g., Baker, 1992; Chaumat & Brenguier, 2001; Jaczewski & Malinowski, 2005) that is defined
627 as

$$628 \quad 3) \quad CI = \left(\frac{V}{M} - 1 \right),$$

629 where M is the mean and V the variance of a given parameter over a given number of samples.
630 This metric takes advantage of the fact that a Poisson distribution has an equal mean and
631 variance. By subtracting 1 from V/M , a droplet distribution sampled from a population with a
632 constant mean rate results in CI equaling 0 cm^{-3} (in the case of drop concentrations per cubic

633 centimeter), and CI increases with increasing droplet heterogeneity. Note that CI less than 0 cm^{-3}
634 ($V < M$) is simply characterized as underdispersed (i.e., having a variance lower than that
635 expected for a Poisson distribution). In this study, CI is calculated every second using 10 Hz
636 observations, providing a measure of inhomogeneity over scales of $\sim 120 \text{ m}$ (depending on flight
637 speed). In order to scale results on a logarithmic scale, the subtraction of 1 is removed from Eq.
638 (2) so all results have a minimum possible value greater than 0 cm^{-3} . The altered calculation (i.e.,
639 altered clustering index; ACI) used in this study is given by

640

$$4) \quad \text{ACI} = \log_{10}\left(\frac{V}{M}\right).$$

641 Figure 10A and 10C show ACI for N_{CDP} ($\text{ACI}_{N_{\text{CDP}}}$), whereas figure 10B and 10D show ACI for
642 M_{CDP} ($\text{ACI}_{M_{\text{CDP}}}$). Joint histograms of $\text{ACI}_{N_{\text{CDP}}}$ are relatively similar for layers from $0 < z_n <$
643 0.8, with most values between -0.4 and 0.2 cm^{-3} . Near cloud base ($z_n = 0$), $\text{ACI}_{N_{\text{CDP}}}$ varies from
644 ~ 0 to 1 cm^{-3} and average values are slightly greater than those from $0.2 < z_n < 0.8$. Values
645 increase near cloud top, with most $\text{ACI}_{N_{\text{CDP}}}$ between 0.5 – 2 cm^{-3} . Increased droplet clustering
646 has previously been found to occur at cloud top, which has been attributed to mixing and cloud
647 top entrainment in the past (Baker, 1992; Dodson & Small Griswold, 2019; Small & Chuang,
648 2008).

649 Discernable differences in clustering at cloud top are observed between the top and non-top
650 layers near cloud top, which are likely due to differences in entrainment and/or mixing strength.
651 Namely, average $\text{ACI}_{N_{\text{CDP}}}$ and $\text{ACI}_{M_{\text{CDP}}}$ are greater at cloud top for the top cloud layers
652 compared with non-top layers. The most notable differences are observed for $\text{ACI}_{M_{\text{CDP}}}$, where
653 normalized occurrence frequencies greater than 0.1 exceed $\text{ACI}_{M_{\text{CDP}}}$ equal to -1 g m^{-3} only for
654 the top cloud layers. In addition, the variability of $\text{ACI}_{M_{\text{CDP}}}$ between cloud top and the

underlying cloud is greater for top cloud layers than for non-top layers. These indicators of greater entrainment and/or mixing (e.g., greater clustering values) are expected with greater cooling rates at the top of top cloud layers compared with non-top cloud layers (Figure 9C,F).

Other factors may account for the small-scale variability of N_{CDP} and M_{CDP} at cloud top, such as previously observed generating cells (Wang et al., 2020) or upsidence waves (i.e., gravity waves visible within a cloud deck) (Rahn & Garreaud, 2010). The influence of large-scale factors on ACI_{N_CDP} is evaluated in Figure 11, which shows level leg cloud-top observations from two research flights. Satellite imagery for both cases reveal undulations in cloud cover surrounding the two transect regions, although cirrus immediately overlie the flight path for RF13 (not shown). The Brunt-Vaisala frequency for both cases is determined (using ambient virtual potential temperature) from nearby sawtooths and is 0.016 rad s^{-1} and 0.027 rad s^{-1} for RF06 and RF13, respectively. These values [suggest both environments are conducive for upsidence waves](#), and are consistent with the lengths of the wavelike structures observed for N_{CDP} . Namely, that the wavelength is longer for RF06 ($\sim 15 \text{ km}$; Figure 11A) than for RF13 ($\sim 2 \text{ km}$; Figure 11B).

Autocorrelations of N_{CDP} for RF06 (Figure 11C) and RF13 (Figure 11D) capture the wavelike structures of N_{CDP} , having peak autocorrelation values above the bands of rejection at lags of 15 km for RF06 and at $\sim 2 \text{ km}$, 4.5 km and 7 km for RF13. Jiang & Wang (2012) found evidence that liquid water content increases in the regions of upward motion from upsidence waves. A similar analysis is performed for both cases using M_{CDP} and a similar wavelike structure and autocorrelation is found for RF06, although not for RF13 (not shown).

For both cases, ACI_{N_CDP} does not possess the wavelike structures observed for N_{CDP} , which is observed when applying autocorrelations to ACI_{N_CDP} . A wavelike structure in ACI_{N_CDP} appears in RF06, but most amplitudes do not exceed the significance bounds. In contrast,

678 autocorrelations exceed the significance bounds for N_{CDP} at lags comparable to the observed
679 wavelengths (e.g., a 15 km wavelength where peak N_{CDP} are observed at $\sim 5 \pm 2$ km and 20 ± 3 km
680 for RF06). Correlations of N_{CDP} and ACI_{N_CDP} are -0.10 and -0.46 for RF06 and RF13,
681 respectively. Increases in ACI_{N_CDP} often correspond with decreases in N_{CDP} (e.g., at 2.5 km and
682 12 km for RF13, Figure 11B), consistent with trends expected from entrainment-mixing.

683 Average normalized cloud particle size distributions, such that the integrated concentration
684 equals one, are shown in Figure 12. Specifically, normalized size distributions are obtained by
685 weighting number concentrations of the respective bins by the total cloud particle concentration.
686 Distributions include contributions from both the CDP and 2DS and are normalized over their
687 combined range (2–1280 μm). To characterize their height variation, normalized particle size
688 distributions are first interpolated to a 2D grid with z_n spaced over 0.01 intervals. Additionally,
689 normalized particle size distributions are interpolated to the 2D grid over 80 logarithmically
690 scaled bins ranging from 2–1280 μm . Results are then smoothed using a two-dimensional
691 convolution and a 3x3 box kernel (i.e., averaging kernel). This method is analogous to that
692 commonly used in image smoothing (Kim & Casper, 2013), allowing for a clear visual depiction
693 of particle size distributions over the range of z_n . Focusing on the top cloud layers (Figure 12A),
694 the maximum normalized $N(\log(D))$ (i.e., $dN/d\log(D)$) > 0.01 at $z_n < 0.1$ occurs at D from 2 to
695 20 μm . These maximum $N(\log(D))$ shift towards larger sizes with increasing z_n . At $z_n > 0.6$,
696 maximum normalized $N(\log(D)) > 0.05$ occur at D from approximately 10 to 30 μm . This shift
697 is consistent with droplet activation occurring near cloud base producing small droplets, which
698 grow with increasing height due to condensational growth and collision-coalescence.
699 There are notable differences for the non-top cloud layers (Figure 12D) compared to the top
700 cloud layers (Figure 12A). The non-top layers have greater small droplet concentrations at $z_n >$

701 0.4 compared to the top layers with normalized $N(\log(D))$ at $D < 10 \mu\text{m}$ being ~ 0.05 throughout
702 the entire cloud depth, whereas values at $D < 10 \mu\text{m}$ decrease well below 0.01 for $z_n > 0.5$ in top
703 cloud layers (green shading). Further, $N(\log(D))$ greater than 0.01 reach sizes up to $40 \mu\text{m}$
704 throughout most of the cloud for non-top cloud layers. This is not seen for the top cloud layers
705 throughout most of the cloud. These trends highlight the differences seen in Figure 7C&D,
706 namely that non-top cloud layers which only occur in multi-layer clouds have broader droplet
707 size distributions. These broader distributions contain larger relative frequencies of both smaller
708 ($D < 10 \mu\text{m}$) and larger (D from $30\text{--}50 \mu\text{m}$) drops. Purple lines show the average σ of D for the
709 normalized size distributions, and these values are larger for non-top cloud layers compared to
710 top cloud layers over the entire depth. Normalized $N(\log(D))$ at $D > 50 \mu\text{m}$ are also greater for
711 the non-top cloud layers throughout the cloud depth.

712 Broader distributions are likely related to a greater frequency of mixed phase samples within
713 non-top cloud layers, which may be associated with a broader range of ice crystals. This is
714 suggested by plotting results separately for liquid phase samples (Figure 12B,E) and mixed phase
715 samples (Figure 12C,F); normalized values of $D > 10^2 \mu\text{m}$ are clearly greater for the mixed phase
716 samples of both top- and non-top cloud layers compared with liquid phase samples. However,
717 differences in cloud phase frequency do not account for all the observed differences between the
718 layer types. Non-top cloud layers still have broader drop size distributions ($D < 50 \mu\text{m}$) than top
719 cloud layers regardless of the cloud phase, which is likely due to particle interactions occurring
720 vertically through local cloud layers. This is confirmed by computing average σ_{CDP} within the
721 vertical profile, which shows values are $\sim 0.5 \mu\text{m}$ greater for liquid phase samples and $\sim 1.5 \mu\text{m}$
722 greater for mixed phase samples in non-top cloud layers at $z_n > 0.5$ (not shown). In fact, average
723 ice concentrations in mixed phase samples with maximum dimensions exceed $200 \mu\text{m}$

724 (aspherical $N_{2DS, D>200\mu m}$) are nearly an order of magnitude greater in non-top cloud layers ($1.7 L^{-1}$)
725 than top layers ($0.2 L^{-1}$). The average σ are much lower for mixed phase samples in the top
726 cloud layers compared with non-top layers. This is due to mixed phase samples in the top cloud
727 layers having much greater drop concentrations (average $N_{CDP} = 120 cm^{-3}$) than non-top cloud
728 layers (average $N_{CDP} = 40 cm^{-3}$). Similarly, drop concentrations are greater in the top layers for
729 liquid phase samples as well (average $N_{CDP} = 110 cm^{-3}$) than non-top layers (average $N_{CDP} = 70$
730 cm^{-3}), consistent with the lowest N_{CDP} observed for the lowest cloud layers in Figure 7A. The
731 higher concentrations in top cloud layers are observed even when removing samples from
732 coupled environments, which causes the average N_{CDP} of top layers to decrease $\sim 10 cm^{-3}$ for both
733 phases.

734 3.4 Vertical distributions of phase and average cloud properties

735 In addition to characterizing multi-layer clouds based on the relative height within the cloud
736 layer and based on whether in the top or non-top cloud layer, the relative frequency of liquid
737 phase with respect to z_n is shown in Figure 13. Results for multi-layer clouds are sorted by cloud
738 height relative to the lowest cloud layer (as in Figure 2&7; left panel) or by the lowest, middle
739 and highest layers (right panel). Results for the lowest cloud layers (Multi-1st and Multi-lowest)
740 are the same for both categorizations. Single-layer clouds are seen to contain the most liquid
741 phase samples, which is consistent with Figure 2B. Furthermore, the liquid phase frequency is
742 lowest for $z_n < 0.4$, which is similar to previous findings that Arctic single-layer mixed phase
743 clouds contain the highest frequency of ice particles in the lower half of the cloud (McFarquhar
744 et al., 2007; Mioche et al., 2017). The lowest cloud layers in multi-layer clouds have much lower
745 liquid phase frequencies than in single-layer cases (consistent with Figure 2B), with liquid phase
746 frequencies decreasing from 0.75 to 0.60 from cloud base to cloud top.

747 For multi-layer clouds, the second and third highest layers (Multi-2nd and Multi-3rd,
748 respectively; Figure 13A) have liquid frequencies varying between 0.75 to 0.95 throughout the
749 normalized heights. Cloud layers overlying the third highest layers have lower liquid phase
750 frequencies which are comparable to the lowest cloud layers, varying from 0.55 to 0.70
751 throughout their depth. These layers typically occur at lower temperatures. Figure 13B shows
752 results discriminating multi-layer clouds into the highest (Multi-top) and layers residing between
753 the highest and lowest cloud layers (Multi-middle). The middle layers have much lower liquid
754 phase frequencies compared with the top cloud layers. In fact, the liquid phase frequencies are
755 comparable between the middle and lowest layers, whereas the highest cloud layers have liquid
756 phase frequencies comparable to single-layers. Note that Multi-grt3 has frequencies resembling
757 middle layers rather than the top layers, because top layers are heavily weighted by cases where
758 there are only two cloud layers in the atmospheric column. The phase frequency structure of
759 multi-layer clouds is consistent with what would be expected from a prominent seeder-feeder
760 mechanism. Primary nucleation may occur at the highest cloud layers where temperatures are
761 lowest, of which 61% were between -10° and 0°C and 78% between -20° to 0°C. Low liquid
762 frequencies at the top of the lowest cloud layers may indicate seeding from above.

763 The remainder of the findings address how other microphysical properties vary as a function of
764 z_n for the different layers, whose sample sizes are found in Figure 13. Figure 14 shows vertical
765 profiles for single-layer clouds. Results are separately shown for liquid and mixed phase samples
766 by the red and green lines, respectively. Ice phase samples are not included due to the relatively
767 small sample size of ice phase compared with mixed phase samples (e.g., blue text in Figure 2B).
768 The top row shows N_{CDP} , M_{CDP} and number weighted mean diameter reported by the CDP
769 ($\text{Mean } D_{CDP}$) (Figure 14A–C). All of these variables, with the exception of N_{CDP} for mixed phase

770 samples, increase with height. The discussion for the remainder of this section focuses on liquid
771 phase samples due to (1) the small sample size of mixed phase observations for all cloud layers
772 and (2) the fact that such observations do not necessarily represent a secondary vertical structure,
773 because the majority of mixed phase samples were embedded within primarily liquid phase
774 cloud layers.

775 Figure 14E-G shows vertical profiles for the properties of particles with dimensions greater than
776 50 μm ($N_{2\text{DS}}$, $M_{2\text{DS}}$ and Mean $D_{2\text{DS}}$). Both $N_{2\text{DS}}$ and $M_{2\text{DS}}$ increase with z_n , whereas Mean $D_{2\text{DS}}$
777 decreases with z_n . Note that $M_{2\text{DS}}$ and Mean $D_{2\text{DS}}$ are larger for mixed phase throughout most of
778 the cloud depth, consistent with the coexistence of larger particles which are primarily ice.
779 Mixed phase Mean $D_{2\text{DS}}$ were separately determined for spherical and non-spherical particles
780 greater than 200 μm , and Mean $D_{2\text{DS}}$ for non-spherical particles were greater than spherical
781 particles at all z_n (not shown). Figure 14H shows $\text{ACI}_{\text{N_CDP}}$, which has a U-shaped distribution
782 similar to Figure 10A&C meaning that maximum $\text{ACI}_{\text{N_CDP}}$ are at cloud base and cloud top.
783 Vertical profiles of RH in Figure 14D are $\sim 100\%$ throughout the cloud depth, with a deviation of
784 $\sim 95\%$ at cloud top. Black dots with dashed lines show RH for clear-sky regions which primarily
785 occur above cloud top ($z_n > 1.0$). Since the layer classification allows for clear-sky samples to
786 exist within a profile, such samples (although very few) may also occur within a cloud layer ($0 <$
787 $z_n < 1$). The analysis of RH is also shown above cloud top and below cloud base ($z_n > 1$ and $z_n <$
788 0, respectively). Above cloud top and below cloud base data is simply the neighboring 1 Hz
789 clear-sky samples to the respective cloud edges. Clear-sky samples below cloud base are nearly
790 saturated, whereas clear-sky samples above cloud top have an average RH of 60%, with
791 significant variability (standard deviation of $\sim 25\%$).

792 Figure 15 shows vertical profiles for the lowest cloud layer in multi-layer clouds. Similar to
793 single-layers, M_{CDP} , Mean D_{CDP} , and N_{2DS} all increase with height. Average ACI_{N_CDP} and Mean
794 D_{2DS} have similar distributions, with peak values near cloud top and cloud base for ACI_{N_CDP} and
795 decreasing values with height for Mean D_{2DS} . Differences between the cloud layer types are
796 primarily observed for N_{CDP} and RH, where N_{CDP} roughly decreases with height and clear-sky
797 RH above cloud top is nearly saturated (~96%) with little variance (standard deviation~3%) for
798 the lowest layer in the multi-layer clouds.

799 Figure 16 shows a similar analysis for the top cloud layers (Figure 16A–D), the non-top cloud
800 layers (Figure 16E–H), and middle layers (Figure 16I–L) of multi-layer clouds. Average N_{CDP} ,
801 Mean D_{CDP} , N_{2DS} and RH are shown for the layer types. N_{CDP} increases with increasing height
802 and peaks above $z_n=0.5$ for top cloud layers, and below 0.5 for non-top layers. When removing
803 single-layer clouds from the top cloud layer analysis, N_{CDP} similarly peaks above $z_n=0.5$
804 (supplementary Figure A). Mean D_{CDP} increases with height for all layer types. However,
805 differences are observed in the overlying clear-sky RH for the top and non-top layers. Similar to
806 the differences in single- and lowest multi-layer clouds (Figure 14D,15D), the air is nearly
807 saturated above non-top cloud layers while RH is only ~70% above top layers. When separately
808 evaluating highest multi-layer clouds and removing single-layer clouds from the analysis, the
809 overlying RH is ~90% (supplementary Figure B). Differences in overlying RH may be expected
810 as single-layer clouds will often be capped by rather strong inversions, whereas layers above one
811 another will be associated with weaker inversions. In contrast, reduced longwave cooling at
812 cloud top will be associated with underlying cloud layers of multi-layer regimes rather than top
813 cloud layers.

814

815 4: Discussion

816 The results presented in Section 3 showed the dependence of cloud phase on relative cloud layer
817 height, and on INP and CCN concentrations. There is a clear tendency for underlying cloud
818 layers of multi-layer clouds to have greater frequencies of ice-containing samples, regardless of
819 whether cloud layers were classified by the height relative to the lowest cloud layer or by
820 bottom, middle and highest layers. The frequency of precipitating ice in-between cloud layers
821 was examined to test whether its presence was associated with a prominent seeder-feeder
822 mechanism. About 70% of precipitating samples in-between cloud layers contain ice (Figure
823 3D), and the large frequency of precipitating samples as well as nearly saturated samples within
824 cloud layers (Figure 3C) is further evidence of a prominent seeder-feeder mechanism over the
825 region.

826 The distribution and vertical structure of drop clustering was characterized to compare against
827 previous studies that examined entrainment-mixing and its impacts based on drop size
828 distribution inhomogeneities (Bower & Choularton, 1988; Paluch, 1986; Paluch & Knight,
829 1984). Entrainment-mixing is often characterized as homogeneous or inhomogeneous.
830 Homogeneous mixing characteristically results in a shift of drop size distributions towards
831 smaller drop sizes due to rapid mixing causing all droplets to experience partial evaporation,
832 whereas inhomogeneous mixing results in a reduction of droplet number concentrations but not
833 in droplet sizes due to slower mixing causing different drops to experience different amounts of
834 subsaturation (Baker et al., 1980; Latham & Reed, 1977). The latter pertains to *extreme*
835 inhomogeneous mixing, whereas most mixing events do not necessarily follow one or the other
836 extreme (e.g., Korolev et al., 2016).

837 Drop clustering was greater at cloud top of the highest cloud layers (including single layer
838 clouds) compared with underlying layers, likely due to differences in entrainment and mixing
839 strength between the different layer types. Lower clustering values at cloud top, as well as the
840 lower variability of these values between cloud top ($z_n > 0.9$) and the cloud beneath ($z_n < 0.9$) for
841 the underlying layers compared with the highest cloud layers (Figure 10), is consistent with
842 weaker entrainment-mixing (potentially indicative of extreme inhomogeneous mixing) for
843 underlying layers. It is important to note that clustering values are sensitive to the spatial scales
844 used (e.g., Baker & Lawson, 2010) and can be computed in different ways, such as utilizing drop
845 interarrival times to determine clustering values on smaller scales, of which further information
846 can be found in Kostinski & Shaw (2001) and Shaw et al. (2002). The purpose of this study is to
847 compare relative differences between cloud layer types, rather than provide an absolute measure
848 of clustering. Clustering on the order of tens to a hundred meters (used here) has previously been
849 directly correlated with entrainment and associated mixing (e.g., Dodson & Small Griswold,
850 2019; Small & Chuang, 2008).

851 The mixing of nearly saturated air would have a diminished impact on drop populations
852 compared with considerably subsaturated air. Namely, the mixing of drier air likely results in
853 local pockets of evaporation on relatively large spatial-scales, which increases drop clustering
854 (e.g., Baker, 1992). The drier air above-cloud for top layers compared with non-top layers
855 (Figure 16D,H) is consistent with greater cloud top clustering for the top layers. The saturated air
856 overlying non-top cloud layers may be important, as previous modeling studies have shown the
857 presence of humidity inversions are required to maintain low-level mixed phase clouds in the
858 Arctic (Curry, 1986; Curry et al., 1988; Solomon et al., 2011). The saturated air could also be
859 associated with evaporating drizzle or sublimating ice from overlying cloud layers. Following

860 Pruppacher & Klett, (1996) and Lamb & Verlinde (2011), a spherical ice particle ranging from
861 D=50 to 150 μm in environments having RH with respect to ice ranging from 60% to 80% at
862 temperatures ranging from -20° to 0°C results in ice particles which can fall for distances ranging
863 tens of meters to \sim 1.5 km before completely sublimating. In this study, cloud top observations
864 less than 200 m from the overlying cloud layer account for 47% of the cases, and observations
865 less than 1 km from the overlying cloud account for 86%, showing that seeding would be
866 expected to have an impact.

867 Despite differences in above cloud RH as well as cloud top clustering and cooling rates for top
868 and non-top layers, droplets greater than 50 μm are observed at cloud top of all layer types with
869 average concentrations ranging from \sim 20–50 L^{-1} (Figure 16C,G). Other factors may contribute to
870 the common occurrence of droplet diameters exceeding 50 μm , such as sea salt acting as giant
871 CCN (e.g., CCN with maximum dimensions exceeding 2 μm ; Jensen & Nugent, (2017)).
872 Additionally, mean $D_{2\text{DS}}$ generally increases from cloud top towards cloud base (Figure
873 14G,15G), suggesting collision-coalescence may begin near cloud top.

874 4: Conclusions

875 The microphysical properties of single- and multi-layer clouds over the Southern Ocean were
876 evaluated and contrasted using airborne in situ observations acquired during SOCRATES. Cloud
877 layers were classified using a novel smoothing method applied to in-situ cloud observations
878 acquired during sawtooths of the aircraft. This resulted in 55 profiles of single-layer clouds and
879 183 profiles of individual multi-layer clouds. Single-layer clouds have greater cloud liquid
880 droplet mass and number concentrations than multi-layer clouds, with number concentrations in
881 single-layer clouds from two research flights in coupled environments approximately double
882 those in decoupled environments. Multi-layer clouds have broader drop size distributions than

883 single-layer clouds. When cloud layers are separated according to whether they are underlying
884 other cloud layers (non-top cloud layers) or not (top cloud layers), non-top cloud layers have
885 broader drop size distributions ($D < 50 \mu\text{m}$) and total particle size distributions throughout the
886 vertical cloud depth compared to top cloud layers.

887 The liquid phase most frequently occurs in single-layer clouds compared with multi-layer clouds.
888 Liquid phase frequencies in multi-layer clouds are the lowest in the lowest cloud layers and
889 increase with higher cloud layers until the third highest layer is reached, suggesting a prominent
890 seeder-feeder presence in multi-layer clouds (Figure 2B). When classifying the layers of multi-
891 layer clouds as lowest, highest, and those lying in-between, the highest cloud layers have the
892 greatest frequency of liquid phase samples, and the middle layers have similarly low relative
893 frequencies as the lowest layers (Figure 13B). These findings show that caution should be taken
894 when quantifying cloud phase frequencies solely from satellite imagery due to potential biases in
895 cloud top phase as well as overlapping cloud layers, as well as caution in classifying phase
896 frequency by temperature alone.

897 Relative phase frequencies are also explored in relation to CCN and INP concentrations. There is
898 some evidence of INP concentrations being positively related to ice frequencies (e.g., a
899 correlation of -0.41 is observed for INP with activation temperatures from -30° to -10°C and
900 liquid phase frequencies from -20° to -2°C in the boundary layer), but it is only observed for
901 select temperature and INP activation temperature ranges (Figure 4). The lack of a relation for
902 other temperature and activation temperatures suggests alternative processes, such as secondary
903 ice production and accretion, play a major role in phase determination. Phase frequencies are
904 found to be directly related to CCN concentrations, but only above the boundary layer and

905 primarily at temperatures less than -10°C (Figure 5). Namely, ice is less likely to be observed in
906 such environments with high CCN concentrations.

907 The dependence of cloud microphysical properties on cloud layer normalized height was also
908 examined. The number weighted mean diameter of drops less than 50 μm increases with height
909 for all cloud layer types, whereas number concentrations peak near cloud top for top cloud layers
910 and near cloud base for non-top cloud layers (Figure 12). The number concentration and mass of
911 drops greater than 50 μm also increase with cloud height, whereas the mean diameter decreases
912 with increasing height. These similarities are observed between single- and multi-layer clouds in
913 spite of differences in cloud top droplet clustering, radiative cooling profiles, overlying RH and
914 relative phase frequencies, highlighting a propensity for precipitation initiation in both single and
915 multi-layer clouds. However, robust differences in the microphysical properties of single- and
916 multi-layer clouds warrants further investigation to distinguish and constrain physical responses
917 resulting in the differences provide here.

918 **Acknowledgement:** This work was supported by the National Science Foundation (NSF)
919 through grants AGS-1628674, AGS-160486 and AGS-1762096. This material is based upon
920 work supported by the National Center for Atmospheric Research, which is a major facility
921 sponsored by the National Science Foundation under Cooperative Agreement No. 1852977. The
922 data were collected using NSF's Lower Atmosphere Observing Facilities, which are managed
923 and operated by NCAR's Earth Observing Laboratory. The NSF SOCRATES campaign dataset
924 is publicly available and can be accessed at http://www.eol.ucar.edu/field_projects/socrates. We
925 thank the pilots, mechanics, technicians, scientists, software engineers, and project managers of
926 the NCAR EOL Research Aviation Facility for their support in the field and in post-processing
927 data. We would like to thank the Australian Bureau of Meteorology Tasmanian regional Office

928 for the excellent forecast support and weather briefings provided during the field campaign with
929 special thanks to Scott Carpentier, Michelle Hollister, Matthew Thomas and Robert Schaap.

930 Open Research:

931 The data were collected using NSF's Lower Atmosphere Observing Facilities, which are
932 managed and operated by NCAR's Earth Observing Laboratory. The NSF SOCRATES
933 campaign dataset is publicly available and can be accessed at
934 http://www.eol.ucar.edu/field_projects/socrates. Data includes 2DS particle size distributions
935 (Wu & McFarquhar, 2019), raw 2DS particle imagery (NCAR/EOL, 2018) and alternative in situ
936 instrumentation (NCAR/EOL, 2022).

937

938 Bibliography

939 Ahn, E., Huang, Y., Chubb, T. H., Baumgardner, D., Isaac, P., de Hoog, M., et al. (2017). In situ
940 observations of wintertime low-altitude clouds over the Southern Ocean. *Quarterly Journal of*
941 *the Royal Meteorological Society*, 143(704), 1381–1394. <https://doi.org/10.1002/qj.3011>

942 Ahn, E., Huang, Y., Siems, S. T., & Manton, M. J. (2018). A Comparison of Cloud
943 Microphysical Properties Derived From MODIS and CALIPSO With In Situ Measurements
944 Over the Wintertime Southern Ocean. *Journal of Geophysical Research: Atmospheres*, 123(19),
945 11,120-11,140. <https://doi.org/10.1029/2018JD028535>

946 Alexander, S. P., McFarquhar, G. M., Marchand, R., Protat, A., Vignon, É., Mace, G. G., &
947 Klekociuk, A. R. (2021). Mixed-Phase Clouds and Precipitation in Southern Ocean Cyclones and
948 Cloud Systems Observed Poleward of 64°S by Ship-Based Cloud Radar and Lidar. *Journal of*
949 *Geophysical Research: Atmospheres*, 126(8), e2020JD033626.
950 <https://doi.org/10.1029/2020JD033626>

951 Atlas, R. L., Bretherton, C. S., Blossey, P. N., Gettelman, A., Bardeen, C., Lin, P., & Ming, Y.
952 (2020). How Well Do Large-Eddy Simulations and Global Climate Models Represent Observed
953 Boundary Layer Structures and Low Clouds Over the Summertime Southern Ocean? *Journal of*
954 *Advances in Modeling Earth Systems*, 12(11), e2020MS002205.
955 <https://doi.org/10.1029/2020MS002205>

956 Baker, B., & Lawson, R. P. (2010). Analysis of tools used to quantify droplet clustering in
957 clouds. *Journal of the Atmospheric Sciences*, 67(10), 3355–3367.
958 <https://doi.org/10.1175/2010JAS3409.1>

959 Baker, B. A. (1992). Turbulent entrainment and mixing in clouds: a new observational approach.
960 *Journal of the Atmospheric Sciences*, 49(5), 387–404. [https://doi.org/10.1175/1520-0469\(1992\)049<0387:TEAMIC>2.0.CO;2](https://doi.org/10.1175/1520-0469(1992)049<0387:TEAMIC>2.0.CO;2)

962 Baker, M. B., Corbin, R. G., & Latham, J. (1980). The influence of entrainment on the evolution
963 of cloud droplet spectra: I. A model of inhomogeneous mixing. *Quarterly Journal of the Royal
964 Meteorological Society*, 106(449), 581–598. <https://doi.org/10.1002/qj.49710644914>

965 Baumgardner, D., & Korolev, A. (1997). Airspeed corrections for optical array probe sample
966 volumes. *Journal of Atmospheric and Oceanic Technology*, 14(5), 1224–1229.
967 [https://doi.org/10.1175/1520-0426\(1997\)014<1224:ACFOAP>2.0.CO;2](https://doi.org/10.1175/1520-0426(1997)014<1224:ACFOAP>2.0.CO;2)

968 Bodas-Salcedo, A., Hill, P. G., Furtado, K., Williams, K. D., Field, P. R., Manners, J. C., et al.
969 (2016). Large Contribution of Supercooled Liquid Clouds to the Solar Radiation Budget of the
970 Southern Ocean. *Journal of Climate*, 29(11), 4213–4228. <https://doi.org/10.1175/JCLI-D-15-0564.1>

972 Boers, R., Jensen, J. B., Krummel, P. B., & Gerber, H. (1996). Microphysical and short-wave
973 radiative structure of wintertime stratocumulus clouds over the Southern Ocean. *Quarterly
974 Journal of the Royal Meteorological Society*, 122(534), 1307–1339.
975 <https://doi.org/10.1002/qj.49712253405>

976 Boers, R., Jensen, J. B., & Krummel, P. B. (1998). Microphysical and short-wave radiative
977 structure of stratocumulus clouds over the Southern Ocean: Summer results and seasonal
978 differences. *Quarterly Journal of the Royal Meteorological Society*, 124(545), 151–168.
979 <https://doi.org/10.1002/qj.49712454507>

980 Bower, K. N., & Choularton, T. W. (1988). The effects of entrainment on the growth of droplets
981 in continental cumulus clouds. *Quarterly Journal of the Royal Meteorological Society*, 114(484),
982 1411–1434. <https://doi.org/10.1002/qj.49711448404>

983 Braslav, N., & Dave, J. V. (1975). Atmospheric Heating Rates Due to Solar Radiation for
984 Several Aerosol-Laden Cloudy and Cloud-Free Models. *Journal of Applied Meteorology (1962-1982)*, 14(3), 396–399.

986 Chaumat, L., & Brenguier, J. L. (2001). Droplet spectra broadening in cumulus clouds. Part II:
987 Microscale droplet concentration heterogeneities. *Journal of the Atmospheric Sciences*, 58(6),
988 642–654. [https://doi.org/10.1175/1520-0469\(2001\)058<0642:DSBICC>2.0.CO;2](https://doi.org/10.1175/1520-0469(2001)058<0642:DSBICC>2.0.CO;2)

989 Christensen, M. W., Carrió, G. G., Stephens, G. L., & Cotton, W. R. (2013). Radiative impacts
990 of free-tropospheric clouds on the properties of marine stratocumulus. *Journal of the
991 Atmospheric Sciences*, 70(10), 3102–3118. <https://doi.org/10.1175/JAS-D-12-0287.1>

992 Chubb, T., Huang, Y., Jensen, J., Campos, T., Siems, S., & Manton, M. (2016). Observations of
993 high droplet number concentrations in Southern Ocean boundary layer clouds. *Atmospheric*
994 *Chemistry and Physics*, 16(2), 971–987. <https://doi.org/10.5194/acp-16-971-2016>

995 Chubb, T. H., Jensen, J. B., Siems, S. T., & Manton, M. J. (2013). In situ observations of
996 supercooled liquid clouds over the Southern Ocean during the HIAPER Pole-to-Pole
997 Observation campaigns. *Geophysical Research Letters*, 40(19), 5280–5285.
998 <https://doi.org/10.1002/grl.50986>

999 Collins, W. D. (2001). Parameterization of generalized cloud overlap for radiative calculations in
1000 general circulation models. *Journal of the Atmospheric Sciences*, 58(21), 3224–3242.
1001 [https://doi.org/10.1175/1520-0469\(2001\)058<3224:POGCOF>2.0.CO;2](https://doi.org/10.1175/1520-0469(2001)058<3224:POGCOF>2.0.CO;2)

1002 Cooper, W. A., Friesen, R. B., Hayman, M., Jensen, J. B., Lenschow, D. H., Romashkin, P. A., et
1003 al. (2016). *Characterization of Uncertainty in Measurements of Wind From the NSF/NCAR*
1004 *Gulfstream V Research Aircraft*. Retrieved from
1005 https://opensky.ucar.edu/islandora/object/technotes%3A540/datastream/PDF/download/Characterization_of_Uncertainty_in_Measurements_of_Wind_from_the_NSF_NCAR_Gulfstream_V_Research_Aircraft.citation

1008 Coopman, Q., Riedi, J., Zeng, S., & Garrett, T. J. (2020). Space-Based Analysis of the Cloud
1009 Thermodynamic Phase Transition for Varying Microphysical and Meteorological Regimes.
1010 *Geophysical Research Letters*, 47(6), e2020GL087122. <https://doi.org/10.1029/2020GL087122>

1011 Curry, J. A. (1986). Interactions among turbulence, radiation and microphysics in Arctic stratus
1012 clouds. *Journal of the Atmospheric Sciences*, 43(1), 90–106. [https://doi.org/10.1175/1520-0469\(1986\)043<0090:IATRAM>2.0.CO;2](https://doi.org/10.1175/1520-0469(1986)043<0090:IATRAM>2.0.CO;2)

1014 Curry, J. A., Ebert, E. E., & Herman, G. F. (1988). Mean and turbulence structure of the
1015 summertime Arctic cloudy boundary layer. *Quarterly Journal of the Royal Meteorological*
1016 *Society*, 114(481), 715–746. <https://doi.org/10.1002/qj.49711448109>

1017 D'Alessandro, J. J., Diao, M., Wu, C., Liu, X., Jensen, J. B., & Stephens, B. B. (2019). Cloud
1018 phase and relative humidity distributions over the Southern Ocean in austral summer based on in
1019 situ observations and CAM5 simulations. *Journal of Climate*, 32(10), 2781–2805.
1020 <https://doi.org/10.1175/JCLI-D-18-0232.1>

1021 D'Alessandro, J. J., McFarquhar, G. M., Wu, W., Stith, J. L., Jensen, J. B., & Rauber, R. M.
1022 (2021). Characterizing the Occurrence and Spatial Heterogeneity of Liquid, Ice, and Mixed
1023 Phase Low-Level Clouds Over the Southern Ocean Using in Situ Observations Acquired During
1024 SOCRATES. *Journal of Geophysical Research: Atmospheres*, 126(11), e2020JD034482.
1025 <https://doi.org/10.1029/2020JD034482>

1026 DeMott, P. J., Hill, T. C. J., Petters, M. D., Bertram, A. K., Tobo, Y., Mason, R. H., et al. (2017).
1027 Comparative measurements of ambient atmospheric concentrations of ice nucleating particles
1028 using multiple immersion freezing methods and a continuous flow diffusion chamber.

1029 1029 *Atmospheric Chemistry and Physics*, 17(18), 11227–11245. <https://doi.org/10.5194/acp-17-11227-2017>

1030 1030

1031 1031 Diao, M. (2021). VCSEL 1 Hz water vapor data: UCAR/NCAR—Earth Observing Laboratory. Retrieved from <https://data.eol.ucar.edu/dataset/552.051>

1032 1032

1033 1033 Dodson, D. S., & Small Griswold, J. D. (2019). Droplet inhomogeneity in shallow cumuli: The effects of in-cloud location and aerosol number concentration. *Atmospheric Chemistry and Physics*, 19(11), 7297–7317. <https://doi.org/10.5194/acp-19-7297-2019>

1034 1034

1035 1035

1036 1036 Eloranta, E. E. (2006). High Spectral Resolution Lidar. In *Lidar* (pp. 143–163). Springer-Verlag. https://doi.org/10.1007/0-387-25101-4_5

1037 1037

1038 1038 Engeln, A. von, & Teixeira, J. (2013). A Planetary Boundary Layer Height Climatology Derived from ECMWF Reanalysis Data. *Journal of Climate*, 26(17), 6575–6590. <https://doi.org/10.1175/JCLI-D-12-00385.1>

1039 1039

1040 1040

1041 1041 Fiddes, S. L., Protat, A., Mallet, M. D., Alexander, S. P., & Woodhouse, M. T. (2022). Southern Ocean cloud and shortwave radiation biases in a nudged climate model simulation: does the model ever get it right? Retrieved April 11, 2022, from <https://acp.copernicus.org/preprints/acp-2022-259/>

1042 1042

1043 1043

1044 1044

1045 1045 Field, P. R., Wood, R., Brown, P. R. A., Kaye, P. H., Hirst, E., Greenaway, R., & Smith, J. A. (2003). Ice particle interarrival times measured with a fast FSSP. *Journal of Atmospheric and Oceanic Technology*, 20(2), 249–261. [https://doi.org/10.1175/1520-0426\(2003\)020<0249:IPITMW>2.0.CO;2](https://doi.org/10.1175/1520-0426(2003)020<0249:IPITMW>2.0.CO;2)

1046 1046

1047 1047

1048 1048

1049 1049 Field, P. R., Heymsfield, A. J., & Bansemer, A. (2006). Shattering and particle interarrival times measured by optical array probes in ice clouds. *Journal of Atmospheric and Oceanic Technology*, 23(10), 1357–1371. <https://doi.org/10.1175/JTECH1922.1>

1050 1050

1051 1051

1052 1052 Filioglou, M., Mielonen, T., Balis, D., Giannakaki, E., Arola, A., Kokkola, H., et al. (2019). Aerosol Effect on the Cloud Phase of Low-Level Clouds Over the Arctic. *Journal of Geophysical Research: Atmospheres*, 124(14), 7886–7899. <https://doi.org/10.1029/2018JD030088>

1053 1053

1054 1054

1055 1055

1056 1056 Finlon, J. A., McFarquhar, G. M., Nesbitt, S. W., Rauber, R. M., Morrison, H., Wu, W., & Zhang, P. (2019). A novel approach for characterizing the variability in mass–dimension relationships: results from MC3E. *Atmospheric Chemistry and Physics*, 19(6), 3621–3643. <https://doi.org/10.5194/acp-19-3621-2019>

1057 1057

1058 1058

1059 1059

1060 1060 Finlon, J. A., Rauber, R. M., Wu, W., Zaremba, T. J., McFarquhar, G. M., Nesbitt, S. W., et al. (2020). Structure of an Atmospheric River Over Australia and the Southern Ocean: II. Microphysical Evolution. *Journal of Geophysical Research: Atmospheres*, 125(18). <https://doi.org/10.1029/2020JD032514>

1061 1061

1062 1062

1063 1063

1064 Fleishauer, R. P., Larson, V. E., & Vonder Haar, T. H. (2002). Observed microphysical structure
1065 of midlevel, mixed-phase clouds. *Journal of the Atmospheric Sciences*, 59(11), 1779–1804.
1066 [https://doi.org/10.1175/1520-0469\(2002\)059<1779:OMSOMM>2.0.CO;2](https://doi.org/10.1175/1520-0469(2002)059<1779:OMSOMM>2.0.CO;2)

1067 Gettelman, A., Bardeen, C. G., McCluskey, C. S., Järvinen, E., Stith, J., Bretherton, C., et al.
1068 (2020). Simulating Observations of Southern Ocean Clouds and Implications for Climate.
1069 *Journal of Geophysical Research: Atmospheres*, 125(21), e2020JD032619.
1070 <https://doi.org/10.1029/2020JD032619>

1071 Hallett, J., & Mossop, S. C. (1974). Production of secondary ice particles during the riming
1072 process. *Nature*, 249(5452), 26–28. <https://doi.org/10.1038/249026a0>

1073 Hande, L. B., Siems, S. T., Manton, M. J., & Belusic, D. (2012). Observations of wind shear
1074 over the Southern Ocean. *Journal of Geophysical Research: Atmospheres*, 117(D12).
1075 <https://doi.org/10.1029/2012JD017488>

1076 Haynes, J. M., Jakob, C., Rossow, W. B., Tselioudis, G., & Brown, J. B. (2011). Major
1077 characteristics of Southern Ocean cloud regimes and their effects on the energy budget. *Journal
1078 of Climate*, 24(19), 5061–5080. <https://doi.org/10.1175/2011JCLI4052.1>

1079 Herman, G., & Goody, R. (1976). Formation and Persistence of Summertime Arctic Stratus
1080 Clouds. *Journal of the Atmospheric Sciences*, 33(8), 1537–1553. [https://doi.org/10.1175/1520-0469\(1976\)033<1537:FAPOSA>2.0.CO;2](https://doi.org/10.1175/1520-
1081 0469(1976)033<1537:FAPOSA>2.0.CO;2)

1082 Heymsfield, A. J., & Parrish, J. L. (1978). Computation Technique for increasing The Effective
1083 Sampling Volume of The PMS Two-Dimensional Particle Size Spectrometer. *Journal of Applied
1084 Meteorology*, 17(10), 1566–1572. [https://doi.org/10.1175/1520-0450\(1978\)017<1566:ACTFIT>2.0.CO;2](https://doi.org/10.1175/1520-
1085 0450(1978)017<1566:ACTFIT>2.0.CO;2)

1086 Heymsfield, A. J., Field, P. R., Bailey, M., Rogers, D., Stith, J., Twohy, C., et al. (2011). Ice in
1087 clouds experiment-layer clouds. Part I: Ice growth rates derived from lenticular wave cloud
1088 penetrations. *Journal of the Atmospheric Sciences*, 68(11), 2628–2654.
1089 <https://doi.org/10.1175/JAS-D-11-025.1>

1090 Hobbs, P. V., & Rangno, A. L. (1998). Microstructures of low and middle-level clouds over the
1091 Beaufort Sea. *Quarterly Journal of the Royal Meteorological Society*, 124(550), 2035–2071.
1092 <https://doi.org/10.1002/qj.49712455012>

1093 Holroyd, E. W. (1987). Some Techniques and Uses of 2D-C Habit Classification Software for
1094 Snow Particles. *Journal of Atmospheric and Oceanic Technology*, 4(3), 498–511.
1095 [https://doi.org/10.1175/1520-0426\(1987\)004<0498:stauc>2.0.co;2](https://doi.org/10.1175/1520-0426(1987)004<0498:stauc>2.0.co;2)

1096 Houze, R. A. (2014). Cloud Dynamics - Second Edition. In *International Geophysics* (Vol. 104,
1097 pp. 1–432). Academic Press. <https://doi.org/10.1016/B978-0-12-374266-7.00001-9>

1098 Hu, Y., Winker, D., Vaughan, M., Lin, B., Omar, A., Trepte, C., et al. (2009).
1099 CALIPSO/CALIOP cloud phase discrimination algorithm. *Journal of Atmospheric and Oceanic
1100 Technology*, 26(11), 2293–2309. <https://doi.org/10.1175/2009JTECHA1280.1>

1101 Huang, Y., Siems, S. T., Manton, M. J., & Thompson, G. (2014). An Evaluation of WRF
1102 Simulations of Clouds over the Southern Ocean with A-Train Observations. *Monthly Weather
1103 Review*, 142(2), 647–667. <https://doi.org/10.1175/MWR-D-13-00128.1>

1104 Huang, Y., Franklin, C. N., Siems, S. T., Manton, M. J., Chubb, T., Lock, A., et al. (2015).
1105 Evaluation of boundary-layer cloud forecasts over the Southern Ocean in a limited-area
1106 numerical weather prediction system using in situ , space-borne and ground-based observations.
1107 *Quarterly Journal of the Royal Meteorological Society*, 141(691), 2259–2276.
1108 <https://doi.org/10.1002/qj.2519>

1109 Huang, Y., Siems, S. T., & Manton, M. J. (2021). Wintertime In Situ Cloud Microphysical
1110 Properties of Mixed-Phase Clouds Over the Southern Ocean. *Journal of Geophysical Research: Atmospheres*, 126(11), e2021JD034832. <https://doi.org/10.1029/2021JD034832>

1112 Hudson, J. G., & Frisbie, P. R. (1991). Cloud condensation nuclei near marine stratus. *Journal of
1113 Geophysical Research*, 96(D11), 20795–20808. <https://doi.org/10.1029/91jd02212>

1114 Intrieri, J. M., Shupe, M. D., Uttal, T., & McCarty, B. J. (2002). An annual cycle of Arctic cloud
1115 characteristics observed by radar and lidar at SHEBA. *Journal of Geophysical Research: Oceans*, 107(10), SHE 5-1. <https://doi.org/10.1029/2000jc000423>

1117 Jackson, R. C., McFarquhar, G. M., Korolev, A. V., Earle, M. E., Liu, P. S. K., Lawson, R. P., et
1118 al. (2012). The dependence of ice microphysics on aerosol concentration in arctic mixed-phase
1119 stratus clouds during ISDAC and M-PACE. *Journal of Geophysical Research Atmospheres*,
1120 117(15). <https://doi.org/10.1029/2012JD017668>

1121 Jackson, R. C., Mcfarquhar, G. M., Stith, J., Beals, M., Shaw, R. A., Jensen, J., et al. (2014). An
1122 assessment of the impact of antishattering tips and artifact removal techniques on cloud ice size
1123 distributions measured by the 2D cloud probe. *Journal of Atmospheric and Oceanic Technology*,
1124 31(12), 2567–2590. <https://doi.org/10.1175/JTECH-D-13-00239.1>

1125 Jaczewski, A., & Malinowski, S. P. (2005). Spatial distribution of cloud droplets in a turbulent
1126 cloud-chamber flow. *Quarterly Journal of the Royal Meteorological Society*, 131(609), 2047–
1127 2062. <https://doi.org/10.1256/qj.04.65>

1128 Järvinen, E., McCluskey, C. S., Waitz, F., Schnaiter, M., Bansemer, A., Bardeen, C. G., et al.
1129 (2022). Evidence for Secondary Ice Production in Southern Ocean Maritime Boundary Layer
1130 Clouds. *Journal of Geophysical Research: Atmospheres*, 127(16), e2021JD036411.
1131 <https://doi.org/10.1029/2021jd036411>

1132 Jensen, J. B., & Nugent, A. D. (2017). Condensational growth of drops formed on giant sea-salt
1133 aerosol particles. *Journal of the Atmospheric Sciences*, 74(3), 679–697.
1134 <https://doi.org/10.1175/JAS-D-15-0370.1>

1135 Jiang, Q., & Wang, S. (2012). Impact of Gravity Waves on Marine Stratocumulus Variability.
1136 *Journal of the Atmospheric Sciences*, 69(12), 3633–3651. <https://doi.org/10.1175/JAS-D-12-0135.1>

1138 Kay, J. E., Hillman, B. R., Klein, S. A., Zhang, Y., Medeiros, B., Pincus, R., et al. (2012).
1139 Exposing Global Cloud Biases in the Community Atmosphere Model (CAM) Using Satellite
1140 Observations and Their Corresponding Instrument Simulators. *Journal of Climate*, 25(15), 5190–
1141 5207. <https://doi.org/10.1175/JCLI-D-11-00469.1>

1142 Khanal, S., & Wang, Z. (2018). Uncertainties in MODIS-Based Cloud Liquid Water Path
1143 Retrievals at High Latitudes Due to Mixed-Phase Clouds and Cloud Top Height Inhomogeneity.
1144 *Journal of Geophysical Research: Atmospheres*, 123(19), 11,154–11,172.
1145 <https://doi.org/10.1029/2018JD028558>

1146 Kim, S., & Casper, R. (2013). Applications of convolution in image processing with MATLAB.
1147 *University of Washington*, 1–20.

1148 Korolev, A., & Leisner, T. (2020). Review of experimental studies of secondary ice production.
1149 *Atmospheric Chemistry and Physics*, 20(20), 11767–11797. <https://doi.org/10.5194/acp-20-11767-2020>

1151 Korolev, A., Khain, A., Pinsky, M., & French, J. (2016). Theoretical study of mixing in liquid
1152 clouds-Part 1: Classical concepts. *Atmospheric Chemistry and Physics*, 16(14), 9235–9254.
1153 <https://doi.org/10.5194/acp-16-9235-2016>

1154 Kostinski, A. B., & Shaw, R. A. (2001). Scale-dependent droplet clustering in turbulent clouds.
1155 *Journal of Fluid Mechanics*, 434, 389–398. <https://doi.org/10.1017/S0022112001004001>

1156 Lamb, D., & Verlinde, J. (2011). *Physics and chemistry of clouds. Physics and Chemistry of*
1157 *Clouds*. Cambridge University Press. <https://doi.org/10.1017/CBO9780511976377>

1158 Lance, S., Brock, C. A., Rogers, D., & Gordon, J. A. (2010). Water droplet calibration of the
1159 Cloud Droplet Probe (CDP) and in-flight performance in liquid, ice and mixed-phase clouds
1160 during ARCPAC. *Atmospheric Measurement Techniques*, 3(6), 1683–1706.
1161 <https://doi.org/10.5194/amt-3-1683-2010>

1162 Latham, J., & Reed, R. L. (1977). Laboratory studies of the effects of mixing on the evolution of
1163 cloud droplet spectra. *Quarterly Journal of the Royal Meteorological Society*, 103(436), 297–
1164 306. <https://doi.org/10.1002/qj.49710343607>

1165 Levin, E. J. T., DeMott, P. J., Suski, K. J., Boose, Y., Hill, T. C. J., McCluskey, C. S., et al.
1166 (2019). Characteristics of Ice Nucleating Particles in and Around California Winter Storms.
1167 *Journal of Geophysical Research: Atmospheres*, 124(21), 11530–11551.
1168 <https://doi.org/10.1029/2019JD030831>

1169 Li, J., Yi, Y., Minnis, P., Huang, J., Yan, H., Ma, Y., et al. (2011). Radiative effect differences
1170 between multi-layered and single-layer clouds derived from CERES, CALIPSO, and CloudSat
1171 data. *Journal of Quantitative Spectroscopy and Radiative Transfer*, 112(2), 361–375.
1172 <https://doi.org/10.1016/j.jqsrt.2010.10.006>

1173 Liu, Y., Key, J. R., Ackerman, S. A., Mace, G. G., & Zhang, Q. (2012). Arctic cloud
1174 macrophysical characteristics from CloudSat and CALIPSO. *Remote Sensing of Environment*,
1175 124, 159–173. <https://doi.org/10.1016/j.rse.2012.05.006>

1176 Luo, Y., Xu, K.-M., Morrison, H., McFarquhar, G. M., Wang, Z., & Zhang, G. (2008). Multi-
1177 layer arctic mixed-phase clouds simulated by a cloud-resolving model: Comparison with ARM
1178 observations and sensitivity experiments. *Journal of Geophysical Research*, 113(D12), D12208.
1179 <https://doi.org/10.1029/2007JD009563>

1180 Matus, A. V., & L'Ecuyer, T. S. (2017). The role of cloud phase in Earth's radiation budget.
1181 *Journal of Geophysical Research: Atmospheres*, 122(5), 2559–2578.
1182 <https://doi.org/10.1002/2016JD025951>

1183 McCluskey, C. S., Hill, T. C. J., Humphries, R. S., Rauker, A. M., Moreau, S., Strutton, P. G., et
1184 al. (2018). Observations of Ice Nucleating Particles Over Southern Ocean Waters. *Geophysical
1185 Research Letters*, 45(21), 11,989-11,997. <https://doi.org/10.1029/2018GL079981>

1186 McCoy, D. T., Hartmann, D. L., Grosvenor, D. P., McCoy, D. T., Hartmann, D. L., &
1187 Grosvenor, D. P. (2014). Observed Southern Ocean Cloud Properties and Shortwave Reflection.
1188 Part I: Calculation of SW Flux from Observed Cloud Properties*. *Journal of Climate*, 27(23),
1189 8836–8857. <https://doi.org/10.1175/JCLI-D-14-00287.1>

1190 McCoy, I. L., Bretherton, C. S., Wood, R., Twohy, C. H., Gettelman, A., Bardeen, C. G., &
1191 Toohey, D. W. (2021). Influences of Recent Particle Formation on Southern Ocean Aerosol
1192 Variability and Low Cloud Properties. *Journal of Geophysical Research: Atmospheres*, 126(8),
1193 e2020JD033529. <https://doi.org/10.1029/2020JD033529>

1194 McFarquhar, G., Zhang, G., Poellot, M. R., Kok, G. L., McCoy, R., Tooman, T., et al. (2007).
1195 Ice properties of single-layer stratocumulus during the Mixed-Phase Arctic Cloud Experiment: 1.
1196 Observations. *Journal of Geophysical Research*, 112(D24), D24201.
1197 <https://doi.org/10.1029/2007JD008633>

1198 McFarquhar, G. M., Finlon, J. A., Stechman, D. M., Wu, W., & Jackson, Robert M. Freer, M.
1199 (2018). University of Illinois/Oklahoma Optical Array Probe (OAP) Processing Software.
1200 Version 3.1.4. Zenodo. <https://doi.org/doi:https://doi.org/10.5281/>

1201 McFarquhar, Greg M. (2004). The effect of raindrop clustering on collision-induced break-up of
1202 raindrops. *Quarterly Journal of the Royal Meteorological Society*, 130(601), 2169–2190.
1203 <https://doi.org/10.1256/qj.03.98>

1204 McFarquhar, Greg M., Baumgardner, D., Bansemer, A., Abel, S. J., Crosier, J., French, J., et al.
1205 (2017). Processing of Ice Cloud In Situ Data Collected by Bulk Water, Scattering, and Imaging
1206 Probes: Fundamentals, Uncertainties, and Efforts toward Consistency. *Meteorological
1207 Monographs*, 58, 11.1-11.33. <https://doi.org/10.1175/amsmonographs-d-16-0007.1>

1208 McFarquhar, Greg M., Bretherton, C., Marchand, R., Protat, A., DeMott, P. J., Alexander, S. P.,
1209 et al. (2021). Observations of clouds, aerosols, precipitation, and surface radiation over the
1210 Southern Ocean: An overview of CAPRICORN, MARCUS, MICRE and SOCRATES. *Bulletin*

1211 of the American Meteorological Society, 102(4), E894–E928. <https://doi.org/10.1175/bams-d-20-0132.1>

1213 Mioche, G., Jourdan, O., Delanoë, J., Gourbeyre, C., Febvre, G., Dupuy, R., et al. (2017).
1214 Vertical distribution of microphysical properties of Arctic springtime low-level mixed-phase
1215 clouds over the Greenland and Norwegian seas. *Atmospheric Chemistry and Physics*, 17(20),
1216 12845–12869. <https://doi.org/10.5194/acp-17-12845-2017>

1217 Mossop, S. C. (1956). Sublimation nuclei. *Proceedings of the Physical Society. Section B*, 69(2),
1218 161–164. <https://doi.org/10.1088/0370-1301/69/2/305>

1219 Murphy, D. M., & Koop, T. (2005). Review of the vapour pressures of ice and supercooled water
1220 for atmospheric applications. *Quarterly Journal of the Royal Meteorological Society*, 131(608),
1221 1539–1565. <https://doi.org/10.1256/qj.04.94>

1222 Naud, C. M., Booth, J. F., & Del Genio, A. D. (2014). Evaluation of ERA-Interim and MERRA
1223 cloudiness in the southern ocean. *Journal of Climate*, 27(5), 2109–2124.
1224 <https://doi.org/10.1175/JCLI-D-13-00432.1>

1225 Paluch, I. R. (1986). Mixing and the cloud droplet size spectrum: generalizations from the
1226 CCOPE data. *Journal of the Atmospheric Sciences*, 43(18), 1984–1993.
1227 [https://doi.org/10.1175/1520-0469\(1986\)043<1984:MATCDS>2.0.CO;2](https://doi.org/10.1175/1520-0469(1986)043<1984:MATCDS>2.0.CO;2)

1228 Paluch, I. R., & Knight, C. A. (1984). Mixing and the evolution of cloud droplet size spectra in a
1229 vigorous continental cumulus. *Journal of the Atmospheric Sciences*, 41(11), 1801–1815.
1230 [https://doi.org/10.1175/1520-0469\(1984\)041<1801:MATEOC>2.0.CO;2](https://doi.org/10.1175/1520-0469(1984)041<1801:MATEOC>2.0.CO;2)

1231 Petty, G. W. (Grant W. (2006). *A first course in atmospheric radiation*. Sundog Pub. Retrieved
1232 from <https://sundogpublishingstore.myshopify.com/products/a-first-course-in-atmospheric->
1233 radiation-g-w-petty

1234 Pruppacher, H. R., & Klett, J. D. (1996). *Microphysics of Clouds and Precipitation*. Springer
1235 Netherlands.

1236 Rahn, D. A., & Garreaud, R. (2010). Marine boundary layer over the subtropical southeast
1237 Pacific during VOCALS-REx-Part 1: Mean structure and diurnal cycle. *Atmospheric Chemistry
1238 and Physics*, 10(10), 4491–4506. <https://doi.org/10.5194/acp-10-4491-2010>

1239 Rauber, R. M., Hu, H., Dominguez, F., Nesbitt, S. W., McFarquhar, G. M., Zaremba, T. J., &
1240 Finlon, J. A. (2020). Structure of an Atmospheric River Over Australia and the Southern Ocean.
1241 Part I: Tropical and Midlatitude Water Vapor Fluxes. *Journal of Geophysical Research: Atmospheres*, 125(18), e2020JD032513. <https://doi.org/10.1029/2020JD032513>

1243 Riedi, J., Marchant, B., Platnick, S., Baum, B. A., Thieuleux, F., Oudard, C., et al. (2010). Cloud
1244 thermodynamic phase inferred from merged POLDER and MODIS data. *Atmospheric Chemistry
1245 and Physics*, 10(23), 11851–11865. <https://doi.org/10.5194/acp-10-11851-2010>

1246 Roberts, G. C., & Nenes, A. (2005). A Continuous-Flow Streamwise Thermal-Gradient CCN
1247 Chamber for Atmospheric Measurements. *Aerosol Science and Technology*, 39(3), 206–221.
1248 <https://doi.org/10.1080/027868290913988>

1249 Sanchez, K. J., Russell, L. M., Modini, R. L., Frossard, A. A., Ahlm, L., Corrigan, C. E., et al.
1250 (2016). Meteorological and aerosol effects on marine cloud microphysical properties. *Journal of*
1251 *Geophysical Research: Atmospheres*, 121(8), 4142–4161. <https://doi.org/10.1002/2015JD024595>

1252 Sanchez, Kevin J., Roberts, G. C., Saliba, G., Russell, L. M., Twohy, C., Reeves, M. J., et al.
1253 (2021). Measurement report: Cloud processes and the transport of biological emissions affect
1254 southern ocean particle and cloud condensation nuclei concentrations. *Atmospheric Chemistry*
1255 and *Physics*, 21(5), 3427–3446. <https://doi.org/10.5194/acp-21-3427-2021>

1256 Savitzky, A., & Golay, M. J. E. (1964). Smoothing and Differentiation of Data by Simplified
1257 Least Squares Procedures. *Analytical Chemistry*, 36(8), 1627–1639.
1258 <https://doi.org/10.1021/ac60214a047>

1259 Schima, J., McFarquhar, G., Romatschke, U., Vivekanandan, J., D'Alessandro, J., Haggerty, J.,
1260 et al. (2022). Characterization of Southern Ocean Boundary Layer Clouds Using Airborne Radar,
1261 Lidar, and In-situ Cloud Data: Results from SOCRATES. *Journal of Geophysical Research: Atmospheres*.

1263 Seidel, D. J., Zhang, Y., Beljaars, A., Golaz, J.-C., Jacobson, A. R., & Medeiros, B. (2012).
1264 Climatology of the planetary boundary layer over the continental United States and Europe.
1265 *Journal of Geophysical Research: Atmospheres*, 117(D17).
1266 <https://doi.org/10.1029/2012JD018143>

1267 Shaw, R. A., Kostinski, A. B., & Larsen, M. L. (2002). Towards quantifying droplet clustering in
1268 clouds. *Quarterly Journal of the Royal Meteorological Society*, 128(582), 1043–1057.
1269 <https://doi.org/10.1256/003590002320373193>

1270 Shaw, Raymond A., Reade, W. C., Collins, L. R., & Verlinde, J. (1998). Preferential
1271 concentration of cloud droplets by turbulence: Effects on the early evolution of cumulus cloud
1272 droplet spectra. *Journal of the Atmospheric Sciences*, 55(11), 1965–1976.
1273 [https://doi.org/10.1175/1520-0469\(1998\)055<1965:PCOCDB>2.0.CO;2](https://doi.org/10.1175/1520-0469(1998)055<1965:PCOCDB>2.0.CO;2)

1274 Small, J. D., & Chuang, P. Y. (2008). New observations of precipitation initiation in warm
1275 cumulus clouds. *Journal of the Atmospheric Sciences*, 65(9), 2972–2982.
1276 <https://doi.org/10.1175/2008JAS2600.1>

1277 Solomon, A., Shupe, M. D., Persson, P. O. G., & Morrison, H. (2011). Moisture and dynamical
1278 interactions maintaining decoupled Arctic mixed-phase stratocumulus in the presence of a
1279 humidity inversion. *Atmospheric Chemistry and Physics*, 11(19), 10127–10148.
1280 <https://doi.org/10.5194/acp-11-10127-2011>

1281 Stith, J. L., Ramanathan, V., Cooper, W. A., Roberts, G. C., DeMott, P. J., Carmichael, G., et al.
1282 (2009). An overview of aircraft observations from the Pacific Dust Experiment campaign.
1283 *Journal of Geophysical Research*, 114(D5), D05207. <https://doi.org/10.1029/2008JD010924>

1284 Trenberth, K. E., & Fasullo, J. T. (2010). Simulation of Present-Day and Twenty-First-Century
1285 Energy Budgets of the Southern Oceans. *Journal of Climate*, 23(2), 440–454.
1286 <https://doi.org/10.1175/2009JCLI3152.1>

1287 Tsay, S. C., & Jayaweera, K. (1984). Physical characteristics of Arctic stratus clouds. *Journal of*
1288 *Climate & Applied Meteorology*, 23(4), 584–596. [https://doi.org/10.1175/1520-0450\(1984\)023<0584:PCOASC>2.0.CO;2](https://doi.org/10.1175/1520-0450(1984)023<0584:PCOASC>2.0.CO;2)

1290 Twohy, C. H., McMeeking, G. R., DeMott, P. J., McCluskey, C. S., Hill, T. C. J., Burrows, S.
1291 M., et al. (2016). Abundance of fluorescent biological aerosol particles at temperatures
1292 conducive to the formation of mixed-phase and cirrus clouds. *Atmospheric Chemistry and*
1293 *Physics*, 16(13), 8205–8225. <https://doi.org/10.5194/acp-16-8205-2016>

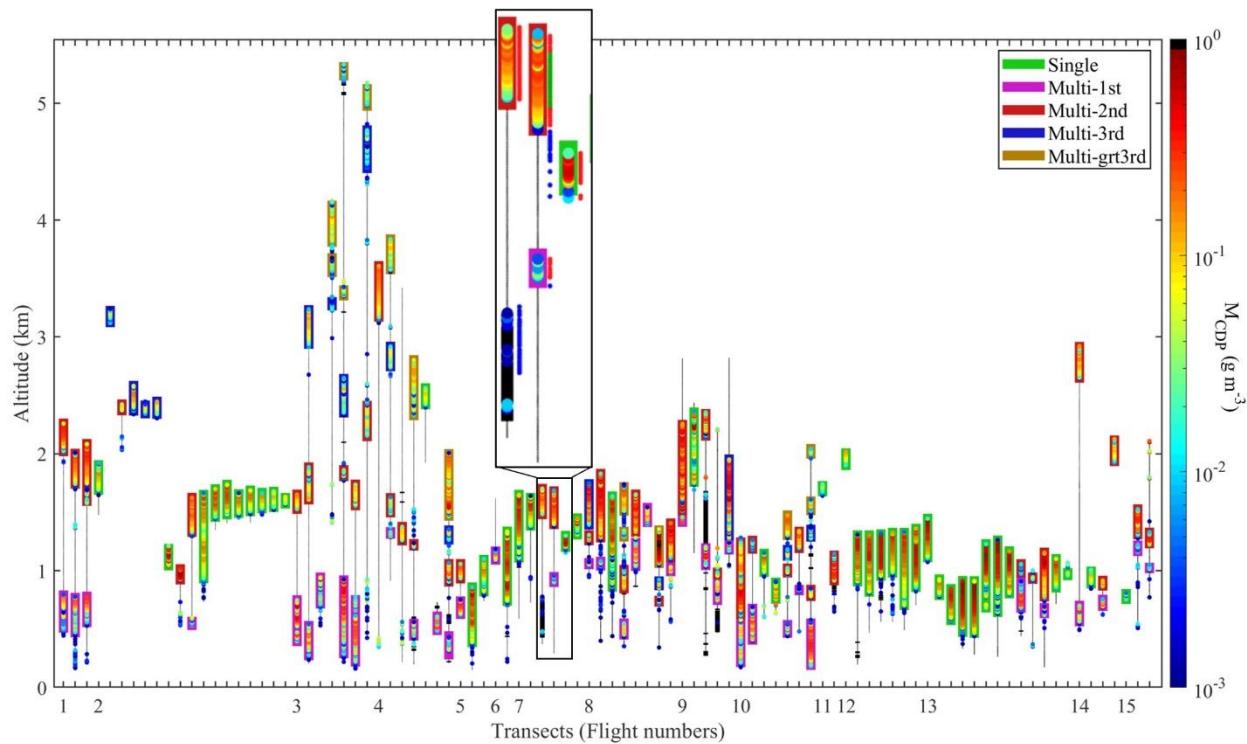
1294 UCAR/NCAR—Earth Observing Laboratory. (2018). NSF/NCAR GV HIAPER raw 2D-S
1295 imagery. Version 1.0 [Dataset]. *UCAR/NCAREarth*. <https://doi.org/https://doi.org/10.26023/8HMG-WQP3-XA0X>

1297 UCAR/NCAR—Earth Observing Laboratory. (2022). SOCRATES: Low rate (LRT - 1 sps)
1298 navigation, state parameter, and microphysics flight-level data. Version 1.4 [Dataset].
1299 *UCAR/NCAREarth*. <https://doi.org/10.5065/D6M32TM9>

1300 Verlinde, J., Rambukkange, M. P., Clothiaux, E. E., McFarquhar, G. M., & Eloranta, E. W.
1301 (2013). Arctic multilayered, mixed-phase cloud processes revealed in millimeter-wave cloud
1302 radar Doppler spectra. *Journal of Geophysical Research: Atmospheres*, 118(23), 13,199-13,213.
1303 <https://doi.org/10.1002/2013JD020183>

1304 Vivekanandan, J., Ellis, S., Tsai, P., Loew, E., Lee, W. C., Emmett, J., et al. (2015). A wing pod-
1305 based millimeter wavelength airborne cloud radar A wing pod-based millimeter wavelength
1306 airborne cloud radar A wing pod-based millimeter wavelength airborne cloud radar. *Geosci.*
1307 *Instrum. Method. Data Syst. Discuss*, 5, 117–159. <https://doi.org/10.5194/gid-5-117-2015>

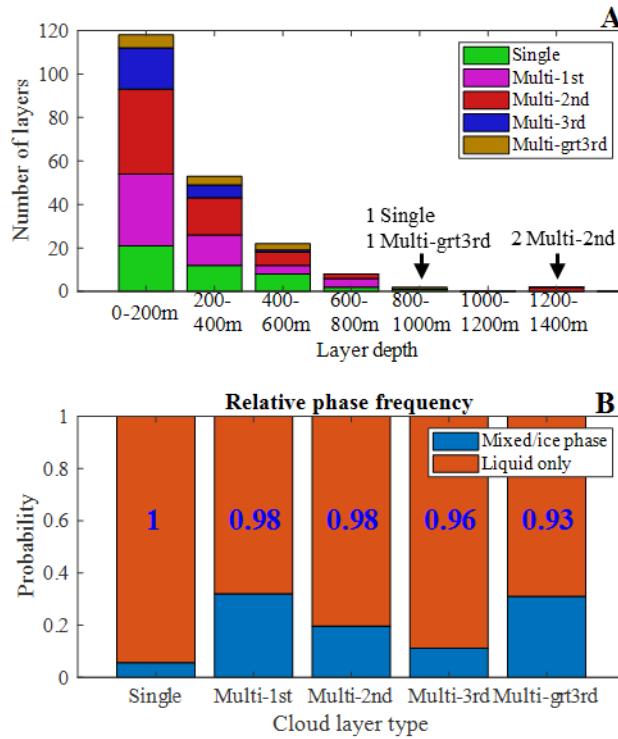
1308 Vogelezang, D. H. P., & Holtslag, A. A. M. (1996). Evaluation and model impacts of alternative
1309 boundary-layer height formulations. *Boundary-Layer Meteorology*, 81(3), 245–269.
1310 <https://doi.org/10.1007/BF02430331>


1311 Wang, Y., McFarquhar, G. M., Rauber, R. M., Zhao, C., Wu, W., Finlon, J. A., et al. (2020).
1312 Microphysical Properties of Generating Cells Over the Southern Ocean: Results From
1313 SOCRATES. *Journal of Geophysical Research: Atmospheres*, 125(13).
1314 <https://doi.org/10.1029/2019JD032237>

1315 Wang, Z., Mora Ramirez, M., Dadashazar, H., MacDonald, A. B., Crosbie, E., Bates, K. H., et
1316 al. (2016). Contrasting cloud composition between coupled and decoupled marine boundary
1317 layer clouds. *Journal of Geophysical Research: Atmospheres*, 121(19), 11,679-11,691.
1318 <https://doi.org/10.1002/2016JD025695>

1319 Wu, W., & McFarquhar, G. M. (2019). NSF/NCAR GV Hiaper fast 2DS particle size
1320 distribution (psd) product data. Version 1.1. UCAR/NCAR-Earth Observing Laboratory
1321 [dataset]. <https://doi.org/10.26023/8hmg-wqp3-xa0x>

1322 Yang, C. A., Diao, M., Gettelman, A., Zhang, K., Sun, J., McFarquhar, G., & Wu, W. (2021). Ice
 1323 and Supercooled Liquid Water Distributions Over the Southern Ocean Based on In Situ
 1324 Observations and Climate Model Simulations. *Journal of Geophysical Research: Atmospheres*,
 1325 126(24), e2021JD036045. <https://doi.org/10.1029/2021JD036045>


1326 Zondlo, M. A., Paige, M. E., Massick, S. M., & Silver, J. A. (2010). Vertical cavity laser
 1327 hygrometer for the National Science Foundation Gulfstream-V aircraft. *Journal of Geophysical*
 1328 *Research*, 115(D20), D20309. <https://doi.org/10.1029/2010JD014445>

1329

1330 Figure 1: Vertical profiles of M_{CDP} from select sawtooths that meet criteria described in Section
 1331 2. Profiles are only shown for transects where the highest and lowest altitude samples of each
 1332 transect are considered clear-sky. Colored circles show $M_{CDP} > 0.001 \text{ g m}^{-3}$. Solid
 1333 black lines show the vertical extent of each transect. Black shaded regions represent samples
 1334 where $M_{2DS} > 0.01 \text{ g m}^{-3}$ and $M_{CDP} < 0.001 \text{ g m}^{-3}$. Red, green and blue markers to the right of the
 1335 transects in the magnified panel indicate liquid, mixed and ice phase samples, respectively. Phase

1336 markers are only shown for temperatures less than 0°C. Transects are from research flights
 1337 which incrementally follow the flight numbers in the x-axis (e.g., all transects greater than or
 1338 equal to 2 and less than 3 on the x-axis are from RF02). Note that cloud layers are slightly
 1339 enlarged in order to encapsulate enlarged M_{CDP} markers.

1340 Figure 2: A) A bar chart showing the number of cloud layers with given depth, sorted according
 1341 to different cloud layer types. B) Relative cloud phase frequency shown for different cloud layer
 1342 types. Results in B) are only shown at temperatures less than 0°C. The blue numbers are relative
 1343 frequencies of the mixed phase to all ice-containing samples (mixed and ice phase). Results are
 1344 only shown for sawtooths.

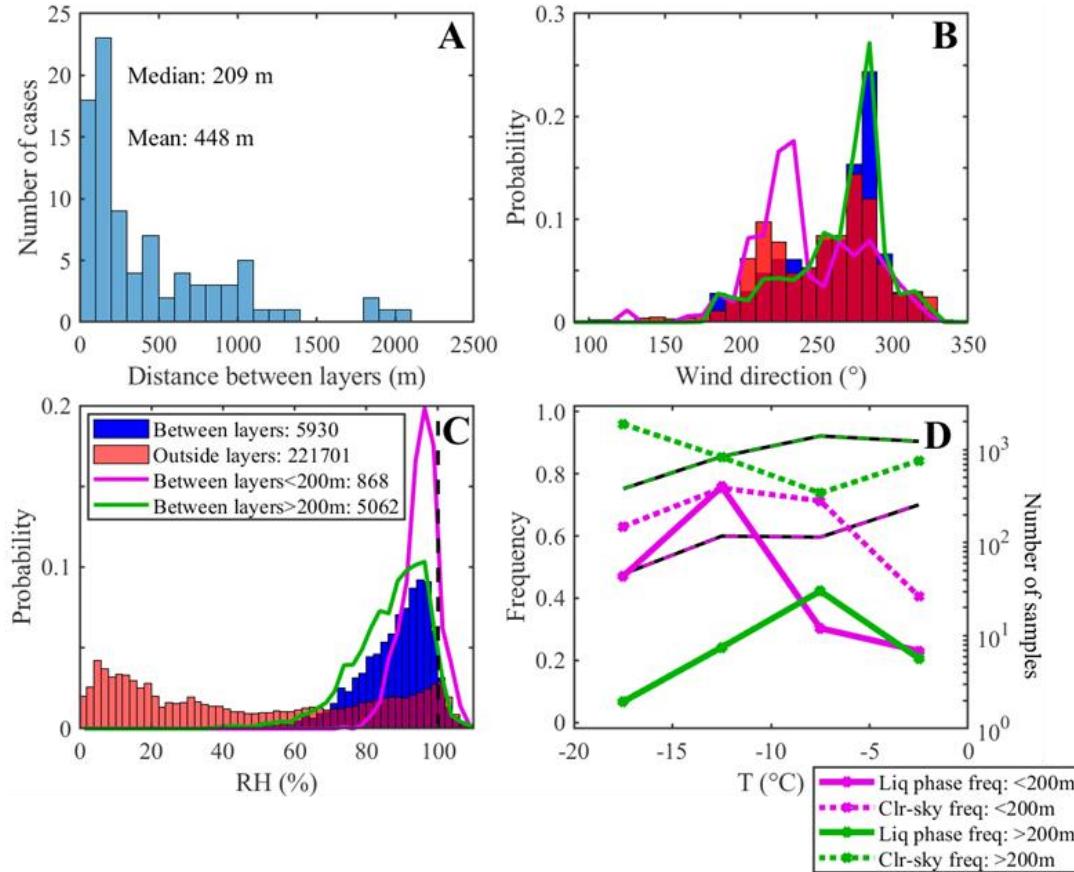
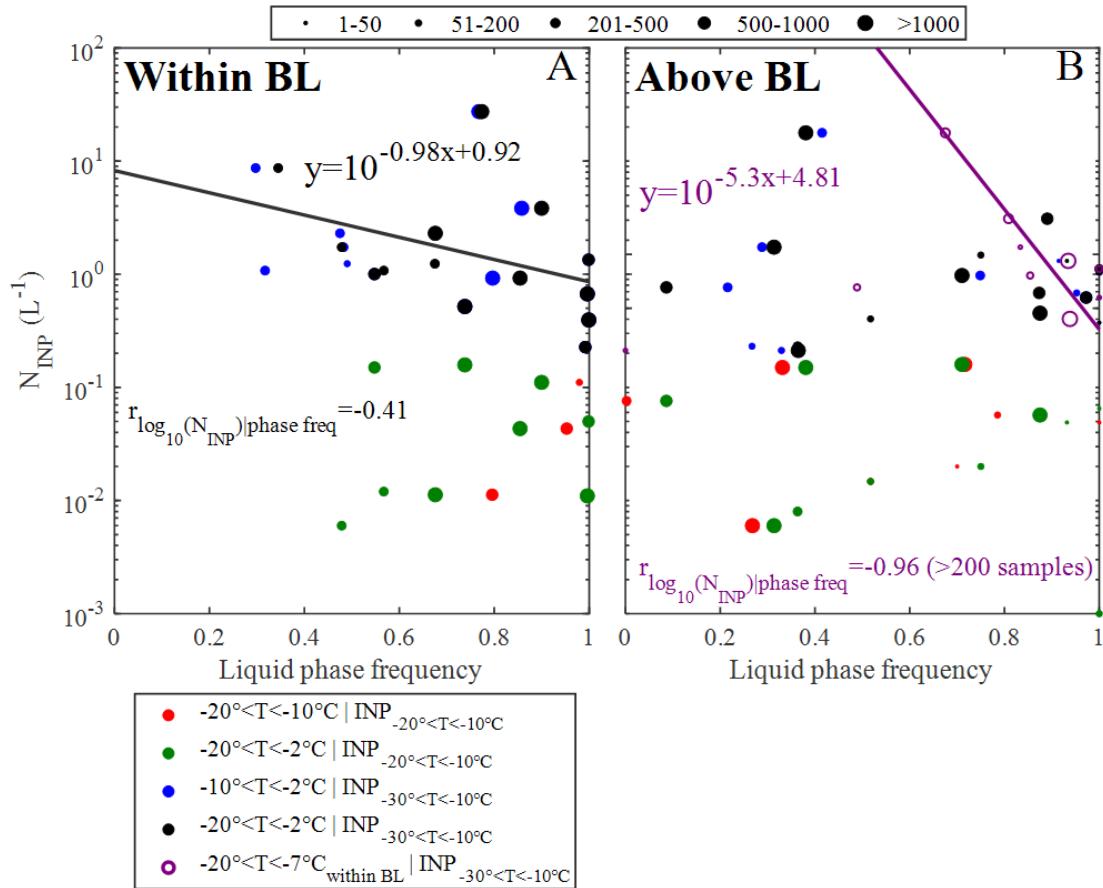
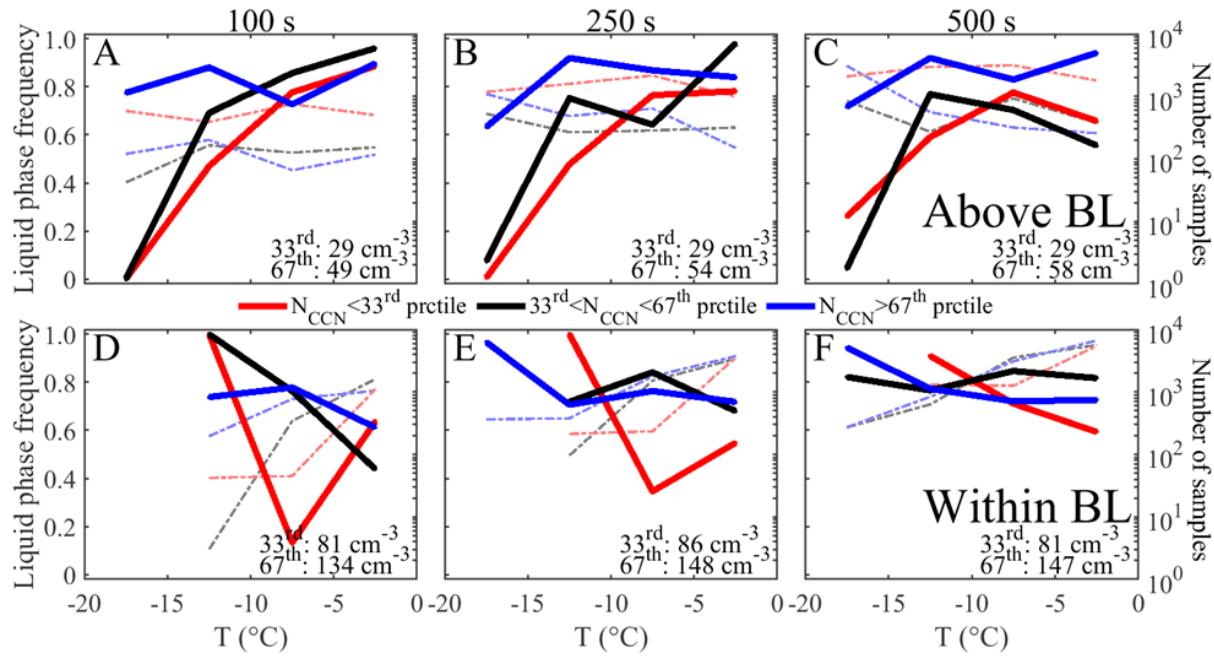
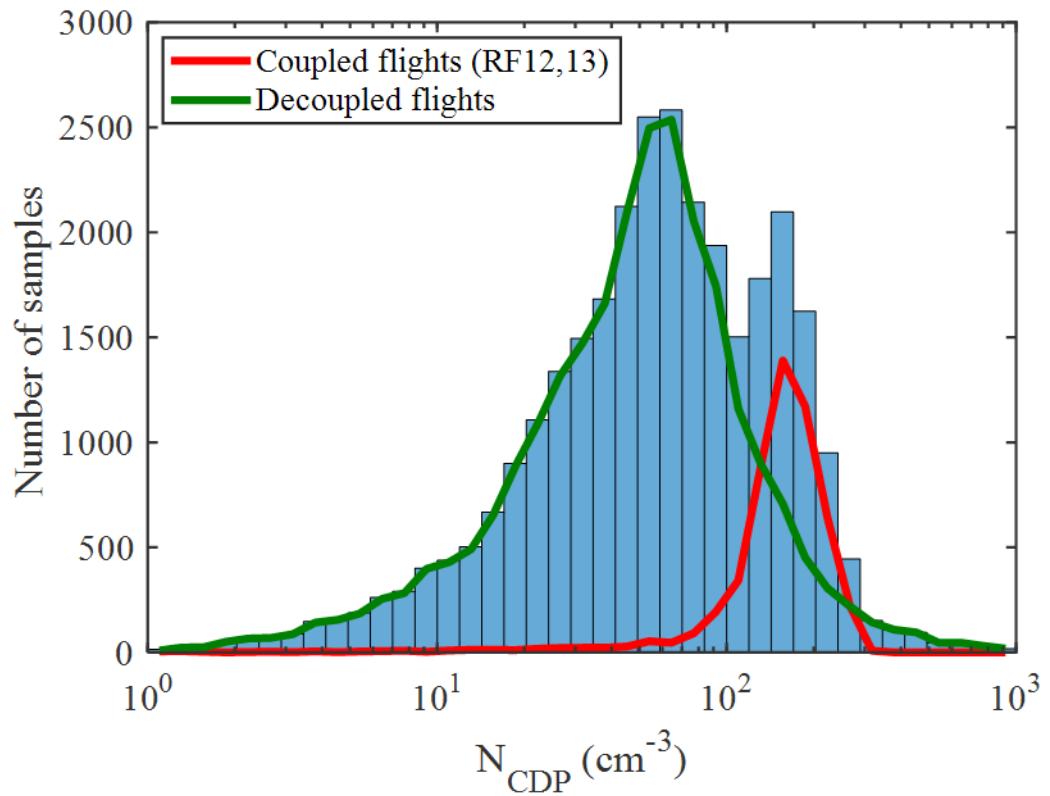



Figure 3: A) Histogram of depth lengths in between cloud layers. The mean and median depth lengths are shown in the panel. B) Normalized frequency distributions of wind direction for different conditions. The legend in C applies to subsets here, and the sample size of the subsets is provided in the legend. The purple (green) line represents the distribution of samples within cloud layers where the depth is less than (more than) 200 m. The outside layer includes all samples from the northbound portion of the research flights, excluding samples between and within cloud layers, as well as samples lower than the lowest altitude of samples within layers (< 450 m). C) Normalized frequency distributions of relative humidity. Subsets of distributions are similar to those in B. D) Liquid phase (solid line) and clear-sky (dashed line) relative frequencies


of samples in between layers binned in 5°C temperature intervals. Results are similarly restricted to depths less than and greater than 200 m as in B&C. The black and purple (green) dashed line shows the number of samples for depths less (greater) than 200 m (right ordinate).

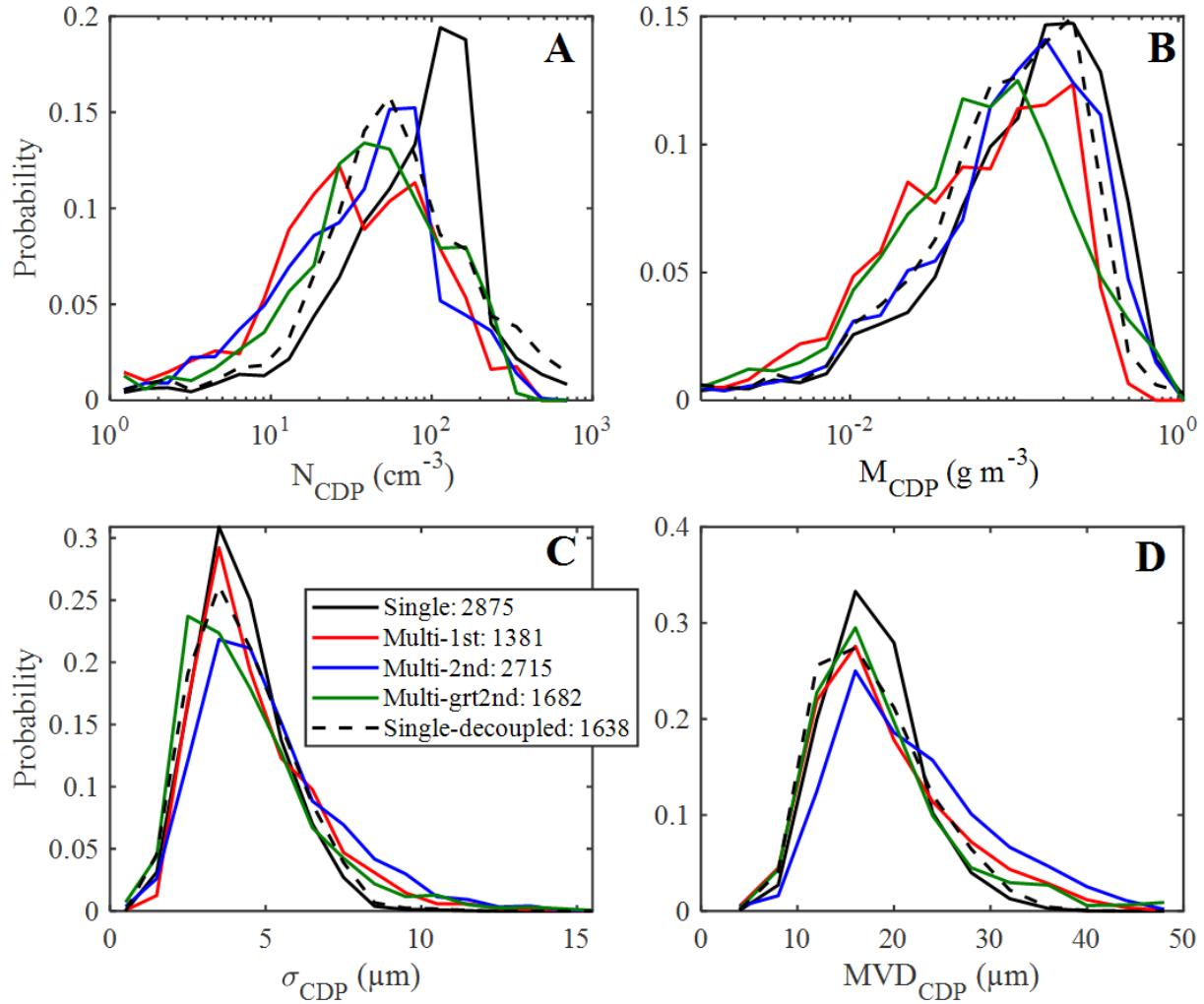
1345

1346 Figure 4: Scatterplots of N_{INP} related to liquid phase frequency (i.e., the frequency of liquid
 1347 phase samples relative to all in-cloud samples) for samples within the boundary layer (A) and
 1348 above the boundary layer (B). Samples are taken within the interpolated INP sample areas as
 1349 described in the text. Different colored markers show liquid phase frequencies taken within
 1350 specified temperature ranges compared with N_{INP} having different ranges of activation
 1351 temperatures. The purple circles compare phase frequencies within the boundary layer to N_{INP}
 1352 above the boundary layer using the above boundary layer interpolated area. Best fit lines and

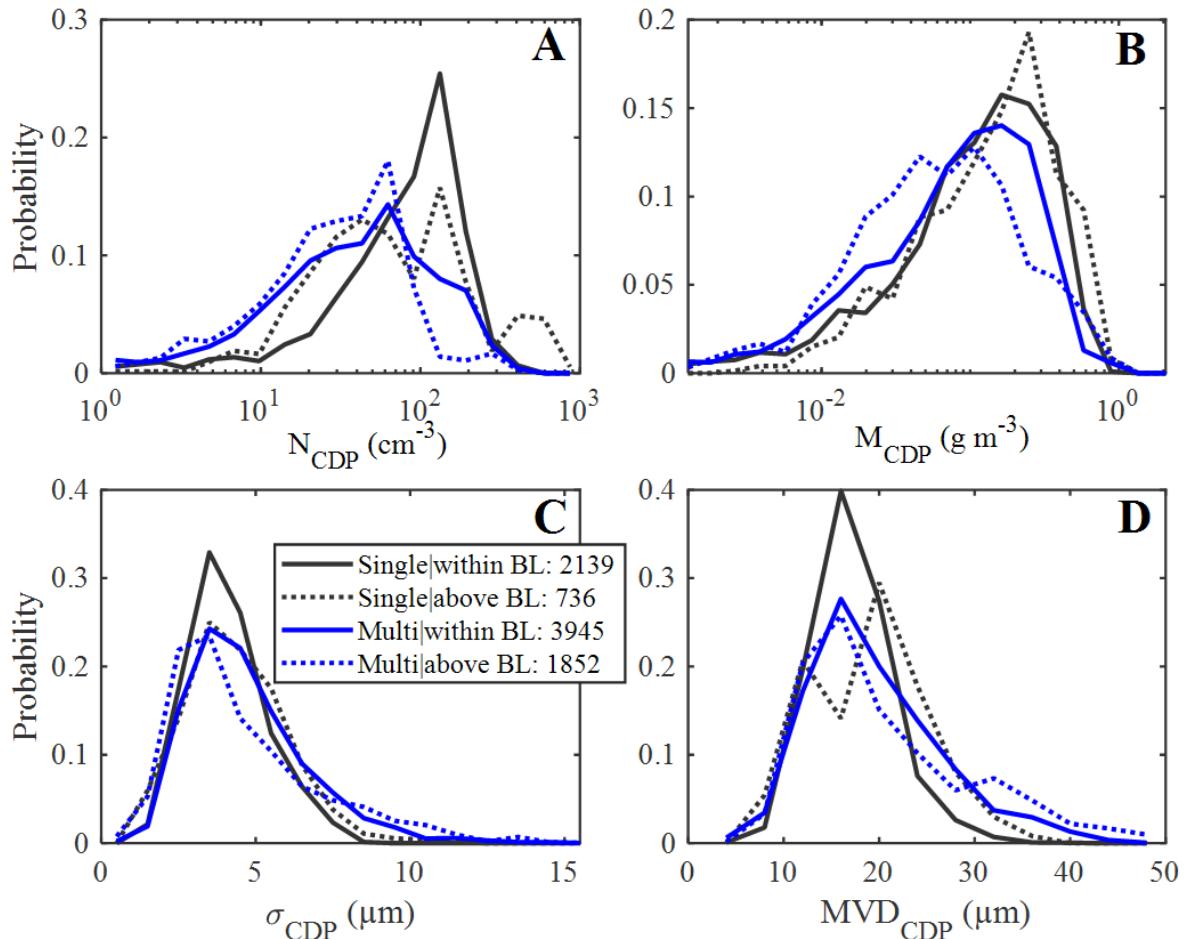

1353 correlations correspond to the respective phase frequency and INP activation temperature ranges.
 1354 The size of the data points represents the number of in-cloud samples associated with a given
 1355 data point (i.e., the number of in-cloud samples within a specified temperature range located
 1356 within a given interpolated sample area).

1357
 1358 Figure 5: Liquid phase frequencies within 5°C temperature bins above (A–C) and within (D–F)
 1359 the boundary layer for different N_{CCN} terciles. A “background CCN concentration” (N_{CCN}) is
 1360 determined for each in-cloud sample by averaging the CCN concentration measurements over
 1361 the clear-sky samples within a window of $\pm n$ seconds from each in-cloud sample. Results are
 1362 shown for different moving window sizes, which are shown overlying each respective column.
 1363 Temperatures are from the location of the respective in-cloud samples. Frequencies are
 1364 determined for different ranges of average N_{CCN} (shown by the colored lines). Average N_{CCN}
 1365 terciles are calculated within the respective temperature bins, whereas terciles calculated over the

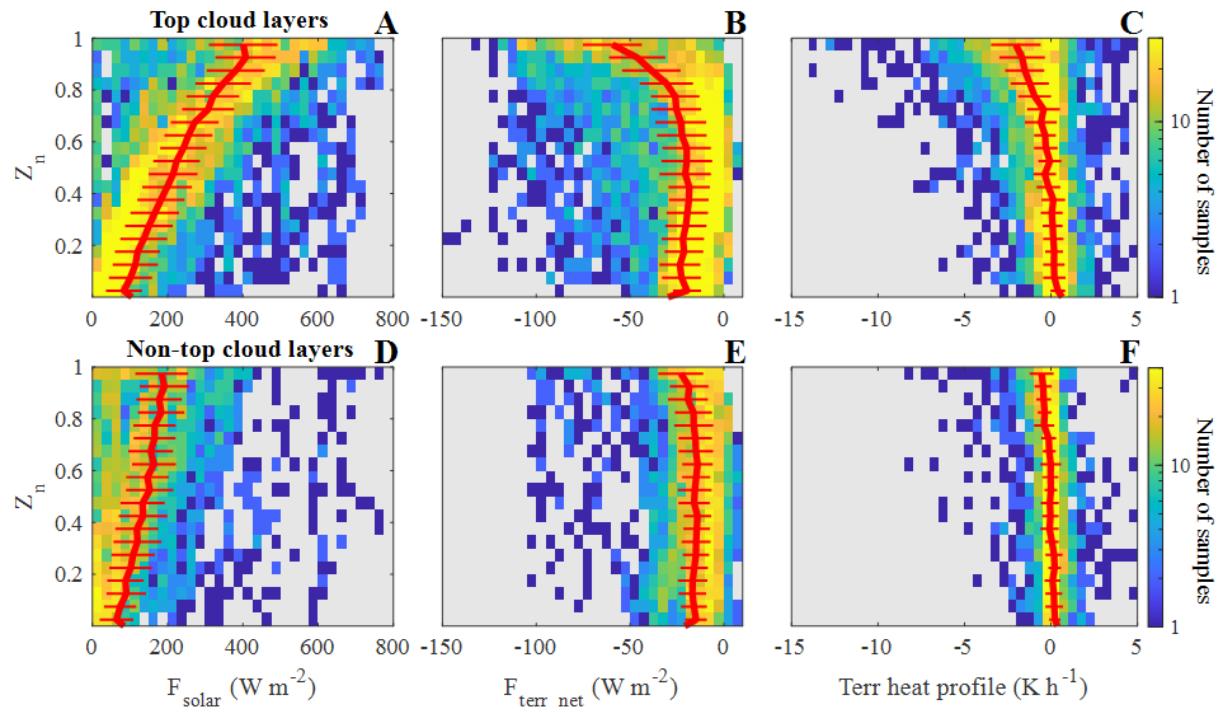
1366 entire temperature range are included in the respective panels. The number of in-cloud samples
1367 are denoted by the dotted-dashed lines.


1368

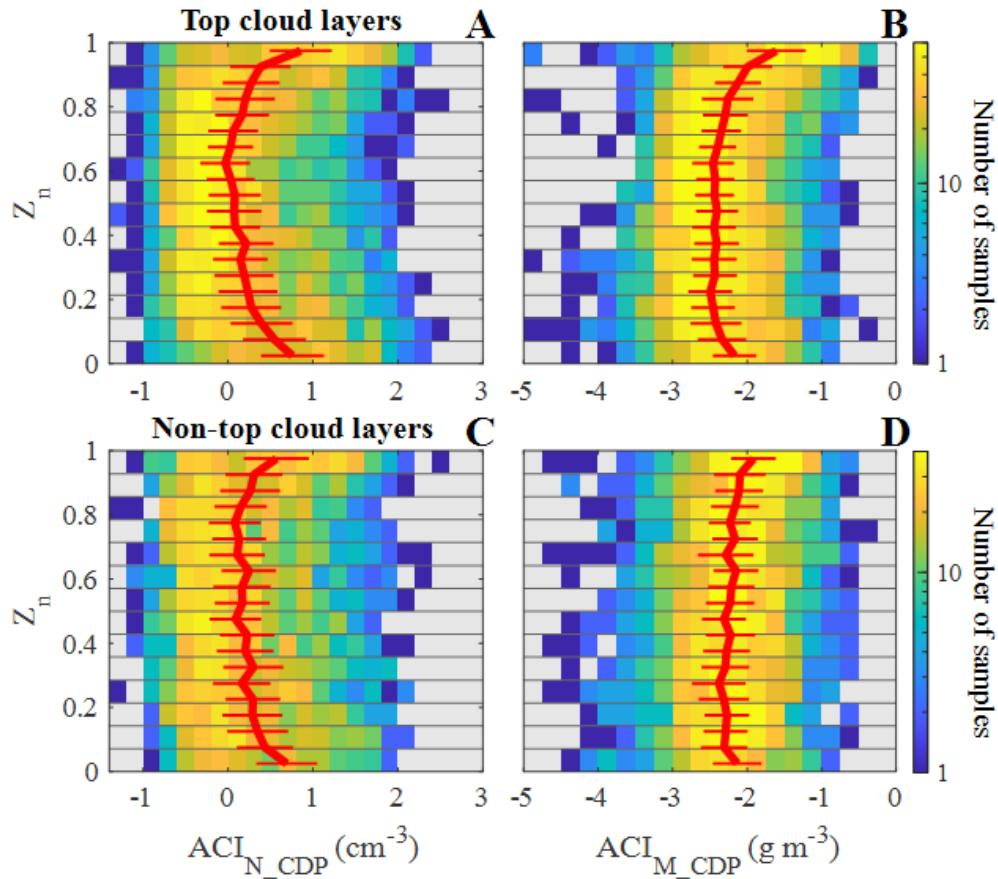
1369


1370

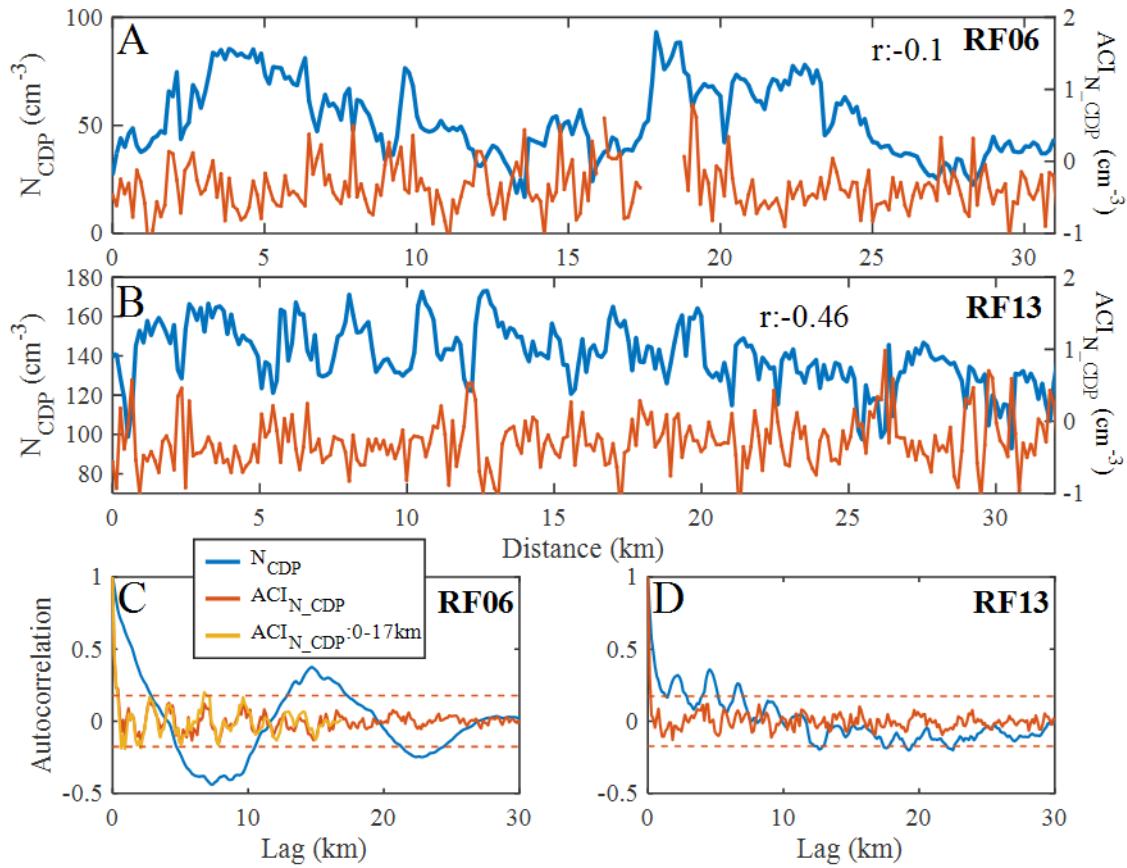
1371 Figure 6: Frequency distribution of N_{CDP} for in-cloud conditions for all flights (blue bars). Green
1372 and red lines show distributions of N_{CDP} for decoupled and coupled environments, respectively.
1373 Results here include level periods and sawtooths.


1374

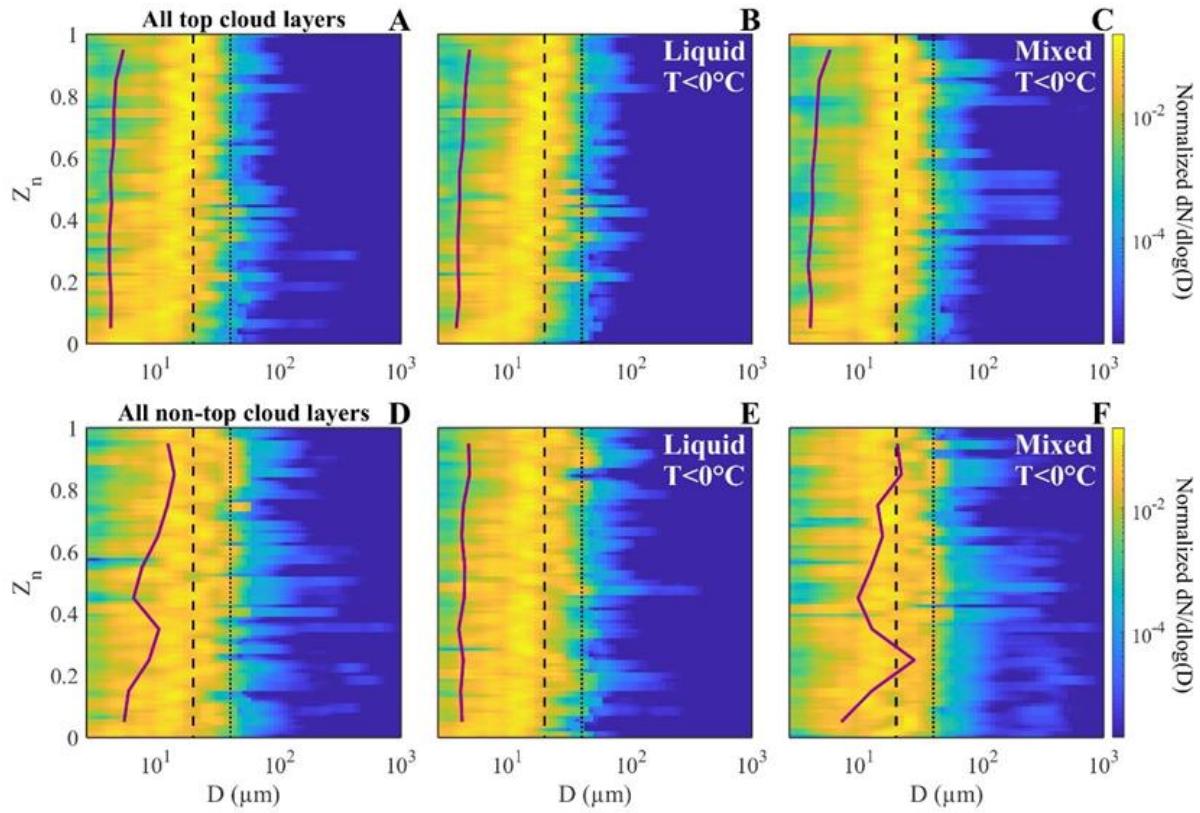
1375 Figure 7: Normalized probability distributions of N_{CDP} (A), M_{CDP} (B), σ_{CDP} (C) and MVD_{CDP} (D)
 1376 for different cloud layer types. The black solid and dashed lines show all single-layer samples
 1377 and single-layer samples from decoupled environments, respectively. The number of samples for
 1378 each layer type is shown in the legend. Results are only shown for sawtooths.


1379

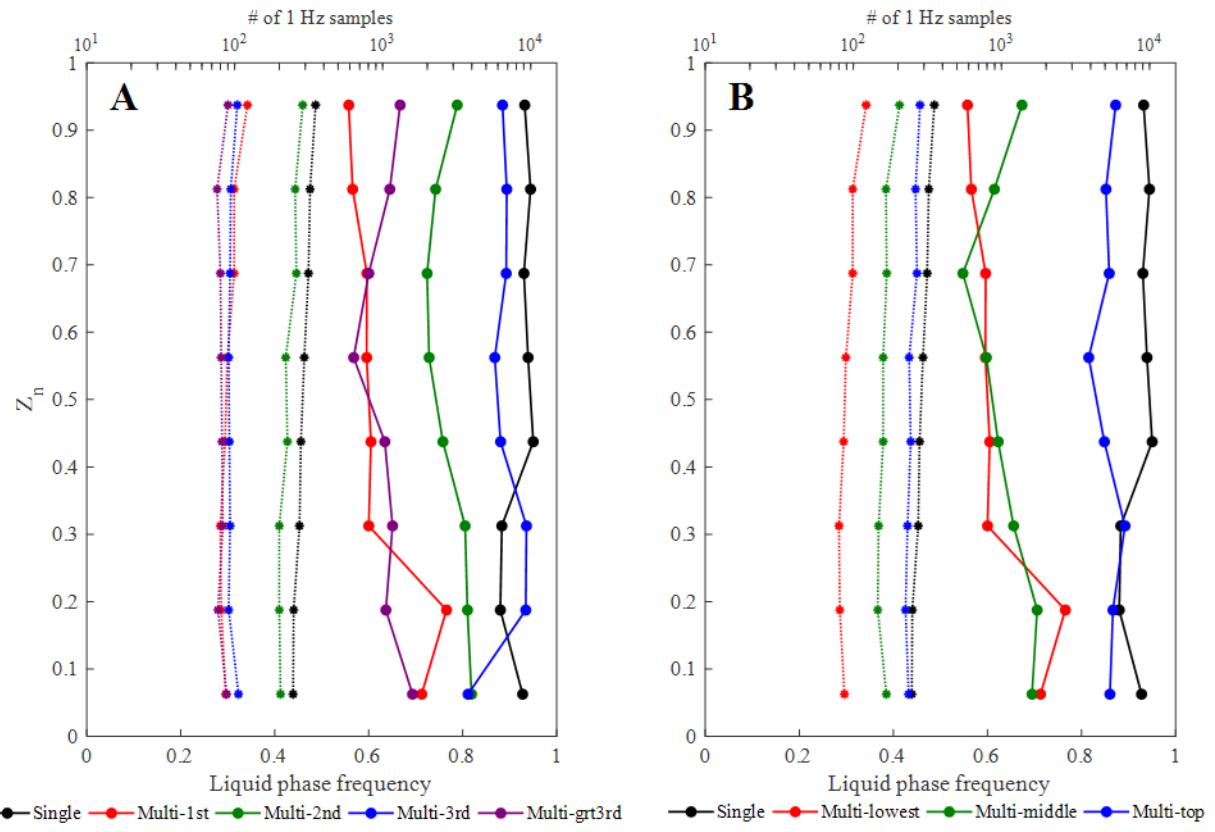
1380 Figure 8: Similar to Figure 7, except single- and multi-layer cloud properties are separately
 1381 evaluated for samples above the boundary layer and within the boundary layer.


1382

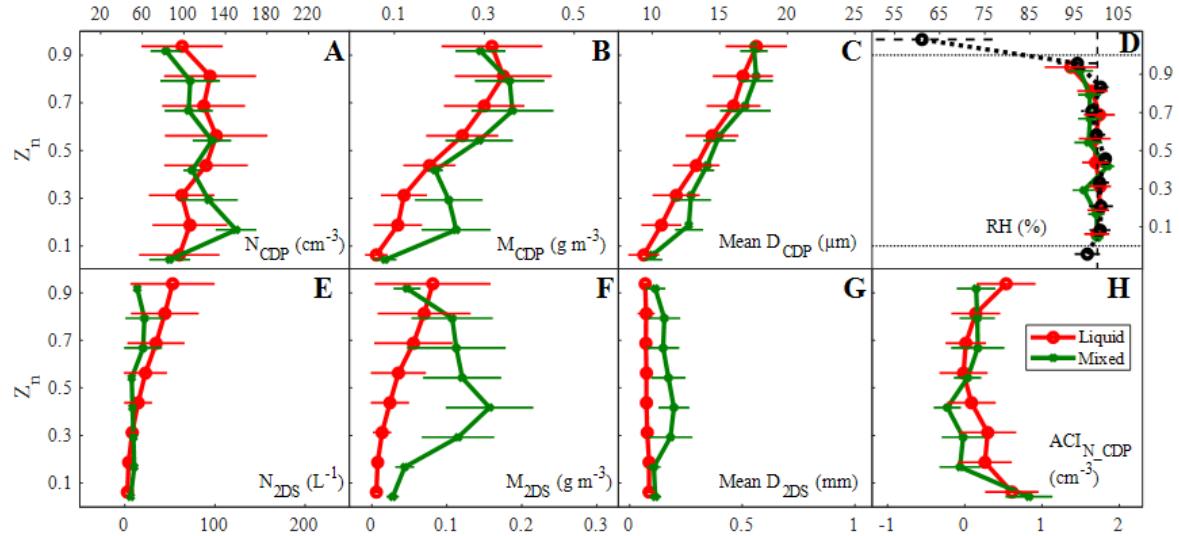
1383 Figure 9: Joint histograms showing the frequency of downwelling solar irradiance (F_{solar} ; A,D),
 1384 net terrestrial irradiance ($F_{\text{terr net}}$; B,E) and associated heating profiles from terrestrial irradiance
 1385 clouds (top cloud layers; A, B, C) and for underlying cloud layers (non-top cloud layers; D, E,
 1386 F). Vertical red lines show average irradiance and heating rates and horizontal lines denote
 1387 standard deviations.


1389

1390 Figure 10: Joint histograms shown with ACI_{N_CDP} (A,C) and ACI_{M_CDP} (B,D). Unlike Figure 9,
 1391 histograms are normalized over respective z_n intervals. The red vertical lines show average
 1392 ACI_{N_CDP} and ACI_{M_CDP} and the horizontal lines denote standard deviations.

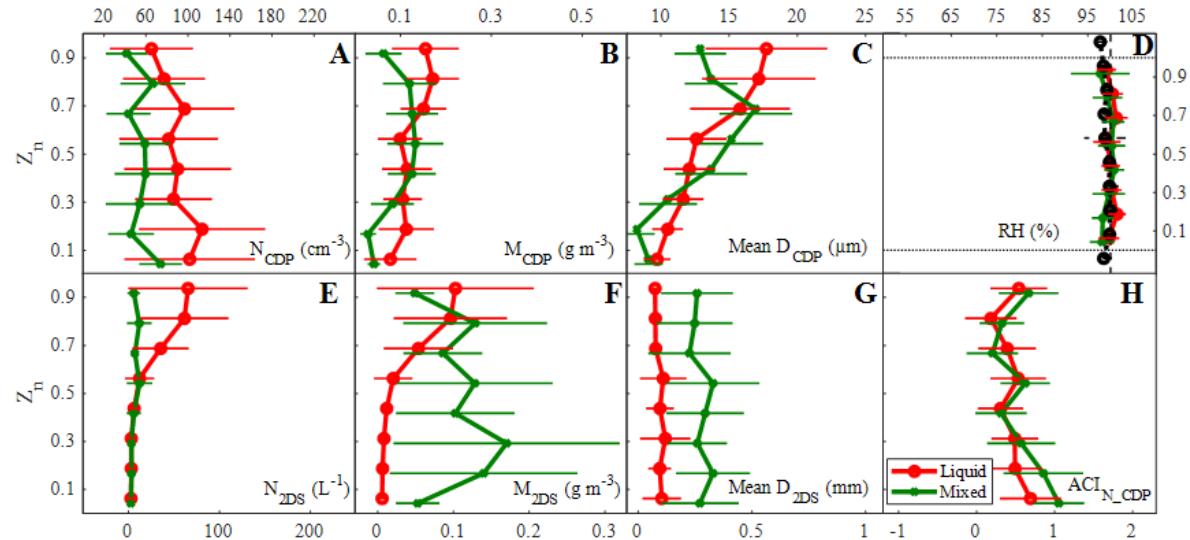

1393

1394 Figure 11: Two time series of level legs taken at cloud top showing N_{CDP} (blue) and $ACI_{N_{CDP}}$
 1395 (red) from RF06 (01:47:00 to 01:51:55 UTC; A) and RF13 (02:19:00 to 02:24:00 UTC; B).
 1396 Correlations are included in the respective panels. Autocorrelations of N_{CDP} and $ACI_{N_{CDP}}$ are
 1397 shown for RF06 (C) and RF13 (D). Bands for rejection testing each autocorrelation=0 under the
 1398 assumption of white noise are shown as dashed lines, which are provided at the 95th percentiles.
 1399 Autocorrelations are determined for flight data interpolated onto a 1D grid with a constant
 1400 incrementally increasing distance (lag) of 130 m, based on the average flight speed for both cases
 1401 ($\sim 130 \text{ m s}^{-1}$). The autocorrelation of $ACI_{N_{CDP}}$ from 0–17 km is also provided for RF06, due to
 1402 missing data from ~ 17.5 –19 km (missing data is also observed at ~ 16 km, but the interpolation
 1403 method captures the fine scale variability).

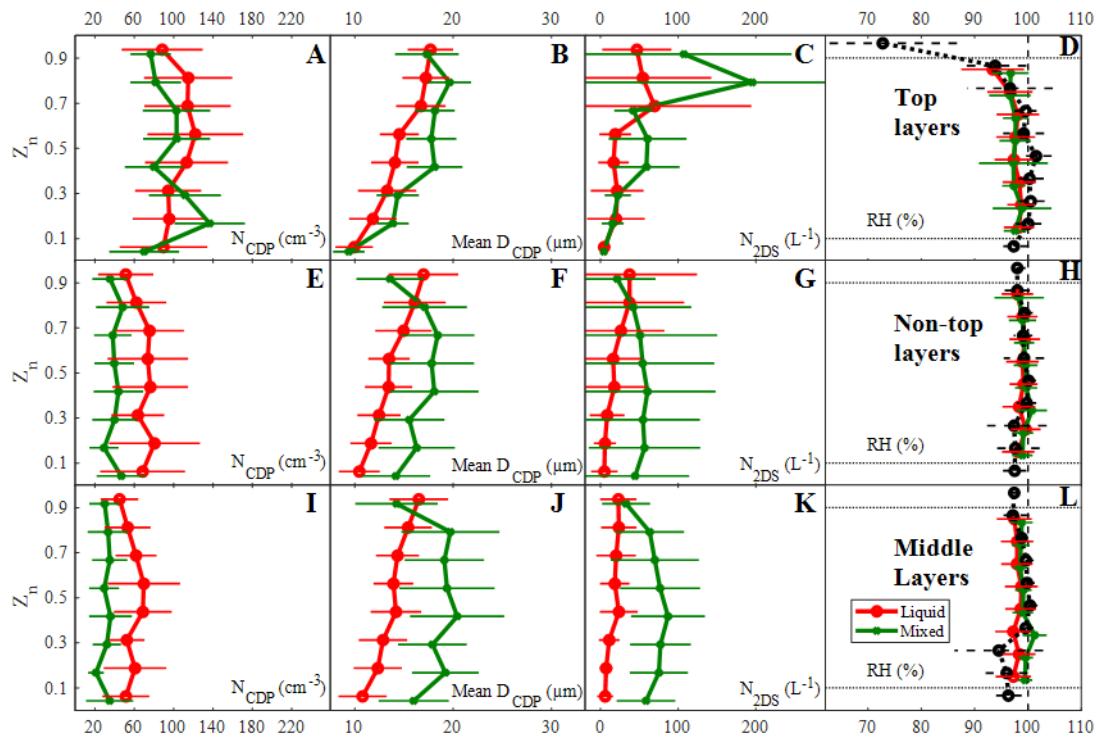

1404

1405 Figure 12: Normalized size distribution functions combining CDP and 2DS observations are
 1406 averaged over z_n , using an image smoothing method outlined in the text. The top (bottom) row
 1407 shows results for top (non-top) cloud layers. Results are shown for all in-cloud samples in the
 1408 left column (A,D), liquid phase samples at temperatures less than 0°C in the middle column
 1409 (B,E) and for mixed phase samples in the right column (C,F). Purple lines show the average
 1410 standard deviation of particle size over the entire size distributions, applied prior to the
 1411 convolution. The dashed and dotted lines correspond with $D=20 \mu\text{m}$ and $D=40 \mu\text{m}$, respectively.

1412

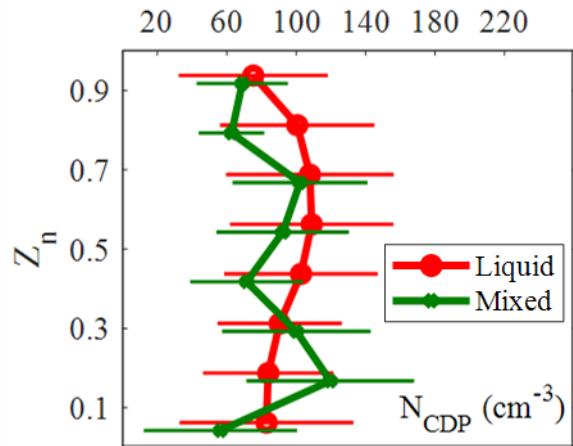

1413 Figure 13: Cloud phase frequency as a function of Z_n (solid lines) colored according to the cloud
 1414 layer for single-layer and multi-layer clouds, where ordering of multi-layer height is
 1415 characterized by incremental order from the lowest layer (A) and by whether layers are the
 1416 lowest, highest, or in-between layer (B). Dotted lines show the number of samples for respective
 1417 cloud layers following the top abscissa. Results are restricted to temperatures less than 0°C.

1418

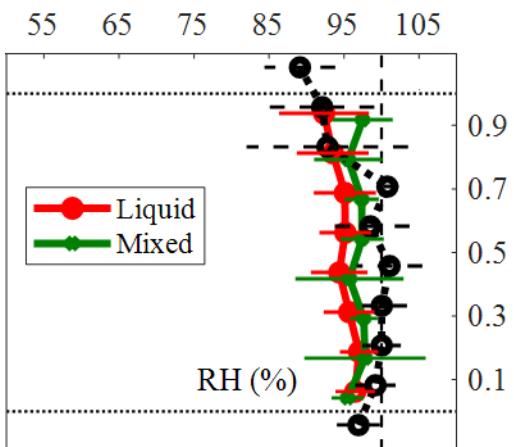

1419 Figure 14: Averaged N_{CDP} (A), M_{CDP} (B), Mean D_{CDP} (C), RH (D), N_{2DS} (E), M_{2DS} (F), Mean
 1420 D_{2DS} (G) and $ACI_{N_{CDP}}$ (H) as function of z_n for single-layer cloud regimes. Horizontal lines are
 1421 standard deviations. Results are shown for liquid phase samples with the red lines and mixed
 1422 phase samples with the green lines. Properties are averaged within z_n bin sizes of 0.125. All
 1423 panels show results for z_n between 0 and 1 except for RH (D), which includes additional bins
 1424 above and below the cloud (dashed lines). Black circles in RH denote clear-sky samples. Note
 1425 error bars for the liquid phase in G are smaller than most of the data points.

1426

1427


1428 Figure 15: Similar to Figure 14 except for the lowest layer of multi-layer clouds.

1429


1430 Figure 16: Similar to Figure 14&15 except results are shown for the top cloud layers (A–D),
 1431 non-top cloud layers (E–H) and for all cloud layers enclosed within the lowest and highest cloud
 1432 layers of multi-layer clouds (I–L). Unlike Figure 14&15, results here are only shown for N_{CDP}
 1433 (A,E,I), $\text{Mean } D_{CDP}$ (B,F,J), N_{2DS} (C,G,K) and RH (D,H,L).

1434 Supplementary material:

1435

1436 Figure A: Vertical profile of average N_{CDP} similar to Figure 14–16, except shown for the highest
1437 cloud layer of multi-layer clouds.

1438

1439 Figure B: Vertical profile of average RH similar to Figure 14–16, except shown for the highest
1440 cloud layer of multi-layer clouds.