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Moduli spaces of sheaves via
affine Grassmannians

By Daniel Halpern-Leistner at Ithaca, Andres Fernandez Herrero at Ithaca and
Trevor Jones at Ithaca

Abstract. We develop a new method for analyzing moduli problems related to the
stack of pure coherent sheaves on a polarized family of projective schemes. It is an infinite-
dimensional analogue of Geometric Invariant Theory. We apply this to two familiar moduli
problems: the stack of ƒ-modules and the stack of pairs. In both examples, we construct a
‚-stratification of the stack, defined in terms of a polynomial numerical invariant, and we con-
struct good moduli spaces for the open substacks of semistable points. One of the essential
ingredients is the construction of higher-dimensional analogues of the affine Grassmannian for
the moduli problems considered.
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1. Introduction

The moduli stack Coh.X/ of coherent sheaves on a projective scheme X is of central
interest in moduli theory. It has been used to formulate the non-abelian Hodge correspon-
dence [43], it has been used to define and study algebraic Donaldson invariants of surfaces [33],
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and several flavors of enumerative invariants for 3-folds [37,46]. It has also been used to study
the moduli of varieties [27], and has served as a particularly interesting testing ground for the
minimal model program [6] and hyperkähler geometry [34].

As the examples illustrate, a thorough understanding of the structure of the stack Coh.X/
is a fundamental building block for many other theories. We will focus on the open substack
Cohd .X/P � Coh.X/ parameterizing sheaves that are pure of dimension d and have a fixed
Hilbert polynomial P . In this paper, we develop a new method for studying the structure of
Cohd .X/P and related stacks. We call it infinite-dimensional Geometric Invariant Theory.

Let us recall the main structural results about Cohd .X/: Using an ample line bundle
OX .1/ on X , one defines a sheaf F on X to be Gieseker OX .1/-semistable if and only if there
is no proper subsheaf F 0 � F whose reduced Hilbert polynomial is larger than that of F (see
Section 2.3 below). The substack of semistable sheaves Cohd .X/ss

P � Cohd .X/ is open and
admits a projective moduli space. Furthermore, Cohd .X/ss is the open piece of a stratification
of Cohd .X/ by locally closed substacks, where the strata parameterize unstable sheaves along
with a canonical filtration, called the Harder–Narasimhan filtration [22, 35, 44]. The strata are
indexed by the Hilbert polynomials of the associated graded pieces of the Harder–Narasimhan
filtration, which are themselves semistable.

This moduli problem has been previously studied using Geometric Invariant Theory
(GIT) [13, 31, 41, 44], which involves constructing and analyzing explicit families of sheaves
over quot-schemes. Over the past few years, a new approach to these structures has developed
that is more intrinsic to the moduli problem: the theory of good moduli spaces [1] and the
theory of ‚-stratifications [19]. We will review the key concepts in Section 2.5. From the
intrinsic perspective, the main structural results for Cohd .X/P are:

(S1) To any relatively ample bundle on X , one can associate a polynomial-valued numerical
invariant � (Definition 4.3) that defines a ‚-stratification of Cohd .X/P .

(S2) If S is defined over Q, then the semistable locus admits a good moduli space that is
proper over S .

Our methods give a new proof of these structural results for Cohd .X/P which more
readily extends to other contexts. In the applications mentioned above, one often considers the
moduli problem of a coherent sheaf F along with some auxiliary data. We will focus on two
such variants:

(1) The moduli stack of pairs PairA.X/ parameterizing a pure coherent sheaf F of dimension
d on X along with a homomorphism A ! F from a fixed coherent sheaf A (often with
A D OX or A D O˚n

X for some n, see [9, 33, 37, 45]).

(2) The moduli stack ƒCohd .X/ of pure coherent modules of dimension d over a sheaf ƒ
of rings of differential operators on X .

See Section 2.4 for precise definitions. Both moduli problems admit a morphism to Cohd .X/
that forgets the additional structure.

Theorem 1.1 (= Theorems 6.11 and 6.17). Let X be a projective scheme of finite pre-
sentation over a scheme S . To any relatively ample line bundle OX .1/ on X , one can associate
a polynomial-valued numerical invariant � on Cohd .X/ (Definition 4.3). The restriction of
the numerical invariant � from Cohd .X/ defines a weak ‚-stratification of the moduli stack
PairdA.X/P . If S is defined over Q, then the �-semistable locus admits a good moduli space
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that is proper over S . Furthermore, the same holds for a larger family �.ı/ of deformations of
the numerical invariant on PairdA.X/ described in Definition 6.3.

Remark 1.2. If we set A D 0, then the forgetful morphism induces an identification
PairdA.X/

�
�! Cohd .X/. In particular, Theorem 1.1 recovers the classical structural results (S1)

and (S2) above for the stack Cohd .X/P .

The main contribution of this paper is to develop the method of infinite-dimensional GIT
to prove Theorem 1.1. It is inspired by the theory of infinite-dimensional symplectic reduction
[4, 11]. In the case of vector bundles on a curve, the differential geometric picture uses the
description of the stack as a quotient of an infinite-dimensional space of connections by an
infinite-dimensional gauge group. The analogous uniformization theorem in algebraic geome-
try describes this stack as the quotient of a Beilinson–Drinfeld Grassmannian, an ind-projective
ind-scheme which is a relative version of the affine Grassmannian. We prove the theorem
above by constructing a “higher-dimensional” analog of the Beilinson–Drinfeld Grassmann-
ian for each moduli problem and applying “Geometric Invariant Theory” to the action of the
infinite-dimensional group of rational maps X Ü GLN on these ind-projective ind-schemes.

To our knowledge, the level of generality in which we construct moduli spaces of semi-
stable pairs is new, although the question has been investigated in several more specific settings.
The good moduli space of the semistable locus Paird .X/�-ss

P recovers the moduli spaces of
Bradlow pairs considered in [9, 45] for curves, [37] for Calabi–Yau threefolds, [48] in the case
of a complex projective variety, and [27], [5, Section 11], [30] when the stability parameter
ı � 0 (see also the related moduli spaces of coherent systems considered in [29] for smooth
projective varieties, and more recently in [39]).

On the other hand, the stratification of PairdA.X/P is new, even in the more specific con-
texts mentioned above. One interesting feature is that the canonical filtration of an unstable
point in PairdA.X/P is not necessarily “convex” in the way that the usual Harder–Narasimhan
filtration of an unstable sheaf orƒ-module is (see Example 6.12). This suggests that the stratifi-
cation of PairdA.X/P cannot be constructed in the same way as the stratification of Cohd .X/P .

Even for Cohd .X/P , we believe that the method of infinite-dimensional GIT is of intrin-
sic interest, and is conceptually cleaner than the classical approach. We hope that by developing
these methods in the context of familiar moduli problems, this paper lays the foundation for
a broad range of applications.

The method of infinite-dimensional GIT originated in the forthcoming paper [20] devel-
oping one such application, to the computation of gauged Gromov–Witten invariants. Another
application, to the moduli of singular principal G-bundles on higher-dimensional varieties,
appears in [14]. Finally, the original version of this paper included applications to the moduli
of ƒ-modules, recovering results of [44] in the case when the base S is Noetherian.

Theorem 1.3 (= Theorem 5.2). In the context of Theorem 1.1, the restriction of the
numerical invariant � from the moduli stack Cohd .X/ defines a weak ‚-stratification of the
moduli stack ƒCohd .X/P . If S is defined over Q, then the �-semistable locus admits a good
moduli space that is separated over S .

We summarize these results in Section 5, but the details will appear in the forthcoming
paper [21].
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1.1. Infinite-dimensional GIT. The theory of ‚-stability allows one to formulate
notions of semistability and canonical filtrations for points in an algebraic stack X. We will
give a brief summary here, and refer the reader to Section 2.5 for a more detailed discussion of
the key ideas and results.

The input of the theory is a structure on X called a numerical invariant (Definition 2.25).
Geometric invariant theory is the special case where X DZ=G for a reductive groupG acting on
a projective scheme Z. The notion of semistability can be defined using the Hilbert–Mumford
criterion with respect to aG-equivariant ample line bundle L onZ. Combined with some addi-
tional data (a norm on cocharacters of G), L determines a numerical invariant on Z=G, which
encodes the Hilbert–Mumford criterion and also defines the Hesselink–Kempf–Kirwan–Ness
stratification of the unstable locus. In our examples, semistability is defined via an intrinsic ver-
sion of the Hilbert–Mumford criterion, but instead of a single line bundle L, we use an infinite
sequence of line bundles Ln 2 Pic.X/ indexed by n 2 Z. The resulting numerical invariant is
a function in n (in fact polynomial), and semistability and Harder–Narasimhan filtrations are
characterized by the asymptotic behavior of this function as n! 1.

The main theorem of [19] identifies two properties of a numerical invariant � on X that
imply that

(1) � defines a ‚-stratification of X,

(2) the substack Xss � X of semistable points is open and admits a separated good moduli
space [1].

The first condition, strict monotonicity, is a condition about extending families over points
of codimension 2 (Definition 2.28). Under some mild hypotheses, satisfied in our examples,
strict monotonicity implies that the semistable locus admits a separated good moduli space if it
is open and bounded [19, Theorem 5.5.10]. The second condition is referred to as HN-bounded-
ness (Definition 2.29), and combined with strict monotonicity it implies the existence of
a ‚-stratification, which includes the openness of the semistable locus.1)

The main technical insight of this paper is that strict monotonicity can be guaranteed by
choosing a moduli problem that fits a geometric template that we describe below. In particu-
lar, this reduces the construction of moduli spaces to the problem of verifying openness and
boundedness of the semistable locus.

Let us explain how this works in the example of GIT. First, we regard the setup as an
algebraic stack X D Z=G along with a morphismZ=G ! BG that is relatively representable
by projective schemes. If Y is a regular 2-dimensional Noetherian scheme and 0 2 Y is a closed
point, then one can consider whether a given a morphism � W Y n 0! X extends to Y . The
composition Y n ¹0º ! BG extends uniquely to a morphism � W Y ! BG. In addition, if Y is
equipped with a Gm-action fixing 0 and the morphism Y n ¹0º ! BG is Gm-equivariant, then
the unique extension acquires a unique Gm-equivariant structure. This filling property for any
morphism Y n ¹0º ! BG is equivalent to G being reductive [3, Theorem 1.3].

The morphism � does not necessarily lift to X, but the original morphism � W Y n¹0º!X

defines a section of the projective morphism Y �BG X ! Y over Y n ¹0º, and we let† be the
closure of this section. By construction, the morphism � extends to a morphism z� W †! X.
In other words, given the following diagram of solid arrows, one can always fill in the dotted

1) Technically, in general you only get a weak ‚-stratification if S does not have characteristic 0.
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arrows so that the diagram commutes:

(1.1) Y n ¹0º //

�

��

))
† //

z�||

Y

�

����

X // BG.

If � is equivariant with respect to a Gm-action on Y , then this construction equips † with
a canonical Gm action such that z� is Gm-equivariant.

We postpone the formal definition of strict monotonicity until after our precise defini-
tion of a numerical invariant in Section 2.5. But roughly, strict monotonicity for the Hilbert–
Mumford numerical invariant in GIT follows from two facts:

(i) if Y has a Gm-action fixing 0 and the morphism � is Gm-equivariant, then there exists
a Gm-equivariant filling of the dotted arrows in (1.1), as we have established above,

(ii) the line bundle z��.L/will be relatively ample for the map†! Y ifL is relatively ample
for the map X ! BG.

The stack Cohd .X/P is not a quotient stack. For simplicity, we will assume in this intro-
duction that X is flat and has geometrically integral fibers of dimension d over the base, and
we restrict to the open substack of sheaves of fixed rank r . In this case, a family of pure
sheaves of dimension d is the same thing as a family of torsion-free sheaves. To verify strict
monotonicity of the numerical invariant, we construct a morphism Cohd .X/P ! Cohd .X/rat

to a non-algebraic stack Cohd .X/rat with the following properties analogous to the properties
of the morphism X=G ! BG in GIT:

(1) Any Gm-equivariant morphism Y n ¹0º ! Cohd .X/rat extends to an Gm-equivariant
morphism Y ! Cohd .X/rat.

(2) The fibers of the morphism Cohd .X/P ! Cohd .X/rat are ind-projective ind-schemes,
and the duals of the line bundles Ln are asymptotically positive in the sense that on any
quasi-compact closed subscheme L_

n is ample for n� 0.

The term “infinite-dimensional GIT” refers to the infinite-dimensional ind-schemes that arise
in (2). The conditions imply that any Gm-equivariant morphism � W Y n ¹0º ! Cohd .X/P can
be extended to a Gm-equivariant morphism from a birational cover of Y , z� W †! Cohd .X/P ,
such that z��.L_

n / is ample on † for all n� 0. This allows us to imitate the proof of strict
monotonicity in GIT outlined above.

Objects of the groupoid of S -points of the stack Cohd .X/rat are pairs .E;D/ consist-
ing of a torsion-free sheaf E on X and an effective Cartier divisor D ,! X . A morphism in
Cohd .X/rat from .E1;D1/ to .E2;D2/ can be defined when D2 �D1 is effective, in which
case it is a morphism  W E2 ! E1 that induces an isomorphism after restriction to X nD2.
We think of Cohd .X/rat as the stack of vector bundles defined on the complement of a divisor
in X , i.e., as the stack of “rational maps” X Ü BGLr . Note that Cohd .X/rat is not a stack in
groupoids (although all morphisms are monic). For any field k over the base, if one formally
inverts all morphisms in Cohd .X/rat.k/, then the resulting groupoid is canonically equivalent
to the groupoid of maps from the generic point of Xk to BGLr .

Let T ! Cohd .X/rat be a morphism corresponding to a T -flat family of torsion-free
sheaves E on XT along with a T -flat family of effective Cartier divisors D ,! XT . We define
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the affine Grassmannian GrX;D;E to be the fiber product:

GrX;D;E WD Cohd .X/P �Cohd .X/rat T:

For any T 0=T , a T 0-point of GrX;D;E is a T 0-flat family of torsion-free sheaves F on XT 0

along with a morphism E ! F that becomes an isomorphism after restriction to XT 0 nDT 0 .
This is a presheaf of sets on the category of T -schemes that is representable by an ind-projective
ind-scheme over T (Proposition 3.14). Furthermore, for any quasi-compact closed subscheme
Y � GrX;D;E , the dual of the line bundle Ln on Cohd .X/P , which we use to define semista-
bility, is T -ample on Y for n� 0.

When X is a smooth curve, the ind-schemes GrX;D;E are known as Beilinson–Drinfeld
Grassmannians [7, Section 5.3.10 (i)], [32, Section 3], [49, Section 3], which are fundamen-
tal objects in geometric representation theory. So we regard GrX;D;E as a higher-dimensional
analogue of the affine Grassmannian.

1.2. Comparison with the classical approach. Since the development of GIT, a stan-
dard approach to analyzing a moduli problem that is representable by a locally finite type
algebraic stack X is to attempt to find a projective quotient stack Z=G with a morphism
Z=G ! X. Hopefully, and often with great effort, one can then show that the restriction to
the GIT semistable locus Zss=G ! X is an open immersion whose image admits a simple
intrinsic description.

In the example of Cohd .X/P , the basic idea in [44] is to observe that any sheaf F

admits a surjection OX .�n/
˚P.n/ ! F for n sufficiently large. The data of F along with such

a surjection can be regarded as a point in a quot-schemeQn D Quot.OX .�n/˚P.n//, which is
projective. One then studies the action of SLP.n/ on Qn. After a somewhat involved analysis
of the Hilbert–Mumford criterion, one finds that the notion of GIT semistability is independent
of n, and it agrees with the intrinsic notion of Gieseker semistability of the underlying sheaf F .
Finally, one shows that for semistable sheaves the choice of surjection OX .�n/

˚P.n/ � F is
unique up to the action of SLP.n/, and that the GIT quotientQss

n ==SLP.n/ is a moduli space for
semistable sheaves.

Constructing the stratification of the unstable locus is even more subtle, since unlike in the
case of the semistable locus, no single quotient stack will suffice to study all of the strata. In the
example of Cohd .X/P , the existence of Harder–Narasimhan filtrations and the constructibil-
ity of the stratification of Cohd .X/P by Harder–Narasimhan type has been known for some
time [42]. However, the canonical structure of locally closed substacks on the strata is a more
recent observation [18, 35]. As in the case of semistability, one can perform a careful analysis
of the Hilbert–Mumford criterion to identify each Harder–Narasimhan stratum of Cohd .X/
with a Hesselink–Kempf–Kirwan–Ness stratum of the quotient stackQn=SLP.n/ coming from
Geometric Invariant Theory, for n sufficiently large and depending on the stratum [16, 23].

One advantage of the infinite-dimensional GIT approach is that it avoids auxiliary
choices, and thus avoids the difficult task of showing that the ultimate result is independent
of those choices.

Another advantage is the relationship between the analysis for Cohd .X/ and the analysis
for related moduli stacks such as M D Paird .X/ or M D ƒCohd .X/. In the GIT approach,
one starts with the morphism Qn=SLP.n/ ! Cohd .X/ described above. The fiber product is
then

.Qn=SLP.n// �Cohd .X/ M Š Y=SLP.n/
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for some scheme Y that is affine over Qn, so one needs a trick in order to apply GIT. For
M D ƒCohd .X/, one compactifies Y in some way and then shows that those new points are
unstable. This complicates the story, especially because the new points do not lie over points
of ƒCohd .X/. For M D Paird .X/, one takes the quotient of an open subscheme Y ı � Y by
a free Gm-action in order to get a scheme that is projective over Qn.

In the infinite-dimensional GIT framework, there are analogous stacks of rational objects
Mrat along with a forgetful morphism Mrat ! Cohd .X/rat. Note that the fibers of the morphism
M ! Mrat over a T -point T ! Mrat are closed sub-ind-schemes of the affine Grassmann-
ians GrX;D;E , where the pair .D;E/ corresponds to the composition T ! Mrat ! Cohd .X/rat

(see Proposition 3.27). The argument for monotonicity of the numerical invariant on Cohd .X/
implies monotonicity of the restriction of the numerical invariant to M with no further effort.

Although we have chosen to focus on Paird .X/ and ƒCohd .X/ here, there are many
more examples of moduli stacks that are affine over Cohd .X/, such that the relevant affine
Grassmannian is a closed sub-ind-scheme of GrX;D;E . Examples include moduli of holomor-
phic triples [10] and more generally moduli spaces related to decorated sheaves [15,38,40]. In
light of our discussion above, the results of this paper reduce the analysis of all of these moduli
problems to verifying two types of boundedness conditions: HN-boundedness and boundedness
of the semistable locus.

One drawback of the infinite-dimensional GIT approach is that does not automatically
produce a projective moduli space. It is tempting to relate positivity of the line bundle on
the affine Grassmannian to ampleness of the line bundle after descending to the good moduli
space of the semistable locus. This is possible in certain classical examples, like the moduli of
SLn-bundles on a curve, but at the moment we do not know of any general ampleness results
in this framework.

Remark 1.4. The construction of the affine Grassmannians GrX;D;E makes use of quot-
schemes, just like the GIT construction of the moduli space for Cohd .X/ss. However, the
GIT approach uses quot-schemes parameterizing d -dimensional quotients, whereas GrX;D;E is
a colimit of quot-schemes parameterizing .d � 1/-dimensional quotients. Hence, despite this
superficial resemblance, the approaches are different. The original construction by Seshadri of
the moduli of vector bundles on a curve also uses .d � 1/-dimensional quot-schemes [41], but
the relationship with the approach in this paper is not clear.

Acknowledgement. We would like to thank Harold Blum, Tomás L. Gómez, Jochen
Heinloth, Felix Janda, Yuchen Liu, Chenyang Xu, and Alfonso Zamora for helpful conversa-
tions.

2. Preliminaries

2.1. Notation. We will work over a fixed quasi-compact base scheme S . For any two
S -schemes Y and T , we will always denote Y �S T by Y � T . For any S -scheme T we let
AffT denote the category of (absolutely) affine schemes over T . We will write SchT to denote
the category of all schemes over T . For any map of schemes Y ! T and any t 2 T we write
Yt to denote the fiber Y �T Spec.k.t// over t . All of the sheaves we consider will be quasi-
coherent. Whenever we write “OY -module” we mean a quasi-coherent OY -module. Let F be
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an OY -module. For any point t 2 T , we sometimes write Ft for the restriction of F to the
fiber Yt . This should not be confused with the identical notation employed for the stalk of
a sheaf. We will emphasize which use we have in mind whenever it is not clear from context.

In order to simplify notation for pullbacks, we use the following convention. Whenever
we have a map of schemes f W Y ! T and a sheaf G on T , we will write G jY to denote the
pullback f �G whenever the morphism f is clear from context.

We fix once and for all a scheme X that is projective and of finite presentation over S ;
� W X ! S will denote the structure morphism. We also fix an S -ample line bundle O.1/ onX .

If M is an algebraic stack, we denote by jMj its underlying topological space [50, Tag
04Y8]. We will often work with rational line bundles in Pic.M/Q WD Pic.M/˝Z Q; we may
omit the adjective “rational” whenever it is clear from context. We also fix some notation for
certain stacks defined in [2, 19]. We will denote by ‚ the quotient stack ŒA1Z=Gm�. We use the
convention that Gm acts linearly on A1Z D Spec.ZŒt �/ so that t is given weight �1.

Notation 2.1. Let R be a discrete valuation ring with uniformizer $ . We define

Y‚R
WD Spec.RŒt �/ and YSTR

WD Spec.RŒs; t �=.st �$//;

equipped with the Gm-action that assigns t weight �1 and s weight 1. The isomorphism class
of the Gm-scheme YSTR

is independent of the choice of uniformizer $ . We denote

‚R D ŒY‚R
=Gm� and ST R D ŒYSTR

=Gm�:

Note that Y‚R
and YSTR

each contain a unique Gm-invariant closed point cut out by the
ideals .t;$/ and .s; t/ respectively. We denote this closed point by 0 in both cases.

2.2. Pure sheaves. We are interested in variations of the moduli stack of pure sheaves
on X . Here we state some of the relevant definitions and set up some notation.

Definition 2.2. Let Y be a scheme of finite type over a field. Let p 2 Y be a point.
We say that p has dimension d if the closure p � Y is a variety of dimension d . Let F be
a coherent OY -module. We say that F is a pure sheaf of dimension d if all the associated
points of F have dimension d .

The definition of pure sheaf above is equivalent to the property that F has support
of dimension d and does not contain any nontrivial subsheaves supported on a scheme of
dimension smaller than or equal to d � 1. The latter is the definition of pure sheaf given in
[25, Definition 1.1.2].

Definition 2.3. Let � W Y ! T be a finite type morphism of schemes. We say that
a sheaf F on Y is T -pure of dimension d if it is T -flat, finitely presented, and for all t 2 T we
have that Ft is a pure sheaf of dimension d on Yt .

Definition 2.4 (Moduli of pure sheaves). The stack Cohd .X/ is the pseudofunctor from
.Sch=S/op to groupoids defined as follows. For every S -scheme T , we set

Cohd .X/.T / D Œgroupoid of T -pure OX�T -modules of dimension d�:

https://stacks.math.columbia.edu/tag/04Y8
https://stacks.math.columbia.edu/tag/04Y8
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The following proposition is certainly well known. We include a proof since we are not
aware of an explicit reference.

Proposition 2.5. The stack Cohd .X/ is algebraic with affine diagonal and locally of
finite presentation over S .

Proof. Note that Cohd .X/ is a subfunctor of CohX=S as defined in [50, Tag 09DS].
By [50, Tag 08WC], CohX=S is an algebraic stack with affine diagonal. It is locally of finite
presentation over S by [50, Tag 08KD] and [50, Tag 0CMY]. The assertion follows because the
inclusion Cohd .X/ ,! CohX=S is an open immersion by [17, Theorem 12.2.1 (iii), p. 179].

Definition 2.6. Let n 2 Z. Let Funiv denote the universal sheaf on Cohd .X/ �X , and
let �Cohd .X/ W Cohd .X/ �X ! Cohd .X/ denote the first projection. We set

Mn WD detR�Cohd .X/�.Funiv.n//:

Remark 2.7. The symbol det denotes the determinant in the K-theoretic sense. Note
that this makes sense because the derived pushforward is a perfect complex [50, Tag 0A1H].

Remark 2.8. Let T be a scheme and let f W T ! Cohd .X/ be a morphism correspond-
ing to a T -flat sheaf F onXT . Then, by [50, Tag 0A1D] the pullback f �.Mn/ can be similarly
described as detR�T �.F .n//.

Definition 2.9. By [26, Theorem 4], the line bundle Mn 2 Pic.Cohd .X// is a polyno-
mial in the variable n of degree d C 1 with values in Pic.Cohd .X//. More precisely,

Mn D

dC1O
iD0

b
.n

i /
i D

�
b

1
.dC1/Š

dC1

�ndC1

˝

�
b

1
dŠ

d
˝ b

� 1
2�.d�1/Š

dC1

�nd

˝ .lower order in n/

for certain line bundles bi , which can be expressed as bi WD
Ni
jD0M

.�1/i�j . i
j/

j using the
theory of discrete Taylor series.

2.3. Hilbert polynomials and Gieseker semistability. The purpose of this subsection
is to recall some notions from [25] and set some notation in place. Let Y be a scheme that is
projective over a field. Fix an ample line bundle O.1/ of Y . Let F be a pure sheaf of dimen-
sion d on Y . We denote by PF .n/ the Hilbert polynomial of F [25, Lemma 1.2.1]. This is
a polynomial of degree d in the variable n. It can be written in the form

PF .n/ D

dX
kD0

ak.F /

kŠ
nk

for some sequence of rational numbers ak.F /. We set rkF WD ad .F / (notice that this is called
the multiplicity in [25], their notion of rank differs from this by a factor of ad .OY /). It turns
out that rkF is always a positive integer. We define the reduced Hilbert polynomial to be

pF WD
1

rkF

PF :

For every 0 � i � d � 1, we set

y�i .F / WD
ai .F /

ad .F /
:

https://stacks.math.columbia.edu/tag/09DS
https://stacks.math.columbia.edu/tag/08KA
https://stacks.math.columbia.edu/tag/08KD
https://stacks.math.columbia.edu/tag/0CMY
https://stacks.math.columbia.edu/tag/0A1H
https://stacks.math.columbia.edu/tag/0A1D
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We call this the i -th slope of F . The .d � 1/-th slope y�d�1.F / is the Mumford slope of F as
in [25]; we denote it simply by y�.F /.

Definition 2.10. A pure sheaf F of dimension d on Y is called Gieseker semistable if
for all nontrivial subsheaves E � F we have pE.n/ � pF .n/ for n� 0.

For simplicity of notation, we will use the following convention from now on.

Definition 2.11. For any two polynomials p1; p2 2 RŒn�, we will write p1 � p2 if
p1.n/ � p2.n/ for n� 0.

In order to check that F is Gieseker semistable, it suffices to show that pE � pF for all
nontrivial subsheaves E such that F =E is also pure of dimension d . This is a consequence of
[25, Proposition 1.2.6].

Definition 2.12. For any rational polynomial P 2 QŒn� of degree d , let Cohd .X/P
denote the subfunctor of Cohd .X/ consisting of families whose fibers all have Hilbert polyno-
mial P .

Since the Hilbert polynomial is locally constant in flat families of sheaves, Cohd .X/ can
be written as a disjoint union of open and closed substacks Cohd .X/ D

F
P2QŒn� Cohd .X/P .

Definition 2.13. Let n 2 Z. We define Ln to be the line bundle on Cohd .X/ that is
defined on each Cohd .X/P as follows. We set

LnjCohd .X/P
WDMnjCohd .X/P

˝
�
bd jCohd .X/P

��˝p.n/
:

Here the reduced Hilbert polynomial p on Cohd .X/P is defined to be the unique scalar
multiple of P with leading coefficient 1

dŠ
.

2.4. Some related moduli problems.

2.4.1. Moduli of pairs. Fix a finitely presented sheaf A on X .

Definition 2.14. The moduli stack of pure pairs PairdA.X/ is the pseudofunctor from
.Sch=S/op into groupoids defined as follows. For any S -scheme T , we set

PairdA.X/.T / D

"
groupoid of tuples .F ; ˛/, where F 2 Cohd .X/.T /
and ˛ is a morphism ˛ W AjXT

! F

#
:

We require the isomorphisms in PairdA.X/ to be compatible with the morphism ˛.

There is a natural morphism PairdA.X/! Cohd .X/ that forgets the morphism ˛.

Proposition 2.15. The forgetful morphism PairdA.X/! Cohd .X/ is schematic, affine
and of finite presentation. In particular, PairdA.X/ is an algebraic stack with affine diagonal
and locally of finite presentation over S .
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The following lemma will be used to prove Proposition 2.15.

Lemma 2.16. Let Y ! T be a morphism of schemes that is proper and of finite presen-
tation. Let F and G be quasi-coherent OY -modules. Suppose that G is finitely presented and
T -flat. Let Hom.F ;G / denote the functor from .Sch=T /op into sets that sends a T -schemeL to

Hom.F ;G /.L/ WD HomOYL
.F jYL

;G jYL
/:

Then:

(a) Hom.F ;G / is represented by a scheme that is relatively affine over T .

(b) If F is finitely presented, then Hom.F ;G / is of finite presentation over T .

(c) If F is of finite type, then the section 0 W T ! Hom.F ;G / induced by the 0 morphism is
a closed immersion of finite presentation.

Proof. Parts (a) and (b) are a special case of [50, Tag 08K6].
For (c), suppose first that F is finitely presented. Then (c) follows since the composition

T
0
�! Hom.F ;G /! T

is clearly of finite presentation and the diagonal

Hom.F ;G / ,! Hom.F ;G / �T Hom.F ;G /

is of finite presentation by [50, Tag 0818].
For the general case, since the statement is local on T we can assume without loss of

generality that T is affine. Therefore Y is quasi-compact and separated. By [50, Tag 086M],
F admits a surjection E � F from a finitely presented sheaf E . Observe that the naturally
induced diagram

T Hom.F ;G /

T Hom.E;G /

id

0

0

is Cartesian. As E is finitely presented, we already know that 0 W T ,! Hom.E;G / is a closed
immersion of finite presentation. Therefore, the same holds for 0 W T ,! Hom.F ;G /.

Proof of Proposition 2.15. Let T be an S -scheme. Let T ! Cohd .X/ be a morphism
represented by a T -pure sheaf F of dimension d on XT . By definition, the fiber product
PairdA.X/ �Cohd .X/ T is the functor Hom.AjXT

;F / over the scheme T . By Lemma 2.16, this
is represented by a scheme that is relatively affine and of finite presentation over T .

We will abuse notation and denote by Mn; Ln; bd the pullbacks to PairdA.X/ of the
corresponding line bundles on Cohd .X/ under the forgetful morphism defined above.

2.4.2. Moduli of ƒ-modules. In this subsection we will work with a sheaf ƒ of rings
of differential operators for the morphism � W X ! S , as in [44, Section 2]. We add an extra
finite presentation condition in order to work in the non-Noetherian setting.

Definition 2.17. A sheaf of finitely presented rings of differential operators ƒ on X
relative to S is an associative unital OX -algebra with a filtrationƒ0 � ƒ1 � � � � � ƒ satisfying

https://stacks.math.columbia.edu/tag/08K6
https://stacks.math.columbia.edu/tag/0818
https://stacks.math.columbia.edu/tag/086M
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the following conditions:

(1) ƒ D
S
j�0ƒj . Furthermore, ƒi �ƒj � ƒiCj for all i; j .

(2) The image of the unit OX ! ƒ is equal to ƒ0.

(3) The image of ��1.OS / in OX is contained in the center of ƒ.

(4) The left and right OX -module structures on ƒi=ƒi�1 are equal.

(5) The sheaves of OX -modules ƒi=ƒi�1 are finitely presented.

(6) The sheaf of graded OX -algebras Gr.ƒ/ WD
L
j�0ƒi=ƒi�1 is generated by ƒ1=ƒ0.

(7) Let TOX
.ƒ1=ƒ0/ denote the free associative tensor OX -algebra. The kernel of the natural

surjective morphism TOX
.ƒ1=ƒ0/ � Gr.ƒ/ is locally finitely generated as a two-sided

ideal.

Remark 2.18. The definition of sheaf of rings of differential operators in [44, Section 2]
only includes conditions (1) through (6) in the definition above. We include the additional
condition (7) to show that the stack ƒCohd .X/ of ƒ-modules is locally of finite presenta-
tion over the base S in Proposition 2.23. Without assuming (7), the proof of Proposition 2.23
shows that ƒCohd .X/ is locally of finite type over S , and hence locally of finite presentation
if S is Noetherian. Therefore when S is Noetherian all of the results that follow hold with
condition (7) omitted from Definition 2.17, which is the context in [44].

If the associated graded algebra Gr.ƒ/ is commutative and the base scheme S is Noether-
ian, then condition (7) is automatically satisfied by Hilbert’s basis theorem. We do not know if
(7) is automatic more generally when the base S is Noetherian.

The proof of [44, Lemma 2.2] implies that each subsheafƒi is finitely presented for both
the left and right OX -module structures. It follows thatƒ is quasi-coherent for both the left and
right OX -module structures.

For the remainder of this article, we fix a sheafƒ of finitely presented rings of differential
operators in Definition 2.17.

Let f W T ! S be a morphism of schemes. By [44, Lemma 2.5, 2.6] there is a canon-
ical isomorphism between the pullbacks .f �

X /lƒi and .f �
X /rƒi with respect to the left and

right OX -module structures. There is also a canonical isomorphism between the left and right
pullbacks of ƒ. We will implicitly use this isomorphism and write ƒi jXT

and ƒjXT
to denote

either of these pullbacks. It is shown in [44, Lemma 2.5, 2.6] that ƒjXT
is a sheaf of rings of

differential operators on XT relative to T . In particular, we have a filtration

.ƒjXT
/0 � .ƒjXT

/1 � � � � � ƒjXT
;

where .ƒjXT
/j is defined to be the image of the morphism ƒj jXT

! ƒjXT
.

Definition 2.19. Let E be an S -flat finitely presented OX -module. A ƒ-module struc-
ture on E is a module structure on E for the sheaf of rings ƒ that is compatible with the
OX -module structure. If E is equipped with such structure, then we say that E is a ƒ-module.

Let E be a ƒ-module on X . Suppose we are given a morphism of schemes f W T ! S .
Note that [44, Lemma 2.7] implies that the pullback EjXT

can be naturally equipped with
a ƒjXT

-module structure. We use this fact to define a stack of ƒ-modules on X .
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Definition 2.20. The moduli stackƒCohd .X/ ofƒ-modules is the pseudofunctor from
.Sch=S/op into groupoids defined as follows. For any S -scheme T , we set

ƒCohd .X/.T / D

"
groupoid of T -pure sheaves E of dimension d on XT
equipped with the structure of a ƒjXT

-module

#
:

The isomorphisms in the groupoid are required to preserve the ƒjXT
-module structure.

For each j > 1, let Kj denote the left and right OX -module of finite type fitting into the
following short exact sequence:

0! Kj ! .ƒ1/
˝j

! ƒj ! 0:

Here the tensor product is in the sense of .OX ;OX /-bimodules, and the morphism

.ƒ1/
˝j

! ƒj

is given by multiplication.

Lemma 2.21. There exists some jgen � 0 such that for all j � jgen we have

Kj D

X
aCbDj�jgen

ƒ˝a
1 ˝ Kjgen ˝ƒ˝b

1 :

Proof. By quasi-compactness, it is sufficient to show that the kernel of the surjectionS
j ƒ

˝j
1 � ƒ induced by multiplication is a locally finitely generated two-sided ideal, where

the morphisms for the union are given by

ƒ
˝j
1

id
ƒ˝j ˝1ƒ

�������! ƒ
˝jC1
1 :

The algebra
S
j ƒ

˝j
1 is naturally filtered; a standard argument reduces to showing that the

corresponding initial ideal in Gr.
S
j ƒ

˝j
1 / is locally finitely generated. Note that Gr.

S
j ƒ

˝j
1 /

is the free tensor associative OX -algebra TOX
.ƒ1=ƒ0/.

The initial ideal is the kernel of the associated graded morphism TOX
.ƒ1=ƒ0/! Gr.ƒ/

obtained from our original morphism
S
j ƒ

˝j
1 � ƒ of filtered algebras. By condition (7) in

Definition 2.17, this kernel is a locally finitely generated two-sided ideal, as desired.

Let f W T ! S be an S -scheme. Let E be a finitely-presented T -flat OXT
-module. Sup-

pose that E is given the structure of a ƒjXT
-module. We get a morphism a W ƒ1jXT

˝ E ! E

of left OXT
-modules given by the composition

ƒ1jXT
˝ E ! ƒjXT

˝ E ! E:

By [44, Lemma 2.8], the image of ƒ1jXT
in ƒjXT

locally generates ƒjXT
as an algebra.

This implies that the morphism a completely determines the ƒjXT
-module structure on E .

The next proposition characterizes which morphisms a W ƒ1jXT
˝ E ! E arise from such

a ƒjXT
-structure. This gives a useful alternative description of ƒ-modules.

Proposition 2.22. Let f W T ! S be an S -scheme. Let E be a finitely-presented T -flat
OXT

-module. Let a W ƒ1jXT
˝ E ! E be a morphism of left OXT

-modules. Then a arises from
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a ƒjXT
-module structure on E (as described above) if and only if the following conditions are

satisfied:

(ƒ1) The composition E �
�! OXT

˝ E
unitjXT

˝id
�������! ƒ1jXT

˝ E
a
�! E is the identity.

(ƒ2) For all j > 1, the composition Kj jXT
˝ E ! .ƒ1jXT

/˝j ˝ E ! E is 0. Here the last
morphism .ƒ1jXT

/˝j ˝ E ! E is the natural one obtained by applying j -times the
morphism a, starting with the right-most copy of ƒ1jXT

and ending at the left-most
copy.

In particular, the set of ƒjXT
-module structures on E is in natural bijection with morphisms

a W ƒ1jXT
˝ E ! E satisfying conditions (ƒ1) and (ƒ2) above. If jgen is as Lemma 2.21, then

.ƒ2/ is equivalent to the composition Kjgen jXT
˝ E ! .ƒ1jXT

/˝jgen ˝ E ! E being 0.

Proof. If a comes from aƒjXT
-module structure, then it follows from construction that

it must satisfy conditions (ƒ1) and (ƒ2) above. (ƒ1) follows from the fact that the unit ofƒjXT

acts as the identity, and (ƒ2) follows from the compatibility of theƒjXT
-module structure with

multiplication.
Conversely, suppose that a W ƒ1jXT

˝ E ! E is a morphism of left OXT
-modules satis-

fying conditions (ƒ1) and (ƒ2). By (ƒ2), the morphism .ƒ1jXT
/˝j ˝ E ! E factors through

the quotient ..ƒ1jXT
/˝j =Kj /˝ E Š ƒj jXT

˝ E . Hence we get a sequence of morphisms
aj Wƒj jXT

˝E ! E compatible with the natural mapsƒj jXT
!ƒjC1jXT

. This yields a well-
defined morphism colimj�0ƒj jXT

˝ E ! E . Since tensoring and pulling back commutes
with taking colimits, this is equivalent to an action morphismƒjXT

˝ E ! E . By construction,
this action map is compatible with multiplication on ƒjXT

. Moreover, (ƒ1) implies that the
unit inƒjXT

acts as the identity. We conclude that this is aƒjXT
-module structure on E . It fol-

lows from construction that a is the composition ƒ1jXT
˝ E ! ƒjXT

˝ E ! E , as desired.
The last statement in the proposition follows because by assumption Kjgen generates all Kj

for j � jgen.

There is a natural forgetful morphism of pseudofunctors ƒCohd .X/! Cohd .X/ that
forgets the ƒ-module structure.

Proposition 2.23. The forgetful morphismƒCohd .X/!Cohd .X/ is schematic, affine
and of finite presentation. In particular, ƒCohd .X/ is an algebraic stack with affine diagonal
and locally of finite presentation over S .

Proof. Let T be an S -scheme. Let T ! Cohd .X/ be represented by a T -pure sheaf F

of dimension d on XT . We need to show that ƒCohd .X/ �Cohd .X/ T is relatively affine and
of finite type over T .

Due to Proposition 2.22, the fiber product ƒCohd .X/ �Cohd .X/ T is the subfunctor of
Hom.ƒ1jXT

˝ F ;F / that classifies morphisms a W ƒ1jXT
˝ F ! F of left OXT

-modules
satisfying conditions (ƒ1) and (ƒ2). By Lemma 2.16, the functor Hom.ƒ1jXT

˝ F ;F / is
represented by a scheme that is relatively affine and of finite presentation over T .

Set H WD Hom.ƒ1jXT
˝ F ;F /. Let auniv W ƒ1jXH

˝ F jXH
! F jXH

denote the uni-
versal morphism on XH . The composition

F jXH

�
�������! OXH

˝ F jXH

unitjXH
˝id

�������! ƒ1jXH
˝ F jXH

auniv
�������! F jXH
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defines a section f W H ! Hom.F ;F / �T H of the projection Hom.OXT
;F / �T H ! H .

The constant identity morphism idF jXH
induces another section. The subfunctor of H where

(ƒ1) is satisfied is the locus Z0 where f � idF jXH
agrees with the 0 section. Since the 0

section is a closed immersion of finite presentation by Lemma 2.16, it follows that the locus
Z0 is represented by a closed subscheme of finite presentation over H .

Let jgen be as in Lemma 2.21. A similar reasoning shows that the locusZjgen ,! H where
the composition Kjgen jXT

˝ E ! .ƒ1jXT
/˝jgen ˝ E ! E vanishes is represented by a closed

subscheme of finite presentation. We conclude that ƒCohd .X/ �Cohd .X/ T is represented by
the closed subscheme Z0 \Zjgen of finite presentation in H . Since H is relatively affine and
of finite presentation over T , then so is ƒCohd .X/ �Cohd .X/ T .

2.5. ‚-stratifications and numerical invariants. We recall some of the theory of
‚-stratifications and numerical invariants introduced in [19]. Let M be an algebraic stack with
quasi-affine diagonal and locally of finite presentation over S .

Let k be a field. We denote by 0 2 A1
k

the fixed point given by the vanishing of the
coordinate t in A1

k
. We will abuse notation and also denote by 0 the corresponding k-point

of‚k . Similarly, we let 1 be the k-point of A1
k

given by the vanishing of t � 1, and also denote
by 1 its image in the quotient ‚k .

For any k-valued point p 2M.k/, a filtration of p is a morphism f W‚k!M along with
an isomorphism f .1/ ' p (see [19, Section 1]). The stack of filtrations Filt.M/ D Map.‚;M/

is represented by an algebraic stack locally of finite presentation over S (see [19, Proposi-
tion 1.1.2]). There is a morphism ev1 W Filt.M/! M given by evaluating at 1 2 ‚.

A graded point of the stack M is a morphism .BGm/k ! M, where k is a field. The
mapping stack of graded points Grad.M/ WD Map.BGm;M/ is also an algebraic stack locally
of finite presentation over S (see [19, Proposition 1.1.2]).

Let X be an open substack of M. A weak ‚-stratum of X is a union of connected
components of Filt.X/ such that the restriction of ev1 is finite and radicial. A ‚-stratum is
a weak‚-stratum such that ev1 is a closed immersion. We can think of a‚-stratum as a closed
substack of X that is identified with some connected components of Filt.X/.

Definition 2.24. A (weak) ‚-stratification of M consists of a collection of open sub-
stacks .M�c/c2� indexed by a totally ordered set � . We require the following conditions to be
satisfied:

(1) M�c � M�c0 for all c < c0.

(2) M D
S
c2� M�c .

(3) For all c, there exists a (weak) ‚-stratum Sc � Filt.M�c/ of M�c such that

M�c n ev1.Sc/ D
[
c0<c

M�c0

(4) For every point p 2 M, the set ¹c 2 � W p 2 M�cº has a minimal element.

In order to define ‚-stratifications for our stacks of interest, we will need to introduce
some numerical invariants in the sense of [19, Definition 0.0.3]. Our numerical invariants will
be valued in the ring RŒn� of polynomials in the variable n with coefficients in R. The order
described in Definition 2.11 equips RŒn� with the structure of a totally ordered R-vector space.
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For q � 1, let
BGq

m WD ŒSpec.Z/=Gq
m�:

Let k be a field. We say that a morphism g W B.Gq
m/k ! M is nondegenerate if the induced

homomorphism 
 W .Gq
m/k ! Aut.gjSpec.k// has finite kernel. A polynomial numerical invar-

iant is an assignment of a function �
 W Rq n ¹0º ! RŒn� for each such nondegenerate mor-
phism, satisfying some compatibility conditions.

Definition 2.25. A polynomial numerical invariant � on a stack M is an assignment
defined as follows. Let k be a field and let p 2 M. Let 
 W .Gq

m/k ! Aut.p/ be a homomor-
phism of k-groups with finite kernel. Then � assigns to this data a scale-invariant function
�
 W Rq n ¹0º ! RŒn� such that:

(1) �
 is unchanged under field extensions k � k0.

(2) � is locally constant in algebraic families. In other words, let T be a scheme, � W T ! M

a morphism and 
 W .Gq
m/T ! Aut.�/ a homomorphism of T -group schemes with finite

kernel. Then as we vary t 2 T , the function �
t
is locally constant in T .

(3) Given a homomorphism � W .Gw
m/k ! .Gq

m/k with finite kernel, the function �
ı� is the
restriction of �
 along the inclusion Rw ,! Rq induced by �.

We call a filtration f W ‚k ! M nondegenerate if the restriction f j0 W Œ0=.Gm/k�! M

is nondegenerate. We regard � as a function on the set of nondegenerate filtrations by defining
�.f / WD �f j0

.1/ 2 RŒn�. Given a point p 2 jMj, we say that p is semistable if all nondegen-
erate filtrations f with f .1/ D p satisfy �.f / � 0. Otherwise we say that p is unstable. Note
that although Definition 2.25 involves data for all q � 1, only the q D 1 data is used to define
semistability.

Remark 2.26. We will only consider nondegenerate filtrations, because these are the
ones relevant for stability. For the rest of the article, we will sometimes omit the adjective
“nondegenerate”.

Next we explain a useful way to construct polynomial numerical invariants on a stack.
Fix a sequence of rational line bundles .Ln/n2Z, where each Ln is in the rational Picard group
Pic.M/˝Z Q of the stack. For each morphism g W .BGq

m/k ! M, the pullback line bundle
g�.Ln/ amounts to a rational character in X�.Gq

m/˝Z Q. Under the natural identification
X�.Gq

m/˝Z Q Š Qq , we can interpret this as a q-tuple of rational numbers .w.i/n /
q
iD1, which

we call the weight of g�.Ln/. It is often the case that one can choose the line bundles .Ln/n2Z

in such a way that for each fixed i the weight w.i/n is a polynomial in QŒn�. If this is the case,
then for every g we can define an R-linear function Lg W Rq ! RŒn� given by

Lg..ri /
q
iD1/ D

qX
iD1

ri � w
.i/
n :

In order to obtain a scale invariant �, we use a rational quadratic norm on graded points as in
[19, Definition 4.1.12]. This consists of an assignment of a positive definite quadratic norm
b
 .�/ with rational coefficients defined on Rq for each choice of p 2 M.k/ and homomor-
phism 
 W .Gq

m/k ! Aut.p/ with finite kernel. Just as in the definition of numerical invariants,
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we require that this assignment is stable under field extension and locally constant on alge-
braic families. Also, we require that for any homomorphism � W .Gw

m/k ! .Gq
m/k with finite

kernel the quadratic norms b
 and b
ı� are compatible with the corresponding induced inclu-
sion Rm ,! Rq .

Given a sequence of rational line bundles .Ln/n2Z as above and a rational quadratic norm
on graded points b, we can define a numerical invariant � as follows. For all nondegenerate
g W .BGq

m/k ! M with corresponding morphism 
 W .Gq
m/k ! Aut.gjSpec.k//, we set

�
 .Er/ D
Lg.Er/p
b
 .Er/

:

We next explain how a polynomial numerical invariant � can define a (weak) ‚-strati-
fication on M (see [19, Section 4.1] for more details). For any unstable point, we set M �.p/

to be the supremum of �.f / over all filtrations f with f .1/ D p (if such supremum exists).
If p is semistable, then by convention we set M �.p/ D 0. For any c 2 RŒn��0, we set M�c

to be the set of all points p satisfying M �.p/ � c, and we let M�-ss WD M�0 denote the set of
semistable points. For any unstable point p, a filtration f of p is called a Harder–Narasimhan
filtration if �.f / DM �.p/.

We say that � defines a (weak) ‚-stratification if:

(1) every unstable point has a Harder–Narasimhan filtration that is unique up to pre-compos-
ing with a ramified covering ‚! ‚,

(2) M�c are open substacks of M coming from a (weak) ‚-stratification such that the
(weak) stratum Sc � Filt.M�c/ is an open and closed substack of Harder–Narasimhan
filtrations f with �.f / D c.

If � defines a‚-stratification, the Harder–Narasimhan filtration of any point is defined over the
field of definition of that point, but if it is only a weak‚-stratification, the Harder–Narasimhan
filtration might only be defined over a finite purely inseparable field extension.

A natural question to ask is: When does a numerical invariant � define a (weak)‚-strati-
fication as described above, and when does M�-ss admit a good moduli space in the sense
of [1]? The following theorem provides sufficient criteria.

Theorem 2.27 ([19, Theorem B]). Let � be a polynomial numerical invariant on M

defined by a sequence of rational line bundles and a norm on graded points, as explained
above.

(i) If � is strictly ‚-monotone, then it defines a weak ‚-stratification of M if and only if it
satisfies the HN-boundedness condition. If moreover S is defined over Q, then � defines
a ‚-stratification.

(ii) Suppose that all of the conditions in (1) above are satisfied and S is defined over Q.
Furthermore, assume � is strictly S -monotone and that the semistable locus M�-ss can
be written as a disjoint union of bounded open substacks. Then M�-ss has a separated
good moduli space.

If all of the above are satisfied and if M satisfies the existence part of the valuative criterion for
properness for complete discrete valuation rings relative to S (see [50, Tag 0CLK]), then each
quasi-compact open and closed substack of M�-ss admits a good moduli space that is proper
over S .

https://stacks.math.columbia.edu/tag/0CLK
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We end this subsection by explaining each of the hypotheses that one needs to check in
Theorem 2.27. Let � be a field and let a � 1 be an integer. We denote by P1� Œa� the Gm-scheme
P1� equipped with the Gm-action determined by the equation t � Œx W y� D Œt�ax W y�. We set
0 D Œ0 W 1� and 1 D Œ1 W 0�. Recall the schemes Y‚R

and YSTR
of Notation 2.1.

We will use simplified versions of the monotonicity conditions in [19, Section 5]. We
refer the reader there for the general definitions, which allow † to be an orbifold.

Definition 2.28. A polynomial numerical invariant � on M is strictly ‚-monotone
(resp. strictly S -monotone) if the following condition holds. Let R be any complete discrete
valuation ring and set X to be ‚R (resp. ST R). Choose a map ' W X n 0! M. After maybe
replacingR with a finite DVR extension, there exists a reduced and irreducible Gm-equivariant
scheme † with maps f W †! YX and z' W Œ†=Gm�! M such that:

(M1) The map f is proper, Gm-equivariant, and its restriction induces an isomorphism

f W †YXn0
�
�! YX n 0:

(M2) The following diagram commutes:

Œ.†YXn0/=Gm�

X n 0 M.

z'
f

'

(M3) Let � denote a finite extension of the residue field of R. For any a � 1 and any finite
Gm-equivariant morphism P1� Œa�! †0, we have �.z'jŒ1=Gm�/ > �.z'jŒ0=Gm�/.

Definition 2.29 (HN-boundedness). We say that a polynomial numerical invariant �
satisfies the HN-boundedness condition if the following is always satisfied: Let T be an affine
Noetherian scheme. Choose a morphism g W T ! M. Then there exists a quasi-compact open
substack UT � M such that the following holds. For all geometric points t 2 T with residue
field k and all nondegenerate filtrations f W ‚k ! M of the point g.t/ with �.f / > 0, there
exists another filtration f 0 of g.t/ satisfying �.f 0/ � �.f / and f 0j0 2 UT .

In plain words, this says that for the purposes of maximizing �.f / among all filtrations
of points in a bounded family, it suffices to consider only f such that the associated graded
f j0 lies in some other (possibly larger) bounded family.

3. Rational maps and affine Grassmannians

In this section we define a stack of rational maps Mrat associated to each of the moduli
stacks M we are considering. There is a natural morphism M ! Mrat whose fibers are higher-
dimensional analogues of affine Grassmannians. Just as in the classical case of vector bundles
on a curve, our affine Grassmannians are ind-projective strict-ind-schemes over S .

We will also identify a family of line bundles on the affine Grassmannian that are eventu-
ally relatively ample on each projective stratum. The material from this section will be one
of the ingredients in the infinite-dimensional GIT argument we will use later on to prove
monotonicity of the numerical invariant on M.
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3.1. Regular principal subschemes and twists.

Definition 3.1. Let Y be a scheme. We say that a closed subschemeD ,! Y is principal
if the corresponding ideal sheaf ID is locally a principal ideal.

Example 3.2. We give some examples of principal subschemes to illustrate that not
all principal subschemes are Cartier divisors. First, the identity subscheme Y � Y is always
principal, cut out by the 0 function. For another example, if we let Y WD Spec.kŒx; y�=.xy//,
then the subscheme D � Y cut out by the function x is a principal subscheme.

Remark 3.3. A subschemeD is principal if and only if the first Fitting ideal Fit1.ID/ is
the structure sheaf OY . Indeed, if ID is locally generated by one element, then Fit1.ID/ D OY
by [50, Tag 07ZA(1)]. The converse follows by [50, Tag 07ZC]. Since the formation of Fitting
ideals of sheaves commutes with base-change [50, Tag 07ZA(3)], and f �.ID/ D If �1.D/ for
a flat morphism f W Y 0 ! Y , it follows that the property of being a principal subscheme can
be checked flat locally.

Let D1 and D2 be two principal subschemes cut out by the OY -ideals ID1
and ID2

. We
define the sum D1 CD2 to be the locally principal scheme cut out by the ideal ID1

� ID2
.

Definition 3.4. Let T be an S -scheme. Let D ,! XT be a principal subscheme. Let F

be a T -flat finitely presented OXT
-module. We say thatD is F -regular if for all t 2 T the fiber

Dt does not contain any associated point of F jXt
.

The following lemma collects some useful properties of the notion of F -regular sub-
scheme.

Lemma 3.5. Let C;D ,! X be two principal subschemes of the finitely presented
scheme X ! S . Let F be an S -flat finitely presented OX -module. Suppose that both C;D
are F -regular. Then:

(a) C CD is F -regular.

(b) For any morphism of schemes f W T ! S , the preimage .fX /�1.D/ under the base-
change morphism fX W XT ! XS is F jXT

-regular.

(c) Let � W ID ! OX denote the inclusion of the ideal sheaf. Then the morphism

� ˝ idF W ID ˝ F ! F

is injective. Moreover, the quotient F =.ID ˝ F / is S -flat.

(d) ID ˝ F is locally isomorphic to F .

Proof. (a) For each s 2 S , the support of .C CD/s is the union of the supports of Cs
andDs . If Cs andDs do not contain any associated point of F jXs

, then neither does the union.
(b) Let t 2 T , and set s D f .t/. By [50, Tag 05DC], the set of associated points of

F jXt
are contained in the preimage of the associated points of F jXs

under the morphism
ft W Xt ! Xs . This implies the claim, because the fiber ..fX /�1D/t is the preimage under ft
of the fiber Ds .

https://stacks.math.columbia.edu/tag/07ZA
https://stacks.math.columbia.edu/tag/07ZC
https://stacks.math.columbia.edu/tag/07ZA
https://stacks.math.columbia.edu/tag/05DC
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(c) Since the question is local, we can assume that X is affine and the ideal ID is gen-
erated by a global section OX

u
�! OX . Let Ann.u/ � OX denote the ideal annihilating u. By

definition, the sequence Ann.u/ ,! OX
u
�! OX is exact in the middle, and the cokernel of the

first map is identified with ID . Consider the complex Ann.u/˝ F ! F
u
�! F obtained by

tensoring with F . It suffices to show that the second morphism u W F ! F is injective and
that F =.u � F / is S -flat.

Since D is F -regular, it follows that for all s 2 S the restriction F jXs

ujXs
���! F jXs

is
injective. Because F is S -flat, the slicing criterion for flatness [50, Tag 00ME] implies that
F

u
�! F is injective and F =.u � F / is S -flat.

(d) Locally, we can choose u as in part (c). We have F ˝ID Š cokerŒAnn.u/˝F !F �.
It follows from part (c) that Ann.u/˝ F ! F is the 0morphism, since the image is contained
in the kernel of the injection F

u
�! F . Therefore F ˝ ID Š F .

Let D ,! X be an F -regular principal subscheme. Let U D X nD be the open com-
plement. The open immersion j W U ,! X is locally given by the localization of a generator
of the ideal sheaf ID that cuts out D. In particular, j is affine. We can use this local inter-
pretation of j plus Lemma 3.5 (c) to see that the unit F ! j�j

�F is injective. Consider the
isomorphism ID ˝ j�j

�F ! j�j
�F induced by multiplication.

Definition 3.6 (Twists). With notation as above, we define F .�D/ to be the image of
ID ˝ F under the multiplication morphism ID ˝ j�j

�F ! j�j
�F .

Similarly, we define F .D/ to be the maximal subsheaf E � j�j
�F such that the image

of ID ˝ E ! j�j
�F lands in F � j�j

�F .

By definition, there is an infinite chain of injections

� � � ,! F .�nD/ ,! � � � ,! F .�2D/ ,! F .�D/ ,! F

,! F .D/ ,! � � � ,! F .nD/ ,! � � � :

By using the affine local interpretation of j as a localization, it can be seen that there is
a canonical identification j�j �F Š colimm2Z F .mD/.

Lemma 3.5 (d) implies that F .nD/ is locally isomorphic to F for all n 2 Z. In particular,
if F is S -pure of dimension d , then all the twists F .nD/ are S -pure of dimension d .

3.2. Stacks of rational maps.

Definition 3.7. We denote by Cohd .X/rat the pseudofunctor from .AffS /op to cate-
gories defined as follows. For each affine scheme T in AffS , the objects of Cohd .X/rat.T / are
pairs .D;E/, where

(1) E is a T -pure sheaf of dimension d on XT ,

(2) D ,! XT is an E-regular principal subscheme of XT .

Let A D .D1;E1/ and B D .D2;E2/ be two objects in Cohd .X/rat.T /. The set of morphisms
MorCohd .X/rat.T /

.A;B/ consists of pairs .i;  /, where

(1) i W D1 ,! D2 is an inclusion,

(2)  W E2 ! E1 is a monomorphism such that the restriction  jXnD2
is an isomorphism.

https://stacks.math.columbia.edu/tag/00ME


Halpern-Leistner et al., Moduli spaces of sheaves via affine Grassmannians 179

Note that all morphisms in Cohd .X/rat.T / are monic.

Remark 3.8. In order to see that this yields a well-defined functor, it is necessary to
check that  remains a monomorphism after base-changing T . This follows because the cok-
ernel of  is T -flat, by an argument similar to the one for (i) inside the proof of Lemma 3.17
below.

The pseudofunctor Cohd .X/rat is a stack in the fpqc topology. Indeed, descent data
amounts to a cocycle with isomorphisms in Cohd .X/rat. By definition, these are the usual naive
isomorphisms of pairs .D;F /. Therefore, descent follows from the theory of fpqc descent for
quasi-coherent sheaves and the fact that the property of being a principal subscheme is fpqc
local (Remark 3.3).

We conclude that if Y is an affine scheme in AffS and H is an S -flat algebraic group
scheme acting on Y , then the data of a morphism of pseudofunctors ŒY=H�! Cohd .X/rat

amounts to a pair .D;F /, where

(1) F is an H -equivariant Y -pure sheaf of dimension d on XY ,

(2) D ,! XY is an H -stable F -regular principal subscheme.

Remark 3.9. It is possible to develop the theory of infinite-dimensional GIT using
variants of this definition of the pseudofunctor Cohd .X/rat. For instance, one could define
objects to be those of Cohd .X/, and morphisms to be equivalence classes consisting of pairs
.D � X; W E1jXnD ! E2jXnD/, where D is a principal subscheme that is E1-regular and
E2-regular, and  is an isomorphism. Two such morphisms are equivalent if they agree on
the intersection of the open subsets where they are defined. This is a pseudofunctor valued in
groupoids, but it does not satisfy smooth descent. The rational filling condition in Definition 4.5
would be more difficult to state without smooth descent.

We can similarly define stacks of rational maps for each of the other stacks introduced in
Section 2.4.

Definition 3.10. We denote by PairdA.X/rat the pseudofunctor from .AffS /op to cate-
gories defined as follows. For each affine scheme T in AffS , the objects of PairdA.X/rat.T /

consist of triples .D;E; ˛/, where

(1) .D;E/ is an element of Cohd .X/rat,

(2) ˛ is a morphism ˛ W AjXT nD ! F jXT nD .

A morphism from .D1;E1; ˛1/ to .D2;E2; ˛2/ is a morphism .i;  / W .D1;E1/! .D2;E2/

such that  jXT nD2
is compatible with the sections ˛1jXT nD2

and ˛2.

Definition 3.11. We denote by ƒCohd .X/rat the pseudofunctor from .AffS /op to cate-
gories defined as follows. For each affine scheme T in AffS , the objects of ƒCohd .X/rat.T /

consist of triples .D;E; a/, where

(1) .D;E/ is an element of Cohd .X/rat,

(2) a is a morphism a W ƒ1jXTnD˝EjXT nD ! EjXT nD of left OXT nD-modules that endows
EjXT nD with the structure of a ƒjXT nD-module (as in Proposition 2.22).
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A morphism from .D1;E1; a1/ to .D2;E2; a2/ is a morphism .i;  / W .D1;E1/! .D2;E2/

such that  jXT nD2
is compatible with the action morphisms a1jXT nD2

and a2.

Let M D PairdA.X/ or M D ƒCohd .X/. Note that the theory of fpqc descent for quasi-
coherent sheaves implies that Mrat satisfies fpqc descent. This shows that the data of a pseudo-
functor ŒY=H�! Mrat from a quotient stack ŒY=H� can be concretely described as anH -equi-
variant pair .D;F / 2 Cohd .X/rat.Y /, and the corresponding H -equivariant structure defined
on XT nD in each case.

3.3. The affine Grassmannian for pure sheaves. There is a morphism

Cohd .X/! Cohd .X/rat

that takes a pure sheaf E on XT and maps it to the pair .;;E/. In this subsection we will
describe the “fibers” of this morphism.

Since Cohd .X/rat is not a category fibered in groupoids, it is useful to work with the
comma category instead of the usual fiber products of categories.

Definition 3.12. Suppose that we are given a diagram of pseudofunctors from .AffS /op

into categories as follows:
X

Y Z.

fX

fY

We define the right comma fiber product X E�Z Y to be a pseudofunctor from .AffS /op into cat-
egories. For every T 2 AffS , the objects of X E�Z Y.T / are triples .x; y; g/, where x 2 X.T /,
y 2 Y.T / and g is a morphism g W fX.x/! fY.y/.

A morphism of the form .x1; y1; g1/! .x2; y2; g2/ consists of a pair . X;  Y/ of
morphisms  X W x1 ! x2 and  Y W y1 ! y2 such that the following diagram is commutative:

fX.x1/ fX.x2/

fY.y1/ fY.y2/.

fX. X/

g1 g2

fY. Y/

The composition of two composable pairs . X;  Y/, .�X; �Y/ is given by the pointwise com-
position .�X ı  X; �Y ı  Y/.

By construction, X E�Z Y is equipped with two projection morphisms �X W X E�Z Y ! X

and �Y W X E�Z Y ! Y plus a 2-morphism H W fX ı �X ) fY ı �Y fitting into the diagram

X E�Z Y X

Y Z.

�Y

�X

fX

H)

fY

This data is final for pseudofunctors C equipped with morphisms gX WC!X and gY WC!Y

plus a 2-morphism G W fX ı gX ) fY ı gY.
Fix the choice of an S -point in Cohd .X/rat.S/ represented by a pair .D;E/.
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Definition 3.13. The affine Grassmannian GrX;D;E is defined to be the right comma
fiber product Cohd .X/ E�Cohd .X/rat S .

For any T 2 AffS , let us denote ET WD EjXT
. Let U WD X nD and denote the inclusion

j W U ,! X . Then GrX;D;E.T / is the groupoid of pairs .F ;  /, where

(1) F is a T -pure sheaf of dimension d on XT such that DT is F -regular,

(2)  is monomorphism  W ET ! F such that the restriction  jUT
is an isomorphism.

An isomorphism of pairs between pairs .F1;  1/ and .F2;  2/ is an isomorphism F1
�
�! F2

that identifies the morphisms  1 and  2. Letting jT W UT ,! XT denote the base change of
j , Lemma 3.5 implies that Fi ! jT �j

�
TFi is a monomorphism for i D 1; 2. It follows that an

isomorphism between .F1;  1/ and .F2;  2/ is unique if it exists, so GrX;D;E can be regarded
as a sheaf of sets.

The main result of this subsection is the following.

Proposition 3.14. The groupoid GrX;D;E is represented by a strict-ind scheme that is
ind-projective over S .

In order to prove Proposition 3.14, we will proceed as in [49, Theorem 1.1.3]. For any
.F ;  / 2 GrX;D;E.T /, we use the isomorphism jT�j

�
T W jT�j

�
TET ! jT�j

�
TF in order to

view F as a subsheaf of jT�j
�
TET . We have ET � F � jT �j

�
TET .

Definition 3.15. Let N be a positive integer. We define Gr�N
X;D;E

to be the subfunctor of
GrX;D;E that sends T 2 AffS to the set

Gr�N
X;D;E

.T / D ¹pairs .F ;  / in GrX;D;E.T / such that ET � F � ET .NDT /º:

Note that there is a natural inclusion Gr�N
E;X=S

� Gr�M
E;X=S

whenever N �M . Proposi-
tion 3.14 is a direct consequence of the following two lemmas.

Lemma 3.16. We have GrX;D;E D colimN>0 Gr�N
X;D;E

(as presheaves on AffS ).

Proof. Fix T in AffS . Let .F ;  / be in GrX;D;E.T /. We would like to show that there
exists some N > 0 such that .F ;  / is in Gr�N

X;D;E
. The scheme XT is quasi-compact, because

it is of finite type over the affine scheme T . After passing to a finite affine cover, we can
assume that XT is affine and DT is cut out by an element x 2 OXT

. Then F and ET are
finitely presented modules without x-torsion. Let .ei /i2I be a finite set of generators for F .

By assumption, F Œ 1
x
� D ET Œ

1
x
�. This implies that for all i 2 I , there exists a positive

integer ni such that xni ei 2 ET . SetN WD maxi2I .ni /. Then F � x�NET D ET .NDT /.

Lemma 3.17. For each N > 0, the functor Gr�N
X;D;E

is represented by a disjoint union
of schemes that are projective and of finite presentation over S . Moreover, for all N �M the
inclusion Gr�N

X;D;E
� Gr�M

X;D;E
is a closed immersion.

Proof. We use an auxiliary functor QN
X;D;E

. For N > 0, we set QN
X;D;E

to be the Quot-
scheme QuotX=S .E.ND/=E/ parametrizing S -flat quotients of E.ND/=E . A well-known
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theorem of Grothendieck states that QuotX=S .E.ND/=E/ is represented by a disjoint union
of projective schemes over S (see [36, Theorem 1.5.4]).

For all N > 0, we have a natural inclusion of functors tN W QN
X;D;E

,! QNC1
X;D;E

given as
follows. Let T in AffS and G a quotient sheaf in QN

X;D;E
.T /. Let q be the composition

ET .NDT / � ET .NDT /=ET � G :

Let Ker.q/ denote the kernel. We set tN .T /.G / to be the quotient ET ..N C 1/DT /=Ker.q/.
We claim that tN .T /.G / is a well-defined element of QNC1

X;D;E
. The only thing to check is that

the quotient tN .T /.G / is flat over T . Note that tN .T /.G / fits into a short exact sequence

0! G ! tN .T /.G /! ET ..N C 1/DT /=ET .NDT /! 0:

Since G is T -flat, it suffices to show that ET ..N C 1/DT /=ET .NDT / is T -flat. This is a con-
sequence of Lemma 3.5 (c). Therefore, we have described a well-defined morphism

tN W QNX;D;E ,! QNC1
X;D;E

:

Since each Quot-scheme QN
X;D;E

is a disjoint union of proper schemes over S , it follows from
[50, Tag 01W6] that tN is proper. By [50, Tag 04XV] the proper monomorphism tN is a closed
immersion.

To complete the proof of the lemma, we shall show that there is a collection of isomor-
phisms of functors �N W Gr�N

X;D;E
�
�! QN

X;D;E
such that the following diagram commutes for

any N > 0:

(3.1) Gr�NC1
X;D;E

�NC1
// QNC1
X;D;E

Gr�N
X;D;E

?�

OO

�N // QN
X;D;E

.
?�

OO

For any T 2 AffS and T -point ET � F � ET .NDT / of Gr�N
X;D;E

, we set �N .T /.F /
to be the quotient ET .NDT /=ET � ET .NDT /=F . On the other hand, let us suppose that
ET .NDT /=ET � G is a T -point of QN

X;D;E
. We set �N .T /.G / to be the kernel of the compo-

sition ET .NDT / � ET .NDT /=ET � G . We need to check the following:

(i) �N gives a well-defined natural transformation �N W Gr�N
X;D;E

! QN
X;D;E

,

(ii) �N gives a well-defined natural transformation �N W QN
X;D;E

! Gr�N
X;D;E

,

(iii) �N and �N are inverse of each other,

(iv) the diagram (3.1) commutes.

Claims (iii) and (iv) are immediate from construction.

Proof of (i). Let T in AffS and .F ;  / in Gr�N
X;D;E

.T /. To prove the claim, we have to
show that ET .NDT /=F is T -flat. We have a short exact sequence

0! ET .NDT /=F ! jT �j
�
TET =F ! jT �j

�
TET =ET .NDT /! 0:

So it suffices to show that both jT �j
�
TET =F and jT �j

�
TET =ET .NDT / are T -flat.

https://stacks.math.columbia.edu/tag/01W6
https://stacks.math.columbia.edu/tag/04XV
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Let us show that jT �j
�
TET =F is T -flat. Note that  induces an isomorphism

jT �j
�
TE Š jT�j

�
TF :

Hence jT �j
�
TE=F is isomorphic to jT �j

�
TF =F . Since jT �j

�
TF D colimm F .mDT /, we

have
jT �j

�
TF =F D colim

m>0
F .mDT /=F :

Since filtered colimits of T -flat sheaves are T -flat, it suffices to show that F .mDT /=F

is T -flat for all m > 0. This follows because F .mDT /=F is an iterated extension of sheaves
of the form F .iDT /=F ..i C 1/DT /, which are T -flat by Lemma 3.5.

The proof that jT �j
�
TET =ET .NDT / is T -flat is the same.

Proof of (ii). Let T in AffS and .';G / in QN
X;D;E

.T /. We need to check that �N .T /.G /
is T -pure of dimension d . There is a short exact sequence

0! �N .T /.G /! ET .NDT /! G ! 0:

Since both ET .NDT / and G are T -flat, we conclude that �N .T /.G / is T -flat. Let t 2 T . Since
G is T -flat, the short exact sequence above remains exact when we restrict to the fiber Xt

0! �N .T /.G /jXt
! ET .NDT /jXt

! G jXt
! 0:

Since ET .NDT /jXt
is pure of dimension d , we conclude that its subsheaf �N .T /.G /jXt

is pure
of dimension d as well. This shows that �N .T /.G / T -pure of dimension d .

Remark 3.18. As discussed in Remark 3.9, there are several variants of the definition
of GrX;D;E that one could use to formulate infinite-dimensional GIT. For instance, instead of
a T -point being defined by a morphism  W ET ! F whose restriction to UT is an isomor-
phism, one could simply ask for the data of an isomorphism ET jUT

! F jUT
. The resulting

affine Grassmannian is a colimit of the sequence of closed immersions

� � � ,! GrX;D;E.nD/ ,! GrX;D;E..n�1/D/ ,! � � �

induced by the maps E..n � 1/D/! E.nD/.
Another variant is to take the fibers of the canonical morphism Cohd .X/! Cohd .X/rat

for the alternative definition of Cohd .X/rat discussed in Remark 3.9. The resulting affine
Grassmannian is still an ind-projective ind-scheme, but it is much larger. This construction
is closer in spirit to the “rational affine Grassmannian” GrRanX studied in [12, Section 5].

3.4. L_
n is asymptotically ample on GrX;D;E . There is a natural forgetful morphism

GrX;D;E ! Cohd .X/ that sends a pair .F ;  / to the sheaf F . We will abuse notation and
denote by Mn; Ln and bd the line bundles on GrX;D;E obtained by pulling back the corre-
sponding line bundles on Cohd .X/ under the forgetful morphism (see Definitions 2.6, 2.9
and 2.13).

Definition 3.19. Let P 2 QŒx� be an integer valued polynomial. We will denote by
GrPX;D;E the subfunctor of GrX;D;E that sends any T in AffS to the set

GrPX;D;E.T / D ¹pairs .F ;  / in GrX;D;E.T / such that PF jXt
D P for all points t 2 T º:

Similarly, we define Gr�N;P
X;D;E

WD GrPX;D;E \ Gr�N
X;D;E

.
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Proposition 3.20. Fix N > 0 and P 2 QŒx�. The functor Gr�N;P
X;D;E

is represented by
a projective scheme over S . Furthermore, there exists m 2 N (depending on N and P ) such
that for all n � m the line bundle L_

n jGr�N;P

X;D;E

is S -ample.

In order to prove this proposition, we will define auxiliary families of line bundles on
Gr�N;P
X;D;E

. For the rest of this subsection we fix N 2 N and P 2 QŒx�. We denote by p the
reduced Hilbert polynomial corresponding to P (p is the unique constant multiple of P with
leading coefficient 1

dŠ
).

Definition 3.21. Let n 2 N. Let

p W Gr�N;P
X;D;E

! S

denote the structure morphism of Gr�N;P
X;D;E

. We define the line bundle zMn on Gr�N;P
X;D;E

by

zMn WDM_
n ˝ p� detR��.E.ND/.n//

Furthermore, we define zbd WD
Nd
iD0.

zMi /
.�1/d�i.d

i / and set zLn WD zMn ˝ .zbd /
�˝p.n/.

Proposition 3.20 now follows from Lemmas 3.22 and 3.23 below.

Lemma 3.22. Fix N > 0 and P 2 QŒx�. The line bundle L_
n is S -ample on Gr�N;P

X;D;E
if

and only if zLn is S -ample.

Proof. It suffices to show that the line bundlesL_
n and zLn differ by a line bundle coming

from the base S . This follows from the fact that M_
n and zMn differ by a line bundle coming

from S , which implies the same for zbd and zLn.

Lemma 3.23. Fix N > 0 and P 2 QŒx�. Then Gr�N;P
X;D;E

is a projective scheme over S .
Moreover, there exists m 2 N (depending on N ) such that for all n � m the line bundle zLn is
S -ample on Gr�N;P

X;D;E
.

Proof. The isomorphism �N described in Lemma 3.17 identifies Gr�N;P
X;D;E

with the
component QuotHX=S .E.ND/=E/ of the quot-scheme determined by the Hilbert polynomial
H D PE.ND/ � P . In particular, Gr�N;P

X;D;E
is projective over S .

It suffices to prove the claim when the base is a field, because S is quasi-compact, ample-
ness is an open condition on the base [17, Corollaire 9.6.4], and ampleness can be checked on
fibers [17, Corollaire 9.6.5]. After base-change we can assume that k is infinite. We will keep
these assumptions for the rest of the proof.

We start by showing that zMn is ample for n big enough. We can apply cohomology and
base-change [50, Tag 0A1D] to the fiber diagram

X �S Gr�N;P
X;D;E

X

Gr�N;P
X;D;E

S

� 0 �

p

to conclude that p� detR��.E.ND/.n//Š detR� 0
�..E.ND//Gr�N;P

X;D;E

.n//, where we are using

https://stacks.math.columbia.edu/tag/0A1D
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the notation .E.ND//Gr�N;P

X;D;E

to denote the base-change E.ND/j
X�S Gr�N;P

X;D;E

. Therefore,

zMn DM_
n ˝ detR� 0

�..E.ND//Gr�N;P

X;D;E

.n//:

Let .Funiv;  univ/ denote the universal bundle on X � Gr�N;P
X;D;E

. The additivity of the determi-
nant implies that for all n 2 Z we have

zMn D detR� 0
�

�
..E.ND//Gr�N;P

X;D;E

=Funiv/.n/
�
:

Under the isomorphism �N W Gr�N;P
X;D;E

�
�! QuotHX .E.ND/=E/, the line bundle zMn cor-

responds to detR� 0
�.Quniv.n// on the quot-scheme. Here

Quniv WD .E.ND/=E/Gr�N;P

X;D;E

=Funiv=EGr�N;P

X;D;E

denotes the universal quotient. It is known [25, Proposition 2.2.5] that detR� 0
�.Quniv.n// is

ample for n big enough. It follows that zMn is ample for n big enough. To conclude the proof,
we show that there exists some positive integer r such that zb˝r

d
is trivial, which implies that

zL˝r
n Š zM˝r

n is ample.
Notice that the support of E.ND/=E has dimension � d � 1. After replacingX with this

support, we can assume that X has dimension � d � 1. Now [26, Theorem 4] shows that the
family of line bundles zMn is a polynomial of degree d in the variable n with coefficients in
the Picard group. By definition, we see that zbd is the leading coefficient of this polynomial.
This leading coefficient zbd gets replaced by a multiple zb˝r

d

d
whenever we replace O.1/ by

a multiple O.r/. Hence, we can assume without loss of generality that O.1/ is very ample.
We can use O.1/ to embed X into a projective space Pm

k
. Choose a linear subspace L of

dimensionm�d in Pm
k

that is disjoint fromX . The corresponding projection Pm
k
nL! Pd�1

k

restricts to a finite map f W X ! Pd�1
k

. The Quot-scheme QuotHX .E.ND/=E/ can be identi-
fied with the functor parameterizing flat families of quotients of f�.E.ND/=E/ as a module
over the coherent OPn

k
-algebra f�.OX /. Such a quotient is determined by the quotient of under-

lying OPn
k

-modules, so the morphism QuotHX .E.ND/=E/! QuotH
Pd�1

k

.f�.E.ND/=E// that
forgets the f�.OX /-module structure is a proper monomorphism, and hence a closed immer-
sion. Note that the formation of zMn is compatible with this closed immersion, because derived
pushforward commutes with Tor-independent base change [50, Tag 0A1H]. We have therefore
reduced to the case when X D Pd�1

k
.

Set
Quot WD QuotH

Pd�1
k

.f�.E.ND/=E//:

Let Quniv denote the universal quotient on Pd�1
k

� Quot. Let p denote the structure morphism
p W Pd�1

k
� Quot ! Quot. By definition, we have zMn D detRp�.Quniv.n//. By Lemma 3.24

below applied to T D Quot, there is a finite resolution

0! p�Vl.al/! p�Vl�1.al�1/! � � � ! p�V1.a1/! Quniv ! 0;

where each Vi is a vector bundle on Quot. By using additivity of the determinant and the
projection formula, we conclude that

zMn D

lO
iD1

det.Vi /˝.�1/
iC1�.O.nCai //:

https://stacks.math.columbia.edu/tag/0A1H
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Here �.O.nC ai // denotes the Euler characteristic of O.nC ai / on Pd�1
k

. This is a polyno-
mial of degree d � 1 in the variable n. So we see that zMn is a polynomial of degree d � 1 in
the variable n with coefficients in the Picard group of Quot. By definition, zbd is the coefficient
of nd , which is trivial as desired.

Here we include the resolution result needed for the proof of the last lemma.

Lemma 3.24. Let T be a Noetherian scheme and d a positive integer. Consider the
projective space p W PdT ! T . Let Q be a T -flat coherent sheaf on PdT . Then, there exists an
integer n 2 Z and a tuple of vector bundles .Vi /diD0 on T such that Q admits a resolution of
the form

0! p�Vd .�n � d/! p�Vd�1.�n � d C 1/

! � � � ! p�V1.�n � 1/! p�V0.�n/! Q ! 0:

Proof. Consider the following diagram given by the first and second projections:

PdT �T PdT

PdT PdT .

q1 q2

Let O� denote the structure sheaf of the diagonal PdT ,! PdT �T PdT . By Beilinson’s resolution
of the diagonal [8] [24, Lemma 8.27], O� admits a locally free resolution

0! �d
Pd

T =T
.d/� O.�d/! �d�1

Pd
T =T

.d � 1/� O.�d C 1/

! � � � ! �1
Pd

T =T
.1/� O.�1/! O � O ! O� ! 0:

For any integer n, we can tensor with the pullback q�1Q.n/to obtain the following acyclic
complex in PdT �T PdT

C�
n D

�
0! .�d

Pd
T =T

˝ Q.nC d//� O.�d/! � � � ! .�1
Pd

T =T
˝ Q.nC 1//� O.�1/

! Q.n/� O ! O� ˝ .q1/
�Q.n/! 0

�
:

Choose n� 0 so that
Rjp�.�

i

Pd
T =T

˝ Q.nC i// D 0

for all j � 1 and i � 0. Then by applying [50, Tag 0A1H] and truncation, it follows that

Vi WD p�.�
i

Pd
T =T

˝ Q.nC i//

is a locally-free OT -module for all i � 0. Also, the projection formula implies that

Rj .q2/�.�
i

Pd
T =T

˝ Q.nC i/� O.�i// D 0

for all j � 1 and i � 0. The first page of the spectral sequence for the derived pushforward
R.q2/�C�

n of the complex C�
n is concentrated in a single column and shows that the pushfor-

ward complex

.q2/�C�
n D

�
0! p�Vd .�d/! p�Vd�1.�d C 1/! � � � ! p�V1.�1/

! p�V0 ! Q.n/! 0
�

is acyclic. We obtain our desired resolution by tensoring with O.�n/.

https://stacks.math.columbia.edu/tag/0A1H
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3.5. Affine Grassmannians for related moduli. In this subsection, set M to be either
PairdA.X/ or ƒCohd .X/. Let .D;E; ˇ/ be an S -point of the stack of rational maps Mrat.

Definition 3.25. We define the affine Grassmannian GrM;X;D;E;ˇ to be the right comma
fiber product M E�Mrat S .

Notation 3.26. In latter sections we will occasionally simplify notation and write GrM

instead of GrM;X;D;E;ˇ (omitting the data X;D;E; ˇ) whenever this extra data is clear from
context.

By definition, GrM;X;D;E;ˇ .T / is the set of triples .F ;  ; ž/ with .F ;  / 2 GrX;D;E.T /
and ž a morphism AjXT

! F (resp. a ƒjXT
-module structure on F ) such that žjXT nDT

is
identified with ˇjXT nDT

under the isomorphism  jXT nDT
. There is a forgetful morphism

GrM;X;D;E;ˇ ! GrX;D;E ; .F ;  ; ž/ 7! .F ;  /:

Proposition 3.27. The forgetful morphism exhibits GrM;X;D;E;ˇ as a closed ind-sub-
scheme of GrX;D;E .

Proof. We set U to be the open complementX nD, T an S -scheme, and T ! GrX;D;E
a morphism represented by a pair .F ;  /.

Proof for M D Paird
A

.X/. Consider the composition


 D . jUT
/�1 ı ˇjUT

W AjUT
! F jUT

:

The fiber product GrM;X;D;E;ˇ �GrX;D;E
T is the functor that takes a T -scheme Y to the set

of morphisms ž W AjXY
! F jXY

such that žjUY
D ˇjUY

. Since DT is F -regular, if such
ž exists, then it is unique. There exists some m� 0 and a morphism AjXT

! F .mDT /

extending 
 . Consider the composition

� W AjXT
! F .mDT / � F .mDT /=F :

Then GrM;X;D;E;ˇ �GrX;D;E
T is the subfunctor of T consisting of morphisms Y ! T such

that �jXY
D 0. We know that F .mDT /=F is T -flat by Lemma 3.5 (c). Therefore, Lemma 2.16

can be applied to show that the functor Hom.AjXT
;F .mDT /=F / is representable by a sepa-

rated scheme over T . The morphisms � and 0 determine two sections of the structure morphism
Hom.AjXT

;F .mDT /=F /! T . We conclude that GrPair;X;D;E;ˇ �GrX;D;E
T is represented

by the closed subscheme of T where these two sections agree.

Proof for M D ƒ Cohd.X/. We can use the ƒjUT
-module structure on EjUT

and the
isomorphism  jUT

W EjUT

�
�! F jUT

in order to define aƒjUT
-module structure on F jUT

. By
Proposition 2.22, this amounts to the data of a morphism b W ƒ1jUT

˝ F jUT
! F jUT

satisfy-
ing conditions (ƒ1) and (ƒ2) in that proposition. The fiber product GrƒCoh;X;D;E;a �GrX;D;E

T

is the functor that takes a T -scheme Y to the set of morphisms zb W ƒXY
˝ F ! F that extend

bjUY
and satisfy (ƒ1) and (ƒ2). Since DT is F -regular, it follows that zb is uniquely deter-

mined whenever it exists. By the same uniqueness argument, if zb exist, then (ƒ1) and (ƒ2) are
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automatically satisfied, because they are already satisfied for the restriction bjUY
. This shows

that GrƒCoh;X;D;E;ˇ �GrX;D;E
T is the subfunctor of T consisting of morphisms Y ! T such

that the morphism b admits an extension to XY . The same argument as in the case of pairs
shows that this is represented by a closed subscheme of T , as desired.

These affine Grassmannians admit natural morphisms to M given by forgetting the iso-
morphism  defined away from D. We have just seen that there is a closed immersion into
GrX;D;E such that the following diagram commutes:

GrM;X;D;E;ˇ M

GrX;D;E Cohd .X/.

Forget

We use the forgetful morphism GrM;X;D;E;ˇ ! M to restrict the line bundle Ln to
GrM;X;D;E;ˇ . This is the same as the pullback of the line bundle Ln on GrX;D;E . Therefore,
we obtain the following corollary as an immediate consequence of Proposition 3.20.

Corollary 3.28. LetN 2 N and P 2 QŒx�. Then there exists somem� 0 such that for
all n � m, the line bundle L_

n on Gr�N;P
M;X;D;E;ˇ

WD GrM;X;D;E;ˇ \ Gr�N;P
X;D;E

is S -ample.

4. Monotonicity via “infinite-dimensional GIT”

In this section, we define a polynomial numerical invariant � on the moduli stacks we are
considering. Furthermore, we prove that � is strictly ‚-monotone and strictly S -monotone.

4.1. The numerical invariant. We refer the reader to Section 2.5 for a discussion of
filtrations and graded points. In the case of the stack Cohd .X/, a k-valued point is the same
thing as morphism Spec.k/! S and a pure sheaf F of dimension d on Xk , and a filtration of
F in the stack Cohd .X/ is a Gm-equivariant A1

k
-flat relative torsion-free sheaf zF on X � A1

k
.

Using the Rees construction [19, Proposition 1.0.1] we can view this as a sequence .Fm/m2Z

of subsheaves of F satisfying

(a) FmC1 � Fm,

(b) Fm=FmC1 is pure of dimension d ,

(c) Fm D 0 for m� 0 and Fm D F for m� 0.

The line bundleLnj‚k
for such a filtration will be a Gm-equivariant line bundle on A1

k
. All such

line bundles come from the base ŒSpec.k/=Gm�, and so they are classified by the isomorphism
class of the fiber Lnj0 as a one-dimensional Gm-representation. These isomorphism classes
are just characters of Gm, which are classified by an integer called the weight. We will denote
this integer by wt.Lnj0/.

By [50, Tag 0A1D], the restriction Mnj0 of the line bundle Mn (Definition 2.6) is iso-
morphic to det.R�k �. zF j0/.n//. We have an equality of graded sheaves

zF j0 D

M
m2Z

.Fm=FmC1/:

https://stacks.math.columbia.edu/tag/0E9I
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Here Gm acts on Fm=FmC1 with weightm. We can take derived pushforward and determinant
in order to conclude that

wt.Mnj0/ D
X
m2Z

.PFm
.n/ � PFmC1

.n// �m:

In particular, this yields wt.bdC1j0/ D 0, hence the expansion in Definition 2.9 implies that

wt.bd j0/ D dŠ � .coefficient of nd in wt.Mnj0//

D

X
m2Z

.rkFm
� rkFmC1

/ �m:

We conclude that wt.Lnj0/ is given by

wt.Lnj0/ D wt.Mnj0/ � pF .n/ � wt.bd j0/

D

X
m2Z

m � .pFm=FmC1
.n/ � pF .n// � rkFm=FmC1

:

One can also give the following alternative formula.

Proposition 4.1. Let k be a field over S . Let F be a pure sheaf of dimension d on Xk .
Let .Fm/m2Z be a filtration of F in the stack Cohd .X/. Then we have

wt.Lnj0/ D
X
m2Z

.pFm
.n/ � pF .n// � rkFm

:

Proof. We have seen that

wt.Lnj0/ D
X
m2Z

m �

�
PFm=FmC1

.n/ �
rkFm=FmC1

rkF

PF .n/

�
:

By condition (c) above, we can express this as a finite sum

wt.Lnj0/ D
NX

mD�N

m �

�
PFm=FmC1

.n/ �
rkFm=FmC1

rkF

PF .n/

�
:

Here N is a big positive integer, and we have FN D 0 and F�N D F . By summation by parts
and additivity of the Hilbert polynomials, we can rewrite the sum above as

wt.Lnj0/ D
NX

mD�NC1

�
PFm

.n/ �
rkFm

rkF

PF .n/

�
:

We can express this in terms of reduced Hilbert polynomials to conclude that

wt.Lnj0/ D
X
m2Z

.pFm
.n/ � pF .n// � rkFm

:

Before defining our numerical invariant, we need to specify a rational quadratic norm on
graded points of Cohd .X/.
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Definition 4.2. Let g W .BGm/
q

k
! Cohd .X/ be a Zq-graded pure sheaf

F D

M
Em2Zq

F Em

of dimension d onXk . We define b.g/ to be the positive definite rational quadratic form on Rq

given by
b.g/.v/ WD

X
Em2Zq

rk
F Em

� . Em �std v/
2:

Here �std denotes the standard inner product on Rq .

If q D 1 above, then the rational quadratic form b.g/ on R is uniquely determined by its
value at 1. From now on, it will be convenient to abuse notation and write b.g/ to denote the
value b.g/.1/ for any graded point g W .BGm/k ! Cohd .X/.

Given the sequence of line bundles Ln on Cohd .X/ and the norm on graded points b,
we can define a numerical invariant � as explained in Section 2.5. For our discussion we only
need to understand the corresponding polynomial �.f / assigned to a given nondegenerate
filtration f .

Definition 4.3. Let f W ‚k ! Cohd .X/ be a nondegenerate filtration given by the
sequence .Fm/m2Z. We define the numerical invariant �.f / to be the polynomial in RŒn�
given by

�.f / WD
wt.Lnj0/p
b.f j0/

D

P
m2Zm � .pFm=FmC1

� pF / � rkFm=FmC1q
.
P
m2Z rkFm=FmC1

�m2/
:

We use the same formula to define a numerical invariant � for each of the moduli stacks
described in Section 2.4. In each case, the corresponding sequence of line bundles Ln and the
rational quadratic norm b are pulled back using the forgetful morphism Cohd .X/.

We end this subsection by recording one simple observation that will be useful in our
proof of monotonicity. Namely, we observe that the rational quadratic norm b is well-defined
on the stack of rational maps.

Lemma 4.4. Let M D Cohd .X/;PairdA.X/ or ƒCohd .X/. Let

'1; '2 W .BGm/k ! Mrat

be two graded points. Let g1 and g2 denote the underlying graded pure sheaves of dimension d
onXk corresponding to '1 and '2. If there exists a 2-morphism '1 ) '2, then b.g1/ D b.g2/.

Proof. Suppose that g1 (resp. g2) is represented by the graded sheaf
L
m2Z F m (resp.L

m2Z F 0
m) defined on Xk . By the definition of b, it suffices to check that rk

F m
D rk

F 0
m

for
all m 2 Z. The 2-morphism '1 ) '2 yields a morphism of graded sheaves  W g1 ! g2 that
restricts to an isomorphism away from a principal subscheme D ,! Xk , which is regular for
both g1 and g2. This implies that the ranks of corresponding graded terms agree, as desired.

4.2. Rational filling conditions for torsion-free sheaves. Let R be a complete dis-
crete valuation ring over S , with residue field � and fraction field K. We refer the reader to
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Section 2.1 for the definitions of ‚R, ST R. The following is the main condition we will study
in this subsection.

Definition 4.5. Let M be one of the stacks defined in 2.4. Set X to be either ‚R
of ST R. We say that M admits X rational filling if the following is satisfied: for all mor-
phisms f W X n 0! M, there exists a morphism g W X ! Mrat and a 2-commutative diagram
of pseudofunctors

X n 0 M

X Mrat,

j

f

H)

g

where j is the open immersion of stacks X n 0 ,! X. Note that the direction of the 2-morphism
matters, because Mrat is not valued in groupoids.

Remark 4.6. If we set Y to be Y‚R
(resp. YSTR

), as defined in Notation 2.1, then
a Gm-equivariant morphism Y n 0! M is the same thing as a morphism ‚R n 0! M (resp.
ST R n 0! M). We will use this alternative description in proofs without further elaboration,
and work with Gm-equivariant morphisms from Y and Y n 0.

We start by reducing rational filling conditions to the case of the stack of pure sheaves
Cohd .X/.

Lemma 4.7. Suppose that the stack Cohd .X/ admits ‚R rational filling (resp. ST R
rational filling). Then both of the stacks PairdA.X/ and ƒCohd .X/ admit ‚R rational filling
(resp. ST R-rational filling).

Proof. Set Y to be Y‚R
(resp. YSTR

), as defined in Notation 2.1. We denote by W the
open complement of 0 in Y .

Proof for Paird
A

.X/. Suppose that we are given a Gm-equivariant morphism

W D Y n 0! PairdA.X/:

This consists of a Gm-equivariant W -pure sheaf F of dimension d on XW and a Gm-equivar-
iant morphism ˇ W AjXW

! F . Assume that Cohd .X/ satisfies‚R rational filling (resp. ST R
rational filling). Then we can obtain the following:

(1) a Gm-equivariant Y -pure sheaf E of dimension d on XY ,

(2) a Gm-stable principal subscheme D ,! XY that is E-regular,

(3) a monomorphism  W EjXW
,! F such that  jXW nDW

is an isomorphism.

It suffices to show that the morphism ˛ obtained by the composition

˛ W AjXW nDW

ˇ jXW nDW
�����������! F jXW nDW

. jXW nDW
/�1

�����������! EjXW nDW

extends to a Gm-equivariant morphism z̨ W AjXY nD ! EjXY nD .



192 Halpern-Leistner et al., Moduli spaces of sheaves via affine Grassmannians

Let U denote the open complement XY nD. Note that the closed fiber U0 is cut out by
a two-term regular sequence coming from Y (either .$; t/ or .s; t/). Since EjU is Y -flat, the
sequence is also a regular sequence for the sheaf EjU . This shows that EjU has depth at least 2
at all points of the closed fiberU0. We conclude from [50, Tag 0AV5] that Hom.AjU ;EjU / also
has depth at least 2 at all points of U0. By [50, Tag 0E9I] applied to the open subscheme UW
inside U , it follows that the morphism ˛ extends uniquely to a morphism z̨ W AjU ! EjU .
Moreover, this section is automatically Gm-equivariant. This can be seen by applying [50, Tag
0E9I] again to the pullbacks of Hom.AjU ;EjU / to the product Gm � U under the action and
projection morphisms.

Proof for ƒ Cohd.X/. Suppose that we are given a Gm-equivariant morphism

W D Y n 0! ƒCohd .X/:

This consists of a Gm-equivariant ƒjXW
-module F that is W -pure of dimension d on XW . If

Cohd .X/ satisfies the appropriate rational filling conditions, then we can find a triple .E;D; /
as in the previous case of pairs. Set U D XY nD. The isomorphism  jUW

W F jUW
! EjUW

can be used to equip EjUW
with a Gm-equivariantƒjUW

-module structure. We are left to show
that this can be extended to a Gm-equivariant ƒjU -module structure on EjU .

By Proposition 2.22, a Gm-equivariant ƒjUW
-module structure on EjUW

is equivalent
to the data of a Gm-equivariant morphism a W ƒ1jUW

˝ EjUW
! EjUW

satisfying condi-
tions (ƒ1) and (ƒ2). We just need to check that a extends to a Gm-equivariant morphism
za W ƒ1jU ˝ EjU ! EjU satisfying (ƒ1) and (ƒ2).

Since EjU has depth at least 2 at all points of U0, we can apply [50, Tag 0AV5] to
conclude that Hom.ƒ1jU ˝ EjU ;EjU / also has depth at least 2 at all points of U0. Now we
can use [50, Tag 0E9I] in the same way as in the case of pairs to conclude that there is a unique
Gm-equivariant extension za W ƒ1jU ˝ EjU ! EjU of the action morphism a. We are left to
check conditions (ƒ1) and (ƒ2). We showed in the course of the proof of Proposition 2.23 that
these are closed conditions on the base Y . Since they hold over the schematically dense open
subset W � Y , they automatically hold over the whole of Y .

We now proceed to prove the rational filling conditions in the case when the fibers of
X ! S are geometrically integral of dimension d . In this case pure sheaves of dimension d
are the same as torsion-free sheaves.

Lemma 4.8. Suppose that the morphism X ! S is flat with geometrically integral
fibers of dimension d . The following stacks admit both ‚R and ST R rational filling:

(i) Cohd .X/,

(ii) PairdA.X/,

(iii) ƒCohd .X/.

Proof. By Lemma 4.7, it suffices to prove (i). Let X denote either ‚R or ST R. Set
Y WD YX. Note that the closed fixed point 0 is cut out by a regular sequence .y1; y2/ in OY .
We write W for the open complement of 0 in Y . Let XR denote the pullback under the mor-
phism Spec.R/! S . We can further pullback using the structure morphism Y ! Spec.R/
to obtain XY .

https://stacks.math.columbia.edu/tag/0AV5
https://stacks.math.columbia.edu/tag/0E9I
https://stacks.math.columbia.edu/tag/0E9I
https://stacks.math.columbia.edu/tag/0E9I
https://stacks.math.columbia.edu/tag/0AV5
https://stacks.math.columbia.edu/tag/0E9I


Halpern-Leistner et al., Moduli spaces of sheaves via affine Grassmannians 193

Suppose that we are given a Gm-equivariant morphism W D Y n 0! Cohd .X/, which
amounts to a Gm-equivariant W -flat family F of torsion-free sheaves on XW . Observe that
a principal subscheme of XY is regular with respect to a nontrivial torsion-free sheaf if and
only if all of its Y -fibers are Cartier divisors if and only if it is a Y -relative Cartier divisor
[50, Tag 062Y]. Our goal is to find the following:

(1) a Gm-equivariant Y -pure sheaf E of dimension d on XY ,

(2) a Gm-equivariant relative Cartier divisor D ,! XY ,

(3) a Gm-equivariant morphism  W EjXW
! F such that  jXW nDW

is an isomorphism.

This automatically implies that  jXW
is a monomorphism, because DW is both EjXW

-regular
and F -regular.

Let j denote the open immersion j W W ,! Y . Let jX W XW ,! XY be the base-change.
We observe that the pushforward zF WD .jX /�F is Gm-equivariant. zF is coherent and Y -flat
by [2, Lemmas 7.16 and 7.17], where we take the base ring k D R and we set the abelian
category A to be the category QCoh.XR/ of quasi-coherent sheaves on XR. Note that the
hypothesis that the discrete valuation ring R is essentially of finite type in [1] is not necessary
in this case, since the abelian category A D QCoh.XR/ is Noetherian.

Since X0 is integral, there exists some dense open subset V0 � X0 such that zF jV0
is

a free graded OV0
-module. Say zF jV0

Š
L
i2I OV0

hmi i, where I is a finite indexing set and
hmi i denotes a shift in the Gm-grading. Set E D

L
i2I OXY

hmi i. This is a Gm-equivariant
Y -flat torsion-free sheaf on XY .

There exist n� 0 and a nonzero section s0 2 H 0.X0;O.n// such that s0 vanishes at all
points of the closed complement X0 n V0. By increasing n if needed so that H 1.XY ; IX0

.n//

vanishes, we can lift s0 to a Gm-invariant global section s 2 H 0.XY ;O.n//. The section s is
nonzero when restricted to the fiber over every point of Y , because the non-vanishing locus
of s is open, Gm-stable, and contains a point in the fiber over the fiber over 0. Thus the
Gm-equivariant principal subscheme D ,! XY cut out by s is a relative Cartier divisor.

We denote by U the affine open complementXY nD. There is a Gm-equivariant isomor-
phism ' W EjU0

�
�! zF jU0

, because U0 � V0 by construction. Consider the exact sequence of
graded sheaves

0! .y1; y2/ � zF jU ! zF jU ! zF jU0
! 0:

Applying Hom.EjU ;�/, we get an exact sequence

Hom.EjU ; zF jU /! Hom.EjU0
; zF jU0

/! Ext1.EjU ; .y1; y2/ � zF jU /:

The third term vanishes, because EjU is locally free and U is affine, so we can lift ' to
a Gm-equivariant map z W EjU ! zF jU . After possibly replacing E with a subsheaf E.�nD/,
we can extend this further to a morphism z W E ! zF . We shall prove the following claim.

Claim. There exists a Gm-equivariant relative Cartier divisor D0 ,! XY such that the
restriction z jUnD0 W EjUnD0 ! zF jUnD0 is an isomorphism.

This claim will conclude the proof of the proposition, by replacing D with the sum
D CD0 and setting  D z jXW

. In order to show the claim, it suffices to find a D0 such that
z jUnD0 is surjective. This is because the kernel of z jUnD0 will then be a torsion-free sheaf of
rank 0, which is therefore 0.

https://stacks.math.columbia.edu/tag/062Y


194 Halpern-Leistner et al., Moduli spaces of sheaves via affine Grassmannians

Consider the Gm-equivariant cokernel H of z jU . By definition, H is a sheaf on U that
is supported at the points where z jU is not surjective. Let ZH be the Gm-equivariant closed
subset of U cut out by the 0-Fitting ideal Fit0.H /. It suffices to find a relative Cartier divisor
D0 ,! XY that contains ZH . By construction, ZH does not contain any point in the fiber U0.
Let OU denote the graded coordinate ring of the affine scheme U . The closed subscheme
ZH is cut out by a graded ideal J . Since ZH does not meet the fiber U0, we know that
y1OU C y2OU C J D OU . This means that we can find elements u; v 2 OU and an element
i 2 J such that y1uC y2v C i D 1. After passing to graded components, we can assume that
i 2 J is homogeneous of degree 0. This gives a Gm-equivariant section i W OU ! OU . Note
that i cuts out a principal subscheme of U that does not meet U0 and contains ZH . There is
somem� 0 such that we can extend i to a homogeneous section iY W OXY

! OXY
.mD/. Let

D0 be the principal subscheme of XY cut out by iY . The support of D0
0 is contained in D0, so

D0
0 is a Cartier divisor on Pd0 . The same argument as the one for D above shows that D0 is a

relative Cartier divisor. By construction D0 contains ZH , so  jUnD0 is surjective.

4.3. Proof of monotonicity via “infinite-dimensional GIT”. We refer the reader to
Definition 2.28 for the relevant definitions of strictly monotone. We prove the main theorems
of this section using the affine Grassmannians we have defined. This type of argument is what
we refer to as “infinite-dimensional GIT.”

Theorem 4.9. Suppose that the morphism X ! S is flat with geometrically integral
fibers of dimension d . Then the invariant � (Definition 4.3) is strictly ‚-monotone and strictly
S -monotone on the stacks Cohd .X/, PairdA.X/, and ƒCohd .X/.

Proof. We set M to be one of the stacks Cohd .X/, PairdA.X/ or ƒCohd .X/. Let R be
a complete discrete valuation ring with residue field �. We set Y to denote either Y‚R

of YSTR
.

Suppose that we are given a morphism f W Œ.Y n 0/=Gm�! M. The rational filling properties
proved in Lemma 4.8 yield a Gm-equivariant commutative diagram

Y n 0

M E�Mrat Y M

Y Mrat.

j

f

�

g

Here j denotes the open immersion j W Y n 0 ,! Y . By definition, the right comma fiber prod-
uct M E�Mrat Y is an affine Grassmannian GrM (as in Definition 3.25, replacing X ! S with
XY ! Y ). The diagram above can be rewritten as follows:

Y n 0

GrM M

Y Mrat.

j

f

�

Forget

g
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Since the data used to define GrM is Gm-equivariant, the affine Grassmannian acquires a natu-
ral Gm-action such that the structure morphism GrXY ;D;� ! Y is Gm-equivariant. This action
can be defined explicitly in each moduli problem by pulling back sheaves and their associated
structures under the morphism induced by multiplication by an element of Gm. This description
shows that each Y -projective stratum Gr�N;P

M
is Gm-stable. By construction, all of the mor-

phisms in the commutative diagram above are Gm-equivariant.
Since Y n 0 is quasi-compact, there is a stratum Gr�N;P

M
through which � factors. Hence

we obtain the following Gm-equivariant commutative diagram.

Gr�N;P
M

M.

Y n 0 Y

Forget

�

Let † � Gr�N;P
M

denote the schematic closure of Y n 0 in Gr�N;P
M

. Note that † is a reduced
Gm-scheme with a natural structure morphism to Y . The map †! Y is projective, because
Gr�N;P

M
is projective over Y and † is a closed subscheme of Gr�N;P

M
. By construction, the

morphism †! Y is Gm-equivariant and restricts to an isomorphism over Y n 0. The compo-
sition †! Gr�N;P

M
! M restricts to f W Y n 0! M over the open subset Y n 0 � †. Since

everything is Gm-equivariant, we obtain a morphism z' W Œ†=Gm�! M satisfying condition
(M2) in Definition 2.28.

We are left to check condition (M3) in Definition 2.28. By Corollary 3.28, there exists
some m� 0 such that L_

n jGr�N;P

M
is Y -ample for all n � m. For any a > 1, any field �, and

any equivariant line bundle on L pm P1� Œa�, one has wt.Lj0/ � wt.Lj1/ D a deg.L/, where
0 WD limt!0 t � x for a general point x and 1 is the other Gm-fixed point. In particular, for
any finite Gm-equivariant morphism P1� Œa�! †0, wt.Lnj1/ > wt.Lnj0/ for all m � n. The
commutative diagram

ŒP1� =Gm� M

.BGm/� Mrat

H)

g0

shows that there exists a 2-morphism between the compositions

Œ1=Gm�
z'
�! M ! Mrat

and
Œ0=Gm�

z'
�! M ! Mrat:

By Lemma 4.4, this implies that b.z'jŒ1=Gm�/ D b.z'jŒ0=Gm�/, and hence for n� 0,

�. z'jŒ1=Gm�/ D
wt.Lnj1/p
b.z'jŒ1=Gm�/

>
wt.Lnj0/p
b.z'jŒ0=Gm�/

D �. z'jŒ0=Gm�/:

We will use Theorem 4.9 to bootstrap to the more general case. We shall need the
following lemma.

Lemma 4.10. Let Y be a Noetherian scheme, and let p W Z ! P be a finite mor-
phism of Y -schemes. Suppose that Z and P are schemes of finite type over Y with Y -fibers of
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dimension d . Then the pushforward p� establishes an equivalence between the following two
categories:

(A) the category of Y -pure sheaves of dimension d on Z,

(B) the category of p�.OZ/-modules on P that are Y -pure of dimension d .

Moreover, if the schemes Z and P admit compatible Gm-actions, then p� also induces an
equivalence of the Gm-equivariant versions of categories (A) and (B).

Proof. The only thing to check is that a Y -flat sheaf G on Z has Y -fibers that are pure
of dimension d if and only if the pushforward p�.G / on P has Y -fibers that are pure of dimen-
sion d . Since the morphism p is affine, the formation of the pushforward p�.�/ commutes
with passing to Y -fibers. Hence, we can reduce to the case when py W Zy ! Py is a finite
morphism of projective schemes of dimension d over a field k.y/.

Let G be a coherent sheaf on Z. Suppose that p�.G / has an associated point of dimen-
sion � d � 1. Let T � p�.G / be the maximal subsheaf of p�.G / that is supported on a closed
subscheme H � P of dimension � d � 1. The p�.OZ/-module generated by T is also sup-
ported on H , and so it must coincide with T . Therefore, T is a p�.OZ/-submodule of p�.G /.
The subsheaf of G corresponding to T is also supported on dimension � d � 1, because the
morphism p is finite. We conclude that G is not pure of dimension d .

Conversely, if G is not pure of dimension d , then there exists some nontrivial subsheaf
T � G supported in dimension � d � 1. The pushforward p�.T / � p�.G / is then supported
in dimension � d � 1, and so p�.G / is not pure of dimension d .

Theorem 4.11. The invariant � is strictly ‚-monotone and strictly S -monotone on the
stacks Cohd .X/, PairdA.X/, and ƒCohd .X/.

Proof. Let R be a complete discrete valuation ring over S . Let � be the residue field
of R and let K be the fraction field. Let X denote either ‚R or ST R. Set Y WD YX. Let XR
denote the pullback under the morphism Spec.R/! S . We can further pullback XY using the
structure morphism Y ! Spec.R/. Let j W W ,! Y denote the open complement of 0 in Y .
Let jX W XW ,! XY be the base-change.

Proof for Cohd.X/. Suppose that we are given f W X n 0! Cohd .X/. The morphism
f amounts to a Gm-equivariant W -pure sheaf F of dimension d on XW . The pushforward
zF WD .jX /�F is a Gm-equivariant Y -flat coherent sheaf by [2, Lemmas 7.16 and 7.17]. Let
Z � XY denote the Gm-equivariant subscheme of XY cut out by the 0-th Fitting ideal of zF .
Note that the Y -fibers of Z have dimension d . We can view F as a Gm-equivariant W -pure
sheaf of dimension d on ZW .

Embed XR into some projective space PNR by using a multiple OXR
.M/ WD OX .M/jXR

of the ample line bundle OXR
.1/. Consider the d -dimensional closed subvariety Z0 � PN� .

After replacing R with a finite extension, we can assume that there exists a linear subspace
L� � PN� of dimension N � d � 1 such that L� \Z0 is empty. We lift L� to a linear sub-
space LR � PNR , and denote by LY � PNY the base-change. The scheme theoretic intersection
LY \Z is a Gm-equivariant proper Y -scheme. The image of the projection LY \Z ! Y is
a Gm-stable closed subset of Y that does not contain 0, since Z0 \ LY D ; by construction.
We conclude that the image is empty, and therefore Z does not intersect LY .
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Consider the affine projection PNR n LR ! PdR . We base-change to Y and consider the
composition

p W Z ,! PNY n LY ! PdY :

The morphism p is finite, because it is proper and affine. Let ˆ be the Gm-equivariant sheaf of
algebras p�.OZ/ on PdY . We regard ˆ as a ring of differential operators by setting

ˆ0 D Im.OPd
Y
! p�.OZ// and ˆ1 D ˆ:

By Lemma 4.10, .pjZW
/�.F / is a Gm-equivariant W -pure ˆjPd

W
-module of dimen-

sion d on PdW . Lemma 4.8 applied to X D PdS shows that there exist

(1) a Gm-equivariant Y -pure sheaf E of dimension d on PdY ,

(2) a Gm-equivariant relative Cartier divisor D ,! PdY ,

(3) a Gm-equivariant morphism ˇ W ˆ1jPd
Y nD ˝ EjPd

Y nD ! EjPd
Y nD that equips EjPd

Y nD

with the structure of a ˆjPd
Y nD-module,

(4) a Gm-equivariant morphism  W EjPd
W

! .pjZW
/�F such that  jPd

W nDW
is an iso-

morphism of ˆjPd
W nDW

-modules.

Observe that the Gm-equivariant ˆjPd
W

-module .pjZW
/�F can be interpreted as a Gm-equi-

variant morphism
� W W ! GrˆCohd .Pd

Y /;P
d
Y ;D;E; ˇ

over Y .
By Lemma 4.10, there is a well-defined Gm-equivariant morphism over Y

GrˆCohd .Pd
Y /;P

d
Y ;D;E; ˇ

! Cohd .XY /

that sends a T -point .G ; '; ž/ in GrˆCohd .Pd
Y /;P

d
Y ;D;E; ˇ

.T / to the T -pure sheaf onZT � XT
corresponding to the ˆjPd

T
-module .G ; ž/. We summarize all of the data we have obtained so

far in the following Gm-equivariant commutative diagram:

Y n 0 GrˆCohd .Pd
Y /;P

d
Y ;D;E;ˇ

Cohd .XY /.

Y

�

f

Now we can take the scheme closure † of Y n 0 inside GrˆCohd .Pd
Y /;P

d
Y ;D;E; ˇ

. Recall that
M denotes the multiple OXR

.N / that we used to embed XR into a projective space. Note that
the rational line bundles Ln on GrˆCohd .Pd

Y /;P
d
Y ;D;E; ˇ

coming from Cohd .XY / agree with
the ones pulled-back from Cohd .PdS /, where PdS is equipped with the Q-ample polarization
1
M

OPd
S
.1/. It follows from Proposition 3.20 that L_

n is eventually relatively ample on each
projective stratum of GrˆCohd .Pd

Y /;P
d
Y ;D;E; ˇ

. We can therefore apply the same argument as in
Theorem 4.9 to conclude in this case.

Proof for either M D Paird
A

.X/ or M D ƒ Cohd.X/. Choose a Gm-equivariant
morphism W D Y n 0! M, which amounts to a Gm-equivariant W -pure sheaf F of dimen-
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sion d on XW and some extra structure ˛ in the form a morphism of sheaves with target F .
We can ignore the extra data ˛ at first and apply the same argument as in the previous case to
obtain the data (1)–(4) above.

Let C denote the principal subscheme of Z given by the inverse image of p�1.D/.
C is given by a Gm-equivariant global section s of OZ.n/. After replacing D and p�1.D/

with some multiple and scaling n accordingly, we can lift this to a Gm-equivariant global
section of OXY

.n/. We denote by zD the Gm-invariant principal subscheme of XY cut out by
zs. By construction the intersection zD \Z has dimension � d � 1, and hence zD is regular
with respect to any Y -pure sheaf of dimension d supported inside Z. By Lemma 4.10, we
can view the ˆPd

Y nD-module EjPd
Y nD as a Gm-equivariant Y -pure sheaf on Z n p�1.D/.

Since Z n p�1.D/ D Z n zD is a closed subscheme of XY n zD, we can also view EjPd
Y nD as

a Gm-equivariant Y -pure sheaf on XY n zD.
By Lemma 4.10, for any T -point .G ; '; ž/ in GrˆCohd .Pd

Y /;P
d
Y ;D;E; ˇ

we can view G

as a T -pure sheaf on XT supported inside ZT . The isomorphism 'jXT n zDT
can then be used

to transport the extra structure z̨ to the restriction G jXT n zDT
. Let H denote the subfunctor of

GrˆCohd .Pd
Y /;P

d
Y ;D;E; ˇ

consisting of T -points such that this extra structure z̨ on G jXT n zDT

extends (uniquely) to XT .
We claim thatH is a closed strict-ind subscheme of GrˆCohd .Pd

Y /;P
d
Y ;D;E; ˇ

. Indeed, for
any such T -point the structure z̨ is given by a morphism

z̨ W BjXT n zDT
! G jXT n zDT

;

where B is a finitely presented coherent sheaf on XT (either B D A or B D ƒ1jXT
˝ G ).

There exists some N � 0 such that the morphism z̨ extends uniquely to a morphism

� W B ! G .N zDT /:

Consider the composition


 W B
�
�! G .N zDT /! G .N zDT /=G :

Note that the fiber product HT represents the locus where this T -section 
 of the Hom func-
tor Hom.B;G .N zDT /=G / is equal to the 0 morphism. By Lemma 2.16, the Hom functor
Hom.B;G .N zDT /=G / is represented by a separated scheme over T . Therefore the locus HT
where 
 D 0 is a closed subscheme of T , as claimed.

By definition, H admits a morphism to M. The triple .F ;  ; ˛/ represents a Gm-equi-
variant morphism � W Y n 0! H . We get a similar Gm-equivariant commutative diagram as
in the proof for Cohd .X/ above:

Y n 0 H M.

Y

�

f

By the same reasoning as before, the pullback of .Ln/_ to each projective stratum of the closed
ind-subscheme H � GrˆCohd .Pd

Y /;P
d
Y ;D;E; ˇ

is Y -ample for n� 0. Therefore we can apply
the same argument as in Theorem 4.9 to conclude.
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5. Applications to the moduli of ƒ-modules

In this section we will derive the main structural results for the stack of ƒ-modules
ƒCohd .X/ using strict monotonicity (Theorem 4.11). We will need the following facts.

Theorem 5.1. Let � denote the numerical invariant on the stack ƒCohd .X/ pulled
back from Cohd .X/ (Definition 4.3). We have the following:

(a) The numerical invariant � satisfies HN-boundedness.

(b) The semistable locusƒCohd .X/�-ss consists of p-semistableƒ-modules (as in [44, Sec-
tion 3]). For each P 2 QŒn�, the substack ƒCohd .X/�-ss

P of semistable ƒ-modules with
Hilbert polynomial P is bounded.

Proof. This will be shown in the companion paper [21].

Theorem 5.2. The numerical invariant � on the stack ƒCohd .X/ pulled back from
Cohd .X/ (Definition 4.3) defines a weak ‚-stratification on ƒCohd .X/.

The semistable locusƒCohd .X/�-ss consists of p-semistableƒ-modules. For each poly-
nomial P 2 QŒn�, the substack ƒCohd .X/�-ss

P of semistable ƒ-modules with Hilbert polyno-
mialP is bounded. If S is defined over Q, thenƒCohd .X/�-ss

P admits a separated good moduli
space.

Proof. We need to check the hypotheses of Theorem 2.27. The numerical invariant
� is strictly ‚-monotone and strictly S -monotone by Theorem 4.11. Moreover, � satisfies
HN-boundedness by Theorem 5.1 (a). By Theorem 2.27 (1), this implies that � defines a weak
‚-stratification on ƒCohd .X/.

On the other hand, we know that each open and closed substack ƒCohd .X/�-ss
P of the

�-semistable locus is bounded. Therefore, if S is defined over Q, it follows by Theorem 2.27 (2)
that ƒCohd .X/�-ss

P admits a separated good moduli space.

In [21] we will provide the necessary results (Theorem 5.1) for the construction of the
‚-stratification on ƒCohd .X/ using the numerical invariant �. We shall also describe this
stratification in terms of the Harder–Narasimhan stratification in the context of p-stability. Our
canonical filtrations are coarser than the Gieseker–Harder–Narasimhan filtration described in
[44, Section 3]. We call our filtration of an unstable sheaf the leading term filtration. Theo-
rem 5.2 gives an alternative proof of the existence of these filtrations that does not use Harder–
Narasimhan theory. The Gieseker–Harder–Narasimhan filtration can be recovered from the
leading term filtration by iterating the construction for the associated graded sheaves. This is
explained in the paper [14] in the more general context of �-sheaves.

6. Applications to moduli of pairs

In this section we define a family of Laurent polynomial numerical invariants �.ı/ on
PairdA.X/. They are indexed by a choice of rational Laurent polynomial ı 2 QŒn; n�1�. We
show that each numerical invariant �.ı/ induces a ‚-stratification on PairdA.X/. If ı � 0, then
the corresponding notion of stability agrees with the ones considered in [29] and [48].
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6.1. Numerical invariants on Paird
A

.X/. We start by describing filtrations of objects
in PairdA.X/. Let k be a field over S . Let .F ; ˇ/ be a pair in PairdA.X/.k/, where F is a pure
sheaf of dimension d on Xk and ˇ is a morphism ˇ W AjXk

! F . A filtration f of .F ; ˇ/
consists of a Z-indexed filtration .Fm/m2Z of the pure sheaf F (as in Section 4.1) such that
ˇ W AjXk

! F factors through Fm for all m � 0. In other words, F0 must contain the image
of ˇ. For any such filtration, the associated graded point f j0 is the pair .gr.F /; gr.ˇ// on Xk
consisting of the graded sheaf gr.F / D

L
m2Z Fm=FmC1 and the homogeneous morphism

gr.ˇ/ W AjXk
! gr.F / given by the composition

gr.ˇ/ W AjXk

ˇ
�! F0 ! F0=F1 ,!

M
m2Z

Fm=FmC1:

In the case of the moduli of pairs, it is useful to have some variations of the line bundleLn.

Definition 6.1. Let ı 2 QŒn; n�1� be a Laurent polynomial in n with rational coef-
ficients. For any n 2 Z, we define the line bundle L.ı/n on each open and closed substack
PairdA.X/P � PairdA.X/ given as follows:

L.ı/n WDMnjPaird
A
.X/P

˝
�
bd jPaird

A
.X/P

�˝.� ı.n/
rk �p.n//

:

Here we are using the forgetful morphism PairdA.X/P ! Cohd .X/P to pull back the line
bundles, and the locally constant functions p.n/ and rk on jCohd .X/j are as defined in Sec-
tion 2.3.

Remark 6.2. Note that L.0/n D Ln for all n.

For any fixed ı, denote by �.ı/ the Laurent polynomial numerical invariant on PairdA.X/
determined by the pullback of the family L.ı/n and the rational quadratic norm b. This numer-
ical invariant takes values in the group RŒn; n�1�, which can be equipped with the structure
of a totally ordered R-vector space by defining p1 � p2 if and only if p1.n/ � p2.n/ for
all n� 0.

We record here the value of �.ı/ for filtrations.

Definition 6.3. Choose ı 2 QŒn; n�1�. Let f W ‚k ! PairdA.X/ be a filtration given by
f D .Fm/m2Z. Then �.ı/.f / is the Laurent polynomial given by

�.ı/.f / D

P
m2Zm � .pFm=FmC1

�
ı

rkF
� pF / � rkFm=FmC1q

.
P
m2Z rkFm=FmC1

�m2/
:

For each fixed ı, the arguments in Section 3.4 apply without change to the family L.ı/n .
Indeed, the argument in the proof of Lemma 3.23 shows that the line bundle bd is torsion
on each projective stratum Gr�N;P

X;D;E
� GrX;D;E up to a line bundle coming from the base.

Therefore, the family
.L.ı/n /_ Š L_

n ˝ b
˝.ı.n/=rk/
d

is eventually relatively ample on each projective stratum of the affine Grassmannian GrPaird
A
.X/

associated to some data E;D; ˇ. We can use the same argument as in Theorem 4.11 to conclude
the following.
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Theorem 6.4. Fix ı 2 QŒn; n�1�. The numerical invariant �.ı/ is strictly ‚-monotone
and strictly S -monotone on the stack PairdA.X/.

6.2. Semistable locus and canonical filtrations when deg.ı/ � d . Let us define the
degree deg.ı/ of a Laurent polynomial ı to be the maximum among the integers h such that nh

has nonzero coefficient in ı.

Proposition 6.5. Fix ı 2 QŒn; n�1� with deg.ı/ � d . Let .F ; ˇ/ 2 PairdA.X/.k/ be
a field-valued point.

(i) If ı < 0, then .F ; ˇ/ is always �.ı/ unstable. There is a unique (up to scaling) canonical
filtration f D .Fm/m2Z that maximizes the numerical invariant �.ı/. It is given by

Fm D

´
0 if m � 2,

F if m < 2.

(ii) If ı > 0, then .F ; ˇ/ is �.ı/ semistable if and only if the cokernel of ˇ W AjXk
! F is

supported in dimension � d � 1. If .F ; ˇ/ is unstable, then up to scaling there is a unique
filtration f D .Fm/m2Z maximizing �.ı/. It is given by

Fm D

8̂<̂
:
0 if m � 1,

Im.ˇ/sat if m D 0,

F if 0 > m.

Here the saturation Im.ˇ/sat denotes the smallest subsheaf Im.ˇ/ � Im.ˇ/sat � F

such that F=Im.ˇ/sat is pure of dimension d .

Proof. For this proof we set D WD deg.ı/.

Proof of (i). Let f denote the filtration described in the proposition. If ıD denotes
the leading coefficient of ı, then the leading coefficient of �.ı/.f / is given by �ıDp

rkF
. This is

positive by assumption, and hence f is destabilizing.
For any other filtration f 0 D .F 0

m/m2Z with �.ı/.f 0/ � �.ı/.f / we have

deg.�.ı/.f 0// D D:

The leading coefficient of �.ı/.f 0/ is given by

�.ı/.f 0/D D

P
m2Zm �

�ıD
rkF

� rkF 0
m=F

0
mC1q�P

m2Z rkF 0
m=F

0
mC1

�m2
�

D
�ıD

rkF

�

P
m2Z

�
m
q

rkF 0
m=F

0
mC1

�
�
�q

rkF 0
m=F

0
mC1

�
q�P

m2Z rkF 0
m=F

0
mC1

�m2
� :

To understand this formula in the case D D d , we note that the degree d terms in pF 0
m=F

0
mC1

and pF cancel out.
The Cauchy–Schwarz inequality implies that

�.ı/.f 0/D �
�ıD
p

rkF

;
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with equality if and only if there is single m for which F 0
m=F

0
mC1 ¤ 0. In this latter case we

have that f 0 is equal to f up to scaling. Therefore, f is the unique maximizing filtration for
the pair .F ; ˇ/.

Proof of (ii). Suppose that the cokernel of ˇ is supported in dimension � d � 1. Let
f D .Fm/m2Z be a filtration of .F ; ˇ/. We shall show that f is not destabilizing. By assump-
tion, F itself is the only saturated subsheaf of F containing Im.ˇ/. It follows that Fm D F

for m � 0. Hence

�.ı/.f / D

P
m>0m �

�
pFm=FmC1

�
ı

rkF
� pF

�
� rkFm=FmC1q�P

m2Z rkFm=FmC1
�m2

� :

Observe that

m �

�
pFm=FmC1

�
ı

rkF

� pF

�
� rkFm=FmC1

� 0

for all m > 0, because deg.ı/ � d , ı > 0, and the degree d terms of pF and pFm=FmC1
can-

cel whenever rkFm=FmC1
¤ 0. Therefore, every summand in the numerator is � 0, and hence

�.ı/.f / � 0.
On the other hand, suppose that the cokernel of ˇ is not supported in dimension � d � 1.

Then Im.ˇ/sat is a proper subsheaf of F . Let f be the filtration defined in the statement of the
proposition. We have

�.ı/.f / D

�
ı

rkF

C pF � pF =Im.ˇ/sat

�
�

q
rkF =Im.ˇ/sat :

The leading coefficient �.ı/.f /D D ıD �
p

rkF =Im.ˇ/sat=rkF is positive, so this filtration is
destabilizing. We end by showing the following claim: any other filtration f 0 D .F 0

m/m2Z

with �.ı/.f 0/ � �.ı/.f / must coincide with f up to scaling. This claim implies that f is the
unique maximizing filtration of .F ; ˇ/ up to scaling.

For any such filtration f 0, we have seen that the leading term of �.ı/.f 0/D is given by

�.ı/.f 0/D D

P
m2Zm �

�ıD
rkF

� rkF 0
m=F

0
mC1q�P

m2Z rkF 0
m=F

0
mC1

�m2
� :

If some of the Fm with positive weight m > 0 are nonzero, then setting them all to 0 increases
the numerator and decreases the denominator in the formula above. Hence, setting Fm D 0

for all m > 0 defines another filtration f 00 with bigger numerical invariant, and the equality
�.ı/.f 0/ D �.ı/.f 00/ holds if and only if all nonzero weights m with Fm ¤ 0 were negative
to begin with. Therefore, we can reduce to showing the claim in the case when all nonzero
weights m of f 0 are negative. The formula above then reads

�.ı/.f 0/D D
ıD

rkF

�

P
m<0

�
.�m/ �

q
rkF 0

m=F
0

mC1

�
�
�q

rkF 0
m=F

0
mC1

�
q�P

m<0 rkF 0
m=F

0
mC1

� .�m/2
� :

An application of the Cauchy–Schwarz inequality shows that

�.ı/.f 0/D �
ıD

rkF

�

q
rkF =F 0

0
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with equality if and only if there is single m for which F 0
m=F

0
mC1 ¤ 0 and m < 0. Therefore,

up to scaling we can reduce to the case when

F 0
m D

8̂<̂
:
0 if m � 1,

F 0
0 if m D 0,

F if 0 > m,

and so

�.ı/.f 0/D D
ıD

rkF

�

q
rkF =F 0

0
:

Since Im.ˇ/sat is the smallest saturated subsheaf containing Im.ˇ/, we have Im.ˇ/sat � F 0
0. It

follows that the inequality

ıD

rkF

�

q
rkF =Im.ˇ/sat D �.ı/.f /D � �.ı/.f 0/D D

ıD

rkF

�

q
rkF =F 0

0

implies F 0
0 D Im.ˇ/sat, and so f 0 D f .

Proposition 6.6. Let ı 2 QŒn; n�1� with deg.ı/ � d , and suppose that ı > 0. For any
polynomial P 2 QŒx�, let PairdA.X/

�.ı/-ss
P denote the open substack of �.ı/-semistable pairs

with Hilbert polynomial P . Then:

(1) PairdA.X/
�.ı/-ss
P does not depend on the choice of ı,

(2) PairdA.X/
�.ı/-ss
P is represented by an algebraic space that is proper and of finite presen-

tation over S .

Proof. Proposition 6.5 (ii) shows that PairdA.X/
�.ı/-ss
P does not depend on ı. In fact, the

explicit description of PairdA.X/
�.ı/-ss
P shows that it coincides with the quotient husk functor

QHuskP .A/ defined by Kollár in [27]. Part (2) follows from [27, Theorem 10].

Remark 6.7. When A D OX and d D 1, the space Pair1OX
.X/�

.ı/-ss
P described above

recovers the moduli space of stable pairs in the sense of Pandharipande and Thomas [37].

For the rest of this section we will focus on the case when deg.ı/ � d � 1. These cases
yield more interesting ‚-stratifications.

6.3. HN-boundedness for pairs. As preparation for the proof of HN-boundedness, we
prove the following lemmas. Recall that y� is the generalized slope defined in Section 2.3.

Lemma 6.8. For any bounded subset B of geometric points in Cohd .X/ and real
number c 2 R, the subset

SB;c WD

²M
m2Z

Fm=FmC1 W there exists F 2 B such that .Fm/m2Z is a filtration

of F and y�.Fm=FmC1/ � c for all m 2 Z

³
is bounded.
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Proof. Let T be a quasi-compact S -scheme and morphism T ! Cohd .X/ such that B
is contained in the image. The morphism T ! Cohd .X/ is represented by a T -pure sheaf F

of dimension d on XT . By base-changing to XT and applying Noetherian approximation
(see for instance [47, Appendix C]), we can assume without loss of generality that the base
scheme T is Noetherian. Note that the rank rkFt

of the fibers takes only finitely-many val-
ues on T . This provides a uniform bound for the number of nonzero graded pieces in each
graded sheaf

L
m2Z Fm=FmC1 2 SB;c . We will induct on the maximumN.B/ of the number

of nonzero graded pieces in elements of SB;c . The base case N.B/ D 1 is clear, since then
SB;c � ¹Ft W y�.Ft / � cº.

We proceed with the induction step. For each element
L

Fm=FmC1 2 SB;c , we denote
by Fmmax=FmmaxC1 the nonzero graded piece with largest weight mmax. Notice that then we
have FmmaxC1 D 0, and so Fmmax=FmmaxC1 D Fmmax is a subsheaf of a fiber Ft satisfying
y�.Fmmax/ � c. It suffices to show that the set

¹G W there exists t 2 T with G � Ft and y�.G / � cº

is bounded, because then we can use the induction hypothesis on the bounded collection B 0

consisting of all quotients Ft=Fmmax (note that by construction N.B 0/ D N.F / � 1).
After passing to a (finite) Zariski cover of T , and replacing OXT

.1/ with OXT
.M/ and

c with c=M for some sufficiently large M > 0, we can assume without loss of generality
that the ample line bundle OXT

.1/ induces a closed immersion i W XT ,! PnT . For any point
t 2 T and any pure sheaf G on Xt , the pushforward .it /�G will be a pure sheaf of dimen-
sion d on Pnt with y�..it /�G / D y�.G /. Therefore, we can reduce to the case X D Pn for
the bounded set of sheaves ¹ .it /�Ft W t 2 T º. Now we can conclude by [25, Lemma 1.7.9],
because the set of Castelnuovo–Mumford regularities ¹reg..it /�Ft / W t 2 T º and the set of
Hilbert polynomials ¹P.it /�Ft

W t 2 T º are both finite by [25, Lemma 1.7.6] (note that the
bound on [25, Lemma 1.7.9] only depends on the Hilbert polynomial and regularity of the
sheaf).

Lemma 6.9. Assume deg.ı/ � d � 1. Let .F ; ˇ/ be a field-valued point of PairdA.X/,
and let f be a nondegenerate filtration such that �.ı/.f / > 0. Then there is another non-
degenerate filtration f 0 with �.ı/.f 0/ � �.ı/.f / that corresponds to an unweighted filtration
0 ¨ G.q/ ¨ G.q�1/ ¨ � � � ¨ G.0/ D F with associated graded sheaves G i WD G.i/=G.iC1/ such
that either

(1) y�.G i / D y�.F /C .d � 1/Š � ıd�1=rkF for all i , or

(2) y�max.F / � y�.G q/ > � � � > y�.GjC1/ > y�.Gj�1/ > � � � > y�.G 0/ � y�min.F /.

In case (2), j denotes the largest index such that Im.ˇ/ � G.j /, and y�max.F / (resp. y�min.F /)
denotes the maximum (resp. minimum) slope among the graded pieces of the Gieseker–Harder–
Narasimhan filtration of F . Moreover,

y�.Gj / D
1

rk
Gj

�

�
rkF � y�.F / �

X
i¤j

rk
G i

� y�.G i /

�
:

Proof. Any filtration f Ew of the pair .F ; ˇ/ is given by an unweighted filtration

0 ¨ G.q/ ¨ G.q�1/ ¨ � � � ¨ G.0/ D F
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along with a choice of integer weights Ew WD .w0/
q
iD0 satisfying w0 < � � � < wq and wj � 0,

where j is the largest index such that Im.ˇ/ � G.j /. By the definition of the numerical invari-
ant �.ı/, we have

�.ı/.f Ew/ D

Pq
iD0wi �

�
p

G i
�

ı
rkF

� pF

�
� rk

G iq�Pq
iD0 rk

G i
� w2i

� :

The Laurent polynomial �.ı/.f Ew/ has degree at most d � 1. Let us denote by �d�1.f Ew/ and
ıd�1 the coefficient of degree d � 1 in �.ı/.f Ew/ and ı respectively. By the formula above,
we have

(6.1) �d�1.f Ew/ D

Pq
iD0wi �

�
y�.G i /�y�.F /
.d�1/Š

�
ıd�1

rkF

�
� rk

G iq�Pq
iD0 rk

G i
� w2i

� :

This formula makes sense if we take Ew to be a tuple of real numbers, so we regard it as
a function �d�1 W RqC1 n 0! R. Note that �d�1 is continuous and scale invariant. We will
use the general fact that for any vector Eu 2 RqC1 and positive definite matrix B , the function
�. Ew/ D . Ew � Eu/=

p
Ew � B Ew is strictly quasi-concave on the subset of RqC1 n 0where � > 0 (see

[19, Lemma 4.1.15]). By this we mean that for any linearly independent vectors Ew1 and Ew2 such
that �. Ewi / > 0 for i D 1; 2, one has �.t Ew1 C .1 � t / Ew2/ > min.�. Ew1/; �. Ew2// for t 2 .0; 1/.

Suppose that the filtration f given in the statement has underlying unweighted filtra-
tion G�. We shall show that one can produce the required filtration f 0 satisfying (1) or (2) by
a process deleting steps in the underlying unweighted filtration G� and changing the weights Ew.
Because we are only interested in weights up to scaling by a positive integer, and �.ı/ is invari-
ant under scaling, it suffices to construct f 0 as an R-weighted filtration then observe a posteriori
that f 0 has rational weights.

If �d�1.f Ew/ � 0 for all choices of Ew in the cone of weights

CG�
WD ¹ Ew 2 RqC1 W w0 < � � � < wq and wj � 0º;

then �.ı/.f Ew/ > 0 implies that �d�1.f Ew/ D 0. In this case, you must have the coefficient of
each wi vanish in (6.1), or else you could perturb the wi so that �d�1.f / > 0. Thus f itself
satisfies condition (1) of the lemma.

Otherwise, assume for the moment that there exists a Ew� that maximizes �d�1 on CG�

and such that �d�1.f Ew�/ > 0. This means that either:

(A) w�
j > 0 and the weights are an unconstrained local max of �d�1 on all of RqC1 n 0, or

(B) the weights are an unconstrained local max of �d�1 on the subspace ¹wj D 0º�RqC1 n 0.

Either way, the critical point equations imply that

(6.2) w�
i D Q �

�
y�.G i / � y�.F /

.d � 1/Š
�
ıd�1

rkF

�
for some positive rational number Q and all i ¤ j . The weight w�

j is either 0 in case (B) or
is given by the same formula (6.2) in case (A). Therefore this maximizer occurs at a rational
point. It is unique because �d�1 is strictly quasi-concave. Thus if the original weights of f are
not a multiple of this maximizer Ew�, then �d�1.f / < �d�1.f Ew�/, so we can set f 0 D f Ew� .
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The inequalities in condition (2) of the lemma now follow from combining the explicit formula
for w�

i in terms of y�.Gi / and the hypothesis that w�
0 < � � � < w�

q .
In general, �d�1 does not achieve a maximum on CG�

. However, if we denote by CG�

the closure of CG�
in RqC1, then the continuous function �d�1 must achieve a maximum on

the compact space .CG�
n 0/=R�

>0. In particular, �d�1 must attain a global maximum at some
point of CG�

n 0, which is unique up to scaling because of the strict quasi-concavity of �d�1. If
this maximizer does not lie in CG�

, then it must lie on one of the boundary components where
wi D wiC1. The restriction of �d�1 to this boundary component can be identified with the
formula (6.1) on the cone of weights CG 0

�
, where G 0

� is the unweighted filtration obtained from
G� by deleting the i -th step. Hence, after deleting finitely many steps we get an unweighted
filtration G 0

� such that �d�1 does admit a maximum Ew� on CG 0
�
. We have already shown that

the resulting filtration f 0

Ew� satisfies the condition (2) of the lemma. Furthermore, f 0

Ew� max-
imizes �d�1 on CG�

n 0 by construction, so �d�1.f / < �d�1.f 0

Ew�/, which in turn implies
�.ı/.f / � �.ı/.f 0

Ew�/.
The inequalities with y�min.F / and y�max.F / follow from the fact that G 0 and Gq are

pure quotients and subobjects of F respectively. Finally, the formula for y�.Gj / follows from
the additivity of Hilbert polynomials.

Proposition 6.10 (HN-boundedness). Fix ı 2 QŒn; n�1� with deg.ı/ � d � 1. Let T be
an affine Noetherian scheme. Let g W T ! PairdA.X/. Then there exists a quasi-compact open
substack UT of PairdA.X/ satisfying the following: For all geometric points t 2 T and all
�.ı/-destabilizing filtrations f of g.t/, there exists a nondegenerate filtration f 0 of g.t/ with
f 0j0 2 UT and �.ı/.f 0/ � �.ı/.f /.

Proof. The natural forgetful map Forget W PairdA.X/! Cohd .X/ is quasi-compact by
Proposition 2.15. Hence, it suffices to show that there is a quasi-compact open substack WT of
Cohd .X/ such that for all destabilizing filtrations f for a pair g.t/ as in the statement of this
proposition we can find a filtration f 0 such that Forget.f 0j0/ 2 WT and �.ı/.f 0/ � �.ı/.f /.

The morphism T ! PairdA.X/ is represented by a pair .F ; ˇ/ consisting of a T -pure
sheaf F of dimension d on XT and a morphism ˇ W AjXT

! F . Lemma 6.8 shows that it
is sufficient to find a uniform lower bound C such that for all t 2 T and all destabilizing
filtrations f of the pair .FXt

; ˇXt
/, there exists another filtration f 0 D .Fm/m2Z satisfying

�.ı/.f 0/ � �.ı/ and y�.Fm=FmC1/ � C for all m 2 Z.
By Lemma 6.9, we can always find a filtration f 0 with �.ı/.f 0/ � �.ı/.f / and such that

for all i ¤ j the associated graded piece G i satisfies either

(1) y�.G i / D y�.Ft /C .d � 1/Š � ıd�1=rkFt
, or

(2) y�max.Ft / � y�.G i / � y�min.Ft /.

Since the family Ft is bounded, either case yields uniform upper and lower bounds for y�.G i /

if i ¤ j . The slope of the remaining associated graded piece Gj can be bounded using the
formula

y�.Gj / D
1

rk
Gj

�

�
rkFt

� y�.Ft / �
X
i¤j

rk
G i

� y�.G i /

�
from Lemma 6.9, because we have established that all the terms in the right-hand side admit
uniform upper and lower bounds.
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6.4. ‚-stratifications on Paird
A

.X/.

Theorem 6.11. Let ı 2 QŒn; n�1� with deg.ı/ � d � 1. Then the invariant �.ı/ defines
a weak ‚-stratification of the stack PairdA.X/. If the scheme S is defined over Q, then �.ı/

defines a ‚-stratification.

Proof. We use Theorem 2.27 (1). By Theorem 6.4, the invariant �.ı/ is strictly‚-mono-
tone. On the other hand Proposition 6.10 implies that �.ı/ satisfies the HN-boundedness con-
dition.

In particular, every unstable pair .F ; ˇ/ defined over a field admits (after maybe passing
to a purely inseparable field extension) a canonical filtration .Fm/m2Z that maximizes the
numerical invariant �.ı/. Such canonical filtrations are unique up to scaling the weights.

One interesting feature of the “non-abelian” moduli problem PairdA.X/ is that the canon-
ical filtration .Fm/m2Z of a pair .F ; ˇ/ need not be convex with respect to the numerical
invariant. This is illustrated by the following example.

Example 6.12. Set ı D 0. Let X D P1 and A D O. Set F D O.5/˚ O.1/˚ O. We
define ˇ W O ! F to be the inclusion into the last component. Then, the canonical filtration
.Fm/m2Z of the pair .F ; s/ is given up to scaling by

Fm D

8̂̂̂̂
<̂
ˆ̂̂:
0 for m > 3,

O.5/ for 3 � m > 0,

O.5/˚ O for 0 � m > �1,

F for �1 > m.

The associated graded pieces are O.5/ in weight 3, O in weight 0, and O.1/ in weight �1.

This phenomenon (i.e., nonconvexity of canonical filtrations) does not arise for the mod-
uli stacks Cohd .X/ and ƒCohd .X/.

Remark 6.13. We note, however, that the canonical filtration of a pair is always “nearly
convex”. More precisely, one can modify the proof of Lemma 6.9 (possibly replacing �d�1 with
a lower order term) to see that the numerical invariant �.ı/ of the graded pieces Fm=FmC1 will
form a convex sequence except possibly at F0=F1.

Remark 6.14. The canonical filtration coming from the‚-stratification agrees with the
Harder–Narasimhan filtration for Bradlow pairs in the case of rank 2, as defined in [45].

In higher rank, we find a definition of Harder–Narasimhan filtrations for Bradlow pairs in
[33, 3.3.2]. It is interesting to note that our canonical filtration does not necessarily agree with
Mochizuki’s Harder–Narasimhan filtration when the rank is bigger than 2. As an example, take
Example 6.12 for some constant 0 < ı � 1.

6.5. Moduli spaces for pairs. Let ı 2 QŒn; n�1�with deg.ı/ � d � 1. Since the invar-
iant �.ı/ induces a weak ‚-stratification, it follows that the locus of �.ı/-semistable pairs is
an open substack of PairdA.X/. We denote this open substack by PairdA.X/

�.ı/-ss. For each
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rational polynomial P 2 QŒx�, we set PairdA.X/
�.ı/-ss
P to be the open and closed substack

of PairdA.X/
�.ı/-ss parametrizing �.ı/-semistable points such that the underlying pure sheaf

has Hilbert polynomial P .

Proposition 6.15. Assume deg.ı/ � d � 1. The stack PairdA.X/
�.ı/-ss
P is quasi-compact.

Proof. By Proposition 2.15, the forgetful morphism PairdA.X/! Cohd .X/ is quasi-
compact. Hence, it suffices to show that the image of

PairdA.X/
�.ı/-ss
P ! Cohd .X/

is quasi-compact. Let k be a field and let .F ; ˇ/ 2 PairdA.X/
�.ı/-ss
P .k/. We want to show that F

belongs to a fixed bounded family relative to S . By Noetherian approximation and [28, Theo-
rem 4.4], it suffices to show that there exists a uniform upper bound �0 such that every proper
saturated subsheaf E � F satisfies y�.E/ � �0.

Let ıd�1 denote the coefficient of nd�1 in the Laurent polynomial ı. Note that the slope
y�.F / and rank rkF are fixed, since they only depend on P . We claim that

�0 D y�.F /C
ıd�1

rkF

is a valid upper bound. To see this, let E � F be a proper saturated subsheaf. Consider the
filtration f D .Fm/m2Z of the pair given by

Fm WD

8̂<̂
:
0 if m > 1,

E if m D 1,

F if 0 � m.

Then we have �.ı/.f / D
p

rkE � .pE �
ı

rkF
� pF /. The leading coefficient in degree d � 1 is

given by

�.ı/.f /d�1 D
p

rkE �

�
y�.E/ �

ıd�1

rkF

� y�.F /

�
:

Since .F ; ˇ/ is semistable, we must have �.ı/.f /d�1 � 0. This implies that

y�.E/ � y�.F /C
ıd�1

rkF

;

as desired.

In order to check the existence part of the valuative criterion for properness for pairs,
we will use the following.

Proposition 6.16. Let R be a complete discrete valuation ring with fraction field K.
Suppose that we are given a 2-commutative diagram as follows:

Spec.K/ Cohd .X/

Spec.R/ S .
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Then there exist a morphism Spec.R/! Cohd .X/ such that the diagram

Spec.K/ Cohd .X/

Spec.R/ S

is 2-commutative.

Proof. The map Spec.K/! Cohd .X/ amounts to a pure sheaf F of dimension d
on XK . By [50, Tag 01PF] we can extend it to a coherent sheaf zF on XR. Let $ be a uni-
formizer of R and let � denote the residue field. Let j W Spec.K/ ,! Spec.R/ denote the open
immersion. Then we can kill the $ -torsion by taking the image of the unit zF ! j�j

� zF ,
so we can assume without loss of generality that zF is R-flat. Let B � zF� be the maximal
subsheaf of dimension < d , and form E D ker. zF ! zF�=B/. We can again replace E with
ker.E ! Ek=B

0/, where B 0 � Ek is the maximal subsheaf of dimension < d . The proof of
[25, Theorem 2.B.1]2) applies verbatim to show that iterating this procedure results in a sheaf E

with EjX�
pure and EjXK

Š zF jXK
. This is the morphism Spec.R/! Cohd .X/ that we were

looking for.

Theorem 6.17. Suppose that deg.ı/ � d � 1. Choose a Hilbert polynomial P 2 QŒx�.
Suppose that the scheme S is defined over Q. Then the stack PairdA.X/

�.ı/-ss
P admits a proper

good moduli space over S .

Proof. We use Theorem 2.27 (2). First, �.ı/ is strictly‚-monotone and strictly S -mono-
tone by Theorem 6.4. HN-boundedness follows from Proposition 6.10. On the other hand,
Proposition 6.15 implies that the stack PairdA.X/

�.ı/-ss
P is quasi-compact.

We are only left to check that PairdA.X/ satisfies the existence part of the valuative crite-
rion for properness. Let R be a complete discrete valuation ring over S with fraction field K
and uniformizer$ 2 R. Let .F ; ˇ/ be a pair on XK . By Proposition 6.16, we can extend F to
a R-pure sheaf zF of dimension d on XR. Since zF is R-flat, for any n � 0 we have an inclu-
sion zF � $�n � zF that restricts to an isomorphism on the generic fiber XK . The morphism
ˇ W AjXK

! F extends to a morphism ž W AXR
! $�n � zF for some n� 0. The resulting

pair .$�n � zF ; ž/ on XR extends .F ; ˇ/, as desired.

Remark 6.18. The same proof as in Proposition 6.5 (i) shows that the �.ı/-semistable
locus is empty whenever ı < 0. Hence, we can restrict our attention to ı � 0 for the purposes
of studying the moduli space.

Example 6.19. If ı D 0, then a pair .F ; ˇ/ is �.ı/-semistable if and only if the sheaf
F is Gieseker semistable. Indeed, given any destabilizing filtration f of F we can obtain a fil-
tration f 0 of the pair .F ; ˇ/ by shifting the weights so that F0 contains the image of ˇ. Since
�.0/ remains unchanged after shifting weights, it follows that f 0 is a destabilizing filtration for
the pair .F ; ˇ/.

2) The smoothness hypothesis is unnecessary for the argument. Using the notation in [25], a sheaf is
semistable in Cohd;d�1 if and only if it is pure of dimension d .

https://stacks.math.columbia.edu/tag/01PF
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Using the scaling action on F , one can show that every such semistable pair .F ; ˇ/
contains the semistable pair .F ; 0/ in its closure. Thus, the moduli space of PairdA.X/

�.ı/-ss

agrees with the moduli space of Gieseker semistable pure sheaves on X .

Next we give an alternative description of �.ı/-semistability in this case when ı > 0. This
shows that our stability condition is analogous to the notion of ı-stability for coherent systems
considered by Le Potier [29]. See also [48] for a formulation that is closer to ours.

Proposition 6.20. Suppose that deg.ı/ � d � 1. Let .F ; ˇ/ be a field-valued point of
PairdA.X/. Let ı 2 QŒn; n�1� with ı > 0. Then .F ; ˇ/ is �.ı/.f /-semistable if and only if the
following two conditions are satisfied:

(a) ˇ ¤ 0.

(b) All proper saturated subsheaves E � F satisfy8̂̂<̂
:̂
pF C

ı

rkF

� pE if Im.ˇ/ 6� E ,

pF C
ı

rkF

� pE C
ı

rkE

if Im.ˇ/ � E .

Proof. We show that “semistability” implies (a) and (b). Suppose that (a) is not satisfied,
so ˇ D 0. Then the filtration f D .Fm/m2Z given by

Fm WD

´
0 if m > �1,

F if �1 � m,

is a destabilizing filtration for the pair .F ; ˇ/. On the other hand, suppose that (b) is not satis-
fied. Let E � F be a proper saturated sheaf violating condition (b) above. We show that .F ; ˇ/
is unstable in each case.

(C1) Assume that Im.ˇ/ 6� E . Let f D .Fm/m2Z denote the filtration of .F ; ˇ/ defined by

Fm D

8̂<̂
:
0 if m > 1,

E if m D 1,

F if 0 � m.

Then we have

�.ı/.f / D
.pE �

ı
rkF

� pF / � rkE
p

rkE

:

By assumption, this is strictly positive, and hence f is a destabilizing filtration.

(C2) Assume that Im.ˇ/ � E . Let f D .Fm/m2Z denote the filtration of .F ; ˇ/ defined by

Fm D

8̂<̂
:
0 if m > 0,

E if m D 0,

F if 0 > m.

Then we have

�.ı/.f / D
.�pF =E C

ı
rkF

C pF / � rkF =Ep
rkF =E

:
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Note that this can be rewritten as follows:

�.ı/.f / D
rkEp
rkF =E

�

�
pE C

ı

rkE

� pF �
ı

rkF

�
:

By assumption this is strictly positive. Therefore f is a destabilizing filtration. This
concludes the “only if” direction.

We show that (a) and (b) imply “semistability”. Suppose that .F ; ˇ/ satisfies conditions
(a) and (b) in the statement of the proposition. Let f D .Fm/m2Z be a filtration of .F ; ˇ/. We
shall show that f is not destabilizing. By definition, the numerical invariant is given by

�.ı/.f / D
1q�P

m2Z rkFm=FmC1
�m2

�
�

 X
m�1

m �

�
pFm=FmC1

�
ı

rkF

� pF

�
� rkFm=FmC1

C

X
m��1

FmC1¤F

m �

�
pFm=FmC1

�
ı

rkF

� pF

�
� rkFm=FmC1

!
:

(6.3)

Two applications of summation by parts produce the following two equalities:X
m�1

m �

�
pFm=FmC1

�
ı

rkF

� pF

�
� rkFm=FmC1

D

X
m�1

�
pFm

�
ı

rkF

� pF

�
� rkFm

;

X
m��1

FmC1¤F

m �

�
pFm=FmC1

�
ı

rkF

� pF

�
� rkFm=FmC1

D �

X
m��1

FmC1¤F

�
pF =FmC1

�
ı

rkF

� pF

�
� rkF =FmC1

:

(6.4)

We can use (6.4) to rewrite the summations appearing in formula (6.3). This yields

�.ı/.f / D
1q�P

m2Z rkFm=FmC1
�m2

� �
 X
m�1

�
pFm

�
ı

rkF

� pF

�
� rkFm

C

X
m��1

FmC1¤F

�
pF =FmC1

�
ı

rkF

� pF

�
� rkF =FmC1

!
:

(6.5)

Let us further rewrite the terms in the second summation appearing in (6.5) above. For each
m � �1, we have

Im.ˇ/ � FmC1:

Since ˇ ¤ 0, we have
FmC1 ¤ 0:
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If in addition FmC1 ¤ F , then we have

�

�
pF =FmC1

�
ı

rkF

� pF

�
� rkF =FmC1

D

�
pFmC1

C
ı

rkFmC1

� pF �
ı

rkF

�
� rkFmC1

:

(6.6)

Using (6.6), we rewrite equation (6.5) as

�.ı/.f / D
1q�P

m2Z rkFm=FmC1
�m2

� �
 X
m�1

�
pFm

�
ı

rkF

� pF

�
� rkFm

C

X
m��1

FmC1¤F

�
pFmC1

C
ı

rkFmC1

� pF �
ı

rkF

�
� rkFmC1

!
:

(6.7)

In order to see that f is not destabilizing, we shall show that each term in the two summations
appearing in (6.7) is � 0.

(1) We show X
m��1

FmC1¤F

�
pFmC1

C
ı

rkFmC1

� pF �
ı

rkF

�
� rkFmC1

� 0:

For all m � �1 with FmC1 ¤ F , we know that Im.ˇ/ � FmC1 ¨ F . Therefore, by
condition (b), we have�

pFmC1
C

ı

rkFmC1

� pF �
ı

rkF

�
� rkFmC1

� 0

for each term in the sum.

(2) We show X
m�1

�
pFm

�
ı

rkF

� pF

�
� rkFm

� 0:

Let m � 1. If Im.ˇ/ 6� Fm, then condition (b) implies that�
pFm

�
ı

rkF

� pF

�
� rkFm

� 0:

On the other hand if Im.ˇ/ � Fm, then we know that Fm ¤ 0 and�
pFm

C
ı

rkFm

� pF �
ı

rkF

�
� rkFm

� 0:

Using the fact that ı > 0, we get the chain of inequalities�
pFm

�
ı

rkF

� pF

�
� rkFm

�

�
pFm

C
ı

rkFm

� pF �
ı

rkF

�
� rkFm

� 0;

thus concluding the proof.
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Example 6.21. (1) Suppose that ı > 0 with deg.ı/ � �1. In this case, Proposition 6.20
implies that a pair .F ; ˇ/ is �.ı/-semistable if and only if ˇ ¤ 0 and F is Gieseker semistable.
The resulting moduli space of PairdA.X/

�.ı/-ss is projective over the moduli space of Gieseker
semistable pure sheaves on X .

(2) Fix the choice of a Hilbert polynomial P . We restrict to the moduli stack PairdA.X/P
parametrizing pairs with Hilbert polynomial P . Let ı be a positive (constant) rational number.
If ı is small enough, then Proposition 6.20 implies that a pair .F ; ˇ/ 2 PairdA.X/P is semi-
stable if and only if ˇ ¤ 0, the sheaf F is Gieseker semistable, and all proper subsheaves
E � F with pE D pF satisfy Im.ˇ/ 6� E . If A is Gieseker semistable with the same reduced
Hilbert polynomial as F , then this last condition is equivalent to requiring that F =Im.ˇ/sat is
Gieseker stable.

(3) Suppose that S D Spec.k/ for a field k. Let X be a smooth projective geometri-
cally connected curve over k, equipped with the choice of a polarization OX .1/. Set A D OX
and take d D 1. Then Pair1OX

.X/ is the stack classifying vector bundles on X along with the
choice of a section. We can take ı to be a constant in Q. If ı > 0, then Proposition 6.20 shows
that �.ı/-stability coincides with stability for Bradlow pairs as considered by Thaddeus in his
work on the Verlinde formula [45].3) Therefore, we recover the moduli space of ı-semistable
Bradlow pairs.
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