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Abstract. Cirrus cloud formation and evolution are subject to the influences of thermodynamic and dynamic conditions and 10 

aerosol indirect effects (AIEs). This study developed near global-scale in-situ aircraft observational datasets based on 12 field 

campaigns that spanned from the polar regions to the tropics, from 2008 to 2016. Cirrus cloud microphysical properties were 

investigated at temperatures ≤ -40 ºC, including ice water content (IWC), ice crystal number concentration (Ni), and number-

weighted mean diameter (Di). Positive correlations between the fluctuations of ice microphysical properties and the 

fluctuations of aerosol number concentrations for larger (> 500 nm) and smaller (> 100 nm) aerosols (i.e., Na500 and Na100, 15 

respectively) were found, with stronger AIE from larger aerosols than smaller ones. Machine learning (ML) models showed 

that using relative humidity with respect to ice (RHi) as a predictor significantly increases the accuracy of predicting cirrus 

occurrences compared with temperature, vertical velocity (w), and aerosol number concentrations. The ML predictions of IWC 

fluctuations showed higher accuracies when larger aerosols were used as an predictor compared with smaller aerosols, 

indicating the stronger AIE from larger aerosols than smaller ones, even though their AIEs are more similar when predicting 20 

the occurrences of cirrus. It is also important to capture the spatial variabilities of large aerosols at smaller scales as well as 

those of smaller aerosols at coarser scales to accurately simulate IWC in cirrus. These results can be used to improve 

understanding of aerosol-cloud interactions and evaluate model parameterizations of cirrus cloud properties and processes.  

1 Introduction 

Cirrus clouds are the one of the most prominent cloud types with a wide spatial coverage over the Earth’s surface by 20% –25 

40% (Sassen et al., 2009; Mace and Wrenn, 2013). They are located in the upper troposphere around 8 – 17 km and are 

therefore composed entirely of ice crystals (Lynch et al., 2002). This altitude range also shows large sensitivities of the 

atmospheric radiative forcing to the amount of water vapor and ice crystals (e.g., Solomon et al., 2010; Tan et al., 2016). They 

are the type of clouds that impose particular challenges for both in-situ and remote sensing observations, due to their thin, 

patchy nature, their vertical locations at higher altitudes, and the large spatial heterogeneities of their microphysical properties. 30 
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Representing various properties of cirrus clouds in global climate models (GCMs) is also critical for accurate estimation of 

global radiation budget and future climate prediction. The macrophysical properties (e.g., spatial extent, vertical thickness of 

cloud layers) and microphysical properties (e.g., mass and number concentrations of ice crystals) of cirrus clouds both have 

the potential to alter the radiative budget (Liou, 1992) and cause a significant climate feedback (Zhou et al., 2014). 

Determining whether ice nucleation occurs is a critical step for accurately representing the radiative effect of an atmospheric 35 

column. Changing clear-sky ice supersaturation into a cirrus cloud given the same amount of total water content can produce 

an average of 2.49 W m-2 radiative effects at the top of the atmosphere, with increased net radiation at in-cloud conditions by 

a range of 0.56 to 7.19 W m-2 (Tan et al., 2016). Two mechanisms contribute to ice crystal formation at lower temperatures 

(e.g., temperatures ≤ -40 °C), that is, homogeneous freezing and heterogeneous freezing. The former mechanism spontaneously 

freezes dilute aerosol solutions into ice crystals without the assistance of ice nucleating particles (INPs) depending upon the 40 

temperature and water activity (Schneider et al., 2021), while the latter mechanism relies on INPs to initiate ice nucleation via 

freezing pathways such as immersion freezing. It is still contested whether deposition freezing acts as a possible heterogeneous 

freezing mechanism at the cirrus temperature range as a previous study indicated that deposition freezing may be pore 

condensation freezing (Marcolli, 2014; David et al., 2019). Aerosol indirect effect (AIE) is important for the formation of 

clouds because aerosols may contribute to heterogeneous freezing by serving as INPs or contribute to homogeneous freezing. 45 

Freezing of liquid aerosol solutions via homogeneous freezing requires much higher thresholds of relative humidity with 

respect to ice (RHi) (e.g., Koop et al., 2000). Comparatively, INPs can facilitate ice nucleation at lower RHi thresholds, 

although only a few types of aerosols have the capability to serve as INPs (e.g., Kanji et al., 2017, 2019). Previous aircraft-

based in-situ measurements frequently observed mineral dust and metallic particles inside ice residuals in the midlatitudinal 

cirrus, indicating that these aerosols frequently act as INPs in the real atmosphere. Other aerosols that may not act as an INP 50 

at mixed-phase cloud temperatures (> -38 °C), such as sea salt, may become an effective INP at cirrus temperatures (Patnaude 

et al., 2021a, 2024). In addition, black carbon has been found to have large variations in its effectiveness acting as INPs 

associated with various morphological and chemical characteristics and may increase the effectiveness during the aging and 

coating processes (e.g., Ullrich et al., 2017; Mahrt et al., 2018, 2020). The contribution and competition between homogeneous 

and heterogeneous freezing may vary with pressure levels, geographical locations and meteorological conditions (e.g., deep 55 

convection, synoptic-scale forcing, and gravity waves), and the global distributions of each mechanism are not fully resolved 

(Cziczo et al., 2013; Mitchell et al., 2018).  

Quantification of AIE has been a difficult topic because aside from AIE, various factors such as thermodynamic and dynamic 

conditions also affect cirrus clouds (e.g., Schiller et al., 2008; Patnaude and Diao, 2020). Isolating and quantifying the 

contributions of individual factors on cirrus microphysical properties remains a challenging task for observational studies of 60 

the real atmosphere where environmental conditions cannot be fully controlled. In addition, cirrus clouds can also have 

different origins, such as convective liquid origin and in-situ origin, therefore can be subject to different environmental 

influences in their evolution (Krämer et al. 2016; Luebke et al. 2016; Krämer et al. 2020). Previously, Patnaude and Diao 

(2020) showed the importance of isolating other factors such as temperature, RHi, and w before quantifying AIE, since these 
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other factors often play a more significant role in affecting ice microphysical properties. The authors used a “delta-delta” 65 

method, which basically examined the correlations between the fluctuations of ice microphysical properties and the 

fluctuations of aerosol number concentrations (Na) at controlled thermodynamic and dynamic conditions. That study allowed 

comparisons between larger (> 500 nm) and smaller aerosols (> 100 nm) for their correlations with cirrus microphysical 

properties, with implications for the possible contributions of heterogeneous and homogeneous freezing, respectively. 

However, that method does not allow a direct comparison among the effects of various factors and therefore cannot address 70 

the question of which factor(s) are more influential than the others for cirrus formation and the subsequent cloud properties. 

Another technical drawback of that previous study is the lack of investigation of the small ice crystals due to the limitation of 

the cloud probe being used. That limits the understanding of AIE on homogeneous freezing since homogeneous freezing often 

forms numerous relatively smaller ice particles compared with heterogeneous freezing based on box model simulations (e.g., 

Spichtinger and Cziczo, 2010). Because of these limitations, a large in-situ observational dataset that includes measurements 75 

of both smaller and larger ice crystals as well as a new method that allows quantification and comparison of each factor need 

to be developed. 

The limited understanding of AIE on cirrus clouds also inhibits the development of accurate parameterizations of aerosol-

cloud interactions in GCMs. In fact, large uncertainties still exist in the simulations of AIE on cirrus in GCMs. Previous studies 

comparing climate model simulations against in-situ observations found an underestimation of AIE by the simulations of the 80 

National Center for Atmospheric Research (NCAR) Community Earth System Model version 2 (CESM2) / Community 

Atmosphere Model version 6 (CAM6) (Patnaude et al., 2021a). The AIE on cirrus clouds is particularly underestimated at the 

earlier evolution stage of cirrus clouds such as the nucleation and early growth phases (Maciel et al., 2023). Adding or reducing 

aerosols can further modify cirrus properties, such as the cirrus thinning scenario discussed in hypothetical geoengineering 

simulations (e.g., Storelvmo et al., 2013; Storelvmo and Herger, 2014; Muri et al., 2014; Gasparini and Lohmann, 2016; 85 

Lohmann and Gasparini, 2017; Liu and Shi, 2021). But due to the complexity of the processes affecting cirrus formation and 

evolution, more observational evidence is needed to verify the current parameterizations used in GCM simulations (e.g., 

Gettelman and Morrison, 2015), as well as the emerging types of parameterizations related to ice nucleation in cirrus clouds 

(e.g., Kärcher, 2022; Barahona et al., 2024). 

This study develops large aircraft-based datasets using in-situ observations from multiple flight campaigns with near global 90 

coverage. A new method is developed based on a ML approach to quantify variations of cirrus microphysical properties and 

five controlling factors – temperature, RHi, w, Na500, and Na100. A new metric is developed to quantify individual effects of 

these five factors under three separate topics: (1) How do these factors affect formation of cirrus clouds? (2) How do they 

affect cirrus microphysical properties, in terms of the fluctuations of IWC being lower or higher relative to the average values? 

And (3) how do they affect the distributions of IWC in cirrus clouds as a function of temperature, RHi, and w? The sections 95 

are designed as follows. Section 2 describes the observational datasets, instrumentation, and the set-up of the ML models. 

Section 3 examines each of the three topics mentioned above, by quantifying and contrasting the role of individual factors 

under each topic. Section 4 provides the main summary of the findings and their implications for climate simulations.  
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2 Observational Datasets and Experimental Setup 

2.1 In-situ observations and instrumentation 100 

A dataset focusing on the cirrus cloud temperature range was developed in this study based on seven U.S. National Science 

Foundation Campaigns (NSF) and five National Aeronautics and Space Administration (NASA) flight campaigns. All data 

used in this study are constrained to temperatures ≤ -40 ℃, to eliminate the presence of supercooled water droplets. The seven 

NSF flight campaigns in alphabetical order include CONTRAST (Pan et al., 2017), NSF-DC3 (Barth et al., 2015), HIPPO 

(Wofsy, 2011), ORCAS (Stephens et al., 2018), PREDICT (Montgomery et al., 2012), START08 (Pan et al., 2010), and 105 

TORERO (Volkamer et al., 2015). The five NASA campaigns include ATTREX-2014 (Jensen et al., 2017a; Woods et al., 

2018), NASA-DC3 (Barth et al., 2015), MACPEX (Rollins et al., 2014), POSIDON (Jensen et al., 2017b), and SEAC4RS 

(Toon et al., 2016). The DC3 campaign was a coordinated flight campaign between NASA and NSF, thus we use the NSF-

DC3 and NASA-DC3 to differentiate the two research aircraft platforms during that campaign. Specific details of these 

campaigns such as name, acronym, time, and location are listed in Table 1. Information of cirrus observations such as flight 110 

hours, ranges of temperatures, altitudes, and pressures are also shown in that table. Previously, these field campaigns were also 

used in Maciel et al. (2023) for the analysis of various phases of cirrus evolution. By compiling observations from these flight 

campaigns, we aim to construct a near global-scale dataset covering wide latitudinal regions (87 °N to 75 °S) and longitudinal 

regions (128 °E to 180 °E and 37 °W to 180 °W). Global maps illustrating the entire flight tracks of each NASA and NSF 

campaign are shown in Figure 1.  115 

Because one main objective of this study is to examine the effects of key environmental conditions (such as temperature, RHi 

and w) on cirrus properties, a few other campaigns that targeted cirrus clouds were not included in the compiled dataset due to 

issues with water vapor or RHi measurements at the cirrus temperature range. For example, the US Department of Energy 

(DOE) ARM Small Particles in Cirrus (SPARTICUS) campaign provided targeted observations of cirrus clouds but had issues 

with water vapor measurements. The Learjet research aircraft also participated in the SEAC4RS campaign but did not provide 120 

good quality water vapor measurements below -30 °C due to the limitations of a chilled mirror hygrometer onboard. 

The seven flight campaigns funded by U.S. NSF were carried out exclusively by the NSF/NCAR High-Performance 

Instrumented Airborne Platform for Environmental Research (HIAPER) Gulfstream V (GV) aircraft. It is worth noting that 

these seven NSF flight campaigns were not specifically designed for cirrus cloud measurements. For example, HIPPO was 

planned for a near pole-to-pole profiling of greenhouse gases, DC3 targeted deep convective outflows, PREDICT targeted 125 

tropical cyclones, and START08 targeted the airmass exchanges between the stratosphere and troposphere, etc. The cirrus 

observations were extracted from these field campaigns since the GV aircraft often reached the upper troposphere and lower 

stratosphere as part of their flight planning.  

A list of key variables and the instruments used to derive them are also shown in Table 1. The key measurements include 1-

Hz observations of basic meteorological parameters such as temperature, pressure, water vapor, w, as well as measurements 130 

of cloud microphysical properties (i.e., IWC, Ni, and Di) and aerosol number concentrations. Onboard the NSF/NCAR GV 
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research aircraft, the Vertical Cavity Surface Emitting Laser (VCSEL) hygrometer was used to measure molecular number 

concentrations of water vapor (Zondlo et al., 2010). The Rosemount temperature probe was used to provide 1-Hz temperature 

observations. Two cloud probes were used for the NSF campaigns, i.e., the Fast 2-Dimensional Cloud (Fast-2DC) probe and 

the Cloud Droplet Probe (CDP). The CDP has a size range from 2 – 50 µm. The Fast-2DC has a physical measurement range 135 

of 62.5 – 1600 µm through a 64-photodiode array with 25-µm bin widths and mathematically reconstructs partially detected 

particles with the maximum size up to 3200 µm. The Fast-2DC probe was equipped with anti-shattering tips, and a post data 

processing has been applied through an “interarrival time rejection” algorithm, which is described in Field et al. (2006), 

although complete elimination of shattering was not possible for the current measurement technique especially for ice particles 

smaller than 100 µm (e.g., Korolev et al. 2013). Measurements of aerosol number concentrations were obtained from the Ultra-140 

High Sensitivity Aerosol Spectrometer (UHSAS), operating at a size range of 60 – 1000 nm with 99 logarithmically spaced 

bins.  

In contrast to the NSF campaigns, the five NASA flight campaigns were obtained from several research aircraft platforms, 

including the NASA Global Hawk for ATTREX-2014, NASA DC-8 for SEAC4RS and NASA-DC3, and NASA WB-57 for 

MACPEX and POSIDON. The ATTREX, POSIDON and MACPEX were designed to sample cirrus clouds and advance the 145 

understanding of cirrus cloud microphysical properties, while the SEAC4RS and NASA-DC3 campaigns were designed to 

target evolution of gases and aerosols in deep convective outflows. Compared with the other research aircraft platforms that 

mostly sampled altitudes lower than 15 km, the ATTREX and POSIDON campaigns sampled mostly above 15 km onboard 

the NASA Global Hawk aircraft and NASA WB-57. The ATTREX campaign had four deployments between 2011 and 2015, 

and only the 2014 deployment is used in the compiled dataset based on the availability of both ice microphysical properties 150 

and water vapor measurements.  

Water vapor measurements during ATTREX, POSIDON, DC3, and SEAC4RS campaigns were obtained from the Diode Laser 

Hygrometer (DLH), which operates at a near-infrared wavelength of 1.4 µm. The water vapor measurements in MACPEX 

were sampled using the Harvard Water Vapor (HWV) instrument, which is a combination of measurement methodologies 

from the Lyman-α photo-fragment fluorescence instrument (LyA) and Harvard Herriott Hygrometer (HHH). Temperature 155 

measurements were based on the NASA Meteorological Measurement System (MMS) onboard various research aircraft. For 

all the NSF and NASA campaigns, saturation pressures with respect to ice (es) were derived from temperature measurements 

based on the equation from Murphy and Koop (2005), which were further combined with water vapor measurements to 

calculate RHi. Aerosol measurements were provided in three NASA campaigns (i.e., MACPEX, DC3, and SEAC4RS). DC3 

and SEAC4RS utilized UHSAS, similar to NSF campaigns, while MACPEX used the Focused Cavity Aerosol Spectrometer 160 

(FCAS) that measures particles within the diameter range of 70 – 1000 µm. The NASA ATTREX and POSIDON campaigns 

were not included in the analysis of AIE due to the lack of aerosol measurements. 

Ice particle measurements for most of the five NASA campaigns were based on two probes – the Fast-CDP probe and the 

Two-Dimensional Stereo Probe (2DS). The Fast-CDP (FCDP) probe has a size range of 1 – 50 µm. The 2DS probe has a 

dynamic range of 5 – 3005 µm and uses two linear and independent 128-photodiode arrays designed to record at a 10 µm pixel 165 
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resolution. Similar to the Fast-2DC probe in the NSF campaigns, the 2DS probe also installed anti-shattering tips for these 

field campaigns, although the MACPEX campaign used an earlier version of a shattering probe that is slightly different 

compared with the ones used in later NASA campaigns. 2DS processing software also includes shattering removal algorithms 

(Lawson, 2011). For two research flights in ATTREX (RF03 and RF07), the FCDP probe did not provide measurements and 

therefore the Hawkeye-CDP probe was used to provide the same size range (1 – 50 µm) of measurements.  170 

Several additional steps were taken to derive ice microphysical properties from the key measurements mentioned above. For 

2DS, CDP, FCDP, and Hawkeye-CDP probes, their measurements in the first bin were discarded to avoid possible 

uncertainties in that bin. A similar procedure of discarding small size particles in 2DS measurements has also been applied in 

a previous study by Mitchell et al. (2018). For the Fast-2DC probe, the first 3 bins were discarded to minimize uncertainties, 

and the last 6 bins were discarded to reach a similar size range as the 2DS probe. After these procedures, the measurements of 175 

these probes were combined. That is, in the NSF campaigns, the CDP probe measurements were combined with the Fast-2DC 

probe measurements, providing a final size range of 2 – 3012.5 µm. In the NASA ATTREX, POSIDON and SEAC4RS 

campaigns, 2DS measurements were restricted to 15 – 3005 µm and then combined with FCDP (or Hawkeye-CDP) 

measurements at 1 – 14.5 µm, which produced a combined size range of 1 – 3005 µm. Since NASA DC3 and MACPEX did 

not have FCDP, only 2DS measurements were used for the size range of 15 – 3005 µm after discarding the first bin of 2DS. 180 

In summary, the compiled dataset of all NSF campaigns provided a final range of 2 – 3012.5 µm, while the compiled dataset 

of all NASA campaigns provided a final range of 1 – 3005 µm. The size range of the combined dataset for all NASA + NSF 

campaigns was 1 – 3012.5 µm. Combined NASA + NSF campaigns with the size range of 1 – 3012.5 µm were used for all 

tables and figures in the main manuscripts, including Tables 1 – 3, Figures 1 – 3, and 5 – 10, and all the analyses shown in the 

supplemental material. The separate NSF and NASA campaigns were analyzed in Figure 4 and part of Figure 5 to contrast the 185 

differences between these campaigns.  

Furthermore, IWC, Ni, and Di were calculated for the combined size range for each flight campaign. IWC was derived based 

on the mass-dimensional relationship following Brown and Francis (1995). For both NASA and NSF datasets, the in-cloud 

condition is defined when ice crystals have been detected in a 1-second measurement, that is, Ni > 0 for either Fast-2DC or 

2DS measurements. The rest of the samples are defined as the clear-sky condition. For the cirrus temperature regime, 730 190 

flight hours were obtained at temperatures ≤ -40 ℃ (i.e., 251 and 479 hours from NSF and NASA datasets, respectively), 

which include 161.6 hours of in-cloud conditions (i.e., 81.7 and 80.0 hours from NSF and NASA datasets, respectively). More 

information regarding the flight hours for each flight campaign in the cirrus temperature range, i.e., temperatures ≤ -40 ºC is 

shown in supplemental Table S1. The hours of measurements are separately shown for all-sky, clear-sky, and in-cloud 

conditions, as well as cirrus under two types of environmental conditions. 195 

2.2 Design of the Machine Learning (ML) Models 

Machine learning models were developed to examine the influences of various factors on the occurrences of cirrus clouds and 

their microphysical properties. The key variables investigated include temperature, RHi, w, Na500, and Na100. In previous 
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studies such as Patnaude and Diao (2020) and Maciel et al. (2023), other methods were developed to individually examine the 

thermodynamic, dynamic, and AIE on cirrus microphysical properties. For example, by using a “delta-delta” method that 200 

removes the temperature effects on cirrus microphysical properties, linear regressions can be applied to quantify the 

correlations between fluctuations of a certain environmental factor and the fluctuations of a cirrus microphysical property. 

However, one limitation of such analysis is the lack of comparisons of the effects of multiple factors. Thus, to achieve a direct 

comparison of effects of multiple factors, an ML approach was developed in this work. 

The entire observation dataset was pre-portioned into two distinct and separate parts to “train” and “test” the ML models. The 205 

entire observation data of each research flight were first separated into 10 consecutive flight segments. Seven of the 10 flight 

segments were randomly selected to be used as the training data, while the remaining three flight segments were used as the 

testing data. Another method of separating training and testing data was also investigated, which randomly selected 70 % of 

the 1-Hz data of a research flight as training data and the rest (30 %) as testing data. These two data separation methods show 

similar results. Only the former segment-based separation method is illustrated in the following sections. Compared with the 210 

latter separation method, the segment-based method avoids possible correlations between training and testing datasets when 

separated at 1-Hz resolution. Another step taken to pre-process the data was the utilization of a “listwise deletion” method for 

data filtering. This deletion method was applied if any second of the observational datasets contained either temperatures > -40 

°C or if any key variable of that second showed “NAN”, then all variables of that entire second were removed from the dataset.  

Using a classification ensemble algorithm, we create a random forest model consisting of 100 individual and distinct decision 215 

trees. In addition, a “Random Undersampling Boosting” (RUSBoost) algorithm was implemented to account for any 

imbalances of samples among various categories in the dataset to keep any training biases to a minimum. For example, in this 

dataset, flight hours of each campaign were dominated by clear-sky conditions rather than in-cloud conditions. The RUSBoost 

algorithm accounts for the disproportionate sampling of in-cloud conditions and randomly boosts the under-sampled category.  

Three experiments were designed for the ML models (hereafter referred to as Tests A, B, and C), which aimed to answer the 220 

following science questions respectively: (1) Which factor(s) are more important for the ML model to predict the occurrences 

of cirrus clouds? (2) Which factor(s) are more important for the ML model to predict the fluctuations of IWC inside cirrus 

clouds? (3) Which factor(s) are more important for the ML model to predict the distributions of IWC as a function of 

temperature, RHi, and w inside cirrus? The details of the ML analysis are shown in Section 3.5.  

3 Results 225 

3.1 Distributions of RHi and σw for Cirrus Clouds in Two Environmental Conditions 

Influences of thermodynamic (i.e., temperature and RHi) and dynamical conditions (w) are investigated for various types of 

cirrus clouds (Figures 2 and 3). Cirrus clouds were categorized into two types of conditions, depending on the fluctuations of 

w in the adjacent environment. That is, for one second of measurement, if the region of ± 30 seconds surrounding it experienced 

updrafts and downdrafts exceeding ±1 m s-1 (i.e., w ≤ -1 m s-1 or ≥ 1 m s-1), then this 1-second observation was defined as non-230 
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quiescent conditions. Previous airborne observations of cirrus clouds around convective activity showed frequent occurrences 

of w ≤ -1 m s-1 or ≥ 1 m s-1 (e.g., D’Alessandro et al., 2017; Diao et al., 2017). In addition, the rest of the observations 

experiencing smaller updrafts and downdrafts within ±1 m s-1 are defined as vertically quiescent conditions. The observations 

of cirrus clouds under non-quiescent and vertically quiescent conditions are 52 and 110 hours, respectively. Note that because 

of the nature of Eulerian-view sampling of research aircraft, this separation of two types of cirrus differs from the previous 235 

study that used Lagrangian trajectories of w from model simulations to separate cirrus origins, i.e., convective (liquid) cirrus 

versus in-situ cirrus (Krämer et al., 2016, 2020). Global maps and vertical profiles of cirrus cloud observations in vertically 

quiescent and non-quiescent conditions are depicted in supplemental Figure S1. In addition, clear-sky samples in two 

environmental conditions at temperatures ≤ -40 °C are shown in Figure S2. The vertical distributions of IWC, Ni, Di, and 

water vapor volume mixing ratio under two environmental conditions are illustrated in Figure S3.  240 

Distributions of 1-Hz observations of RHi as a function of temperature are examined for cirrus under two environmental 

conditions separately using the combined datasets of NASA and NSF campaigns (Figure 2). In addition, the RHi – T 

distributions for clear-sky conditions under two environmental conditions are shown in supplemental Figure S4. The six 

latitudinal regions were individually analysed, including the Northern Tropical regions (NT), Northern Midlatitudes (NM), 

Northern Polar regions (NP), Southern Tropical regions (ST), Southern Midlatitudes (SM), and Southern Polar regions (SP). 245 

The in-cloud conditions show higher frequencies of RHi concentrated within ± 20 % around the ice saturation line. On the 

other hand, clear-sky conditions (Figure S4) indicate higher variabilities in RHi. Higher frequencies of RHi > 140 % are seen 

in the tropical regions in both in-cloud and clear-sky conditions, while for the midlatitude and polar regions, the RHi samples 

are seen below the homogeneous freezing line (such as below 140 %), indicating a possible dominant role of heterogeneous 

freezing based on the available thermodynamic conditions. This result is consistent with the finding of Cziczo et al. (2013) 250 

and Patnaude et al. (2021a) for the extratropical regions. More occurrences of RHi exceeding the homogeneous freezing 

threshold (around 160 % to 190 %) are seen in the NT region at temperatures below -55°C, associated with large fluctuations 

of vertical velocity in Figure 3, indicating that this region is more likely to initiate homogeneous freezing compared with other 

regions. In addition, these higher RHi values in the NT are seen in cirrus clouds under both non-quiescent and vertically 

quiescent conditions, indicating that homogeneous freezing in the tropics is not only restricted to conditions with stronger 255 

updrafts and downdrafts and plays an important role for the formation of both types of cirrus. 

Similar to Figure 2, distributions of the standard deviations of w (denoted as σw) are examined against various temperatures 

for both types of cirrus (Figure 3). The distributions of σw for clear-sky conditions under non-quiescent and vertically quiescent 

conditions are shown in supplemental Figure S5. Here σw are defined as the standard deviation of w for the 1-Hz observations 

calculated for every 10 km of aircraft observations. Most of the cirrus clouds in two conditions show σw within 0.5 m s-1. For 260 

the non-quiescent cirrus, the maximum σw values range from 0.5 to 5 m s-1 at various temperatures, which is a wider range 

compared with the vertically quiescent cirrus at 0.5 to 3 m s-1. Comparing among different regions, the highest σw values are 

seen in the NT and NM regions, where a few samples of σw are seen to reach a maximum at 4 to 5 m s-1.  
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3.2 Thermodynamic and Dynamical Controlling Factors on Cirrus Microphysical Properties 

Three cirrus microphysical properties (IWC, Ni, and Di) are examined separately for NASA and NSF flight campaigns at 265 

various temperatures in Figure 4a–c and Figure 4d–f, respectively. Compared with the NSF campaigns which sampled the 

minimum temperature at -78.3 °C, the NASA ATTREX and POSIDON campaigns sampled temperatures as low as -88.2 °C. 

For both NASA and NSF campaigns, an increasing trend of average IWC with increasing temperatures is seen, which is 

consistent with previous observational studies of the IWC – T relationship (e.g., Diao et al., 2014a; Woods et al., 2018; Krämer 

et al., 2020; Patnaude and Diao, 2020). In addition, a positive Di – T relationship is also seen, likely due to faster ice crystal 270 

growth under higher water vapor partial pressure and more sedimentation of larger ice crystals into lower altitudes with higher 

temperatures. Both NASA and NSF datasets show a nonlinear trend of Ni with increasing temperatures. The main difference 

between NASA and NSF datasets is that NASA dataset shows higher IWC and higher Ni by 0.5 order of magnitude, likely 

due to differences in cirrus microphysical properties at different geographical locations as previously discussed in Patnaude et 

al. (2021a).  275 

The relationships between the variability of cirrus ice microphysical properties and the variability of thermodynamic and 

dynamical conditions are further investigated in Figure 4 g – r. A “delta-delta” method is applied to various factors, similar to 

the method used in the study of Patnaude and Diao (2020), Patnaude et al. (2021a), and Maciel et al. (2023). Specifically, the 

delta value is calculated by subtracting the average value of a certain variable in each 1 °C temperature bin from every 1-

second datum based on the temperature bin that second belongs to. The calculation of the delta values removes the temperature 280 

effect. In addition, the average values of each 1 °C temperature bin are calculated for individual campaigns, therefore 

subtracting these campaign-specific average values reduces the impacts of geographical locations and different measurement 

platforms on these delta variables.  

When examining the relationships of fluctuations of IWC, Ni, and Di (i.e., dlog10IWC, dlog10Ni, and dlog10Di) with respect to 

the fluctuations of temperature, RHi, and w (i.e., dT, dRHi, and dw, respectively), the observed relationships are much more 285 

similar between the NASA and NSF datasets, which is reflected by the similar increasing or decreasing trends and similar 

ranges of delta values at various conditions between the two datasets. For example, both NASA and NSF datasets show a peak 

of dlog10IWC and dlog10Ni at dRHi slightly above 0 % (i.e., dRHi of 10 %–20 %). This result is consistent with that seen in 

Patnaude and Diao (2020), indicating that after ice nucleation, the continuous ice crystal growth and new ice particle formation 

with sustained ice supersaturation will likely lead to the highest IWC and Ni. The decreasing trend of dlog10IWC, dlog10Ni, 290 

and dlog10Di with decreasing dRHi is also consistent with the previous studies of Diao et al. (2013, 2014b), which showed a 

decreasing trend of IWC, Ni, and Di with decreasing RHi during the sedimentation phase of cirrus cloud evolution. 

As for the relationship with vertical velocity fluctuations, the maximum dlog10IWC and dlog10Ni are seen at the strongest 

updrafts and downdrafts, while the minimum dlog10IWC and dlog10Ni are seen associated with weak downdrafts (i.e., dw 

around -0.25 to -0.75 m s-1). This result indicates that large updrafts, which often are in close proximity to large downdrafts 295 

during turbulence and gravity waves (e.g., Diao et al. 2017), may provide sustained ice supersaturated conditions, and therefore 
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leading to the continuous formation of new ice particles. As for dlog10Di values, they reach maximum values when dRHi is 

around 20 % to 60 %, but remain relatively constant under various dw values.  

3.3 Aerosol Indirect Effects on Cirrus Microphysical Properties 

AIEs on cirrus microphysical properties are investigated in Figure 5, which uses a delta-delta method similar to Figure 4. Three 300 

types of datasets are examined – NASA only (rows 1 and 4), NSF only (rows 2 and 5), and the combined NASA+NSF dataset 

(rows 3 and 6). The AIEs are separately examined for larger and smaller aerosols, i.e., Na500 and Na100 correspond to aerosol 

number concentrations when the particle diameter is greater than 500 nm and 100 nm, respectively. Understanding the 

correlations of aerosols with cirrus microphysical properties can give clues to the two main ice nucleation mechanisms. 

Previously, aerosols larger than 500 nm have been used as a proxy for INPs when the direct measurements of INP are not 305 

available (DeMott et al., 2010). Note that due to the limitations of former INP measurement techniques, that study focused on 

temperatures higher than -30 ℃ instead of the cirrus cloud regime (i.e., ≤ -40 ℃). Other studies using the particle analysis by 

laser mass spectrometry (PALMS) instrument showed that particles with diameters > 500 nm are dominated by dust particles 

and nonvolatile sea-salt for number and mass concentrations (Murphy et al., 2019; Froyd et al., 2019). Both dust (e.g., Hoose 

and Möhler, 2012; Roesch et al., 2021) and sea salt (e.g., Patnaude et al., 2021b, 2024) have been previously reported to initiate 310 

heterogeneous freezing as INPs, which supports the speculation that Na500 may be used as a proxy for INP number 

concentrations. 

For the AIE of larger aerosols, a nearly linear positive correlation is seen in three cirrus microphysical properties (i.e., 

dlog10IWC, dlog10Ni, and dlog10Di) in relation to dlog10Na500. The smaller aerosols show nonlinear correlations with cirrus 

microphysical properties, as illustrated by the significant increases in dlog10IWC and dlog10Ni values when dlog10Na100 exceeds 315 

1. That is, when dlog10Na100 values are significantly above (by a factor of 10) the average values of a 1-degree temperature 

bin, significant impacts on cirrus microphysical properties are seen. This feature indicates that there may be a sharp increase 

in ice nucleation through homogeneous freezing when much higher Na100 values are seen. Because of the lack of direct 

measurements of aerosol chemical compositions in these campaigns, we cannot determine whether this nonlinearity is 

associated with a change in aerosol composition in addition to the changes of their number concentrations. These main features 320 

of AIE from larger and smaller aerosols are consistently seen for either NASA, NSF campaigns separately, or the combined 

NASA + NSF campaigns. Therefore, for the following analyses, the combined NASA+NSF datasets (i.e., 1 – 3012.5 µm) are 

used in the quantitative analyses based on linear regressions (Figure 6) or ML models (Figures 7 – 10). 

3.4 Quantifications of Aerosol Indirect Effects based on Linear Regressions 

AIEs on cirrus microphysics are further quantified through linear regressions between the fluctuations of cirrus properties and 325 

the fluctuations in aerosol number concentrations in Figure 6 for the combined NASA+NSF dataset. The AIEs are individually 

quantified for different thermodynamic and dynamical conditions, including various ranges of temperatures from -40 to -70 

°C, dRHi from below -10 % to above 10 %, and dw from below -0.5 m s-1 to above 0.5 m s-1. Geometric means of dlog10IWC, 
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dlog10Ni, and dlog10Di are calculated for each bin of dlog10Na500 or dlog10Na100. The full information of slopes, intercepts, and 

their standard deviations for all linear regressions shown in Figure 6 is stored in supplemental Table S2.  330 

Positive correlations are seen for various temperature, dRHi, and dw ranges. In addition, for every range, larger positive slope 

values are seen in relation to dlog10Na500 compared with dlog10Na100, indicating stronger AIEs from the larger aerosols on three 

microphysical properties. In addition, when comparing among different ranges of dRHi and dw, the variabilities among the 

slope and intercept values for these different linear regressions with respect to larger aerosols (Figure 6 a5–a7, a9–a11) are 

smaller than those seen with respect to smaller aerosols (Figure 6 b5–b7, b9–b11). These results suggest that with the 335 

availability of potential INPs (using larger aerosols as an indicator), ice nucleation is less dependent upon thermodynamic and 

dynamic factors such as the magnitudes of RHi and the strength of updrafts. On the other hand, for smaller aerosols, activating 

ice nucleation has higher requirements for the appropriate thermodynamic and dynamic conditions. For the AIE of smaller 

aerosols, such dependence upon thermodynamic and dynamic conditions are even stronger when relatively fewer aerosols are 

available, as shown by the large separation between the geometric mean of cirrus properties at the lower values of dlog10Na100. 340 

That is, when dlog10Na100 < 0, the dlog10IWC and dlog10Ni values are 1 order of magnitude higher at higher dRHi (i.e., dRHi 

> 10 %) or at larger dw (i.e., > 0.5 m s-1) compared with those at lower dRHi (≤ 10 %) or lower dw (< -0.5 m s-1), respectively. 

The dlog10Di values are also higher by a factor of 2 – 3 at these higher dRHi and dw ranges. As dlog10Na100 increases, the 

cirrus properties converge to similar values, indicating that higher concentrations of smaller aerosols may also associate with 

higher INP number concentrations, thereby lowering the requirements of the high RHi and w thresholds. 345 

3.5 Using Machine Learning (ML) Models to Quantify and Compare Thermodynamic and Dynamic Effects and 

Aerosol Indirect Effects on Cirrus Clouds 

Three experiments are designed to quantify the contributions of various factors to cirrus cloud formation and the subsequent 

microphysical properties. ML models are designed to directly compare the contributions from temperature, RHi, w, Na500, and 

Na100. Three ML tests in this section will be referred to as Tests A, B, and C. These three tests address the three scientific 350 

questions described in Section 3.2. That is, Test A examines the key factors contributing to the occurrences of cirrus clouds; 

Test B examines the key factors contributing to whether cirrus clouds are formed with higher and lower IWC values; and Test 

C examines the key factors contributing to the full range of magnitudes of IWC as a function of temperature, RHi, and w.  

For this section, all the ML-based analysis uses the combined NASA+NSF dataset. When analyzing the effects of temperature 

(T), RHi, and w (e.g., Figures 7 and 8, top 4 rows), all 5 NASA and 7 NSF campaigns are included in the analysis. When 355 

analyzing the Na500 and Na100 variables, the NASA ATTREX and POSIDON campaigns are not included due to the lack of 

aerosol measurements (e.g., Figures 7 and 8, bottom 2 rows). 

Test A trains the ML models to differentiate between clear-sky conditions and cirrus clouds. Because the prediction is for 

binary conditions (i.e., in-cloud versus out-of-cloud), Test A utilizes a binary ensemble classification algorithm for the ML 

models. Results are analysed based on an accuracy scale of 0 – 100 %, to account for the percentage of 1-second samples being 360 

accurately predicted for its clear-sky or in-cloud condition. Various factors (e.g., T, RHi, w, Na500, and Na100), as well as a 
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combination of these factors, are used predictors in the ML models to examine which sets of variables provide more accurate 

predictions. Figure 7 shows 6 sets of predictors, including T, T+RHi, T+w, T+RHi+w, T+RHi+w+Na500, and T+RHi+w+Na100. 

Prediction results of more sets of predictors are shown in Table 2.  

Results show that when using temperature solely as a predictor, 57.30 % accuracy is seen for all cirrus, while 57.69 % and 365 

55.32 % accuracies are seen for two types of cirrus – vertically quiescent cirrus and non-quiescent cirrus, respectively. This 

indicates that when only providing temperature as the sole predictor, the chances of predicting cirrus formation is close to a 

random guess (i.e., 50 %). Besides the temperature predictor, other factors are added incrementally to examine the added 

values of these predictors. Among all of them, RHi is found to be most effective for enhancing prediction accuracy. The three 

types of cirrus – all cirrus, vertically quiescent cirrus, and non-quiescent cirrus – show accuracies of 86.53 %, 86.41 %, and 370 

87.16 %, respectively, when T+RHi predictors are used. Therefore, providing the additional information of RHi enhances the 

prediction from baseline T predictor by ~29 to 31 %. Comparatively, smaller increases of accuracies (by ~7 to 9%) are seen 

when T+w are used, which show accuracies of 64.18 % and 66.39 % for all cirrus and vertically quiescent cirrus, respectively.  

Even lower accuracy (52.80 %) of predicting the occurrences of non-quiescent cirrus is seen by using the T+w predictors 

compared with using just the T predictor (55.32 %), likely caused by the pre-selection of dynamical conditions, which requires 375 

the existence of strong updrafts and downdrafts in the adjacent environments. That restriction already pre-selected the more 

favourable w conditions and therefore making the w factor less effective for enhancing the prediction accuracy any further.  

When adding the predictors of aerosol information, the accuracies further increase by 2 % – 6 % compared with using 

T+RHi+w (panel l), which are 91.97 %, 92.68 %, and 88.98 % when using T+RHi+w+Na500, and 91.94 %, 92.62 % and 89.08 

% when using T+RHi+w+Na100 for three types of cirrus, respectively. Such increases of accuracy verify that AIEs do make a 380 

difference on the formation of cirrus clouds. Comparing between the larger and smaller aerosols, the differences in accuracy 

by using them as predictors are not very significant, which is within 0.1 %.  

Table 2 shows more combinations of the five predictor variables, totalling to 23 sets of combinations. Using more predictors 

(i.e., T+RHi+w+Na500 and T+RHi+w+Na100) provides better results than using fewer predictors. All the tests that include RHi 

as a predictor have accuracies exceeding 85 %, which show that RHi is consistently the most important factor among all five 385 

variables. Compared with RHi, w plays a less important role in improving predictions of cirrus cloud occurrence regardless of 

being used as a single predictor or combined with other predictors. This result is likely caused by the fact that both water 

vapour concentrations and w contribute to cooling rates that further control RHi magnitude, indicating that having the accurate 

representation of available water vapour concentrations is important besides the representation of dynamical conditions.  

Test B is designed to examine what factors are more influential for the prediction of a cirrus cloud containing higher or lower 390 

IWC compared with the average conditions (Figure 8). Only in-cloud conditions are used for Test B. Here the predictors are 

calculated in terms of delta values, which are fluctuations relative to average values of every 1-degree temperature bin. Similar 

to Test A, a binary ensemble classification algorithm is used for Test B, predicting whether IWC is higher or lower than the 

average IWC in each 1-degree temperature bin (i.e., dlog10IWC > 0 or < 0). Compared with the respective rows in Figure 7, 

the accuracies for each set of predictors for predicting dlog10IWC > 0 or < 0 are lower than the accuracies for predicting in-395 
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cloud or out-of-cloud conditions. In fact, the accuracy of predicting the fluctuations of IWC does not exceed 77 % in any of 

the tests. This is likely due to the large variabilities of IWC in cirrus clouds, which can be several orders of magnitude different 

even within the same cirrus cloud layer. In addition, ice particle growth and formation of new ice particles all contribute to the 

variations in IWC, which require the understanding of the entire evolution of cirrus and the accumulative history of 

environmental factors that the air parcel experienced.  400 

When using dT as the sole predictor, the prediction has accuracies around 48 % to 50 %, which are closer to a random 50 % –

50 % guess. Adding dRHi to dT increases the accuracies to 64 % – 69 %, which indicates smaller increases of accuracies by 

adding dRHi as a predictor for IWC fluctuations compared with predicting cirrus occurrences in Figure 7. Adding dw to dT 

increases the accuracies to 57 % to 59 %, indicating smaller contributions from dw compared with dRHi for predicting the 

fluctuations of IWC inside cirrus clouds. When adding aerosol information, the accuracies increase to 76.28 %, 76.49 %, and 405 

76.11 %for the test of dT+dRHi+dw+dlog10Na500, and to 66.11 %, 65.26 %, and 66.83 % for dT+dRHi+ dw+dlog10Na100, for 

three cirrus types (i.e., all cirrus, vertically quiescent and non-quiescent), respectively. Compared between the larger and 

smaller aerosols, the added values of dlog10Na500 are 9 % to 12 % (by subtracting accuracies of panel l from panel o in Figure 

7), while the added values of dlog10Na100 are slightly negative to nearly zero at -0.2 % to 1 % (by subtracting accuracies of 

panel l from panel r in Figure 7). This result indicates that the larger aerosols play a more significant role in controlling the 410 

fluctuations of IWC compared with smaller aerosols. This result is consistent with the result shown in Figure 6, which shows 

higher positive slope values for correlations with dlog10Na500 (top 3 rows in Figure 6) compared with those for dlog10Na100 

(bottom 3 rows in Figure 6). The stronger AIEs of larger aerosols on IWC inside cirrus are also consistent with previous studies 

using in-situ observations (e.g., Patnaude and Diao, 2020; Maciel et al., 2023). The added values of using larger aerosols as a 

predictor in Test B (Figure 8) are higher than those seen in Test A (Figure 7), indicating that larger aerosols play a relatively 415 

more important role in controlling IWC fluctuations, possibly by modifying Ni and Di via ice nucleation, as well as by 

modifying the ambient RHi and w via water vapor deposition and latent heat release, compared with a relatively weaker role 

for determining whether cirrus can be formed or not. 

In addition to testing the effects of key factors at 1-Hz resolution as shown in Figure 8, we further examined the effects of 

environmental factors on cirrus formation at coarser-scales from 10 km to 100 km in Table 3. Specifically, 50-s, 250-s, and 420 

500-s averages of dT, dRHi, dw, dlog10Na500, dlog10Na100, and dlog10IWC values are calculated surrounding each second, and 

these coarser-scale factors are used to predict whether the coarser-scale dlog10IWC is above or below zero. This experiment 

addresses the question as to whether the IWC fluctuations are affected by larger-scale conditions, and what spatial scales are 

more impactful. For the effects of dRHi (using dT+dRHi as predictors), the accuracies of predicting the sign of dlog10IWC for 

vertically quiescent cirrus are 64.03 %, 70.33 %, 69.42 %, and 71.67 % for 1-s, 50-s, 250-s, and 500-s averaged observations, 425 

respectively, indicating the coarser-scale RHi conditions have larger impacts on the IWC fluctuations in vertically quiescent 

cirrus. This is likely because a higher RHi for a wider spatial scale can provide a favorable condition for ice crystal formation 

and growth for a larger cloud segment. For the effects of dw (using dT+dw as predictors) on vertically quiescent cirrus, the 

accuracies are 56.51 %, 57.55 %, 56.10 %, and 55.96 %, respectively, indicating that the effects of w on IWC fluctuations is 
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more local and therefore it is more important to quantify the small-scale fluctuations in w. On the other hand, examining the 430 

non-quiescent cirrus, even though the dT+dRHi prediction provides the highest accuracy of 80.56 % by using 250-s averaged 

observations, the 500-s averaged observations provide the lowest accuracy of 66.32 % among all spatial scales, indicating a 

sudden decrease in the impacts of RHi conditions beyond 50 km surrounding non-quiescent cirrus. For the dw on non-quiescent 

cirrus, the accuracies show more variabilities, with only 43.87 % accuracy for 250-s averaged observations, indicating that 

effects of dw on non-quiescent cirrus originate from a smaller surrounding environment.  435 

For the analysis of AIEs, effects of Na500 on vertically quiescent cirrus are larger for the more adjacent environments (i.e., 1-

Hz observations) than the coarser-scale environments. On the other hand, the effects of Na100 on vertically quiescent cirrus are 

larger for the coarser-scale environments (i.e., 500-s scale). This feature is likely due to larger aerosols (potentially serving as 

INPs) significantly increasing the likelihood of forming ice particles at lower thresholds of RHi and w, while smaller aerosols 

still require more restrictive thermodynamic and dynamic conditions to be satisfied. Therefore, a higher average Na100 value 440 

at a coarser scale are more likely to overlap with favorable RHi and w conditions. For non-quiescent cirrus, the effects of 

aerosols show similar nonlinearity as seen in the effects of dRHi and dw. This is likely caused by the large spatial 

heterogeneities of both environmental conditions and cloud microphysical properties surrounding the non-quiescent cirrus. 

Test C examines the ability of the ML models to predict the distributions of IWC as a function of temperature, RHi, and w, 

shown in Figures 9 and 10. The distributions based on real in-situ observations (Figure 9 a – c) show four main features: (1) 445 

an increasing trend of IWC with increasing temperatures, (2) peak IWC values under small ice supersaturation (i.e., RHi of 

110 %), (3) higher IWC at stronger updrafts and downdrafts, and (4) higher geometric mean IWC values in the non-quiescent 

cirrus than the vertically quiescent cirrus by 1 order of magnitude. The higher IWC seen in non-quiescent cirrus is consistent 

with the finding of Krämer et al. (2016) in their Figure 13. Three sets of predictions are evaluated, including T, T+RHi+w, and 

T+RHi+w+Na500+Na100. All the tests can capture the first feature (positive correlations between IWC and T), but the test using 450 

only T as a predictor cannot capture the trend with respect to RHi and w, nor can it show the different IWC between two types 

of cirrus. Using T+RHi+w predictors can already capture the main differences in IWC between two types of cirrus. Adding 

aerosols as predictors shows more similar results to observations at -75 to -65 ℃ and -50 to -40℃ compared with only using 

T+RHi+w, which illustrates aerosol indirect effects in addition to thermodynamic and dynamic effects. 

Figure 10 a – f shows the comparisons of predicted IWC versus observed IWC, color coded by the average T, RHi, and w 455 

within each bin. In addition, Figure 10 g – l compares the probability density functions (PDFs) of T, RHi and w between the 

scenarios when ML models underestimate or overestimate IWC values. When RHi is not included as a predictor, the predicted 

IWC values are underestimated at higher RHi values (i.e., orange and red bins below the 1:1 line in panel b) and overestimated 

at lower RHi values (i.e., blue bins above 1:1 line). In addition, when only using T as the predictor in panel h, the ML 

predictions overestimating IWC (red line) show higher frequencies of subsaturated conditions and lower frequencies of ice 460 

supersaturated conditions, compared with the ML predictions that underestimate IWC. Similarly, when w is excluded from the 

prediction, the higher IWC values associated with strong updrafts are underestimated (i.e., red bins under 1:1 line in panel c). 

The PDFs of w also show that the underestimated IWC samples have higher frequencies of strong updrafts and downdrafts 
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when w is not used as a predictor in panel i. The differences in PDFs of RHi and w between overestimated and underestimated 

IWC samples are much smaller when all three predictors are used (i.e., T+RHi+w) in panels k and l. These analyses 465 

demonstrate the importance of accurately representing the RHi and w distributions in model simulations when simulating the 

magnitudes of IWC in cirrus clouds.  

4 Conclusions and Implications 

In this study, near global-scale datasets were developed for in-situ observations of cirrus microphysical properties and their 

surrounding environmental conditions. Individual roles of several key factors (i.e., temperature, RHi, w, Na500, and Na100) 470 

affecting the distributions of cirrus microphysical properties were investigated. The datasets cover a wide range of latitudes, 

providing observations in six latitudinal bands ranging from the polar regions to the midlatitudes and the tropics.  

Several approaches were developed to quantify these individual effects, including using a “delta-delta” method to examine the 

correlations between the fluctuations of environmental conditions and the fluctuations of cirrus properties, using linear 

regressions to quantify the aerosol indirect effects of larger and smaller aerosols, and using random forest ML models to 475 

address the effectiveness of adding different variables as predictors for predicting the occurrences of cirrus and the subsequent 

IWC fluctuations and magnitudes. These methods have been shown to be critical for quantifying the role of different factors. 

For instance, the effects of RHi and w on IWC, Ni and Di were examined by removing the temperature effects on cirrus 

properties in Figure 5. The five NASA and seven NSF campaigns show similar trends when the fluctuations of IWC, Ni and 

Di were examined, including the peak of dlog10IWC and dlog10Ni seen at 10 % dRHi, and the peak of dlog10IWC and dlog10Ni 480 

seen at stronger updrafts and downdrafts conditions. The calculation of delta values enables the combination of NASA and 

NSF datasets for linear regression analysis of AIEs (Figure 6). The average background conditions were subtracted from the 

delta values, removing the variabilities introduced by various instruments and geographical locations. 

The ML models were designed to directly compare the effects of multiple factors (Figures 7 – 10 and Tables 2 and 3). Among 

all factors, RHi is the most important factor for predicting the occurrences of cirrus clouds, although its relative contributions 485 

to the fluctuations and magnitudes of IWC are smaller compared with its dominant role for predicting cirrus occurrences. 

Comparing between non-quiescent and vertically quiescent cirrus, the non-quiescent cirrus clouds show 1 order of magnitude 

higher IWC than vertically quiescent cirrus, which can be captured if the predictors of T+RHi+w are used.  

For the AIEs, both larger and smaller aerosol concentrations (Na500 and Na100) show positive correlations with the delta values 

of IWC, Ni, and Di when the combined NASA+NSF datasets were examined. However, larger aerosols produce stronger AIE 490 

(i.e., steeper slopes) than smaller aerosols shown by the slopes of linear regressions (Figure 6). In addition, near-linear 

correlations with positive slopes are seen between fluctuations of IWC, Ni, and Di relative to fluctuations of larger aerosols, 

while the correlations with smaller aerosols are nonlinear. The increasing trend of dlog10IWC, dlog10Ni, and dlog10Di become 

more visible when the number concentrations of smaller aerosols are 10 times larger than their background conditions (i.e., 

dlog10Na100 > 1). This is likely because larger aerosols are more likely to freeze via the heterogeneous nucleation, while the 495 
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smaller aerosols are more likely to freeze via homogeneous freezing. For AIE of large aerosols based on ML analysis, their 

relative contributions for the cirrus occurrence are relatively small compared with those from RHi and w (Figure 7), but their 

relative contributions for the IWC magnitudes are comparable to those from dRHi and dw (Figure 8). For the AIE of small 

aerosols, they do not significantly contribute to IWC fluctuations (Figure 8), but contribute to cirrus occurrences on a similar 

magnitude as the larger aerosols do (Figure 7).  500 

When examining the impacts of using predictors at different spatial scales, the larger aerosols are more effective for predicting 

IWC fluctuations within a close proximity to the 1-Hz in-cloud samples, while the smaller aerosol concentrations at coarser 

scales are more effective for predicting IWC fluctuations. These results indicate that the existence of large aerosols, which 

may serve as INPs, is more likely to be the sufficient condition for ice nucleation since it lowers the requirements of other 

conditions, such as by lowering the RHi thresholds. Therefore, Na500 is more likely to contribute to the prediction of ice 505 

microphysics properties at the same location. On the other hand, the existence of small aerosols is more likely a necessary, but 

not sufficient, condition. That is, higher Na100 values in a larger spatial domain may provide a background condition to support 

ice nucleation but other conditions, such as a relatively higher RHi threshold, still need to be satisfied.  

The compiled datasets show a significantly lower number of in-situ measurements of cirrus clouds in the polar regions (i.e., 

both NP and SP) compared with the other latitudinal regions in the midlatitudes and tropics (Figure 2). In addition, most of 510 

the observations of cirrus clouds in the midlatitudes (except for MACPEX) obtained from these former field campaigns were 

targets of opportunities that were captured en route instead of being the main scientific objectives of those campaigns. Thus, 

more airborne field campaigns in the mid- and high latitudes are needed to understand the key environmental factors controlling 

cirrus formation and evolution by specifically targeting the cirrus cloud system. More comparative studies among cirrus clouds 

formed under various synoptic dynamical conditions (i.e., convective, orographic, and in-situ cirrus) are also still warranted in 515 

order to examine the controlling factors on different types of cirrus. 

Quantifying the relative role of various factors has implications for improving the simulations of cirrus clouds in GCMs. For 

example, capturing the exact timing and location of the concentrations of larger aerosols is more important than capturing such 

information for small aerosols, especially for predicting variabilities of IWC (Table 3). In addition, the formation of both 

vertically quiescent and non-quiescent cirrus clouds requires accurate presentations of RHi at various horizontal scales from 520 

0.2 – 100 km, which presents a challenge to sub-grid parameterizations in GCMs. Overall, this study provided two main types 

of metrics to quantify the contributions from multiple factors on cirrus microphysical properties, i.e., linear regressions and 

ML predictions. These datasets and metrics developed in this study can be applied to evaluate GCM simulations and satellite-

based observations for cirrus microphysical properties and AIEs on cirrus clouds. 

Data availability 525 
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Table 1. Descriptions of 5 NASA and 7 NSF campaigns used in this work, including their names, acronyms, times, locations 

and key instruments. Cirrus cloud observations including in-cloud flight hours ≤ -40°C and ranges of temperatures, altitudes 

and pressures are also provided. 

Field 
Campaign Full Name Time Spatial Extent 

Cirrus 
obs 

hours 

Cirrus Sample 
Range 

(min / max)  
Key Instruments 

NSF HIPPO* HIAPER Pole-to-
pole Observations 

Oct-Nov, 2009 
Mar-Apr, 2010 
Jun-July, 2011 
Aug-Sep, 2011 

67°S – 87°N, 
128°E – 90°W 6.29 

-77.2 – -40 °C 
4.5 – 14.9 km 
133 – 531 hPa 

Fast-2DC, CDP, 
Rosemount, VCSEL, 

UHSAS 

NSF 
START08 

Stratosphere-
Troposphere 

Analyses of Regional 
Transport 

Apr-Jun, 2008 26°N – 63°N, 
117°W – 86°W 2.28 

-67.7 – -40 °C 
6.1 – 14.9 km 
133 – 447 hPa 

Fast-2DC, CDP, 
Rosemount, VCSEL, 

UHSAS 

NASA 
SEAC4RS 

Studies of Emissions 
and Atmospheric 

Composition, Clouds 
and Climate 
Coupling by 

Regional Surveys 

Aug-Sept, 2013 19°N – 50°N, 
80°W – 120°W 4.71 

-59.5 – -40 °C 
9.8 – 13.2 km 
179 – 290 hPa 

2DS, FCDP, MMS, 
DLH, UHSAS 

NSF DC3 
Deep Convective 

Clouds and 
Chemistry Project 

May-Jun, 2012 25°N – 43°N, 
106°W – 79°W 22.89 

-65.9 – -40 °C 
9 – 14.4 km 

147 – 322 hPa 

Fast-2DC, CDP, 
Rosemount, VCSEL, 

UHSAS 

NASA DC3 
Deep Convective 

Clouds and 
Chemistry Project 

May-Jun, 2012 30°N – 42°N, 
117°W – 106°W 14.45 

-63.5 – -40 °C 
9.2 – 12.2 km 
186 – 298 hPa 

2DS, MMS, DLH, 
UHSAS 

NASA 
MACPEX 

Mid-latitude 
Airborne Cirrus 

Properties 
EXperiment 

Mar-Apr, 2011 26°N – 41°N, 
104°W – 84°W 13.00 

-77.3 – -40 °C 
8.2 – 17.8 km 
77 – 347 hPa 

2DS, MMS, HWV, 
FCAS 

NSF 
CONTRAST 

CONvective 
TRansport of Active 

Species in the 
Tropics 

Jan-Feb, 2014 20°S – 40°N, 
132°E – 105°W 22.80 

-78.3 – -40 °C 
8.6 – 15.3 km 
127 – 332 hPa 

Fast-2DC, CDP, 
Rosemount, VCSEL, 

UHSAS 

NASA 
ATTREX-

2014 

Airborne Tropical 
TRopopause 
EXperiment 

Jan-Feb, 2014 12°S – 36°N, 
134°E – 117°W 31.97 

-88.2 – -40 °C 
8.8 – 18.8 km 
68 – 331 hPa 

Hawkeye-2DS, FCDP, 
Hawkeye-CDP, MMS, 

DLH 

NSF 
PREDICT 

PRE-Depression 
Investigation of 

Cloud systems in the 
Tropics 

Aug-Sep, 2010 10°N – 29°N, 
87°W – 38°W 17.33 

-71.4 – -40 °C 
10.3 – 14.8 km 
140 – 273 hPa 

Fast-2DC, CDP, 
Rosemount, VCSEL, 

UHSAS  

NASA 
POSIDON 

Pacific Oxidants, 
Sulfur, Ice, 

Dehydration, and 
cONvection 

Oct, 2016 1°S – 15°N, 
131°E – 161°E 12.65 

-87.9 – -40 °C 
10.4 – 19.4 km 
63 – 253 hPa 

2DS, FCDP, MMS, 
DLH 

NSF 
TORERO 

Tropical Ocean 
tRoposphere 

Exchange of Reactive 
halogen species and 

Oxygenated voc 

Jan-Feb, 2012 42°S – 14°N, 
105°W – 70°W 1.89 

-75 – -40 °C 
8.3 – 15.3 km 
124 – 345 hPa 

Fast-2DC, CDP, 
Rosemount, VCSEL, 

UHSAS  

NSF 
ORCAS 

The O2/N2 Ratio and 
CO2 Airborne 

Southern Ocean 
Study 

Jan-Mar, 2016 75°S – 18°S, 
91°W – 51°W 1.04 

-68.9 – -40 °C 
6.3 – 13 km 

176 – 433 hPa 

Fast-2DC, CDP, 
Rosemount, VCSEL, 

UHSAS  

 

* Only used deployments #2 to #5. 735 
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Table 2. Summary of results for Test A, namely predicting the occurrences of cirrus clouds. Accuracies of the predictions are 

shown for all cirrus, vertically quiescent, and non-quiescent cirrus in columns 1 – 3, respectively.  

Predictors Accuracy (%)  
All cirrus 

Accuracy (%) 
Vertically 
quiescent cirrus 

Accuracy (%) 
Non-quiescent 
cirrus 

Using T, RHi, and w as predictors 
T 57.30 57.69 55.32 
RHi 85.30 85.01 86.79 
w 68.04 71.39 50.79 
T + RHi 86.53 86.41 87.16 
T + w 64.18 66.39 52.80 
RHi + w 85.41 85.16 86.73 
T + RHi + w 86.58 86.46 87.20 

Using T, RHi, w, and Na500 as predictors 
Na500 84.20 88.84 64.69 
T + Na500 73.28 76.34 60.40 
T + RHi +Na500 91.91 92.57 89.11 
T + w +Na500 77.76 82.82 56.51 
RHi + Na500 91.34 91.89 89.05 
RHi + w + Na500 91.62 92.22 89.09 
w + Na500 76.18 81.43 54.12 
T + RHi + w + Na500 91.97 92.68 88.98 

Using T, RHi, w, and Na100 as predictors 
Na100 68.96 70.30 63.32 
T + Na100 68.62 69.86 63.38 
T + RHi +Na100 91.58 92.17 89.13 
T + w +Na100 74.43 77.29 62.43 
RHi + Na100 91.46 92.05 89.02 
RHi + w + Na100 91.63 92.27 88.97 
w + Na100 70.73 73.78 57.90 
T + RHi + w + Na100 91.94 92.62 89.08 
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Table 3. Summary of results for Test B, namely predicting whether IWC inside cirrus is higher or lower than the average IWC 

conditions. Similar to Table 2, accuracies of the predictions are shown for all cirrus, vertically quiescent, and non-quiescent 740 

cirrus in columns 1 – 3, respectively. Effects of multiple factors are analyzed at different spatial scales, i.e., 1-s, 50-s, 250-s, 

and 500-s averaged conditions. 

Predictors Accuracy (%)  
All cirrus 

Accuracy (%) 
Vertically quiescent 
cirrus 

Accuracy (%) 
Non-quiescent cirrus 

1-Hz observations 
dT 48.84 49.45 47.81 
dT + dRHi 65.76 64.03 68.67 
dT + dw 57.30 56.51 58.62 
dT + dRHi + dw 65.15 64.02 67.04 
dT + dRHi + dw + dlog10Na500 76.28 76.49 76.11 
dT + dRHi + dw + dlog10Na100 66.11 65.26 66.83 

50-s averaged observations 
dT 49.36 49.49 44.98 
dT + dRHi 70.33 70.33 70.34 
dT + dw 57.21 57.55 46.23 
dT + dRHi + dw 70.68 70.62 72.78 
dT + dRHi + dw + dlog10Na500 71.58 71.50 74.07 
dT + dRHi + dw + dlog10Na100 70.78 70.74 72.39 

250-s averaged observations 
dT 51.74 51.71 55.04 
dT + dRHi 69.50 69.42 80.56 
dT + dw 56.02 56.10 43.87 
dT + dRHi + dw 69.99 69.95 75.81 
dT + dRHi + dw + dlog10Na500 69.89 69.78 85.53 
dT + dRHi + dw + dlog10Na100 69.64 69.60 74.89 

500-s averaged observations 
dT 50.70 50.71 49.61 
dT + dRHi 71.65 71.67 66.32 
dT + dw 56.01 55.96 68.62 
dT + dRHi + dw 72.17 72.18 67.29 
dT + dRHi + dw + dlog10Na500 72.32 72.38 56.00 
dT + dRHi + dw + dlog10Na100 71.99 72.05 57.39 
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Figure 1. Global maps of research aircraft flight tracks from (a) five NASA campaigns and (b) seven NSF flight campaigns 745 

used in this observational study. The entire flight tracks at all temperatures as shown.  
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Figure 2. Distributions of RHi at various temperatures in 6 latitudinal bands using the combined NASA and NSF dataset, 

separated by non-quiescent cirrus (two left columns) and vertically quiescent cirrus (two right columns). Solid black line 

indicates ice saturation. Dashed black line denotes the liquid saturation threshold. Dash-dotted line represents the homogeneous 750 

freezing line based on Koop et al. (2000). Color bars denote logarithmic-scale number of samples.  
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Figure 3. Distributions of standard deviations of vertical velocity (σw calculated for 10 km spatial scales) at various 

temperatures, separated by non-quiescent cirrus (two left columns) and vertically quiescent cirrus (two right columns). 
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 755 
Figure 4. (a-f) Distributions of IWC, Ni, and Di as a function of temperature. Relationships between the (g-l) fluctuations of 

RHi (calculated as dRHi) and (m-r) fluctuations of w (calculated as dw) with respect to the fluctuations of ice microphysical 

properties. Rows 1, 3, 5 are based on NASA campaigns and rows 2, 4, 6 are based on NSF campaigns. Black lines and vertical 

bars denote the geometric means and standard deviations, respectively.  
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 760 
 

Figure 5. Similar to Figure 4, but for relationships of fluctuations of cirrus properties (i.e., dlog10IWC, dlog10Ni, and dlog10Di) 

with respect to dlog10(Na500) in top 3 rows and dlog10(Na100) in bottom 3 rows. Rows 1 and 4 are based on NASA campaigns, 

rows 2 and 5 are NSF campaigns, and rows 3 and 6 are the combined NASA+NSF campaigns. 
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 765 

Figure 6. Linear regressions quantifying the correlations of dlog10IWC, dlog10Ni, and dlog10Di with respect to dlog10(Na500) 

in top 3 rows and dlog10(Na500) in bottom 3 rows. The analyses in Figures 6 – 10 use the combined NASA+NSF datasets (1 – 

3012.5 μm). Aerosol indirect effects are examined for various ranges of temperature, dRHi, and dw. Colored dots represent 

geometric means of ice microphysical properties in each Na bin. Slope and intercept values are shown in the legend. The last 

column represents the distributions of the number of samples.  770 
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Figure 7. Prediction accuracies (in %) of Test A, namely using ML models to predict the binary condition of in-cloud or out-

of-cloud for temperatures ≤ -40 °C. Columns 1 and 2 show the accuracies for predicting observed in-cloud and observed clear-

sky conditions, respectively. Red and green indicate correct and false predictions, respectively. Column 3 shows the predication 

of three types of cirrus – all cirrus, vertically quiescent (VQ), and non-quiescent (NQ) cirrus. The set of predictors used in each 775 

test is labelled on the right-hand side of each row. ML predictions using T, RHi, and w are based on all 12 campaigns, while 

ATTREX and POSIDON are not included in the bottom 2 rows due to the lack of aerosol measurements. 
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Figure 8. Similar to Figure 7 but predicting whether dlog10IWC is positive (+) or negative (-) for in-cloud conditions. 

dlog10IWC is calculated relative to the geometric mean of IWC in each 1-degree temperature bin inside cirrus clouds. 1-Hz 780 

observations are used in this analysis compared with coarser scales used in Table 2. Columns 1 and 2 represent the scenarios 

when the real observations show dlog10IWC > 0 and < 0, respectively. Column 3 shows the overall accuracies for predicting 

the sign of dlog10IWC in three types of cirrus.  
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Figure 9. Distributions of log10IWC in relation to temperature, RHi, and w in columns 1 – 3, respectively. Various sets of 785 

predictors are used in different rows. The solid horizontal lines and the vertical bars represent the geometric means and standard 

deviations of (a-c) observed and (d-l) predicted log10IWC. Red and blue represent results for non-quiescent and vertically 

quiescent cirrus, respectively. 
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 790 

Figure 10. (a-f) Distributions of predicted versus observed log10IWC colored coded by the average temperature, RHi, and w 

in each bin for columns 1 – 3, respectively. (g-l) PDFs of T, RHi, and w, separated by when IWC is underestimated or 

overestimated by the ML model. Rows 1 and 3 are predicted by T only; Rows 2 and 4 are predicted by T+RHi+w. 
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