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Abstract

We give a variant of Artin algebraization along closed subschemes and closed substacks. Our main application is
the existence of étale, smooth or syntomic neighborhoods of closed subschemes and closed substacks. In particular,
we prove local structure theorems for stacks and their derived counterparts and the existence of henselizations along
linearly fundamental closed substacks. These results establish the existence of Ferrand pushouts, which answers
positively a question of Temkin—-Tyomkin.

1. Introduction

The main technical result of this paper is a generalization of Artin’s algebraization theorem [Art69,
Thm. 1.6]: from algebraizations of complete local rings to algebraizations of rings complete along an
ideal. It is proven using Artin approximation over henselian pairs following the approach of [CJ02] and
[AHR20, App. Al.

Theorem 1.1 (Artin algebraization for pairs). Let S be an excellent affine scheme, and let & be a
category fibered in groupoids, locally of finite presentation over S. Let Z be an affine scheme over S,
complete along a closed subscheme Zj. Assume that Zy — S is of finite type. Let n: Z — X be a
morphism, formally versal at Zy. Then there exist

(1) an affine scheme W of finite type over S,
(2) a closed subscheme Wy — W,

3) amorphismé: W — X over S and

4) a morphism ¢: (Z,Zy) — (W, W) over S

such that the induced morphism p: Z — W is an isomorphism and the isomorphism ¢, : Z,, — W, on
infinitesimal neighborhoods is compatible with n and & for every n.

We prove a more general version when Z is a stack in Theorem 2.3. This generalizes [AHR20, App.
Al] and is used to establish a local structure theorem for stacks (Theorem 1.3). We will return to this
shortly.
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Application: Etale neighborhoods of affine subschemes

As an application of Theorem 1.1, we have the existence of affine étale neighborhoods.

Theorem 1.2 (Affine étale neighborhoods). Let X be a quasi-separated algebraic stack with affine
stabilizers, and consider a diagram

W()L - >W
I

J/fb I f
+

.9,”0(—> <,

where Xy — X is a closed immersion and fy: Wy — 2y is an étale (resp. smooth) morphism with Wy
affine. Then there exist an affine scheme W and an étale (resp. smooth) morphism f: W — X such that
flay = fo.

If & is an affine scheme, then Theorem 1.2 is [SP, 04D1] (fy étale) and [Elk73, Thm. 6] (fy smooth).

For nonaffine schemes and algebraic spaces, these results are new and answer positively a question of
Temkin and Tyomkin [TT16, Qstn. 5.3].

Application: Local structure of stacks

We now generalize Theorem 1.2 from extending affine étale neighborhoods to extending linearly fun-
damental étale neighborhoods. By definition, an algebraic stack & is fundamental if there is an affine
morphism & — BGL,, 7 for some n, and linearly fundamental if it is fundamental and cohomologically
affine; see [AHR 19, §2.2] for further discussion.

In order to formulate mixed-characteristic versions of the local structure results, we recall from
[AHR19, §7] the following conditions on an algebraic stack 2.

(FC) There is only a finite number of different characteristics in 2.
(PC) Every closed point of & has positive characteristic.
(N) Every closed point of & has a nice stabilizer [HR 15, Defn. 1.1] (i.e., is an extension of a finite
linearly reductive group scheme by an algebraic group of multiplicative type).

If & is linearly fundamental, then (PC) = (N) as linearly reductive group schemes in positive
characteristic are nice [Nag62], [HR15, Thm. 1.2]. The condition that we often impose will be of the
following form for some morphism of stacks 7y — Z: Assume either that % satisfies (N), or &
satisfies (FC).

We also remind the reader of another type of algebraic stack from [AHR 19, §2.2]: An algebraic stack
Z is nicely fundamental if it admits an affine morphism to BsQ, where Q — S is a nice and embeddable
group scheme over S. It follows that nicely fundamental stacks are linearly fundamental.

Theorem 1.3 (Local structure of stacks). Let S be an excellent algebraic space, and let & be an algebraic
stack, quasi-separated and locally of finite presentation over S with affine stabilizer groups. Consider a

diagram
W~ — W
I
Jﬁ) v
3
—— X,

where Ly — I is a closed immersion and fy: Wy — Xo is a morphism of algebraic stacks with W
linearly fundamental.

(1) If fo is smooth (resp. étale), then there exists a smooth (resp. étale) morphism f: W — X such
that W is fundamental and fg, = fo.
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(2) Assume that Wy satisfies (PC) or (N) or Xy satisfies (FC). If fo is syntomic and &y has the resolution
property, then there exists a syntomic morphism f: W — X such that W is fundamental and

f|3”0 = fO-

Syntomic means flat and locally of finite presentation, with fibers that are local complete intersections.
An important example in our context is that any morphism BG — &y is smooth in characteristic zero
but merely syntomic in positive characteristic.

For further refinements on %", see Theorems 1.5 and 1.6 below and [AHR19, §8.1, §8.3]. For a
non-Noetherian version, see Theorem 5.1. We also have the following result.

Theorem 1.4 (Local structure of stacks at nonclosed points). Let & be a quasi-separated algebraic
stack with affine stabilizer groups. Let x € || be a point with residual gerbe &y, and let fy: Wy — Gy
be a syntomic (resp. smooth, resp. étale) morphism with Wy linearly fundamental. Then there exists a
syntomic (resp. smooth, resp. étale) morphism f: W — X such that W' is fundamental and f|g_ = fo.

We give a more general version for pro-affine-immersions in Theorem 5.8. Note that the inclusions
2y — X of a closed substack in Theorem 1.3 and &, — & of a residual gerbe in Theorem 1.4 are
both pro-affine-immersions. We also have refinements on the local charts (cf. [AHR19, Prop. 5.7 and
Cor. 8.7]).

Theorem 1.5 (Refinement 1). Let # be a fundamental stack. Let Wy — W be a pro-affine-immersion.
Assume that W is linearly fundamental and satisfies (PC), (N) or (FC). If g: W — X is a morphism
to an algebraic stack with affine (resp. separated) diagonal, such that glsy; is representable, then there
exists an étale neighborhood W' — W of Wy such that W' is fundamental and gl is affine (resp.
representable).

Theorem 1.6 (Refinement 2). Let W be a fundamental stack and Wy — W be a pro-affine-immersion.
Assume that W is linearly fundamental and that either W satisfies (PC), (N) or W satisfies (FC). Then
there exists an étale neighborhood W' — W of Wy such that W’ is linearly fundamental. Moreover,

(1) If %y = [Spec Ag/Gol, where Gy is a linearly reductive (resp. nice) and embeddable group scheme
over the good moduli space Wy, then we can arrange so that W' = [Spec A/G], where G is a
linearly reductive (resp. nice) and embeddable group scheme over the good moduli space W', such
that Glw, = Go.

(2) Suppose that W is defined over a base algebraic space S and that G — S is an affine flat group
scheme of finite presentation. If Wy = [Spec Ao/G ], then we can arrange so that "’ = [Spec A/G].

Application: Henselizations

The henselization of an algebraic stack & along a morphism v: #° — & is an initial object in the
2-category of 2-commutative diagrams

W — I’

RN

52//‘,

where f: X’ — X is pro-étale. Recall that f: X’ — X is called pro-étale if it is an inverse limit of
quasi-separated étale neighborhoods & — & such that the transition maps 2, — 2, are affine for all
sufficiently large 4 > u. Note that we do not require that f is representable or separated.

Theorem 1.7 (Existence of henselizations). Let & be a quasi-separated algebraic stack with affine
stabilizers. Let v: Xy — X either be the inclusion of a closed substack satisfying (PC), (N) or (FC); or
the inclusion of a residual gerbe. If Xy is linearly fundamental, then the henselization &”j‘ of & along
v exists. Moreover, X" is linearly fundamental and (X!, 2o) is a henselian pair.
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When X is an affine scheme, then Theorem 1.7 is [Ray70, Ch. XI, Thm. 2]. The result is new for
nonaffine schemes and algebraic spaces. It is also closely related to, but does not settle, conjectures of
Greco and Strano on henselian schemes [GS81, Conj. A, B and C].

Note that there are no analogous results for open neighborhoods: There are schemes with affine
closed subschemes that do not admit affine neighborhoods. Indeed, there is a separated scheme with
two closed points that does not admit an affine open neighborhood and such that the semilocalization at
the two points does not exist. See Appendix A.

Application: Ferrand pushouts

As an application of Theorem 1.2, we can prove that Ferrand pushouts [Fer03, TT16] exist for algebraic
spaces and algebraic stacks. In the affine case, these are Milnor squares [Mil71, §2] and it follows that
these are pushouts in the category of quasi-separated algebraic stacks.

Theorem 1.8 (Existence of Ferrand pushouts). Consider a diagram

Lt

d
%

of quasi-separated algebraic stacks, where i is a closed immersion and f is affine. Then the pushout Y%
exists in the category of quasi-separated algebraic stacks and is a geometric pushout. If Lo, Yy and X
are Deligne—Mumford stacks (resp. algebraic spaces, resp. affine schemes), then so is ¥ .

Theorem 1.8 generalizes the main theorem of [TT16], where certain pushouts of algebraic spaces
are proven to exist.

Application: Nisnevich neighborhoods

The following application is used in [HK19] and is a simple consequence of the local structure at
nonclosed points (Theorem 1.4).

Theorem 1.9 (Nisnevich neighborhoods of stacks with nice stabilizers). Let X be a quasi-compact and
quasi-separated algebraic stack such that every, not necessarily closed, point of & has a nice stabilizer
group. Then there is a Nisnevich covering f: W — X, where W is nicely fundamental. That is,

(1) fis étale and for every, not necessarily closed, point x € || the restriction f|g_ has a section.
(2) W admits an affine good moduli space W and there is a nice embeddable group scheme G — W
such that W = [Spec A/G].

If & has affine (resp. separated) diagonal, then we can arrange that f is affine (resp. representable).

Remark 1.10. When X is an algebraic stack with a good moduli space such that every point of
characteristic zero has an open neighborhood of characteristic zero, then 2 has a strong Nisnevich
neighborhood of the form [Spec A/G] with G linearly reductive [AHR19, Thm. 6.1]. Here, strong
means that the Nisnevich neighborhood is a pullback from a Nisnevich cover of the good moduli space.
Note that the condition that 2° admits a good moduli space implies that every closed point has linearly
reductive stabilizer.

In the case of linearly reductive stabilizers at closed points, we have the following result.

Theorem 1.11 (Nisnevich neighborhoods of stacks with linearly reductive stabilizers at closed points).
Let & be a quasi-compact and quasi-separated algebraic stack with affine stabilizers and linearly
reductive stabilizers at closed points. Assume that & has separated (resp. quasi-affine, resp. affine)
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diagonal. Then there is a Nisnevich covering f: [V /GL,,| = &, where V is a quasi-compact separated
algebraic space (resp. quasi-affine scheme, resp. affine scheme). In general, the morphism f is not
representable but if X has affine diagonal we can also arrange so that f is affine.

When 2 has affine diagonal, the Nisnevich covering is fundamental but not always linearly funda-
mental. If 2 is the stack quotient of the nonseparated affine line by Z/2Z x G,,, [AHR20, Ex. 5.2], then
the unique closed point has stabilizer G,, whereas the open point has stabilizer Z/27Z. Every Nisnevich
covering will thus have a point with stabilizer Z/2Z and such stacks are not linearly fundamental in
characteristic 2.

Application: Compact generation

Let & be a quasi-compact and quasi-separated algebraic stack and consider its unbounded derived
category of Og-modules with quasi-coherent cohomology sheaves Dqcon (). A vexing question over
the years has been whether the category Dqcon () is compactly generated. In this situation, this is
equivalent to finding a set of perfect complexes {P,}1ca on & such that

(a) if M € Dacon(X) and Homp, (P4, M) = 0 for all 2 € A, then M = 0 and
(b) the functor Homg (P4, —): Dacon(Z) — Ab preserves small coproducts for all 2 € A.

For schemes, definitive positive results go back to the pioneering work of [TT90, Nee96]. For a thorough
discussion on the subtleties of this question for algebraic stacks, we refer the interested reader to [HR 17,
HNR19].

A lot of progress was made on this question for stacks in [AHR20, Thm. 5.1] and [AHR 19, Prop.
6.14], however. More precisely, [AHR20, Thm. 5.1] established compact generation provided that &
had affine diagonal and the identity component GO of the stabilizer groups G, of Z at all closed
points x of & were linearly reductive. It was shown in [HNR19, Thm. 1.1], however, that if 2" had
a point of positive characteristic y such that the reduced identity component (Gy)roe 4 Was not a torus,
then Dqgon(2) was not compactly generated. In the following theorem we eliminate this discrepancy
and give the following characterization of algebraic stacks in positive characteristic that have compactly
generated derived categories.

Theorem 1.12. (Compact generation in positive characteristic). Let & be a quasi-compact algebraic
stack with affine diagonal satisfying (PC). The following conditions are equivalent.

(1) & is Ro-crisp [HR17, Defn. 8.1].

(2) Dacon(X) is compactly generated and for every closed subset Z C || with quasi-compact com-
plement, there exists a perfect complex P on X with supp(P) = Z.

(3) Dacon(X) is compactly generated.

(4) For every point x of I, the reduced identity component (G x)r% 4 Of the stabilizer G at x is a torus.

(5) For every closed point x of X, the reduced identity component (G X)r?: 4 Of the stabilizer G at x is a
torus.

We will prove Theorem 1.12 immediately after the non-Noetherian local structure Theorem 5.1, and
make use of the refinements established in [AHR19].

Application: Local structure theorem of derived algebraic stacks

We now come to the derived versions of our local structure results. Recall that a morphism f of derived
stacks is quasi-smooth if f is locally of finite presentation and its cotangent complex Ly has Tor-
amplitude < 1. This is the analogue of local complete intersection maps in derived algebraic geometry.

Theorem 1.13 (Local structure of derived stacks). Let & be a quasi-separated algebraic derived
1-stack with affine stabilizers. Let oy — I be a closed substack, and let fy: Wy — Lo be a morphism
with (W) linearly fundamental. Assume one of the following conditions:
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(1) %y satisfies (PC) or (N), or
2) Xy satisfies (FC).

Then

(@) If fy is smooth (resp. étale), then there exists a smooth (resp. étale) morphism f: W — X such
that W' is fundamental and f|g, = fo.

(b) Assume that (2y)c has the resolution property. If fy is quasi-smooth, then there exists a quasi-
smooth morphism f: W — I such that W is fundamental and f|g, = fo (here the restriction
denotes the derived pullback).

It follows from Proposition 6.1 that 2 is linearly fundamental if and only if the underlying classical
stack ¢ is linearly fundamental. See Section 6 for further discussion.

Application: Local structure of a O-stratum

Let & be a quasi-separated algebraic stack, and let 2" be an algebraic stack, quasi-separated and locally
of finite presentation over § with affine stabilizers relative to §. Let © := [A!/G,,]; then the mapping
stack Filt(Z) := Map (®g, ) is also algebraic, locally of finite presentation, quasi-separated and has
affine stabilizers relatlve to & [HL14, Prop. 1.1.2]. A ®-stratum in 2 is by definition an open and closed
substack % c Filt(2') such that the morphism % — X defined by restricting to 1 € O is a closed
immersion so that we may also regard % as a closed substack of 2" (see [HL.14, Defn. 2.1.1]).

Stratifications by closed substacks of this kind arise in geometric invariant theory, as well as on
moduli stacks such as the moduli of torsion-free sheaves on a projective scheme. In [AHLH23, Lem.
6.11], the following local structure result was established using our Theorem 5.1, and it is key to proving
the semistable reduction theorem [AHLH23, Thm. 6.3].

Proposition 1.14. Let S be a Noetherian algebraic space. Let & be an algebraic stack of finite type over
S with affine diagonal over S. If ¥ — X is a ©-stratum, then there is a smooth representable morphism
p: [Spec(A)/G,,] — & such that ¥ is contained in the image of p, and p~' (¥) is the ©-stratum

P~ (¥) = [Spec(A/LL)/Gm] < [Spec(A) /Gl

where I, C A is the ideal generated by elements of positive degree.

2. Artin algebraization

In this section, we prove Artin’s algebraization theorem for linearly fundamental pairs (Theorem 2.3)
which establishes Theorem 1.1 as a special case. In order to state the theorem, we will need the following
terminology.

Definition 2.1. A pair (2, 2y) consists of an algebraic stack 2 and a closed substack 2. We let Zg-
denote the ideal defining 2y and let &, denote the nth infinitesimal neighborhood of 2, that is, the
closed substack defined by Igf'l. We say that a pair (2, 2p) has a given property P (e.g., linearly
fundamental) if both 2 and Z; have P.

A morphism of pairs (X, %y) — (¥, %) is a morphism f: X — % such that 25 — f~'(%), or
equivalently, f —11? C Zg.Forany n > 0, we let f,,: &, — %, denote the induced morphism. We say
that £ is adic if o = = (%).

Note that if f is adic, then &, = f~(%,) for all n.

Definition 2.2. Let f: Z — 2 be a morphism of functors or stacks (e.g., schemes or algebraic spaces).
Let T be an algebraic stack and T — Z a morphism. We say that fis formally versal at T if the following
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condition holds: For all nilpotent immersions 7 < T’ < T’ and 2-commutative diagrams of solid
arrows

T— T ——F

L

T8 —ou X,

there exist a lift 7 — Z and 2-morphisms that make the whole diagram 2-commutative.

Our main theorem is the following result, which generalizes [AHR20, Cor. A.19] and [AHR 19, Thm.
5.6].

Theorem 2.3 (Algebraization of linearly fundamental pairs). Let S be an excellent affine scheme. Let
X be an algebraic stack, locally of finite type over S with quasi-separated diagonal. Let (£, %) be
a complete linearly fundamental pair (Definition 2.5) over S such that Zy is of finite type over S. Let
n: F — X be a morphism, formally versal at Zy. Then there exist

(1) a fundamental pair (W, Wy) such that W — S is of finite type and W is linearly fundamental;
(2) amorphism ¢: (Z,Zy) — (W', W) suchthat ¢, : Z, — Wy, is an isomorphism for alln > 0; and
(3) a 2-commutative diagram over S

@ &
s ———

n

In particular, the induced map o: Z — W is an isomorphism and & is smooth in a neighborhood of Wj.

Remark 2.4. Most of the statement of the theorem remains valid, with the same proof, when X is an
arbitrary category fibered in groupoids that is locally of finite presentation over S. The only difference
is that instead of a 2-isomorphism & o ¢ =~ 1, one only obtains a compatible family of 2-isomorphisms
Eoglg, ~n|g, foralln > 0.

We prove this theorem at the end of the section after discussing some background material on pairs.
We first explain how this theorem implies Theorem 1.1.

Proof of Theorem 1.1. Applying Theorem 2.3 and Remark 2.4 with (£, Zy) := (Z, Zp) gives a fun-
damental pair (%', %) with Wy = Zy. Since Zj is affine, we may apply [AHR 19, Prop. 5.7] to the
morphism 7" — S to conclude that there is an affine open neighborhood U € %" of Zy. Replacing
(W, W) with (U, Zy) gives the result. )

2.1. Coherently complete pairs
The following definition was introduced in [AHR20] and was further studied in [AHR 19].

Definition 2.5. We say that a pair (2, o) is complete, or that X is coherently complete along Xy, if &

is Noetherian with affine diagonal and the induced functor Coh(Z") — m Coh(Z,,) is an equivalence
n

of abelian categories of coherent sheaves.

By Tannaka duality [HR 19], we have that & is the colimit of {2}, },,>¢ in the category of Noetherian
stacks with quasi-affine diagonal and also in the category of Noetherian stacks with affine stabilizers if
2 is quasi-excellent.

Let (2, 2p) be a linearly fundamental Noetherian pair. The good moduli space X is a Noetherian
affine scheme and 7: & — X is of finite type. This gives a morphism of pairs (2, Zp) — (X, Xo),
where Xo = 71(2p). The pair (X', 2p) is complete if and only if (X, Xy) is complete [AHR 19, Thm.
1.6]. The latter simply means that if X = Spec A and Xy = Spec A/, then A is [-adically complete.
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If (', 2p) is a fundamental Noetherian pair such that 2y is linearly fundamental, then (5? , ) is
a complete linearly fundamental pair, where L= x x Xand X = Spec;f is the I-adic completion.
Indeed, the completion factors through the Zariskification 2" Xx Spec((l +1 )‘IA), which is linearly
fundamental by [AHR 19, Cor. 6.10].

2.2. Preliminary results on pairs

In this section, we provide criteria to check that a morphism of pairs is a closed immersion or isomor-
phism (Proposition 2.9) or is formally versal (Lemma 2.10).

Lemma 2.6 [Vas69, Prop. 1.2]. Let A be a ring and let ¢: M — N be a surjective homomorphism of
finitely generated A-modules. If there exists an A-module isomorphism M = N, then ¢ is an isomorphism.

Proof. We identify N with M and treat ¢ as an endomorphism of M. Then M is also a module over A[¢]
where tx = ¢(x) for x € M. Since ¢ is surjective tM = M and Nakayama’s lemma tells us that there is
an element a € A[¢] such that (1 — at)M = 0. That is, ¢ has inverse given by ¢~!(x) = ax. O

Lemma 2.7. Suppose that I C R is an ideal and ¢: R — S is a surjective homomorphism of Noetherian
rings. If there is an abstract isomorphism of graded R [I-modules Gr; R — Gryg S and R is separated
for the I-adic topology, then ¢ is an isomorphism.

Proof. Since ¢ is surjective, it induces a surjection Gr,, ¢: I /I"™*! — I"S/I"*'S of finitely generated
R/I-modules. By assumption, there is an abstract isomorphism 1" /I"*! — I"S/I"*1S of R/I-modules,
so Gr,, ¢ is an isomorphism by Lemma 2.6.

We have induced morphisms of exact sequences

0 —— 14/19% — 5 R/I4* R/I¢ 0
lGrd @ deﬂ Lpd
0 —— I195/191s —— §/14+1§ S/14S 0,

and it follows that ¢4: R/I? — S§/IS is an isomorphism for every d > 0 by induction on d. In
particular, ker ¢ C I forall d > 0. But R is separated for the I-adic topology, so ker ¢ € (50 I¢ = (0)
and the result follows. O

The following results generalize [AHR20, Props. A.8 and A.10] from the local case.
Proposition 2.8. Let f: (X, 2o) — (¥, %) be a morphism of Noetherian pairs.

(1) If fi is a closed immersion, then so is f, for everyn > 0.

(2) If fiis a closed immersion and fy is an isomorphism, then f, is adic for every n > Q.

(3) If fi is a closed immersion and there exists an isomorphism of graded O,-modules
Y Grr, (Oy) — (fo)s Grz, (Og), then fy is an isomorphism for every n > 0.

Proof. We can replace f with f,,. The first part is then [AHR19, Lem. 4.10]: The question is local and
reduces to the affine case where it follows from Nakayama’s lemma. For the second part, we have seen
that f, is a closed immersion and then it is adic if and only if f; is an isomorphism. The third part is
also local and thus follows from Lemma 2.7. O

Proposition 2.9. Let f: (L, 2y) — (Y. %) be a morphism of complete pairs such that fy is an
isomorphism.

(1) fis a closed immersion if and only if f| is a closed immersion.
(2) f is an isomorphism if and only if fi is a closed immersion and there exists an isomorphism
Y Grz, (Oy) — (fo): Grz, (Og) of graded Oy, -modules.
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Proof. The conditions are clearly necessary. Conversely, if the conditions of (1) (resp. (2)) hold, then
fn is adic and a closed immersion (resp. an isomorphism) for every n > 0 by Proposition 2.8. Since
fn is adic, we have that f,1(%,) = 2, for all m < n. Since % is coherently complete along %, we
obtain a closed substack Z — % such that Z Xy %, = &, for all n > 0. Under condition (2), we have
that Z = %. Finally, since (', Zp) is complete, we have by Tannaka duality a unique isomorphism
X —> Zover¥. O

Let X be a quasi-compact and quasi-separated algebraic stack. Recall [HR 17, Defn. 2.1] that X is
said to have cohomological dimension 0 if H (X, M) = 0 for all i > 0 and quasi-coherent Ox-modules
M. Affine schemes have cohomological dimension 0. More generally, cohomologically affine algebraic
stacks that have affine diagonal or are Noetherian and affine-pointed also have cohomological dimension
0 [HNR19, Thm. C.1].

Lemma 2.10. Let f: (£, %) — (X', Xo) be a morphism of locally Noetherian pairs. If f,: £, — Xy
is smooth for all n > 0, then fis formally versal at any morphism T — Z from a quasi-compact and
quasi-separated algebraic stack T of cohomological dimension 0 whose set theoretic image is contained

in |Zol.

Proof. Thelifting criterion in Definition 2.2 is equivalent to the same criterion for the map f,,: Z, — I,
for n > 0 large enough that Z,, contains the image of 7° and 2, contains the image of 7", so by our
hypotheses we may assume that the map f is smooth. First, note that 7’ has cohomological dimension
0 because any quasi-coherent Op/-module admits a finite filtration whose associated graded objects are
pushforwards of objects in QCoh(T'). Also, because we may factor 7 — T’ into a sequence of square-
zero extensions, it suffices to verify the lifting criterion in the case where 7/ — T"’ is a square-zero
extension by some M € QCoh(7”). In this case the obstruction to the existence of a dotted arrow is an
element in the group ExtlT, (Lz 2 |r, M). Since f is smooth, Lo is a perfect complex of Tor-amplitude
[0, 1]. Hence, the Ext group vanishes as 7’ has cohomological dimension O. O

2.3. Proof of Theorem 2.3

First, we establish an important special case of Artin algebraization for pairs.

Lemma 2.11. Let (S, So) be an excellent affine pair, let (T,Ty) be a complete affine pair and let
f: (T, Ty) — (S,Sg) be a morphism such that fy is an isomorphism and f| is a closed immersion.
Let & be a finite type algebraic stack over S, and let Zy — Z =T Xs X be a closed substack over
Ty. For any N > O, there is an affine étale neighborhood (S’,S)) — (S, So) and a closed substack
W — S’ xg X such that:

(1) The map T — § factors through S’, and Ty — S, is a closed immersion;
(2) Ty X7 Z =8y Xs' W as closed substacks of Sy, Xs & In particular, if Wy := Zo — W', then the
canonical map is an isomorphism Fn = Wy and

(3) There is an isomorphism Grz, Oz = Grg,, Oy of graded modules over Zy = W.
Proof. Consider the functor F': Sch?g — Set, where F(U — S) is the set of isomorphism classes of
complexes of finitely presented quasi-coherent Oy g-modules & — £ — Oyxq such that £ is
locally free. This functor is locally of finite presentation.

Let S be the completion of S along Sg. Then7 — S is a closed immersion by Proposition 2.9, because
(T, Tp) is complete, fy is an isomorphism and f; is a closed immersion. Now let

(’)ga" — O » Or

be a presentation of the structure sheaf of 7 <— . Pulling back to S x s & we get a resolution

a B
ker(B) — Og?:sfl” = 05,9 > Orxsa-.
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We regard the pair (a, B) as an element of F (§) Note that by increasing N if necessary, we may assume
that both @ and B satisfy the Artin—Rees condition (AR)y of [AHR20, Def. A.15] with respect to Z.

Let (S", So) denote the henselization of the pair (S, So). By Artin approximation over henselian pairs
[AHR 19, Thm. 3.4], one can find a class in F(S") which restricts to the same class as (@, 8) in F(Sy).
Then because S” is constructed as an inverse limit of étale neighborhoods of S, we lift this class in
F(S") to aclass (o, 8) € F(S’) for some étale map S” — S lying under S” such that §” x5 So =~ So.

We now let #" — S’ X5 X be the closed substack defined by im(8’) € Os/x,a. By construction,
we have

Ow @0y, Os,, = coker(B'ls, ) = Oryxs

as Og/x g a-algebras, which is the second condition of the lemma.

Now, consider («,8) € F (§) and the restriction of (a’, 8’) to F (§). Both complexes are isomorphic
after tensoring with Og,,, and by hypothesis the complex defined by (a, ) is exact and satisfies the
Artin—Rees criterion (AR)y;, so the refined Artin—Rees theorem [AHR20, Thm. A.16] implies that

Grz, Oz = Grz, (coker(B)) = Grg,, (coker(8’)) = Grz,, Oy . O
The following generalizes [AHR20, Thm. A.17].

Proposition 2.12 (Weak Artin algebraization for pairs). Let S be an excellent affine scheme, and let &
be a category fibered in groupoids, locally of finite presentation over S. Let (T, Ty) be a Noetherian affine
pair over S such that Ty — S is of finite type. Let (£, Zy) — (T, Ty) be a morphism of finite presentation
andletn: £ — I be a morphism compatible over S. Fix an integer N > 0. Then there exist

(1) a pair (W, W) of finite presentation over S, together with a morphism&: W — I
(2) an isomorphism Zn = W over X; and
(3) an isomorphism Grz, Oz = Grz,, Oy of graded modules over Zy = Wj.

Moreover, if Z is fundamental, then one can arrange that W' is fundamental.

Proof. Tt suffices to prove the claims after base change to the completion of 7, so we may assume that
T is complete along Tj. Now, write

where T is a cofiltered system of affine S-schemes of finite type. For A sufficiently large, 7y — T, is
a closed immersion. Increasing A if necessary, standard limit methods give us an algebraic stack Z, of
finite presentation over 7 fitting into a commutative diagram

T

It now suffices to replace S with T, and 2" with Z,, and to find a stack over Z,; meeting the conditions
of the theorem. We may therefore assume that & is algebraic and of finite presentation over S, and that
Ty — S is a closed immersion, in which case the theorem follows immediately from Lemma 2.11 with
So as the image of T.

Finally, if Z were fundamental, meaning Z admits an affine map f: Z — BGL, z for some n, then
in this case one can simultaneously approximate both the map f and the map Z — X by replacing 2
with & Xs (BGL,,s) in the argument above. The map Z — BGL, s is affine, so [Ryd15, Thm. C]
guarantees that we can arrange for Z in (1) to be affine over BGL,, 5 as well. The stack 7" constructed
in Lemma 2.11 will be affine over BGL,, s as well, hence fundamental. O
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We now prove our main algebraization theorem:

Proof of Theorem 2.3. Let T be the good moduli space of Z and Ty the good moduli space of Zj.
Choose an N > 1. Then Ty — S is of finite type, so Proposition 2.12 produces a stack 7" satisfying the
first two conditions of the theorem along with amap £: #° — & and an isomorphism ¢/ : Wn = Zn
over L.

We would like to extend the isomorphism i 5 to a compatible sequence of isomorphisms i, : #;, —
%, over X for all n > N. Extending the map ¢, to ¢, is equivalent to finding a dotted arrow such
that the diagram

Wnet ——— &
flwn-%—l

is 2-commutative. It is possible to do this for all # > N because by hypothesis the map 7 is formally
versal at % = Zy (see Definition 2.2). The resulting sequence of maps ¢, : #,, — Z,, and the induced
map w W — Z are isomorphisms by Proposition 2.9 and d part (3) of Proposition 2.12. If we define
@ to be the inverse of ¢ followed by the canonical map W — W, then by construction we have a
compatible sequence of 2-isomorphisms & o ¢|z, = 7|z, foralln > 1.

If & is an algebraic stack with quasi-separated diagonal, then the stack I := Isomg (&€ o ¢, 1) is a
quasi-separated algebraic space, locally of finite type over Z. The 2-isomorphisms ¢ o ¢|gz, = 7|z,
give a compatible sequence of sections o, of I — Z over Z,, for all n > 1. The image of all of the o,
lie in some quasi-compact open substack I’ C I, so we may replace I with I’. Then Tannaka duality
implies that there is a unique sectiono: & — I’ C I of I — Z, which corresponds to a 2-isomorphism
& o p ~ 7 satisfying the conditions of the theorem. O

3. Affine étale neighborhoods
In this section we prove the existence of affine étale neighborhoods (Theorem 1.2).
Proof of Theorem 1.2.

Step 1: Reduction to & of finite presentation over Z. We may replace 2" with an open quasi-
compact neighborhood of the image of Wy. Then & is quasi-compact and quasi-separated and hence of
approximation type [Ryd23]" .

We can thus write &) as the intersection of finitely presented closed immersions 2 <— 2 [Rydl15,
Thm. D]. Using standard limit methods, we can thus, for sufficiently large A, find an étale (resp. smooth)
morphism f: Wy — 2 that restricts to fo: Wy — 2o [Ryd15, App. B]. After replacing fy with f,
we can thus assume that 2 < & is of finite presentation.

Using [Ryd15, Thm. D] we can now write 2 as an inverse limit of stacks of finite presentation
over Spec Z. Using standard limit methods, we can thus arrange so that the étale (resp. smooth) map
fo: Wo — Zp and the closed immersion &y — X arise as the pull-backs from stacks of finite
presentation over Spec Z [Ryd15, App. B].

In the two reduction steps above, we can also arrange so that W, remains affine by [Ryd15, Thm. C].
We can thus assume that 2 is of finite presentation over Spec Z.

When fj is étale, we do not need [Ryd23]. Indeed, then 2 is Deligne-Mumford so after replacing 2 with an open neighborhood
of 2y, we may assume that 2 is Deligne-Mumford, hence of global type and approximation type [Ryd15, Def. 2.1, Prop. 2.10].
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Step 2: Existence of affine formal neighborhoods. Let 2, denote the nth infinitesimal neighborhood
of Zp in . We claim that f: Wy — 2 lifts to a compatible sequence of Cartesian squares

Wn—l — Wn

e

&/‘n—l — tfz‘n

such that each f;, is étale (resp. smooth). Indeed, by [O1s06, Thm. 1.4], the obstruction to lifting f;,—; to
Jfn belongs to the group

Exto,,, (Lwo/ao- fo (2" /Z)),

where 7 is the coherent ideal sheaf defining Xy < . This group is zero since Ly, 9, = Qw,/2,[0] is
a vector bundle and Wy, is affine.

Since W, is affine, each W,, is also affine [Knu71, Cor. 3.6], [Ryd15, Cor. 8.2]. It follows from [EGA;,
Cor. 0.7.2.8] that Z := Spec (h;nn rw,, OWn)) is a Noetherian affine scheme complete along W such
that W; is the ith infinitesimal neighborhood of W, in Z. By Tannaka duality [HR19], there is an induced
morphism n7: Z — & which is formally versal at Wy (Lemma 2.10). Note that Tannaka duality applies
because we assume that 2" has affine stabilizers.

Step 3: Existence of étale neighborhoods. Applying Artin algebraization for pairs (Theorem 1.1)
yields an affine scheme W of finite type over Spec Z, a closed immersion Wy < W, an isomorphism
W — Zand a morphism f: W — X extending n|w, for all n; in particular, f: W — X is étale
(resp. smooth) along Wy. The preimage f~!(2p) is a closed subscheme of W which agrees with W,
after restricting to the Zariski-localization of W along Wy. Therefore, there is an affine open subscheme
W’ c W containing Wy such that f|y- extends fy. This finishes the proof of Theorem 1.2. O

The following example shows that Theorem 1.2 does not hold if the stabilizers of 2" are (1) infinite
discrete, or (2) abelian varieties, or (3) & is a 2-stack with affine double diagonal. This was communicated
to us by K. Cesnavicius.

Example 3.1. Let So — Aé be the affine nodal cubic, and let S be the completion of Aé along So. There
exists a nontrivial connected Z-torsor Ey — Sp: an infinite chain of Aé’s [SGA3y, Exp. X, 1.6]. Let
X =SXBZ, Xy =SoxBZ,and let fo: Wy = Sg — Iy correspond to the torsor Ey — Sy. If fy extends
toamap f: W — & asin Theorem 1.2, then W — S has a section. This section gives a Z-torsor E — S
extending Eg — Sp. But § is normal so £ — S must be the trivial Z-torsor, which is a contradiction.

Similarly, if A is an abelian variety over C and P € A(C) is a nontorsion point, then inducing the
Z-torsor Ey — Sp along the homomorphism p: Z — A: n +— nP produces an A-torsor Fy — Sy of
infinite order which cannot extend to an A-torsor F' — S. Indeed, every A-torsor over the regular scheme
S has finite order, cf. [Bhal6, Ex. 4.12]. This gives a counterexample with & = S X BA.

Similarly, for a suitable nonnormal affine irreducible surface Sy < A7, there is a nontorsion element
H?(Sy, G,,) which does not lift to H>(S, G,,) [Bhal6, Ex. 4.13]. This shows that Theorem 1.2 does not
hold for the 2-stack & = S x B2G,,.

4. Existence of geometric pushouts

In this section, we prove Theorem 1.8, on the existence of pushouts of algebraic stacks. The exposition
will follow [Hal17, App. A] closely, where a useful special case of this result was established. We begin
with a definition.
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Definition 4.1. Fix a 2-commutative square of algebraic stacks

Q‘OC% VA

| a s

%QCT} 5[3,

where i and i’ are closed immersions and f and f” are affine. If the induced map

Oz, = 1,0z, X(11).04, 1.0,

is an isomorphism of sheaves, then we say that the square is a geometric pushout, and that 23 is a

geometric pushout of the diagram [ 2> <— 2o N 11-

The main result of this section is the following refinement of Theorem 1.8. It also generalizes [Hal17,
Prop. A.2] from the case of a locally nilpotent closed immersion to a general closed immersion.

Theorem 4.2. Any diagram of algebraic stacks [ 2> <—f— 2o 5@ 1], where i is a closed immersion, f
is affine, and & is quasi-separated, admits a geometric pushout X3. The resulting geometric pushout
square is 2-Cartesian and 2-co-Cartesian in the 2-category of algebraic stacks with quasi-separated
diagonals. If &1 and &> are quasi-compact (resp. quasi-separated, resp. Deligne—-Mumford, resp.
algebraic spaces, resp. affine schemes), then so is Xs.

We will need the following two lemmas—the first is precisely [Hall7, Lem. A.3] and the second is
a mild extension of [Hall7, Lem. A.4].

Lemma 4.3. Fix a 2-commutative square of algebraic stacks

Lo 4

rlow |

5[2(7> 5.

(1) If the square is a geometric pushout, then it is 2-Cartesian.

(2) If the square is a geometric pushout, then it remains so after flat base change on .

(3) If after faithfully flat and locally finitely presented base change on 23 the square is a geometric
pushout, then it was a geometric pushout prior to base change.

Proof. The claim (1) is local on 23 for the smooth topology, thus we may assume that everything in sight
is affine—whence the result follows from [Fer(3, Thm. 2.2]. Claims (2) and (3) are trivial applications
of flat descent. m]

Lemma 4.4. Consider a 2-commutative diagram of algebraic stacks

where the back and left faces of the cube are 2-Cartesian and the top and bottom faces are geometric
pushout squares. Then all faces of the cube are 2-Cartesian. Moreover, if the morphisms %, — 1 and
Uy — X5 have one of the following properties:
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(1) flat;

(2) surjective;

(3) locally of finite type;

(4) flat and locally of finite presentation; or
(5) smooth;

then the morphism U3 — 23 has the same property.

Proof. By Lemma 4.3(2), this is all smooth local on 23 and %3; thus, we immediately reduce to the case
where everything in sight is affine. Fix a diagram of rings [A; — Ag a A1], where p: A — Ay is
surjective. For j = 0, 1, 2 fix A ;-algebras B; and Ap-isomorphisms B, ®4, Ag = Bpand B1®4, Ag = By.
Set A3 = Ay X4, A1 and B3 = By X g, By, then we first have to prove that the natural maps B3®4,A; — B;
are isomorphisms and that these isomorphisms are compatible with the given isomorphisms. This is an
immediate consequence of [Fer03, Thm. 2.2(i)] since these are just questions about modules.

Case (1) similarly follows from [Fer03, Thm. 2.2(iv)]. Case (2) follows from the observation that
|1 U |25 — |25 and %) | U |%,| — |%3]| are surjective [Fer0O3, Sch. 4.3 & Thm. 5.1]. Case (5)
follows from (4), the surjectivity of |2| LI |23| — | 23| already remarked, and the observation that
smoothness is a fibral criterion for morphisms that are flat and locally of finite presentation.

For (3), we argue as follows: By [Fer03, Thm. 2.2(ii)], an Asz-module W3 is zero if and only if the
modules W3 ®4, A1 and W3 ®4, A, are zero. Now, write B3 as the union of its finite type Az-subalgebras
B3 4. As filtered direct limits commute with tensor products, it follows that for sufficiently large A, the
homomorphisms B3  ®4, A1 — B; and B3 4 ®4, A — B are surjective. Looking at the cokernel, it
follows that B3 4 — B3 is surjective.

For (4): If B; is a flat A ;-algebra of finite presentation for j = 1, 2, then we know by (3) that B3 is of
finite type. Hence, we can choose a surjection P3 = A3[xy,...,x,] - Bj3. Let J3 be the kernel. Since
B3 is As-flat, the sequence

0—J3—>P3;—>B3—0

remains exact after tensoring by any As-algebra. In particular, J; = J3 ®4, Aj isa P; = P3 ®a, Aj-
module of finite type for j = 1, 2. It now follows from Ferrand’s case of finite type modules (over the
co-Cartesian square defined by the P;) that J3 is a P3-module of finite type; hence, Bj is an A3-algebra
of finite presentation. O

We now come to an important lemma, where we make use of Theorem 1.2 in a critical way. Note
that the proof is almost identical to [Hal17, Lem. A.8].

Lemma 4.5. Fix a 2-commutative square of algebraic stacks

5[()(% VA

| a s

flﬂzcﬁ 3.

Ifthe square is a geometric pushout, then the square is 2-Cartesian and 2-co-Cartesian in the 2-category
of algebraic stacks with quasi-separated diagonals.

Proof. Thatthe square is 2-Cartesian is Lemma 4.3(1). It remains to show that we can uniquely complete
all 2-commutative diagrams of algebraic stacks

https://doi.org/10.1017/fms.2023.60 Published online by Cambridge University Press


https://doi.org/10.1017/fms.2023.60

Forum of Mathematics, Sigma 15

with a map 3 — %" and compatible 2-isomorphisms. By smooth descent, this is smooth-local on
23, so we may reduce to the situation where the &; = Spec A; are all affine schemes. Since 273 is a

geometric pushout of the diagram [2; <i 2o 59 1], it follows that A3 = Ay X4, Aj.

Let g: Spec B — % be a smooth morphism such that the pullback v;: U; — X of g along v is
surjective for j € {0, 1,2}, which exists because the X; are all quasi-compact. There are compatibly
induced morphisms of quasi-separated algebraic spaces ¢; g: U; — SpecB for j = 1 and 2 and
fBI U() — U2 andiB: U() — U1.

Letcy: Spec Co — U; be an étale morphism such that v, o ¢ is smooth and surjective. The morphism
¢z pulls back along fp to give an étale morphlsm co: Spec Cyp — Uy such that v o cq is smooth and
surjective. Let f: Spec Co — Spec C and ¢ : Spec C; — Spec B be the resulting morphisms.

Since c is étale and i g is a closed immersion, it follows that there is an étale morphism c; : Spec C; —
U, whose pullback along i is isomorphic to cg (Theorem 1.2). It can easily be arranged that v{ o ¢
is smooth and surjective. Let C3 = C; X¢, C1. Then there is a uniquely induced ring homomorphism
Az — (3. By Lemma 4.4, the morphism c3: Spec C3 — Spec Az is smooth and surjective. Hence,
we may replace Spec A; by Spec C; and further assume that the ¢ ; for j = 0, 1, and 2 factor through
some smooth morphism ¢: Spec B — 7 . In particular, there is an induced morphism ¢3: Spec Az —
SpecB —» %'.

It remains to prove that the morphism 3 is unique up to a unique choice of 2-morphism. Let 3
and ¢ : Spec A3 — % be two compatible morphisms. That these morphisms are isomorphic can be
checked smooth-locally on Spec A3. But smooth-locally, the morphisms /3 and ] both factor through
some Spec B — 7" and the morphisms Spec A; — Spec A3 — Spec B coincide for j = 0, 1 and 2, thus
Y3 and ¢/} are isomorphic. To show that the isomorphism between ¢3 and i/ is unique, we just repeat
the argument, and the result follows. O

We finally come to the proof of Theorem 4.2.

Proof of Theorem 4.2. By Lemma 4.5, it suffices to prove the existence of geometric pushouts. Let &
denote the category of affine schemes. For d = 1, 2, 3, let €, denote the full 2-subcategory of the
2-category of algebraic stacks with affine dth diagonal. Note that &3 is the full 2-category of algebraic

stacks. We will prove by induction on d > 0 that if [2} <i 2o 5 1] belongs to €4 and ) is quasi-

separated, then it admits a geometric pushout. For the base case, where d = 0 and &; = Spec A; is
affine, take 23 = Spec(Az x4, A1) and the result is clear.

Now, let d > 0 and assume that [2> <L 2o N Z1] belongs to €,. Fix a smooth surjection
UjeaX) — 25, where X] is an affine scheme VI € A. Set X} = X} ng 2o. As f is affine, the scheme
X, ! is also affine. By Theorem 1.2, the resulting smooth surjection X — 2 lifts to a smooth surjection
Xl — .El”l,w1tth affine, andX’ Xl Xgq, Xo.For j =0, 1 andZandu v, WE AsetX'” X” X; XV
and X“VW X“ X X" X, XW Note that for j = 0, 1 and 2 and all u, v, w € A we have X”"
X]‘.‘VW e Ca-1. By the 1nduct1ve hypothesm for I = u, uv or uvw, a geometric pushout X3 I of the dlagram
[X] « X! — X]] exists. By Lemma 4.5, there are uniquely induced morphisms X“* — X'. For
J # 3, these morphisms are clearly smooth, and by Lemma 4.4 the morphisms X5 — X3’ are smooth.
It easily verified that the universal properties give rise to a smooth groupoid [, year Xy =3 Uywen X3 ]
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The quotient 27 of this groupoid in the category of stacks is algebraic. By Lemma 4.3(3) it is also a
geometric pushout of the diagram [2, « 2y — 21] and the result follows.

That the pushout inherits the properties ‘quasi-compact’ and ‘quasi-separated’ follows from 27 11
2> — 23 being affine and surjective. The properties ‘Deligne-Mumford’ and ‘algebraic space’, are
inherited since (27 \ 2p) 1 2> — 3 is a surjective monomorphism. For ‘affine’, this was the base case
of the induction. O

5. Local structure of algebraic stacks

In this section, we prove the main local structure results for stacks (Theorems 1.3 and 1.4) as well as
non-Noetherian generalizations (Theorems 5.1 and 5.8).

5.1. Proof of Theorem 1.3

When fy: %y — 2 is smooth or étale, the theorem can be established along similar lines to [AHR 19,
Proof of Thm. 5.3].

Proof of Theorem 1.3(1)—smooth/étale case.

Step 1: An effective formally versal solution. Since 7% is quasi-compact, we may assume that 2’
is quasi-compact after replacing & with a quasi-compact open substack containing the image of %.
Since % is linearly fundamental, we can apply [AHR 19, Thm. 1.11] to obtain a Cartesian square

Wy W

b

,flﬁ()(—> X,

where f W — I isaflat morphlsm and 7 isa linearly fundamental stack coherently complete along
W,. Since W,, — X, is smooth, f W — X is formally versal at 7 (Lemma 2.10).

Step 2: Algebraization. We now apply algebraization for linearly fundamental pairs (Theorem 2.3)
to the pair (‘W’\, W) and morphism f . 9 — & to obtain a fundamental pair (%", Wp) with 7 of finite
type over S and a morphism f: 7% — Z smooth (resp. étale) along % such that W is isomorphic over
Z to the coherent completion of 7" along . After replacing 7 with an open neighborhood, we may
arrange that f is smooth (resp. étale) and 7" is fundamental. Indeed, if % C %’ is an open neighborhood
of W such that f|y is smooth (resp. étale) and if 7: #° — W denotes the adequate moduli space,
then we replace 7 with the inverse image of any affine open subscheme of W \ (%" \ %)) containing
m(W). m

The case when fy: %o — 2y is syntomic is handled by reducing to the smooth case.
Proof of Theorem 1.3(2)—syntomic case.

Step 1: We may assume that fy: 7, — 2 is affine. We may assume that 2 is quasi-compact.
Since % is fundamental, there is an affine morphism %, — BGL,, for some n. Since 2 has affine
diagonal (as it has the resolution property), the induced morphism %, — 2y x BGL,, is affine. Since
BGL,, is smooth with smooth diagonal, we may replace (X', Zy) with (2 x BGL,,, 2y X BGL,,).

Step 2: There is a factorization fy: %) — % — 2o, where %y — %, is a regular closed
immersion, %, — 2, is smooth and affine, and % is linearly fundamental. Since 2 has the
resolution property and ( fp).Og; is a finite type Og; -algebra, there exist a vector bundle & on 2 and
a surjection Sym(&y) —» (fo)Ogy. Setting % = V(&) = Spec(Sym &) yields a factorization such
that %y — % is a regular closed immersion and %, — X is smooth and affine. To arrange that %
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is linearly fundamental, we apply the étale case of the local structure theorem (Theorem 1.3(1)) to the
closed immersion 7y — % to extend the isomorphism % S 0 to an étale morphism ?0’ — Yy with
?0’ fundamental. Since % satisfies (PC) or (N), or % satisfies (FC), there is an open neighborhood of
Wo — %, thatis linearly fundamental [AHR 19, Prop. 7.20].

Step 3: Apply the smooth version of the local structure theorem. Since % is linearly fundamental,
we may apply the smooth case of the local structure theorem (Theorem 1.3(1)) to the closed immersion
Lo — X and smooth morphism %y — 2y to obtain a commutative diagram

W —— Yo—— Y

NN

&/'0(—> VA

with a Cartesian square such that % — & is smooth and % is fundamental.

Step 4: Lift the closed substack 7y — %, to a closed substack 77" — % syntomic over X .
Let 7, be the ideal sheaf defining %) < %, and consider the conormal bundle Nj := Zg /Ig. After
replacing % with an étale fundamental neighborhood of % < %, we may extend the conormal bundle
N to a vector bundle A on %; this follows from applying [AHR 19, Prop. 7.18(4)] to the fundamental
pair (¥, 7).

We claim that after replacing % with a fundamental étale neighborhood of 7/ the canonical homo-
morphism N - Ny — Oy, /Ig extends to a diagram

N-——— —)O?
No—— O%/Ig.

If % is linearly fundamental, this is immediate as the functor Homo,, WNV,-) =T(¥,N" ® —) is exact.
In general, let 71 — % be the closed substack defined by 1'02. Then we have a morphism 7] — V()
over % which by [AHR19, Prop. 7.18(1)] extends to a section % — V(N) after replacing % with a
fundamental étale neighborhood of 7. This gives the requested map N” — Oy.

Let 7 be the closed substack defined by the image of N' — Og . By construction, 7 contains the
closed substack 7. We claim that %y < # Xg 2y is an isomorphism and %" — & is syntomic in
an open neighborhood of 7. This establishes the theorem as we may shrink further to arrange that
W — X is syntomic in a fundamental open neighborhood of % . These claims can be verified smooth-
locally on & and %, so we may assume that & and % are affine schemes and N is a trivial vector
bundle. By construction, N’ Oy, + Ig = 1y, so it follows that #y — W X9, % is an isomorphism in an
open neighborhood of %, by Nakayama’s lemma.

Let fi,..., fn € Oy be the image of a basis of N. We claim that fi, ..., f, is a regular sequence
in a neighborhood of %4 and that 7" — X is flat in a neighborhood of #;. By [EGA;y, Thm. 11.3.8
(c) = (b’)], it is enough to prove that the images of fi,. .., f, in Oy, is a regular sequence for every
w € |#p| with image x € |2p|, which follows by construction. )

5.2. Non-Noetherian local structure theorem

The following provides a non-Noetherian generalization of Theorem 1.3, which we establish by reducing
to the Noetherian case.

Theorem 5.1 (Local structure of stacks). Let & be a quasi-separated algebraic stack with affine
stabilizers, Xy — I be a closed substack and fo: Wo — Loy be a morphism with Wy linearly
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Sfundamental. Assume one of the following conditions:

(1) X is locally of finite type over an excellent algebraic space or
(2) W, satisfies (PC) or (N), or
(3) Xy satisfies (FC).

Then

(@) If fo is smooth (resp. étale), then there exists a smooth (resp. étale) morphism f: W — I such
that W' is fundamental and f|q, = fo.

(b) Assume that W satisfies (PC) or (N) or Xy satisfies (FC). If fy is syntomic and Xy has the resolution
property, then there exists a syntomic morphism f: W — X such that W is fundamental and

flay = fo

Proof. Case (1) is precisely Theorem 1.3. For cases (2)—(3), after replacing & with a quasi-compact
open substack we can assume that 2" is quasi-compact. If 2 satisfies (FC), we can assume that 2 is
also (FC). Indeed, let S be the spectrum of Z localized in the characteristics of 2p, and replace 2, 2y
and % with their base changes along S — Spec Z. Once the theorem is established in this case, we can
use standard limit methods to replace S with an open subscheme of Spec Z. If instead X satisfies (PC)
or (N), we let § = Spec Z.

By [Ryd23], we can write Zp < & as a limit of finitely presented closed immersions 2y 1 — &
with transition maps that are closed immersions. For sufficiently large A, we can extend fy: %y — 2o
to a map foa: Woa — 2o, of finite presentation. For sufficiently large A, we have that fp , is
smooth/étale/syntomic. If &y has the resolution property, then so does 2 4 for sufficiently large A.
This follows from the Totaro—Gross characterization of the resolution property as having a quasi-affine
morphism to BGLy for some N [Tot04, Grol7] and [Ryd15, Thm. C]. For sufficiently large A, we also
have that % , is linearly fundamental [AHR 19, Thm. 7.3] using that either % is (PC) or (N), or X is
(FC). After replacing #p and Xy with %y, and 2p 4 we may thus assume that 2y — X is of finite
presentation.

Using [Ryd23], we may further write & — S as a limit of algebraic stacks &3 — S of finite
presentation. For sufficiently large A, we can descend the finitely presented maps fo: %y — 2y and
i: Zo — I to finitely presented maps fo 1: Wo.a1 — Lo.aandiy: Lo a1 — 2. For sufficiently large A,
we have that 2; has affine stabilizers [HR 15, Thm. 2.8] and, as before, that f;_, is smooth/étale/syntomic,
that i, is a closed immersion, that 7} , is linearly fundamental and that Z_; has the resolution property.
We are now in the situation of Theorem 1.3. O

5.3. Compact generation

‘We can now prove Theorem 1.12 on the compact generation of algebraic stacks in positive characteristic.

Proof of Theorem 1.12. Theimplications (1) = (2) = (3) and (4) = (5) are trivial. The implication
(3) = (5) is [HNR19, Thm. 1.1] since every closed point has positive characteristic. It remains to
prove that (5) implies (1) and (4). To this end, let x be a closed point of 2, which we view as morphism
x: Specl — X, where [ is an algebraically closed field. Let i, : G, < 2 be the closed immersion of
the residual gerbe of x. Then there is a field x(x) such that G, — Spec «(x) is a coarse moduli space.
Certainly, x(x) C /. After taking a finite extension «(x) C k C [, (Gx)x =~ BH, for some group scheme
H over k. After passing to an additional finite extension of k, there is a subgroup scheme H’ < H such
that H] =~ G?ed. By assumption, G?ed is a torus, so H’ is of multiplicative type. Set #* = BH', X = G«
and let f: W — X be the induced morphism. We claim that f; is syntomic. Indeed, f; is the
composition BH” — BH — G,. Now BH — G, is the base change of Spec k — Spec «x(x), which
is syntomic. Also, BH' — BH is fppf-locally the morphism H/H’ — Spec k. Since H — Spec k is
syntomic (Lemma 5.2) and H — H/H’ is fppf, H/H’ — Spec k is syntomic. By descent, BH' — BH
is syntomic and so f is too.
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We now apply Theorem 5.1(2)(b) to fi: This results in a syntomic morphism f*: %" — 2 such
that 7" is fundamental and f*| F = fi' - Since 7" is fundamental and f is finite, we may shrink 7"~
so that f~ is quasi-finite [AHR20, Lem. 3.1]. Additionally, since 2 has affine diagonal, we may further
shrink 7% so that f~* is affine [AHR 19, Prop. 5.7]. By [AHR19, Prop. 6.7], after passing to a strictly
étale neighborhood of 7;*, we may further shrink 7~ so that it is nicely fundamental.

Since X is quasi-compact and the f* are all open morphisms, there is a finite set of closed points

X1, ..., X of 2 such that the induced morphism f: %" = LIIZ, 7™ & Z is affine, quasi-finite,
syntomic and faithfully flat. But 7 is nicely fundamental, so it is Np-crisp [HR 17, Ex. 8.6]. By [HR 17,
Thm. C], & is No-crisp. This proves (5) = (1). Since #" — X is quasi-finite and surjective and
the reduced identity components of the stabilizers of %  are tori, so are those of 2. This proves
6= @“). O

We include the following standard result (also see [CZ22, Lem. A.2] for a different argument).

Lemma 5.2. Let S be an algebraic space. If G — S is a group algebraic space that is flat and locally
of finite presentation, then it is syntomic.

Proof. Since G — § is flat and locally of finite presentation, we reduce immediately to the situation
where S is the spectrum of an algebraically closed field k [SP, Tags O1UF & 069N] and we must show
that G — Spec k is a local complete intersection morphism. Let G C G be the connected component
of the identity, which is a normal, irreducible and quasi-compact flat closed subgroup scheme of G [SP,
Tag OB7R]. Since G is locally of finite type, G° C G is even open and closed. Hence, the quotient
G/G" is étale. Thus, we may replace G with G° and assume that G is connected and of finite type. If
the characteristic of k is 0, then G — § is smooth and we are done (Cartier’s theorem [SP, Tag 047N]).
In general, there is an extension of groups 1 — Gy — G — Gu¢ — 1, where G,y is anti-affine
(i.e., I'(Gant. Og,,) = k) and G,g is affine [Bri09, (0.2)]. Then G,y is smooth, so it suffices to prove
the claim when G is affine. In this case, G — GL, for some n > 0. The cover GL,, — GL, /G is
faithfully flat and of finite presentation. Since GL,, is smooth over Spec k, GL,,/G is also smooth over
Spec k—this follows immediately from the descent of regularity under faithfully flat extensions of local
rings [EGAy, Ory .17.3.3]. Hence, GL,, — GL,,/G is syntomic [SP, Tags 069M & 069K]. The fiber of
the syntomic morphism GL,, — GL,,/G over a k-point is G — Spec k, which is consequently a local
complete intersection morphism. O

5.4. Local structure of stacks at pro-affine-immersions

We recall [TT17, §3]: A morphism of algebraic stacks j: % — & is a pro-open immersion if every
morphism % — 2 with set-theoretic image contained in |j(%)| factors uniquely through j. It is
established in [TT17, Prop. 3.1.4] that j is necessarily a flat monomorphism and |j(%)| = Ny 2|7 >
where the intersection ranges over all open stacks 7 C 2 containing j(%). If j is quasi-compact, then
it is a pro-open immersion if and only if it is a flat monomorphism [TT17, Thm. 3.2.5] and then j is
quasi-affine [Ray68, Prop. 1.5 (ii)]. If j is quasi-compact, then it is also a topological embedding [Ray68,
Prop. 1.2] and if in addition & is quasi-compact, then |j(%)| = Ny 5|j(%)| 7", Where the intersection
ranges over the quasi-compact opens of 2 containing j(%).

Remark 5.3. Let j: % — X be a quasi-compact pro-open immersion of algebraic stacks. There is a

factorization of j as % Lasa , where j’ is an affine pro-open immersion and g is a quasi-compact
open immersion [Ray68, Prop. 1.5 (i)].

We introduce the following variant: a morphism of algebraic stacks j: % — X is a pro-affine(-open)
immersion if 2 represents a cofiltered intersection N, 7, where the 7, C & are (open) immersions
and the transition maps 7, — 7, which are automatically (open) immersions, are eventually affine.

Example 5.4. An immersion of algebraic stacks is a pro-affine-immersion.
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Example 5.5. If x € || is a point of a quasi-separated algebraic stack, then the inclusion &y — Z of
the residual gerbe is a pro-affine-immersion [HR 18, Lem. 2.1].

Remark 5.6. A pro-affine-open immersion of algebraic stacks is pro-étale.

Remark 5.7. If & is a normal and Q-factorial Noetherian stack, then any quasi-compact pro-open
immersion j: % — & is pro-affine-open. This follows from the result [Ray68, Cor. 2.7]: After restricting
to an open substack, the complement of % is a, possibly infinite, union of Cartier divisors and the
complements of finite unions of these divisors are affine open immersions.

The following theorem simultaneously generalizes Theorem |.4 and Theorem 5.1. Note that in
Theorem 1.4 no extra conditions are needed as (FC) always holds for the residual gerbe as it is a one-
point space.

Theorem 5.8 (Local structure of stacks at pro-affine-immersions). Assumptions and conclusions as in
Theorem 5.1 (2) or (3) except that Xy — X is a pro-affine-immersion.

Proof. As afirst preliminary step, we can as before assume that 2" is quasi-compact and, if 2 satisfies
(FC), that X satisfies (FC) by base changing along S — Spec Z where S is the spectrum of Z localized
in the characteristics of 2.

By assumption, &y = N, is an intersection of a cofiltered system of immersions X <— " with
eventually affine inclusions X, < 2. Pick a sufficiently large such that &3 — &, is affine for all
A > «a and pick a quasi-compact open neighborhood % of 2y in . Then Xy = N1>o (L2 N U), so we
may assume that all the X are quasi-compact and that all the &}, — 2 are affine.

By standard limit methods, the morphism fy: %y — 2y descends to a morphism fo: Wq — La,
which is étale, smooth or syntomic if fy is so. If 1 > a, set W) = Wy X, La. Then Wo = NazoW.
Now, either & satisfies (FC) (by the initial reduction) or % satisfies (PC) or (N). Hence, %} is linearly
fundamental for some 8 > a [AHR19, Thm. 7.3]. After replacing & with an open neighborhood of
2, we may assume that g <  is a closed immersion. We may now apply Theorem 5.1 (2) or (3)
to fg and the result follows. m|

We now prove the refinements.

Proof of Theorem 1.5. Arguing as in the proof of Theorem 5.8, we may assume that % satisfies (PC)
or (N) or # satisfies (FC). We may further assume that there is a factorization of #y — # — &
through an immersion #g < % such that % is fundamental and #g — % — X is representable
[Ryd15, Thm. C]. We now factor #g — W as Wp — Z C W', where #Wp — Z is a closed immersion
and Z C 7 is an open immersion. In this generality, however, Z is not necessarily fundamental (it
can be arranged to be if #y — % is a closed immersion, however). But we can now apply Theorem
5.1 to the closed immersion % — Z. We thus obtain an étale neighborhood p: #' — Z of W
such that 7"’ is fundamental and the induced morphism ‘7/[; =p W) =W > Z W — XL is
representable. The result now follows from [AHR19, Prop. 5.7] applied to the pair (7", WB’) and the
morphism 7" — Z'. O

Proof of Theorem 1.6. As in the proof of Theorem 1.5, we may assume that there is a factorization
of Wy — % through an immersion %3 < % such that #p is linearly fundamental [AHR19, Thm.
7.3]. Likewise, if #y = [Spec Ao/Go] as in (1), then we can arrange so that #p = [Spec Ag/Ggl
with Gg embeddable and linearly reductive or nice [AHR19, Lem. 2.12 and Thm. 7.3]. Finally, if
Wy = [Spec Ag/G] as in (2), then W = [Spec Ag/G] by [Ryd15, Thm. C].

We have a closed then open factorization #g < Z C 7. Apply Theorem 5.1 to #g — Z to
replace 77" with an étale neighborhood of 7 that is fundamental. We can now apply [AHR19, Props.
7.16, 7.18(3) and 7.20] and the result follows. |
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5.5. Nisnevich neighborhoods

Proof of Theorem 1.9. We apply Theorem 1.4 to every point of | Z|: For each x € | 2’| we obtain an étale
morphism fy: %, — X suchthat fy|z, is an isomorphism and 7/ is fundamental. If & has affine (resp.
separated) diagonal, then Theorem 1.5 says that we can arrange that f is affine (resp. representable).
By Theorem 1.6, we may further assume that 7/ is nicely fundamental. Set 7" = U, ¢ | %, and take
f=Usfi: W — X, then f is a quasi-separated Nisnevich covering. By [HR 18, Prop. 3.3], we may
shrink 7" so that it is quasi-compact (a monomorphic splitting sequence must factor through finitely
many of the %), remains nicely fundamental and f is a Nisnevich covering. O

Proof of Theorem 1.11. We apply Theorem 5.1 to every closed point of |2'|: For each closed point x of
& we obtain an étale morphism g: #° — X such that %" = [U/GL,] is fundamental and g|g, is an
isomorphism. If 2 has affine (resp. separated diagonal), then Theorem 1.5 says that we can arrange that
g is affine (resp. representable).

For an integer d > 1, let 7' be the dth fiber product of g; then the symmetric group Sy acts on 74
by permuting the factors. Let e be the maximum rank of a fiber of g. Then there is an induced Nisnevich
covering f: [1i<y<e[#'?/Sa] — X since g is representable.

Let V¥ be the dth fiber product of U — %" — . Then #'¢ = [V¢/(GL,)“]. Let P be one of the
properties: separated, quasi-affine, affine. If the diagonal of 2" has property P, then the algebraic space
V¢ has property P. Since the Stiefel manifold GL4,,/(GL,,)? is affine, it follows that #'¢ = [V’ /GL,.4]
for an algebraic space V' with property P.

Let p: ¢ — [W'?/S,]. Let & be the vector bundle on %°¢ with frame bundle V’. Then we claim
that the frame bundle V of p.£ is an algebraic space with property P. Indeed, V is an algebraic space
since the stabilizers of [%'¢/S4] act faithfully on p.E, cf. [EHKVOI, Lem. 2.13]. Since p*V — V is
finite, étale and surjective, it is enough to prove that p*V has property P. But since p is finite étale,
we have that p*p.£ — & is split surjective and it follows that p*V has property P by considering
Stiefel manifolds again. We have thus shown that [%°¢/S,] = [V/GLy ] for an algebraic space V with
property P.

When & has affine diagonal, then #'¢ —  is affine but [#'¢/S4] — X is merely separated. Let
SECY (W' | X) € W'“ be the open and closed substack that is the complement of all diagonals. Then Sy
acts freely on SECY (% /) relative to & and ETd(W/fl”) = [SECH (W' |X)]Sq] — X is affine and

an étale neighborhood of any point of & at which g has rank d. Thus, f: [[;<s<. ETd(W IFARIA
is a fundamental Nisnevich covering with f affine. O

5.6. Existence of henselizations

Proof of Theorem 1.7. By Theorem 5.8, there exists an étale neighborhood #" — & of % := ) such
that 7" is fundamental. Let #y — Wy and %" — W be the good and adequate moduli spaces. We claim
that the henselization W" of W along W) exists and is affine. If 7% is a closed substack, then this follows
from [Ray70, Ch. XI, Thm. 2] as W is affine. If %) = &, is the residual gerbe of a point x € |Z|,
then Wy = Spec k(x) < W is the inclusion of a point w and W" = Spec Ol\}v,w' In this case, we also
note that % satisfies (FC). Let #'" = W xw W". Since W" — W is flat, " — W" is an adequate
moduli space. By [AHR 19, Thm. 3.6], (#", %) is a henselian pair and by [AHR 19, Cor. 6.10], 7"
is linearly fundamental since the closed points of %" have linearly reductive stabilizer. To show that
W — I is the henselization of X along v: 2y < Z, it is enough to prove that any quasi-separated
étale neighborhood g: %/ — W of W has a section. This is precisely the conclusion of [AHR 19,
Prop. 7.9]. O

6. Local structure of derived algebraic stacks

In this section, we give a derived version of the local structure theorem.
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An algebraic derived 1-stack is the derived analogue of an algebraic stack: It is a sheaf of co-groupoids
on the opposite of the co-category of simplicial commutative rings (with its étale topology) that admits
a surjective morphism, represented by smooth derived algebraic spaces, from a disjoint union of derived
affine schemes.

Let & be an algebraic derived 1-stack. We say that X" is fundamental if there exists an affine morphism
X — BGL,; thatis, if £ = [Spec A/GL,,] for some derived affine scheme A. We say that X" is linearly
Sfundamental if it is fundamental and cohomologically affine, that is, R['(Z’, —) is t-exact.

Proposition 6.1 (Derived effectivity theorem). Let Xy — X1 — X» — ... be a sequence of derived
thickenings, that is, X, = T< Iy for every m < n. If Xy is linearly fundamental, then there is a linearly
Sfundamental algebraic derived 1-stack & and a compatible sequence of equivalences T<, & = X,.

Proof. The existence and uniqueness of an algebraic 1-stack & with compatible isomorphisms 7, 2" =
&, is given by [Lur04, Prop. 5.4.6]: & is determined by the equivalence &' (A) = X, (A) for n-truncated
simplicial commutative rings and 2'(A) = gnn X (1<, A) in general.

Let fo: £y — BGL, be an affine morphism. The obstruction to lifting a morphism f,,: &,, — BGL,
to fu+1: Tn+1 — BGL, lies in

Extly, (foLaaL, Tn1 (O, ) [n+1]).

This obstruction group vanishes since 2y is linearly fundamental. We can thus find a compatible
sequence of morphisms f,,: &, — BGL,. Since fj is affine, so is f;, for every n. The compatible family
of morphisms f, : 2, — BGL, defines a morphism f : & — BGL,, and the resulting morphism is
affine because it is affine on every truncation.

Finally, because pushforward along the inclusion 9y <  is t-exact and identifies QCoh(2)° =
QCoh(2)%, X is cohomologically affine if and only if RT'(Zy, —) has cohomological dimension 0 on
QCoh(2)°. Since 2y has affine diagonal, this is the same as being cohomologically affine. O

Proof of Theorem 1.13. If Q) satisfies (FC), then let S be the spectrum of Z localized in the character-
istics of & and base change everything along S — Spec Z. At the very end, we can then replace S by
an open quasi-compact subscheme of Z.

First, assume that fy is smooth. Then %, Xq; (p)a is classical and we may apply the classical
version of the local structure theorem (Theorem 5.1). This gives us a fundamental classical stack %
and a smooth morphism f: #¢ — 2. Since either (PC)/(N) holds for % or (FC) for #¢, we may
assume that 7 is linearly fundamental (Theorem 1.6). We may now deform f<( := f;; to smooth maps
fen: W<n — T<n I for every n. Indeed, the obstruction lies in

EXtéfc] (Lfcl’ f(:iﬂ-n(oz‘) [n])’

which vanishes as 7% is cohomologically affine and f; is smooth. By Proposition 6.1, there is a linearly
fundamental derived 1-stack 7" with compatible isomorphisms #<,, = 7<,# . Because both %" and
Z are nilcomplete [Lur04, Prop. 5.3.7], the smooth morphisms #<,, — 7<, extend uniquely to a
smooth morphism f: % — Z. Since

Ext{yo (L (f0)amn(Og;)[n]) =0,

the isomorphism %o Xg;, (X0)el = X Xg (Xp)a extends to an isomorphism %o — W xq o over L.
When instead fy is quasi-smooth, we proceed as in the syntomic case of the classical version of the
local structure theorem; see the proof of Theorem 1.3(2).

Step 1: First, replace & with & x BGL,, so that %y — 2 becomes affine.

Step 2: Consider the morphism of classical stacks (%) — (2o)e1, and pick a factorization (%), —
%y — (2p)c wWhere the first map is a closed immersion and the second map is affine and smooth. Here,
we use that (2p)q has the resolution property. Then apply the classical étale version of the structure
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theorem to (%))t = (Po)a — Y. We can thus replace %, with an étale neighborhood of (%)), and
assume that % is linearly fundamental.

Step 3: Apply the smooth case of the derived local structure theorem to %y — (2p)e; — ', and we
obtain asmoothmap % — X. Since % — X is smooth and 7% is linearly fundamental, the obstructions
to lifting the closed immersion (%4). < % to closed immersions 7<, (%y) — % over I for every n
vanish. We obtain a closed immersion % — % because both %, and % are nilcomplete [Lur04, Prop.
5.3.7]. Since either (PC)/(N) holds for % or (FC) for %, we may assume that % is linearly fundamental
(Theorem 1.6).

Step 4: Now, let % = ¥ Xg 2y (previously it denoted its classical truncation). The morphism
Wy — Y is a quasi-smooth closed immersion. Let N = 71 (ILg;, /%, ) denote the corresponding conormal
bundle on (7%)).. After replacing % with an étale neighborhood of % [AHR19, Prop. 7.18(4)], we
may assume that A extends to a vector bundle £ on %.

Let F denote the homotopy fiber of Oy, — Og;. Since the Hurewicz map F®o,, Oy — Loy 9, [—1]
is an isomorphism on 7y, we have an induced isomorphism E|;), =~ N = F|@y),. Since % is
cohomologically affine, this lifts to a map £|g, — F. The composition so: €|y, — F — Oy,
corresponds to a section s, of £"|y, and the derived zero-locus of this section Zy := {55 = 0} — %
defines a quasi-smooth closed immersion. Here, the derived zero-locus is the pullback fitting in the
Cartesian square

Zo— %

0
Yo —— V(Ely)-
The map so: £y, — F corresponds to a 2-commutative diagram

Wy ——— Y%

l Y i

Yo —— V(Ely)»

and hence to a map %y — Zo. By construction, we have that Loy, ;3, = 0 so the closed immersion
Wo — Zy is also an open immersion. After replacing % with an open neighborhood of %, we can thus
assume that %y = Z.

Finally, we may lift the section 5§ of £y, to asection s¥ of £ since % is cohomologically affine. The
derived zero-locus 7" := {s¥ = 0} < ¥ is a quasi-smooth closed immersion restricting to %y <— %
and the composition f: #" — ¥ — X is a quasi-smooth morphism such that f|g; =~ fo. O

A. Nonexistence of Zariskification

In this section, we show that the Zariskification, in contrast to the henselization, does not exist in general.
This counterexample was mentioned in [TT17, 3.1.2].

Let X be a scheme and Z — X be a closed subscheme. The generization of Z is the subset of X
consisting of all points x € |X| such that m N Z # 0. A Zariskification of X along Z is a flat quasi-
compact monomorphism W — X such that the image is the generization of Z. The Zariskification is
unique up to isomorphism since if W and W’ are two monomorphisms as above, then W xxy W' — W
and W xx W’ — W’ are faithfully flat quasi-compact monomorphisms, hence isomorphisms.

If X = Spec A is an affine scheme and Z = Spec(A/I) is a closed subscheme, then the Zariskification
exists and equals W = Spec((l + I)‘IA) [Ray70, §2]. If Z = {x1,x2,...,x,} is a finite set of points,
then the Zariskification is the semi-localization at Z.
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In the following example, we show that the Zariskification at two points of Hironaka’s nonprojective
proper smooth threefold does not exist.

Example A.1 (Nonexistence of Zariskification). Let X be a projective threefold and ¢, d curves as in
[Har77, p. 443]. Let X’ be the nonprojective proper threefold given by gluing the different blow-ups and
let Iy, mo, [ and m ) be curves on X" as in loc. cit. and let P’ = lp N mg and Q" = [ N m,.

There is no affine neighborhood containing both P’ and Q’. We claim that the generization E of P’
and Q’ is not pro-open (i.e., not represented by a flat quasi-compact monomorphism). For this, we can
use Raynaud’s criterion for locally factorial schemes [Ray68, Cor. 2.7]. Hence, it is enough to show
that there is a point x” not in E such that every divisor containing x” intersects E (i.e., intersects P’ or
Q’). But since lp + m/) is numerically trivial, every divisor that intersects o properly contains m,). In
particular, every divisor intersecting [y contains either P’ or Q’. Raynaud’s criterion is thus not satisfied
for a point x” on [y (not equal to P’).

Example A.2 (Algebraic space without Zariski-localization at a point). For a suitable choice of X
and curves c, d, one can endow Hironaka’s proper threefold X’ with a free action of G = Z/2Z that
interchanges P’ and Q’. The quotient X’/G is then not a scheme since the image of {P’, Q’} is a point
z that does not admit an affine neighborhood. Moreover, the Zariskification at z does not exist. Indeed,
if there is a flat monomorphism W — X’/G of algebraic spaces with image the generization of z, then
it pulls back to a flat monomorphism W’ — X’ with image the generization of P’ and Q’. Since W’ is a
scheme (see [SP, 0B8A] or [TT17, Thm. 3.1.5]), this contradicts Example A.1.
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