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Moduli spaces of sheaves via
affine Grassmannians

By Daniel Halpern-Leistner at Ithaca, Andres Fernandez Herrero at Ithaca and
Trevor Jones at Ithaca

Abstract. We develop a new method for analyzing moduli problems related to the
stack of pure coherent sheaves on a polarized family of projective schemes. It is an infinite-
dimensional analogue of Geometric Invariant Theory. We apply this to two familiar moduli
problems: the stack of A-modules and the stack of pairs. In both examples, we construct a
O-stratification of the stack, defined in terms of a polynomial numerical invariant, and we con-
struct good moduli spaces for the open substacks of semistable points. One of the essential
ingredients is the construction of higher-dimensional analogues of the affine Grassmannian for
the moduli problems considered.
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1. Introduction

The moduli stack Coh(X) of coherent sheaves on a projective scheme X is of central
interest in moduli theory. It has been used to formulate the non-abelian Hodge correspon-
dence [43], it has been used to define and study algebraic Donaldson invariants of surfaces [33],
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and several flavors of enumerative invariants for 3-folds [37,46]. It has also been used to study
the moduli of varieties [27], and has served as a particularly interesting testing ground for the
minimal model program [6] and hyperkihler geometry [34].

As the examples illustrate, a thorough understanding of the structure of the stack Coh(X)
is a fundamental building block for many other theories. We will focus on the open substack
Coh? (X)p C Coh(X) parameterizing sheaves that are pure of dimension d and have a fixed
Hilbert polynomial P. In this paper, we develop a new method for studying the structure of
Coh? (X)p and related stacks. We call it infinite-dimensional Geometric Invariant Theory.

Let us recall the main structural results about Coh? (X): Using an ample line bundle
Ox (1) on X, one defines a sheaf ¥ on X to be Gieseker Ox (1)-semistable if and only if there
is no proper subsheaf ¥’ C ¥ whose reduced Hilbert polynomial is larger than that of ¥ (see
Section 2.3 below). The substack of semistable sheaves Coh? (X )p C Coh? (X) is open and
admits a projective moduli space. Furthermore, Coh? (X)* is the open piece of a stratification
of Coh? (X) by locally closed substacks, where the strata parameterize unstable sheaves along
with a canonical filtration, called the Harder—Narasimhan filtration [22, 35, 44]. The strata are
indexed by the Hilbert polynomials of the associated graded pieces of the Harder—Narasimhan
filtration, which are themselves semistable.

This moduli problem has been previously studied using Geometric Invariant Theory
(GIT) [13,31,41, 44], which involves constructing and analyzing explicit families of sheaves
over quot-schemes. Over the past few years, a new approach to these structures has developed
that is more intrinsic to the moduli problem: the theory of good moduli spaces [1] and the
theory of ®-stratifications [19]. We will review the key concepts in Section 2.5. From the
intrinsic perspective, the main structural results for Coh? (X)p are:

(S1) To any relatively ample bundle on X, one can associate a polynomial-valued numerical
invariant v (Definition 4.3) that defines a ®-stratification of Coh? (X)p.

(S2) If S is defined over QQ, then the semistable locus admits a good moduli space that is
proper over S.

Our methods give a new proof of these structural results for Coh? (X)p which more
readily extends to other contexts. In the applications mentioned above, one often considers the
moduli problem of a coherent sheaf & along with some auxiliary data. We will focus on two
such variants:

(1) The moduli stack of pairs Pair 4 (X ') parameterizing a pure coherent sheaf & of dimension
d on X along with a homomorphism 4 — ¥ from a fixed coherent sheaf 4 (often with
A= Oy or A = (9}6(9” for some n, see [9,33,37,45]).

(2) The moduli stack A Coh? (X) of pure coherent modules of dimension d over a sheaf A
of rings of differential operators on X.

See Section 2.4 for precise definitions. Both moduli problems admit a morphism to Coh? (X)
that forgets the additional structure.

Theorem 1.1 (= Theorems 6.11 and 6.17). Let X be a projective scheme of finite pre-
sentation over a scheme S. To any relatively ample line bundle Ox (1) on X, one can associate
a polynomial-valued numerical invariant v on Coh? (X) (Definition 4.3). The restriction of
the numerical invariant v from Coh? (X) defines a weak O-stratification of the moduli stack
Pairfi (X)p. If S is defined over Q, then the v-semistable locus admits a good moduli space
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that is proper over S. Furthermore, the same holds for a larger family p® of deformations of
the numerical invariant on Pairi (X) described in Definition 6.3.

Remark 1.2. If we set A = 0, then the forgetful morphism induces an identification
Pairi X) = Coh? (X). In particular, Theorem 1.1 recovers the classical structural results (S1)
and (S2) above for the stack Coh? (X)p.

The main contribution of this paper is to develop the method of infinite-dimensional GIT
to prove Theorem 1.1. It is inspired by the theory of infinite-dimensional symplectic reduction
[4, 11]. In the case of vector bundles on a curve, the differential geometric picture uses the
description of the stack as a quotient of an infinite-dimensional space of connections by an
infinite-dimensional gauge group. The analogous uniformization theorem in algebraic geome-
try describes this stack as the quotient of a Beilinson—Drinfeld Grassmannian, an ind-projective
ind-scheme which is a relative version of the affine Grassmannian. We prove the theorem
above by constructing a “higher-dimensional” analog of the Beilinson—Drinfeld Grassmann-
ian for each moduli problem and applying “Geometric Invariant Theory” to the action of the
infinite-dimensional group of rational maps X --> GLy on these ind-projective ind-schemes.

To our knowledge, the level of generality in which we construct moduli spaces of semi-
stable pairs is new, although the question has been investigated in several more specific settings.
The good moduli space of the semistable locus Pair? (X )p** recovers the moduli spaces of
Bradlow pairs considered in [9,45] for curves, [37] for Calabi—Yau threefolds, [48] in the case
of a complex projective variety, and [27], [5, Section 11], [30] when the stability parameter
§ > 0 (see also the related moduli spaces of coherent systems considered in [29] for smooth
projective varieties, and more recently in [39]).

On the other hand, the stratification of Pairi (X)p is new, even in the more specific con-
texts mentioned above. One interesting feature is that the canonical filtration of an unstable
point in Pairi (X)p is not necessarily “convex” in the way that the usual Harder—Narasimhan
filtration of an unstable sheaf or A-module is (see Example 6.12). This suggests that the stratifi-
cation of Pairi (X)p cannot be constructed in the same way as the stratification of Coh? (X)p.

Even for Coh? (X)p, we believe that the method of infinite-dimensional GIT is of intrin-
sic interest, and is conceptually cleaner than the classical approach. We hope that by developing
these methods in the context of familiar moduli problems, this paper lays the foundation for
a broad range of applications.

The method of infinite-dimensional GIT originated in the forthcoming paper [20] devel-
oping one such application, to the computation of gauged Gromov—Witten invariants. Another
application, to the moduli of singular principal G-bundles on higher-dimensional varieties,
appears in [14]. Finally, the original version of this paper included applications to the moduli
of A-modules, recovering results of [44] in the case when the base S is Noetherian.

Theorem 1.3 (= Theorem 5.2). In the context of Theorem 1.1, the restriction of the
numerical invariant v from the moduli stack Coh? (X) defines a weak O-stratification of the
moduli stack A Coh? (X)p. If S is defined over Q, then the v-semistable locus admits a good
moduli space that is separated over S.

We summarize these results in Section 5, but the details will appear in the forthcoming
paper [21].
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1.1. Infinite-dimensional GIT. The theory of ®-stability allows one to formulate
notions of semistability and canonical filtrations for points in an algebraic stack X. We will
give a brief summary here, and refer the reader to Section 2.5 for a more detailed discussion of
the key ideas and results.

The input of the theory is a structure on X called a numerical invariant (Definition 2.25).
Geometric invariant theory is the special case where X’ = Z /G for areductive group G acting on
a projective scheme Z. The notion of semistability can be defined using the Hilbert—-Mumford
criterion with respect to a G-equivariant ample line bundle L on Z. Combined with some addi-
tional data (a norm on cocharacters of G), L determines a numerical invariant on Z /G, which
encodes the Hilbert—-Mumford criterion and also defines the Hesselink—Kempf-Kirwan—Ness
stratification of the unstable locus. In our examples, semistability is defined via an intrinsic ver-
sion of the Hilbert—Mumford criterion, but instead of a single line bundle L, we use an infinite
sequence of line bundles L, € Pic(X) indexed by n € Z. The resulting numerical invariant is
a function in 7 (in fact polynomial), and semistability and Harder—Narasimhan filtrations are
characterized by the asymptotic behavior of this function as n — oo.

The main theorem of [19] identifies two properties of a numerical invariant v on X that
imply that

(1) v defines a ®-stratification of X,

(2) the substack X% C X of semistable points is open and admits a separated good moduli
space [1].

The first condition, strict monotonicity, is a condition about extending families over points
of codimension 2 (Definition 2.28). Under some mild hypotheses, satisfied in our examples,
strict monotonicity implies that the semistable locus admits a separated good moduli space if it
is open and bounded [19, Theorem 5.5.10]. The second condition is referred to as HN-bounded:-
ness (Definition 2.29), and combined with strict monotonicity it implies the existence of
a O-stratification, which includes the openness of the semistable locus."

The main technical insight of this paper is that strict monotonicity can be guaranteed by
choosing a moduli problem that fits a geometric template that we describe below. In particu-
lar, this reduces the construction of moduli spaces to the problem of verifying openness and
boundedness of the semistable locus.

Let us explain how this works in the example of GIT. First, we regard the setup as an
algebraic stack X = Z /G along with a morphism Z /G — BG that is relatively representable
by projective schemes. If Y is a regular 2-dimensional Noetherian scheme and 0 € Y is a closed
point, then one can consider whether a given a morphism £ : ¥ \ 0 — X extends to Y. The
composition Y \ {0} — BG extends uniquely to a morphism p : ¥ — BG. In addition, if Y is
equipped with a G,-action fixing 0 and the morphism Y \ {0} — BG is G, -equivariant, then
the unique extension acquires a unique G,-equivariant structure. This filling property for any
morphism Y \ {0} — BG is equivalent to G being reductive [3, Theorem 1.3].

The morphism p does not necessarily lift to X, but the original morphism £ : Y \ {0} — X
defines a section of the projective morphism ¥ xpg X — Y over Y \ {0}, and we let X be the
closure of this section. By construction, the morphism £ extends to a morphism g? X = X.
In other words, given the following diagram of solid arrows, one can always fill in the dotted

) Technically, in general you only get a weak ®-stratification if S does not have characteristic 0.
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arrows so that the diagram commutes:

(1.1) Y\{0}®¥

ls - I p
O 1
X BG.

If £ is equivariant with respect to a G,-action on Y, then this construction equips X with
a canonical G, action such that § is G,,-equivariant.

We postpone the formal definition of strict monotonicity until after our precise defini-
tion of a numerical invariant in Section 2.5. But roughly, strict monotonicity for the Hilbert—
Mumford numerical invariant in GIT follows from two facts:

(1) if Y has a G,-action fixing 0 and the morphism & is G,,-equivariant, then there exists
a G-equivariant filling of the dotted arrows in (1.1), as we have established above,

(ii) the line bundle E* (L) will be relatively ample for the map ¥ — Y if L is relatively ample
for the map X — BG.

The stack Coh? (X)p is not a quotient stack. For simplicity, we will assume in this intro-
duction that X is flat and has geometrically integral fibers of dimension d over the base, and
we restrict to the open substack of sheaves of fixed rank r. In this case, a family of pure
sheaves of dimension d is the same thing as a family of torsion-free sheaves. To verify strict
monotonicity of the numerical invariant, we construct a morphism Coh? X)p — Coh? (X)rat
to a non-algebraic stack Coh? (X)rat With the following properties analogous to the properties
of the morphism X/G — BG in GIT:

(1) Any Gj,-equivariant morphism Y \ {0} — Coh? (X)ra extends to an Gy, -equivariant
morphism ¥ — Coh? (X ).

(2) The fibers of the morphism Coh? (X)p —> Coh? (X)rat are ind-projective ind-schemes,
and the duals of the line bundles L, are asymptotically positive in the sense that on any
quasi-compact closed subscheme L, is ample for n >> 0.

The term “infinite-dimensional GIT” refers to the infinite-dimensional ind-schemes that arise
in (2). The conditions imply that any G ,-equivariant morphism £ : ¥ \ {0} — Coh? (X)p can
be extended to a G,,-equivariant morphism from a birational cover of V', E ¥ — Coh? (X)p,
such that §* (L)) is ample on X for all n >> 0. This allows us to imitate the proof of strict
monotonicity in GIT outlined above.

Objects of the groupoid of S-points of the stack Coh? (X)rat are pairs (&, D) consist-
ing of a torsion-free sheaf & on X and an effective Cartier divisor D < X. A morphism in
Coh? (X))t from (&1, D1) to (&3, D) can be defined when D, — Dy is effective, in which
case it is a morphism V : & — & that induces an isomorphism after restriction to X \ D,.
We think of Coh? (X)rat as the stack of vector bundles defined on the complement of a divisor
in X, i.e., as the stack of “rational maps” X --> BGL,. Note that Coh? (X)ra¢ 1s not a stack in
groupoids (although all morphisms are monic). For any field k over the base, if one formally
inverts all morphisms in Coh? (X)rat(k), then the resulting groupoid is canonically equivalent
to the groupoid of maps from the generic point of X to BGL,.

Let T — Coh? (X)rar be a morphism corresponding to a 7-flat family of torsion-free
sheaves & on X7 along with a T-flat family of effective Cartier divisors D — X7. We define
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the affine Grassmannian Gry p ¢ to be the fiber product:
Gry,p,g = Coh? (X)p Xcon? (X, T.

For any 7'/T, a T'-point of Gry p g is a T’-flat family of torsion-free sheaves ¥ on X7~
along with a morphism & — ¥ that becomes an isomorphism after restriction to X7/ \ Dp-.
This is a presheaf of sets on the category of 7 -schemes that is representable by an ind-projective
ind-scheme over T (Proposition 3.14). Furthermore, for any quasi-compact closed subscheme
Y C Gry, p.¢g, the dual of the line bundle L, on Coh? (X)p, which we use to define semista-
bility, is 7-ample on Y for n > 0.

When X is a smooth curve, the ind-schemes Gry p ¢ are known as Beilinson—Drinfeld
Grassmannians [7, Section 5.3.10 (1)], [32, Section 3], [49, Section 3], which are fundamen-
tal objects in geometric representation theory. So we regard Gry p ¢ as a higher-dimensional
analogue of the affine Grassmannian.

1.2. Comparison with the classical approach. Since the development of GIT, a stan-
dard approach to analyzing a moduli problem that is representable by a locally finite type
algebraic stack X is to attempt to find a projective quotient stack Z/G with a morphism
Z /G — X. Hopefully, and often with great effort, one can then show that the restriction to
the GIT semistable locus Z%/G — X is an open immersion whose image admits a simple
intrinsic description.

In the example of Coh? (X)p, the basic idea in [44] is to observe that any sheaf ¥
admits a surjection Oy (—n)®FP ™ — F for n sufficiently large. The data of ¥ along with such
a surjection can be regarded as a point in a quot-scheme Q, = Quot(Ox (—n)®F ™) which is
projective. One then studies the action of SLp(,) on Q. After a somewhat involved analysis
of the Hilbert—-Mumford criterion, one finds that the notion of GIT semistability is independent
of n, and it agrees with the intrinsic notion of Gieseker semistability of the underlying sheaf F .
Finally, one shows that for semistable sheaves the choice of surjection Oy (—n)®F™) — F is
unique up to the action of SLp,), and that the GIT quotient Q;’//SLp ) is a moduli space for
semistable sheaves.

Constructing the stratification of the unstable locus is even more subtle, since unlike in the
case of the semistable locus, no single quotient stack will suffice to study all of the strata. In the
example of Coh? (X)p, the existence of Harder—Narasimhan filtrations and the constructibil-
ity of the stratification of Coh? (X)p by Harder—Narasimhan type has been known for some
time [42]. However, the canonical structure of locally closed substacks on the strata is a more
recent observation [18,35]. As in the case of semistability, one can perform a careful analysis
of the Hilbert—-Mumford criterion to identify each Harder—Narasimhan stratum of Coh? (X)
with a Hesselink—Kempf—Kirwan—-Ness stratum of the quotient stack Q0 /SLp(,) coming from
Geometric Invariant Theory, for n sufficiently large and depending on the stratum [16,23].

One advantage of the infinite-dimensional GIT approach is that it avoids auxiliary
choices, and thus avoids the difficult task of showing that the ultimate result is independent
of those choices.

Another advantage is the relationship between the analysis for Coh? (X)) and the analysis
for related moduli stacks such as M = Pair? (X)or M =A Coh? (X). In the GIT approach,
one starts with the morphism Q,/SLp(,) — Coh? (X)) described above. The fiber product is
then

(On/SLpn)) Xcond (x) M = Y/SLp )



Halpern-Leistner et al., Moduli spaces of sheaves via affine Grassmannians 165

for some scheme Y that is affine over Q,, so one needs a trick in order to apply GIT. For
M = A Coh? (X), one compactifies Y in some way and then shows that those new points are
unstable. This complicates the story, especially because the new points do not lie over points
of A Coh? (X).For M = Pair? (X), one takes the quotient of an open subscheme Y° C Y by
a free G,,-action in order to get a scheme that is projective over Q.

In the infinite-dimensional GIT framework, there are analogous stacks of rational objects
My along with a forgetful morphism M, — Coh? (X)rat- Note that the fibers of the morphism
M — My over a T-point T — M,y are closed sub-ind-schemes of the affine Grassmann-
ians Gry p g, where the pair (D, &) corresponds to the composition 7 — My — Coh? (X)rat
(see Proposition 3.27). The argument for monotonicity of the numerical invariant on Coh? (X)
implies monotonicity of the restriction of the numerical invariant to M with no further effort.

Although we have chosen to focus on Pair? (X) and A Coh? (X) here, there are many
more examples of moduli stacks that are affine over Coh? (X), such that the relevant affine
Grassmannian is a closed sub-ind-scheme of Gry p ¢. Examples include moduli of holomor-
phic triples [10] and more generally moduli spaces related to decorated sheaves [15,38,40]. In
light of our discussion above, the results of this paper reduce the analysis of all of these moduli
problems to verifying two types of boundedness conditions: HN-boundedness and boundedness
of the semistable locus.

One drawback of the infinite-dimensional GIT approach is that does not automatically
produce a projective moduli space. It is tempting to relate positivity of the line bundle on
the affine Grassmannian to ampleness of the line bundle after descending to the good moduli
space of the semistable locus. This is possible in certain classical examples, like the moduli of
SL,-bundles on a curve, but at the moment we do not know of any general ampleness results
in this framework.

Remark 1.4. The construction of the affine Grassmannians Gry p ¢ makes use of quot-
schemes, just like the GIT construction of the moduli space for Coh? (X)%. However, the
GIT approach uses quot-schemes parameterizing d -dimensional quotients, whereas Gry, p ¢ is
a colimit of quot-schemes parameterizing (d — 1)-dimensional quotients. Hence, despite this
superficial resemblance, the approaches are different. The original construction by Seshadri of
the moduli of vector bundles on a curve also uses (d — 1)-dimensional quot-schemes [41], but
the relationship with the approach in this paper is not clear.

Acknowledgement. We would like to thank Harold Blum, Tomds L. Gémez, Jochen
Heinloth, Felix Janda, Yuchen Liu, Chenyang Xu, and Alfonso Zamora for helpful conversa-
tions.

2. Preliminaries

2.1. Notation. We will work over a fixed quasi-compact base scheme S. For any two
S-schemes Y and 7', we will always denote ¥ xg 7 by Y x T. For any S-scheme 7" we let
Affr denote the category of (absolutely) affine schemes over 7'. We will write Schr to denote
the category of all schemes over 7. For any map of schemes ¥ — T and any t € T we write
Y; to denote the fiber Y x7 Spec(k(z)) over ¢. All of the sheaves we consider will be quasi-
coherent. Whenever we write “Qy-module” we mean a quasi-coherent Oy -module. Let ¥ be
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an Oy -module. For any point ¢ € T, we sometimes write F; for the restriction of ¥ to the
fiber Y;. This should not be confused with the identical notation employed for the stalk of
a sheaf. We will emphasize which use we have in mind whenever it is not clear from context.

In order to simplify notation for pullbacks, we use the following convention. Whenever
we have a map of schemes f : Y — T and a sheaf § on 7', we will write ¥|y to denote the
pullback f*& whenever the morphism f is clear from context.

We fix once and for all a scheme X that is projective and of finite presentation over S;
7 : X — S will denote the structure morphism. We also fix an S-ample line bundle @ (1) on X .

If M is an algebraic stack, we denote by |-M]| its underlying topological space [50, Tag
04Y8]. We will often work with rational line bundles in Pic(M)qg := Pic(M) ®z Q; we may
omit the adjective “rational” whenever it is clear from context. We also fix some notation for
certain stacks defined in [2, 19]. We will denote by ® the quotient stack [A 1Z /Gy, ]. We use the
convention that G, acts linearly on A}, = Spec(Z|t]) so that ¢ is given weight —1.

Notation 2.1. Let R be a discrete valuation ring with uniformizer @ . We define
Yo, := Spec(R[t]) and Yo7, = Spec(R[s,t]/(st — w)),

equipped with the G,,-action that assigns ¢ weight —1 and s weight 1. The isomorphism class
of the G,-scheme Y57 . is independent of the choice of uniformizer . We denote

Or = [Yor/Gm] and STg = [YWR/Gm]~

Note that Y, and Y57, each contain a unique G, -invariant closed point cut out by the
ideals (¢, @) and (s, t) respectively. We denote this closed point by 0 in both cases.

2.2. Pure sheaves. We are interested in variations of the moduli stack of pure sheaves
on X. Here we state some of the relevant definitions and set up some notation.

Definition 2.2. Let Y be a scheme of finite type over a field. Let p € Y be a point.
We say that p has dimension d if the closure p C Y is a variety of dimension d. Let ¥ be
a coherent Oy-module. We say that ¥ is a pure sheaf of dimension d if all the associated
points of ¥ have dimension d.

The definition of pure sheaf above is equivalent to the property that ¥ has support
of dimension d and does not contain any nontrivial subsheaves supported on a scheme of
dimension smaller than or equal to d — 1. The latter is the definition of pure sheaf given in
[25, Definition 1.1.2].

Definition 2.3. Let 7 : Y — T be a finite type morphism of schemes. We say that
asheaf ¥ on Y is T-pure of dimension d if it is T'-flat, finitely presented, and for all € T we
have that #; is a pure sheaf of dimension d on Y;.

Definition 2.4 (Moduli of pure sheaves). The stack Coh? (X) is the pseudofunctor from
(Sch/8)°P to groupoids defined as follows. For every S-scheme T, we set

Coh? (X)(T) = [groupoid of T'-pure Ox x7-modules of dimension d].
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The following proposition is certainly well known. We include a proof since we are not
aware of an explicit reference.

Proposition 2.5. The stack Coh? (X) is algebraic with affine diagonal and locally of
finite presentation over S.

Proof. Note that Coh? (X) is a subfunctor of Cohy,s as defined in [50, Tag 09DS].
By [50, Tag 08WC], €ohy/s is an algebraic stack with affine diagonal. It is locally of finite
presentation over S by [50, Tag 08KD] and [50, Tag OCMY]. The assertion follows because the
inclusion Coh? (X) = ©ohy s is an open immersion by [17, Theorem 12.2.1 (iii), p. 179]. ©

Definition 2.6. Letn € Z. Let %,y denote the universal sheaf on Coh? (X) x X, and
let 7o e x) " Coh? X)x X — Coh? (X)) denote the first projection. We set

M}’l = det R]TCOhd(X) *(yuniv(n))'

Remark 2.7. The symbol det denotes the determinant in the K-theoretic sense. Note
that this makes sense because the derived pushforward is a perfect complex [50, Tag OATH].

Remark 2.8. Let7 beaschemeandlet f : T — Coh? (X)) be a morphism correspond-
ing to a T'-flat sheaf ¥ on X7. Then, by [50, Tag 0A1D] the pullback f*(M,) can be similarly
described as det Roir «(F (n)).

Definition 2.9. By [26, Theorem 4], the line bundle M,, € Pic(Cohd (X)) is a polyno-
mial in the variable n of degree d + 1 with values in Pic(Cohd (X)). More precisely,

d+1 n) 1 pd+l 1 1 nd
M, = ® bl.(" = (bz(z'd-:ll)!) ® (bj’ ® bdi;d_”!) ® (lower order in 7)
o =0 . i (GO A () I
for certain line bundles b;, which can be expressed as b; := ) =0 M ; /7 using the

theory of discrete Taylor series.

2.3. Hilbert polynomials and Gieseker semistability. The purpose of this subsection
is to recall some notions from [25] and set some notation in place. Let ¥ be a scheme that is
projective over a field. Fix an ample line bundle @ (1) of Y. Let ¥ be a pure sheaf of dimen-
sion d on Y. We denote by Pg (n) the Hilbert polynomial of ¥ [25, Lemma 1.2.1]. This is
a polynomial of degree d in the variable n. It can be written in the form

d

Py (n) = Z ak(?)nk

k!
k=0

for some sequence of rational numbers ay (¥). We set kg := a4 (¥ ) (notice that this is called
the multiplicity in [25], their notion of rank differs from this by a factor of a;(Oy)). It turns
out that rk is always a positive integer. We define the reduced Hilbert polynomial to be

1
Forevery 0 <i <d — 1, we set
ai(¥)

Li(F) = a1 (F)
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We call this the i-th slope of % . The (d — 1)-th slope fiz_; () is the Mumford slope of ¥ as
in [25]; we denote it simply by i (F).

Definition 2.10. A pure sheaf ¥ of dimension d on Y is called Gieseker semistable if
for all nontrivial subsheaves & C ¥ we have pg(n) < pg(n) forn > 0.

For simplicity of notation, we will use the following convention from now on.

Definition 2.11. For any two polynomials pi, p> € R[n], we will write p; > ps if
p1(n) = pa(n) forn > 0.

In order to check that # is Gieseker semistable, it suffices to show that pg < p & for all
nontrivial subsheaves & such that ¥ /& is also pure of dimension . This is a consequence of
[25, Proposition 1.2.6].

Definition 2.12. For any rational polynomial P € Q[n] of degree d, let Coh? (X)p
denote the subfunctor of Coh? (X) consisting of families whose fibers all have Hilbert polyno-
mial P.

Since the Hilbert polynomial is locally constant in flat families of sheaves, Coh? (X ) can
be written as a disjoint union of open and closed substacks Coh? X) =1 PeQln] Coh? (X)p.

Definition 2.13. Let n € Z. We define L, to be the line bundle on Coh? (X) that is
defined on each Coh? (X)p as follows. We set

o —®p(n)
L”|C0hd(X)p = M”|C0hd(X)p ® (bdlcohd(X)P) :

Here the reduced Hilbert polynomial p on Coh? (X)p is defined to be the unique scalar
multiple of P with leading coefficient %.

2.4. Some related moduli problems.
2.4.1. Moduli of pairs. Fix a finitely presented sheaf + on X.

Definition 2.14. The moduli stack of pure pairs Pairi (X) is the pseudofunctor from
(Sch/S)°P into groupoids defined as follows. For any S-scheme T, we set

. T d
Pairfi (X)(T) = groupqld of tuple.s (¥, ), where .f;e Coh® (X)(T) '
and « is a morphism « : Alx, — F

We require the isomorphisms in Pairf4D (X) to be compatible with the morphism «.
There is a natural morphism Pairi (X) —> Coh? (X) that forgets the morphism o.
Proposition 2.15. The forgetful morphism Pairfi (X)) — Coh? (X) is schematic, affine

and of finite presentation. In particular, Pairi (X) is an algebraic stack with affine diagonal
and locally of finite presentation over S.
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The following lemma will be used to prove Proposition 2.15.

Lemma 2.16. Let Y — T be a morphism of schemes that is proper and of finite presen-
tation. Let ¥ and '§ be quasi-coherent Oy -modules. Suppose that G is finitely presented and
T -flat. Let Hom(¥ , §) denote the functor from (Sch/ T )P into sets that sends a T -scheme L to

Hom(¥,6)(L) := Homg, (Fly,.8ly,)-
Then:
(a) Hom(¥ , 9) is represented by a scheme that is relatively affine over T .
(b) If ¥ is finitely presented, then Hom(¥ , §) is of finite presentation over T

(c) If ¥ is of finite type, then the section 0 : T — Hom(¥ , §) induced by the O morphism is
a closed immersion of finite presentation.

Proof. Parts (a) and (b) are a special case of [50, Tag 08K6].
For (c), suppose first that ¥ is finitely presented. Then (c) follows since the composition

T g Hom(¥,9) - T
is clearly of finite presentation and the diagonal
Hom(¥,9) < Hom(¥ ,9) x7 Hom(¥, 9)

is of finite presentation by [50, Tag 0818].

For the general case, since the statement is local on 7" we can assume without loss of
generality that 7 is affine. Therefore Y is quasi-compact and separated. By [50, Tag 086M],
F admits a surjection & — ¥ from a finitely presented sheaf &. Observe that the naturally
induced diagram

7 —% Hom(F, %)

g [

T —2% Hom(€, )

is Cartesian. As & is finitely presented, we already know that 0 : 7 — Hom(§&, §) is a closed
immersion of finite presentation. Therefore, the same holds for 0 : 7 < Hom(¥, §). m]

Proof of Proposition 2.15. Let T be an S-scheme. Let T — Coh? (X) be a morphism
represented by a 7-pure sheaf ¥ of dimension d on Xr. By definition, the fiber product
Pairi (X) xcond (x) T is the functor Hom(+A|x,-, ) over the scheme 7. By Lemma 2.16, this
is represented by a scheme that is relatively affine and of finite presentation over 7 . |

We will abuse notation and denote by M, L,, by the pullbacks to Pairi (X) of the
corresponding line bundles on Coh? (X)) under the forgetful morphism defined above.

2.4.2. Moduli of A-modules. In this subsection we will work with a sheaf A of rings
of differential operators for the morphism 7 : X — §, as in [44, Section 2]. We add an extra
finite presentation condition in order to work in the non-Noetherian setting.

Definition 2.17. A sheaf of finitely presented rings of differential operators A on X
relative to S is an associative unital Oy -algebra with a filtration Ag C A1 C --- C A satisfying


https://stacks.math.columbia.edu/tag/08K6
https://stacks.math.columbia.edu/tag/0818
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the following conditions:
(1) A = szo Aj. Furthermore, A; - Aj C Ay foralli, j.
(2) The image of the unit Oy — A is equal to Ay.
(3) The image of 7~!(Oyg) in Oy is contained in the center of A.
(4) The left and right Ox-module structures on A; /A;_ are equal.
(5) The sheaves of Ox-modules A;/A;_1 are finitely presented.
(6) The sheaf of graded Ox-algebras Gr(A) := @jzo Ai/A;—q is generated by A1/ Ay.

(7) Let T, (A1/Ao) denote the free associative tensor Oy -algebra. The kernel of the natural
surjective morphism T, (A1/A¢) — Gr(A) is locally finitely generated as a two-sided
ideal.

Remark 2.18. The definition of sheaf of rings of differential operators in [44, Section 2]
only includes conditions (1) through (6) in the definition above. We include the additional
condition (7) to show that the stack A Coh? (X) of A-modules is locally of finite presenta-
tion over the base S in Proposition 2.23. Without assuming (7), the proof of Proposition 2.23
shows that A Coh? (X) is locally of finite type over S, and hence locally of finite presentation
if S is Noetherian. Therefore when S is Noetherian all of the results that follow hold with
condition (7) omitted from Definition 2.17, which is the context in [44].

If the associated graded algebra Gr(A) is commutative and the base scheme S is Noether-
ian, then condition (7) is automatically satisfied by Hilbert’s basis theorem. We do not know if
(7) is automatic more generally when the base S is Noetherian.

The proof of [44, Lemma 2.2] implies that each subsheaf A; is finitely presented for both
the left and right Ox -module structures. It follows that A is quasi-coherent for both the left and
right Ox-module structures.

For the remainder of this article, we fix a sheaf A of finitely presented rings of differential
operators in Definition 2.17.

Let f : T — S be a morphism of schemes. By [44, Lemma 2.5, 2.6] there is a canon-
ical isomorphism between the pullbacks (fy');A; and (fy),A; with respect to the left and
right Ox-module structures. There is also a canonical isomorphism between the left and right
pullbacks of A. We will implicitly use this isomorphism and write A;|x, and A|x, to denote
either of these pullbacks. It is shown in [44, Lemma 2.5, 2.6] that A |y, is a sheaf of rings of
differential operators on X7 relative to 7'. In particular, we have a filtration

(Alx;)o C (Alxy)1 C -+ C Alxy,

where (A|x,); is defined to be the image of the morphism A |x, — Alx,.

Definition 2.19. Let & be an S-flat finitely presented Oy -module. A A-module struc-
ture on & is a module structure on & for the sheaf of rings A that is compatible with the
Oy -module structure. If & is equipped with such structure, then we say that & is a A-module.

Let & be a A-module on X. Suppose we are given a morphism of schemes f : T — S.
Note that [44, Lemma 2.7] implies that the pullback &|x, can be naturally equipped with
a A|x,-module structure. We use this fact to define a stack of A-modules on X.
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Definition 2.20. The moduli stack A Coh? (X)) of A-modules is the pseudofunctor from
(Sch/S8)°P into groupoids defined as follows. For any S-scheme T', we set

A Coh? (X)(T) = gr01.1p01d of T -pure sheaves & of dimension d on X7 ‘
equipped with the structure of a A |x,--module

The isomorphisms in the groupoid are required to preserve the A|y,-module structure.

For each j > 1, let K; denote the left and right O x-module of finite type fitting into the
following short exact sequence:

0— Kj — (A)® — A; — 0.
Here the tensor product is in the sense of (Qx, Oy )-bimodules, and the morphism
(AD® = A;

is given by multiplication.

Lemma 2.21. There exists some joen >> 0 such that for all j > jeen we have

Xi= > AP® K, @ AP
a+b=j_jgcn

Proof. By quasi-compactness, it is sufficient to show that the kernel of the surjection
U ) Ai@/ —> A induced by multiplication is a locally finitely generated two-sided ideal, where
the morphisms for the union are given by

A?j dy\@;®1a A?j—H,

The algebra | J I A?j is naturally filtered; a standard argument reduces to showing that the
corresponding initial ideal in Gr(_J J A‘lg)] ) is locally finitely generated. Note that Gr(|_J } A?] )
is the free tensor associative Ox -algebra T, (A1/Ao).

The initial ideal is the kernel of the associated graded morphism T, (A1/Ag) — Gr(A)
obtained from our original morphism [ i A‘IX’J —> A of filtered algebras. By condition (7) in
Definition 2.17, this kernel is a locally finitely generated two-sided ideal, as desired. |

Let f : T — S be an S-scheme. Let & be a finitely-presented 7' -flat Ox,.-module. Sup-
pose that & is given the structure of a A |x,--module. We get a morphisma : A |y, ® & — &
of left Ox,--modules given by the composition

AMlx, ®€ - Alx, ® € — €.

By [44, Lemma 2.8], the image of A1y, in Alx, locally generates A|x, as an algebra.
This implies that the morphism a completely determines the A|y,-module structure on &.
The next proposition characterizes which morphisms a : Aq|y, ® & — & arise from such
a A|x,-structure. This gives a useful alternative description of A-modules.

Proposition 2.22. Let [ : T — S be an S-scheme. Let & be a finitely-presented T -flat
Ox,-module. Leta : A1|x,; ® & — & be a morphism of left Ox .. -modules. Then a arises from
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a N|x,-module structure on & (as described above) if and only if the following conditions are

satisfied:

- unit| x ;- ®id a

(A1) The composition & — Ox, ® & ——— > A1lx, ® & — & is the identity.

(A2) Forall j > 1, the composition Kj|x, @ & — (A1lx,;)® ® & — & is 0. Here the last
morphism (A1|x,;)®’ ® & — & is the natural one obtained by applying j-times the
morphism a, starting with the right-most copy of A1|x, and ending at the left-most
copy.

In particular, the set of A|x,-module structures on & is in natural bijection with morphisms
a: MAilx, ® € — & satisfying conditions (A1) and (A2) above. If joen is as Lemma 2.21, then
(A2) is equivalent to the composition Kj,, |x; ® & — (A1 lx)®/en ® & — & being 0.

Proof. If a comes from a A|y,-module structure, then it follows from construction that
it must satisfy conditions (A1) and (A2) above. (A1) follows from the fact that the unit of A |y,
acts as the identity, and (A2) follows from the compatibility of the A [x,--module structure with
multiplication.

Conversely, suppose thata : Aq|y, ® & — & is a morphism of left Ox,.-modules satis-
fying conditions (A1) and (A2). By (A2), the morphism (A 1| XT)®j ® & — & factors through
the quotient ((A1]x,)®//K;) ® & = Aj|x, ® &. Hence we get a sequence of morphisms
aj:Ajlx; ® & — & compatible with the natural maps A |x, — A 1]x,. This yields a well-
defined morphism colim;>o Aj|x, ® & — &. Since tensoring and pulling back commutes
with taking colimits, this is equivalent to an action morphism A |y, ® & — &. By construction,
this action map is compatible with multiplication on A|x,. Moreover, (A1) implies that the
unit in A |y, acts as the identity. We conclude that this is a A |x,-module structure on &. It fol-
lows from construction that a is the composition A|x, ® & = Alx, ® & — &, as desired.
The last statement in the proposition follows because by assumption K, generates all K
for j > Jjgen- D

There is a natural forgetful morphism of pseudofunctors A Coh? (X) —> Coh? (X) that
forgets the A-module structure.

Proposition 2.23. The forgetful morphism A Coh? (X)—> Coh? (X) is schematic, affine
and of finite presentation. In particular, A Coh? (X) is an algebraic stack with affine diagonal
and locally of finite presentation over S.

Proof. Let T be an S-scheme. Let T — Coh? (X) be represented by a T -pure sheaf ¥
of dimension d on X7. We need to show that A Coh? (X) Xcon? (x) T 1is relatively affine and
of finite type over 7.

Due to Proposition 2.22, the fiber product A Coh? (X) Xcon?(x) T is the subfunctor of
Hom(A|x, ® ¥, F) that classifies morphisms a : A|x, ® ¥ — F of left Ox,-modules
satisfying conditions (A1) and (A2). By Lemma 2.16, the functor Hom(A{|x, ® ¥, ) is
represented by a scheme that is relatively affine and of finite presentation over 7 .

Set H := Hom(A1|x, ® ¥, ¥). Let auniy : A|x,; ® F|x,; — F|x,, denote the uni-
versal morphism on Xg. The composition

_ N _ unitly , ®id _
Flxy ———— O0x,y @ Flxyy ———— Ailxy @ Flxy

Quniv

Flxy
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defines a section f : H — Hom(¥, ¥) x7 H of the projection Hom(Ox,., ¥) xr H — H.
The constant identity morphism id | X5 induces another section. The subfunctor of H where
(A1) is satisfied is the locus Zy where f — id~77|XH agrees with the 0 section. Since the 0
section is a closed immersion of finite presentation by Lemma 2.16, it follows that the locus
Z is represented by a closed subscheme of finite presentation over H.

Let jgen be asin Lemma 2.21. A similar reasoning shows that the locus Zj,  — H where
the composition K, [x, ® & — (A1] x,)®/en ® & — & vanishes is represented by a closed
subscheme of finite presentation. We conclude that A Coh? (X) Xcon? (x) T is represented by
the closed subscheme Zo N Z;, = of finite presentation in H. Since H is relatively affine and

gen

of finite presentation over 7', then so is A Coh? (X) xcond(x) T O

2.5. O-stratifications and numerical invariants. We recall some of the theory of
O-stratifications and numerical invariants introduced in [19]. Let M be an algebraic stack with
quasi-affine diagonal and locally of finite presentation over S

Let k be a field. We denote by 0 € A}C the fixed point given by the vanishing of the
coordinate ¢ in A}(. We will abuse notation and also denote by 0 the corresponding k-point
of O . Similarly, we let 1 be the k-point of A}c given by the vanishing of  — 1, and also denote
by 1 its image in the quotient O.

For any k-valued point p € M(k), a filtration of p is a morphism f : ®; — M along with
an isomorphism f(1) >~ p (see [19, Section 1]). The stack of filtrations Filt(:M) = Map(®, M)
is represented by an algebraic stack locally of finite presentation over S (see [19, Proposi-
tion 1.1.2]). There is a morphism ev; : Filt(M) — M given by evaluating at 1 € ©.

A graded point of the stack M is a morphism (BG,,;)x — M, where k is a field. The
mapping stack of graded points Grad(M) := Map(BG,,, M) is also an algebraic stack locally
of finite presentation over S (see [19, Proposition 1.1.2]).

Let X be an open substack of M. A weak ®-stratum of X is a union of connected
components of Filt(X) such that the restriction of ev; is finite and radicial. A ®-stratum is
a weak ®-stratum such that ev is a closed immersion. We can think of a ®-stratum as a closed
substack of X that is identified with some connected components of Filt(X).

Definition 2.24. A (weak) ®-stratification of M consists of a collection of open sub-
stacks (M <. )cer indexed by a totally ordered set I'. We require the following conditions to be
satisfied:

(1) M<e C M< forallc < c’'.
(2) M= Ucer M<c.
(3) For all ¢, there exists a (weak) @-stratum &, C Filt(M<,) of M, such that
M \evi(G,) = | ) M<e
c’'<c

(4) Forevery point p € M, theset {c € I' : p € M<.} has a minimal element.

In order to define ®-stratifications for our stacks of interest, we will need to introduce
some numerical invariants in the sense of [19, Definition 0.0.3]. Our numerical invariants will
be valued in the ring R[] of polynomials in the variable n with coefficients in R. The order
described in Definition 2.11 equips R[n] with the structure of a totally ordered R-vector space.
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Forg > 1, let
BGY := [Spec(Z)/G1].

Let k be a field. We say that a morphism g : B(G},); — M is nondegenerate if the induced
homomorphism y : (G/,)r — Aut(g| spec(k)) has finite kernel. A polynomial numerical invar-
iant is an assignment of a function v, : R? \ {0} — R[n] for each such nondegenerate mor-
phism, satisfying some compatibility conditions.

Definition 2.25. A polynomial numerical invariant v on a stack M is an assignment
defined as follows. Let k be a field and let p € M. Let y : (G)x — Aut(p) be a homomor-
phism of k-groups with finite kernel. Then v assigns to this data a scale-invariant function
vy : R?\ {0} — R[n] such that:

(1) vy is unchanged under field extensions k C k.

(2) v islocally constant in algebraic families. In other words, let 7 be a scheme, £ : T — M
a morphism and y : (GJ,)7 — Aut(£) a homomorphism of 7 -group schemes with finite
kernel. Then as we vary ¢ € T', the function vy, is locally constant in 7.

(3) Given a homomorphism ¢ : (G5)x — (G with finite kernel, the function Vyog 1s the
restriction of v, along the inclusion R¥ < R induced by ¢.

We call a filtration f : ®; — M nondegenerate if the restriction f|o : [0/(Gm)i] = M
is nondegenerate. We regard v as a function on the set of nondegenerate filtrations by defining
v(f) :=vr|,(1) € R[n]. Given a point p € |M|, we say that p is semistable if all nondegen-
erate filtrations f with f(1) = p satisfy v(f) < 0. Otherwise we say that p is unstable. Note
that although Definition 2.25 involves data for all ¢ > 1, only the ¢ = 1 data is used to define
semistability.

Remark 2.26. We will only consider nondegenerate filtrations, because these are the
ones relevant for stability. For the rest of the article, we will sometimes omit the adjective
“nondegenerate”.

Next we explain a useful way to construct polynomial numerical invariants on a stack.
Fix a sequence of rational line bundles (£,), ez, where each £, is in the rational Picard group
Pic(M) ®z Q of the stack. For each morphism g : (BGJ,)x — M, the pullback line bundle
g*(£,) amounts to a rational character in X *(Gy,) ®z Q. Under the natural identification
X*(Gh) ®z Q = Q9, we can interpret this as a g-tuple of rational numbers (w,(ll) ?=1, which
we call the weight of g*(£,). It is often the case that one can choose the line bundles (£,),cz
in such a way that for each fixed 7 the weight w,(,l) is a polynomial in Q[n]. If this is the case,

then for every g we can define an R-linear function Lg : RY — R[n] given by

q
Le((r)i_) = Z”i cwdh.,
i=1
In order to obtain a scale invariant v, we use a rational quadratic norm on graded points as in
[19, Definition 4.1.12]. This consists of an assignment of a positive definite quadratic norm
by (—) with rational coefficients defined on R? for each choice of p € M(k) and homomor-
phism y : (G/,)x — Aut(p) with finite kernel. Just as in the definition of numerical invariants,
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we require that this assignment is stable under field extension and locally constant on alge-
braic families. Also, we require that for any homomorphism ¢ : (G ) — (G with finite
kernel the quadratic norms b, and b,04 are compatible with the corresponding induced inclu-
sion R «— RY.

Given a sequence of rational line bundles (£, ), <z as above and a rational quadratic norm
on graded points b, we can define a numerical invariant v as follows. For all nondegenerate
g : (BGL)r — M with corresponding morphism y : (G},)x — Aut(glspec(k))> We set

G

We next explain how a polynomial numerical invariant v can define a (weak) ®-strati-
fication on M (see [19, Section 4.1] for more details). For any unstable point, we set M (p)
to be the supremum of v( /) over all filtrations f with f(1) = p (if such supremum exists).
If p is semistable, then by convention we set MV (p) = 0. For any ¢ € R[n]>o, we set M<,
to be the set of all points p satisfying MV (p) < c, and we let M"™* := M ¢ denote the set of
semistable points. For any unstable point p, a filtration f of p is called a Harder—Narasimhan
filtration if v(f) = MV (p).

We say that v defines a (weak) ®-stratification if:

(1) every unstable point has a Harder—Narasimhan filtration that is unique up to pre-compos-
ing with a ramified covering ® — O,

(2) M<. are open substacks of M coming from a (weak) O-stratification such that the
(weak) stratum &, C Filt(M<.) is an open and closed substack of Harder—Narasimhan
filtrations f with v(f) = c.

If v defines a ®-stratification, the Harder—Narasimhan filtration of any point is defined over the
field of definition of that point, but if it is only a weak ®-stratification, the Harder—Narasimhan
filtration might only be defined over a finite purely inseparable field extension.

A natural question to ask is: When does a numerical invariant v define a (weak) ®-strati-
fication as described above, and when does M" % admit a good moduli space in the sense
of [1]? The following theorem provides sufficient criteria.

Theorem 2.27 ([19, Theorem B]). Let v be a polynomial numerical invariant on M
defined by a sequence of rational line bundles and a norm on graded points, as explained
above.

(1) If v is strictly ®-monotone, then it defines a weak O-stratification of M if and only if it
satisfies the HN-boundedness condition. If moreover S is defined over Q, then v defines
a O-stratification.

(ii) Suppose that all of the conditions in (1) above are satisfied and S is defined over Q.
Furthermore, assume v is strictly S-monotone and that the semistable locus M ™* can
be written as a disjoint union of bounded open substacks. Then M™% has a separated
good moduli space.

If all of the above are satisfied and if M satisfies the existence part of the valuative criterion for
properness for complete discrete valuation rings relative to S (see [50, Tag O0CLK]), then each
quasi-compact open and closed substack of M ™5 admits a good moduli space that is proper
over S.
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We end this subsection by explaining each of the hypotheses that one needs to check in
Theorem 2.27. Let k be a field and let a > 1 be an integer. We denote by IP’KI [a] the G;-scheme
P! equipped with the G,,-action determined by the equation ¢ - [x : y] = [t7%x : y]. We set
0 =[0: 1] and co = [1 : 0]. Recall the schemes Yg, and Y57, of Notation 2.1.

We will use simplified versions of the monotonicity conditions in [19, Section 5]. We
refer the reader there for the general definitions, which allow X to be an orbifold.

Definition 2.28. A polynomial numerical invariant v on M is strictly ®-monotone
(resp. strictly S-monotone) if the following condition holds. Let R be any complete discrete
valuation ring and set X to be ®g (resp. ST ). Choose a map ¢ : X \ 0 — M. After maybe
replacing R with a finite DVR extension, there exists a reduced and irreducible G,,-equivariant
scheme ¥ withmaps f : X — Y and ¢ : [X/G,,] — M such that:

(M1) The map f is proper, G,,-equivariant, and its restriction induces an isomorphism
f . EYgg\O = Yg \0.

(M2) The following diagram commutes:

[(Zyx\0)/Gm]

flx

(M3) Let « denote a finite extension of the residue field of R. For any a > 1 and any finite
Gm-equivariant morphism P} [a] — Z¢, we have V(@l[oo/Gm]) > V(@l[0/Gm])-

Definition 2.29 (HN-boundedness). We say that a polynomial numerical invariant v
satisfies the HN-boundedness condition if the following is always satisfied: Let 7" be an affine
Noetherian scheme. Choose a morphism g : 77 — M. Then there exists a quasi-compact open
substack U C M such that the following holds. For all geometric points ¢t € T with residue
field k and all nondegenerate filtrations f : ®; — M of the point g(¢) with v(f) > 0, there
exists another filtration f’ of g(¢) satisfying v(f’) > v(f) and f'|o € UT.

In plain words, this says that for the purposes of maximizing v( f') among all filtrations
of points in a bounded family, it suffices to consider only f such that the associated graded
flo lies in some other (possibly larger) bounded family.

3. Rational maps and affine Grassmannians

In this section we define a stack of rational maps M., associated to each of the moduli
stacks M we are considering. There is a natural morphism M — M, whose fibers are higher-
dimensional analogues of affine Grassmannians. Just as in the classical case of vector bundles
on a curve, our affine Grassmannians are ind-projective strict-ind-schemes over S.

We will also identify a family of line bundles on the affine Grassmannian that are eventu-
ally relatively ample on each projective stratum. The material from this section will be one
of the ingredients in the infinite-dimensional GIT argument we will use later on to prove
monotonicity of the numerical invariant on M.
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3.1. Regular principal subschemes and twists.

Definition 3.1. Let Y be a scheme. We say that a closed subscheme D < Y is principal
if the corresponding ideal sheaf Jp is locally a principal ideal.

Example 3.2. We give some examples of principal subschemes to illustrate that not
all principal subschemes are Cartier divisors. First, the identity subscheme Y C Y is always
principal, cut out by the O function. For another example, if we let Y := Spec(k[x, y]/(xy)),
then the subscheme D C Y cut out by the function x is a principal subscheme.

Remark 3.3. A subscheme D is principal if and only if the first Fitting ideal Fit ({p) is
the structure sheaf @y . Indeed, if dp is locally generated by one element, then Fit; (dp) = Oy
by [50, Tag 07ZA(1)]. The converse follows by [50, Tag 07ZC]. Since the formation of Fitting
ideals of sheaves commutes with base-change [50, Tag 07ZA(3)], and f*(dp) = d F-1(D) for
a flat morphism f : Y’ — Y, it follows that the property of being a principal subscheme can
be checked flat locally.

Let D1 and D, be two principal subschemes cut out by the Oy -ideals d p, and dp,. We
define the sum D + D5 to be the locally principal scheme cut out by the ideal dp, - dp,.

Definition 3.4. Let 7 be an S-scheme. Let D < X7 be a principal subscheme. Let 5
be a T'-flat finitely presented Ox,.-module. We say that D is ¥ -regular if for all # € T the fiber
D; does not contain any associated point of ¥ |x,.

The following lemma collects some useful properties of the notion of % -regular sub-
scheme.

Lemma 3.5. Let C,D < X be two principal subschemes of the finitely presented
scheme X — S. Let ¥ be an S-flat finitely presented Ox-module. Suppose that both C, D
are ¥ -regular. Then:

(a) C 4+ D is ¥ -regular.
(b) For any morphism of schemes f : T — S, the preimage ( fx) (D) under the base-
change morphism fx : X7 — Xgs is ¥ |x,-regular.

(¢) Leto : dp — Ox denote the inclusion of the ideal sheaf. Then the morphism
oQ®idg :dp @ F — F
is injective. Moreover, the quotient ¥ /(dp ® F) is S-flat.
(d) dp ® F is locally isomorphic to ¥ .

Proof. (a) For each s € S, the support of (C + D) is the union of the supports of Cg
and Dj. If Cg and Dy do not contain any associated point of ¥ |y, , then neither does the union.

(b) Let t € T, and set s = f(¢). By [50, Tag 05DC], the set of associated points of
F|x, are contained in the preimage of the associated points of ¥ |y, under the morphism
fi : X; — X,. This implies the claim, because the fiber (( fy)~! D), is the preimage under f;
of the fiber Dy.
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(¢) Since the question is local, we can assume that X is affine and the ideal dp is gen-
erated by a global section Oy = Ox. Let Ann(u) C Oy denote the ideal annihilating u. By
definition, the sequence Ann(u) — Oy X Oy is exact in the middle, and the cokernel of the
first map is identified with dp. Consider the complex Ann(u) ® ¥ — F % F obtained by
tensoring with % . It suffices to show that the second morphism u : ¥ — ¥ is injective and
that ¥ /(u - ¥) is S-flat. uly

Since D is F -regular, it follows that for all s € S the restriction ¥ |y, —> F |x, is
injective. Because ¥ is S-flat, the slicing criterion for flatness [50, Tag OOME] implies that
75 Fis injective and ¥ /(u - ¥) is S-flat.

(d) Locally, we can choose u as in part (¢c). We have ¥ ® Jp = coker[Ann(u) @ ¥ — F].
It follows from part (c) that Ann(u) ® ¥ — ¥ is the 0 morphism, since the image is contained
in the kernel of the injection ¥ 2 % . Therefore ¥ Qdp = F. D

Let D < X be an ¥ -regular principal subscheme. Let U = X \ D be the open com-
plement. The open immersion j : U — X is locally given by the localization of a generator
of the ideal sheaf Jp that cuts out D. In particular, j is affine. We can use this local inter-
pretation of j plus Lemma 3.5 (c) to see that the unit ¥ — j.j*¥ is injective. Consider the
isomorphism dp ® j«j*F — j«j*F induced by multiplication.

Definition 3.6 (Twists). With notation as above, we define & (—D) to be the image of
dp ® F under the multiplication morphism dp ® j«j*F — j«j*F.

Similarly, we define & (D) to be the maximal subsheaf & C j,j*F such that the image
of dp ® & — j4j*F landsin F C j.j*F.

By definition, there is an infinite chain of injections
> F(—nD)— .- > F(-2D)—> F(-D)—> F
— F(D)— -+ —>FmD)—---.
By using the affine local interpretation of j as a localization, it can be seen that there is
a canonical identification j« j*¥ = colimyecz ¥ (mD).

Lemma 3.5 (d) implies that ¥ (n D) is locally isomorphic to ¥ for all n € Z. In particular,
if ¥ is S-pure of dimension d, then all the twists ¥ (n D) are S-pure of dimension d.

3.2. Stacks of rational maps.

Definition 3.7. We denote by Coh? (X)rae the pseudofunctor from (Affg)°P to cate-
gories defined as follows. For each affine scheme 7T in Affs, the objects of Coh? (X ) (T') are
pairs (D, &), where

(1) & is a T-pure sheaf of dimension d on X,
(2) D — X7 is an &-regular principal subscheme of X7.

Let A = (D1, 8&1)and B = (D3, &) be two objects in Coh? (X)rat(T). The set of morphisms
Mor,a (X)m(T)(A’ B) consists of pairs (i, ), where

(1) i : Dy < D5 is an inclusion,

(2) ¥ : & — & is a monomorphism such that the restriction ¥ |x\ p, is an isomorphism.
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Note that all morphisms in Coh? (X)rat(T) are monic.

Remark 3.8. In order to see that this yields a well-defined functor, it is necessary to
check that ¥ remains a monomorphism after base-changing 7. This follows because the cok-
ernel of ¥ is T-flat, by an argument similar to the one for (i) inside the proof of Lemma 3.17
below.

The pseudofunctor Coh? (X)rat is a stack in the fpqc topology. Indeed, descent data
amounts to a cocycle with isomorphisms in Coh? (X )rat- By definition, these are the usual naive
isomorphisms of pairs (D, ¥). Therefore, descent follows from the theory of fpqc descent for
quasi-coherent sheaves and the fact that the property of being a principal subscheme is fpqc
local (Remark 3.3).

We conclude that if Y is an affine scheme in Affg and H is an S-flat algebraic group
scheme acting on Y, then the data of a morphism of pseudofunctors [Y/H] — Coh? (X)rat
amounts to a pair (D, ), where

(1) ¥ isan H -equivariant Y -pure sheaf of dimension d on Xy,

(2) D — Xy is an H -stable ¥ -regular principal subscheme.

Remark 3.9. It is possible to develop the theory of infinite-dimensional GIT using
variants of this definition of the pseudofunctor Coh? (X);at. For instance, one could define
objects to be those of Coh? (X)), and morphisms to be equivalence classes consisting of pairs
(D C X,v¥ :E1lx\p — &2|x\p), where D is a principal subscheme that is &1-regular and
&r-regular, and ¥ is an isomorphism. Two such morphisms are equivalent if they agree on
the intersection of the open subsets where they are defined. This is a pseudofunctor valued in
groupoids, but it does not satisfy smooth descent. The rational filling condition in Definition 4.5
would be more difficult to state without smooth descent.

We can similarly define stacks of rational maps for each of the other stacks introduced in
Section 2.4.

Definition 3.10. We denote by Pairfj; (X)ra¢ the pseudofunctor from (Affg)°P to cate-
gories defined as follows. For each affine scheme 7' in Affg, the objects of Pairi (X)rat(T)
consist of triples (D, &, o), where

(1) (D, &) is an element of Coh? (X )q,
(2) «isamorphism « : Alx,\p = Flx;\D-

A morphism from (D1, &1, 1) to (D3, &, a2) is a morphism (i, V) : (D1, &1) — (D2, &)
such that ¥|x,\ p, is compatible with the sections a1 |x,\ p, and a>.

Definition 3.11. We denote by A Coh? (X)rat the pseudofunctor from (Affg)°P to cate-
gories defined as follows. For each affine scheme 7" in Affg, the objects of A Coh? (X)rat(T)
consist of triples (D, &, a), where

(1) (D, &) is an element of Coh? (X)rat»

(2) aisamorphisma : A1|x,\p ® €|x,\p —> €lx;\p of left Ox,\ p-modules that endows
€ |x,\p With the structure of a A|x,\ p-module (as in Proposition 2.22).
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A morphism from (D1, &1,a1) to (D2, &2,a3) is a morphism (i, V) : (D1, 81) — (D2, &)
such that ¥|x,\ p, is compatible with the action morphisms a1 |x,\ p, and a».

Let M = PairdA (X)orM = A Coh? (X). Note that the theory of fpqc descent for quasi-
coherent sheaves implies that M., satisfies fpqc descent. This shows that the data of a pseudo-
functor [Y/H] — M, from a quotient stack [Y/H] can be concretely described as an H -equi-
variant pair (D, %) € Coh? (X)rat(Y), and the corresponding H -equivariant structure defined
on X7 \ D in each case.

3.3. The affine Grassmannian for pure sheaves. There is a morphism
Coh? (X) — Coh? (X)sut

that takes a pure sheaf & on X7 and maps it to the pair (4, &). In this subsection we will
describe the “fibers” of this morphism.

Since Coh? (X)rat is not a category fibered in groupoids, it is useful to work with the
comma category instead of the usual fiber products of categories.

Definition 3.12. Suppose that we are given a diagram of pseudofunctors from (Affg)°P
into categories as follows:
X
lfae
S

)
Y — 3
We define the right comma fiber product X X 3 %)) to be a pseudofunctor from (Affg)°P into cat-
egories. For every T € Affg, the objects of X X3 Y)(T) are triples (x, y, g), where x € X(T),

y € Y(T) and g is a morphism g : fx(x) — fy(y).
A morphism of the form (x1, y1.g1) — (x2.y2,g2) consists of a pair (Yz, ¥sy) of
morphisms ¥x : X1 — x2 and ¥y : y1 — y2 such that the following diagram is commutative:

felxr) —ZEYE (0

o |

Fyln) —22Y ().

The composition of two composable pairs (Y, ¥sy), (§x, &) is given by the pointwise com-
position (§x o Vg, gsp o vfsy).

By construction, X X 3 %) is equipped with two projection morphisms 7% : X X3 Y) — X
and 7y 1 X X3 %) — Y plus a 2-morphism H : fx o mg = fsy o myy fitting into the diagram

EX3W 2 %
”‘Z)\L & lfx

)

This data is final for pseudofunctors € equipped with morphisms gx : € — X and g5 : € — %))

plus a 2-morphism G : fx o gx = fyy o g%.
Fix the choice of an S-point in Coh? (X)rat(S) represented by a pair (D, &).
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Definition 3.13. The affine Grassmannian Gry p g is defined to be the right comma
fiber product Coh? (X) Xcon (x),, S-

For any T" € Affg, let us denote &7 := &|x,-. Let U := X \ D and denote the inclusion
J : U < X.Then Gry p g(T) is the groupoid of pairs (¥, y), where

(1) ¥ is a T-pure sheaf of dimension d on X7 such that D7 is ¥ -regular,
(2) ¥ is monomorphism ¥ : &7 — ¥ such that the restriction ¥ |y, is an isomorphism.

An isomorphism of pairs between pairs (¥7, ¥1) and (52, ) is an isomorphism 7 = %5
that identifies the morphisms ¥; and V5. Letting j7 : Ur < X7 denote the base change of
J»Lemma 3.5 implies that ¥; — jr1 «j7¥; is a monomorphism for i = 1, 2. It follows that an
isomorphism between (¥71, Y1) and (2, ¥2) is unique if it exists, so Gry p ¢ can be regarded
as a sheaf of sets.

The main result of this subsection is the following.

Proposition 3.14. The groupoid Grx, p g is represented by a strict-ind scheme that is
ind-projective over S.

In order to prove Proposition 3.14, we will proceed as in [49, Theorem 1.1.3]. For any
(¥.v¥) € Gry,p,e(T), we use the isomorphism j74j7V : j7 781 — jT+j7 ¥ inorder to
view F as a subsheaf of jr«j; 6. Wehave &7 C F C jr«jr6T.

Definition 3.15. Let N be a positive integer. We define G D g to be the subfunctor of
Gry, p,¢ that sends T' € Affyg to the set

Grf’%’g(T) {pairs (¥,v) in Gry,p ¢(T) such that &7 C F C E7(ND7)}.

Note that there is a natural inclusion Grgl}l{ /s C Grf:]‘; /s whenever N < M. Proposi-
tion 3.14 is a direct consequence of the following two lemmas.

Lemma 3.16. We have Gry p g = colimysg Gr)s(% g (as presheaves on Affg).

Proof. Fix T in Affg. Let (¥, V) be in Gry p ¢(7T). We would like to show that there
exists some N > 0 such that (¥, ) is in Gri%’ ¢+ The scheme X is quasi-compact, because
it is of finite type over the affine scheme 7. After passing to a finite affine cover, we can
assume that X7 is affine and D7 is cut out by an element x € Ox,.. Then ¥ and &7 are
finitely presented modules without x-torsion. Let (¢;);es be a finite set of generators for ¥ .

By assumption, ¥ [l] = &7] 1] This implies that for all i € I, there exists a positive

integer n; such that x™ e; € &7.Set N := max;ecy(n;). Then ¥ C x N&r = &p(ND7). O

Lemma 3.17. For each N > O, the functor Grf,l}') g is represented by a disjoint union
of schemes that are projective and of finite presentation over S. Moreover, for all N < M the
<N <M
inclusion GrX pe C Gry X.D.€ is a closed immersion.

Proof.  We use an auxiliary functor QX D& For N > 0, we set QX p.g O be the Quot-
scheme Quoty,s(E(ND)/&) parametrizing S-flat quotients of & (ND) / €. A well-known
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theorem of Grothendieck states that Quoty,s(&(ND)/€) is represented by a disjoint union
of projective schemes over S (see [36, Theorem 1.5.4]).

For all N > 0, we have a natural inclusion of functors 7y : QX pe = i,v '1'518 given as
follows. Let T in Affg and ¥ a quotient sheaf in QX D, g(T).Letg be the composition

Er(NDt) = &7 (NDT)/6T7 — §.

Let Ker(g) denote the kernel. We set 5 (7)(§) to be the quotient &7 ((N + 1)D7)/Ker(g).

We claim that 15 (7)(¥) is a well-defined element of Q;(V JBlg The only thing to check is that

the quotient 75 (7)(¥) is flat over T'. Note that ¢ (T)(§) fits into a short exact sequence
0—>9 —>itN(T)E)— Er((N+ 1)Dr)/Er(NDT) — 0.

Since § is T-flat, it suffices to show that E7 (N + 1)D7)/E7(ND7) is T-flat. This is a con-

sequence of Lemma 3.5 (c). Therefore, we have described a well-defined morphism

. AN N+1
IN :Qx.pe = Qpe-

Since each Quot-scheme Q)I‘Y’ D.& is a disjoint union of proper schemes over S, it follows from
[50, Tag 01W6] that ¢ is proper. By [50, Tag 04XV] the proper monomorphism 7 is a closed
immersion.

To complete the proof of the lemma, we shall show that there is a collection of isomor-
phisms of functors ¢y : Gri%’ e = Q)I}” D.& such that the following diagram commutes for
any N > 0O:

N+1 ON+1
3.1 Gr; D+81 QN+1

For any T € Affg and T-point &7 C ¥ C &7 (NDrt) of Gry XD g we set oy (T)(F)
to be the quotient &7 (NDT1)/&1 — ET(NDT)/F . On the other hand, let us suppose that
Er(NDT)/ &1 — § is a T-point of Q)]}I,D,S' We set Tty (T)(€) to be the kernel of the compo-
sition 87 (ND7) — &7 (NDT)/E1 — &. We need to check the following:

(1) ¢n gives a well-defined natural transformation ¢y : Gri]}])’ g Q)]}” D&
.. . . <N
(i1) tn gives a well-defined natural transformation 7y : Q)Z}’, pe Gr);, D.&"
(iii)) ¢n and ty are inverse of each other,
(iv) the diagram (3.1) commutes.

Claims (iii) and (iv) are immediate from construction.

Proof of (i). Let 7 in Affg and (¥, ¥) in Gr§1>') ¢ (7). To prove the claim, we have to
show that &7(NDt)/¥ is T-flat. We have a short exact sequence

0— &r(ND1)/F — jT*];E;T/.(F — jT*j;:E;T/E;T(NDT) — 0.

So it suffices to show that both jr « j;&7/F and jr«j;E1/ET(NDT) are T-flat.
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Let us show that j7 4 j7 &7 /¥ is T-flat. Note that ¥ induces an isomorphism
JT+JFE = jTeiF.
Hence jr«j;&/F is isomorphic to j7«jrF /¥ . Since jr«j;pF = colimy, F (mDr), we
have
JT«j7F /¥ =colim¥ (mDr)/¥F .
m=>0

Since filtered colimits of T-flat sheaves are T-flat, it suffices to show that ¥ (mDr)/F

is T-flat for all m > 0. This follows because ¥ (mD7)/¥ is an iterated extension of sheaves

of the form ¥ (iD7)/¥ ((i + 1)Dr), which are T-flat by Lemma 3.5.
The proof that j7 «j;67/Er(NDr) is T-flat is the same.

Proof of (ii). Let 7T in Affs and (¢, %) in Q¥ ;) ¢(T). We need to check that 7y (T)(§)
is T-pure of dimension d. There is a short exact sequence

0—tn(T)9) —> Er(NDT) — 9§ — 0.

Since both &7 (ND7) and § are T'-flat, we conclude that ti (7)(§) is T-flat. Let ¢t € T'. Since
¢ is T-flat, the short exact sequence above remains exact when we restrict to the fiber X;

0— wtn(T)(8)|x, > Er(NDT)|x, = Flx, — 0.

Since E7(NDr)|x, is pure of dimension d, we conclude that its subsheaf 7y (7')(¥)|x, is pure
of dimension d as well. This shows that t (7')(¥) T -pure of dimension d. m]

Remark 3.18. As discussed in Remark 3.9, there are several variants of the definition
of Gry, p g that one could use to formulate infinite-dimensional GIT. For instance, instead of
a T-point being defined by a morphism ¥ : &7 — F whose restriction to Ur is an isomor-
phism, one could simply ask for the data of an isomorphism &7 |y, — ¥ |y, . The resulting
affine Grassmannian is a colimit of the sequence of closed immersions

-+ > Grx p.emp) = Grx,p.e((n-1)D) = """
induced by the maps &((n — 1) D) — & D).
Another variant is to take the fibers of the canonical morphism Coh? (X)) — Coh? (X)rat
for the alternative definition of Coh? (X)rat discussed in Remark 3.9. The resulting affine

Grassmannian is still an ind-projective ind-scheme, but it is much larger. This construction
is closer in spirit to the “rational affine Grassmannian” Grg,, x studied in [12, Section 5].

3.4. L) is asymptotically ample on Gry, p g. There is a natural forgetful morphism
Grx p.e — Coh? (X) that sends a pair (¥, ) to the sheaf . We will abuse notation and
denote by M,,, L, and b, the line bundles on Gry p ¢ obtained by pulling back the corre-
sponding line bundles on Coh? (X) under the forgetful morphism (see Definitions 2.6, 2.9
and 2.13).

Definition 3.19. Let P € Q[x] be an integer valued polynomial. We will denote by
Gr)lg, D.6 the subfunctor of Gry, p ¢ that sends any 7" in Affg to the set
Gr)}()’D,g(T) = {pairs (¥, ¥) in Grx,p,¢(T') such that Pg|, = P forall pointsz € T'}.

. <N,P ._ ~.P <N
Similarly, we define GrX,D,E: =Gry pegn GrX,D,E:'
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Proposition 3.20. Fix N > 0 and P € Q[x]. The functor G 8 is represented by
a projective scheme over S. Furthermore, there exists m € N ( dependlng on N and P) such
that for all n > m the line bundle L)/ |Gr§N,P is S-ample.
X.D.&

In order to prove this proposition, we will define auxiliary families of line bundles on
GrX D 8 For the rest of this subsection we fix N € N and P € Q[x]. We denote by p the
reduced Hilbert polynomial corresponding to P (p is the unique constant multiple of P with
leading coefficient %).

Definition 3.21. Letn € N. Let

<N,P
p: GXD8—>S

denote the structure morphism of Gr§ D’ ¢+ We define the line bundle M, on Grf,%% by
My, := M ® p* det Rm«(E(ND)(n))
Furthermore, we define by := ®?=O(Ml-)(_1)d_i () and set L= M, ® (by)~®P®,

Proposition 3.20 now follows from Lemmas 3.22 and 3.23 below.

Lemma 3.22. Fix N > 0 and P € Q|x]. The line bundle L), is S-ample on Gr)s(%% if
and only if Ly is S-ample.

Proof. It suffices to show that the line bundles L,/ and L, differ by a line bundle coming
from the base §. This follows from the fact that M, and M, differ by a line bundle coming
from S, which implies the same for b; and L,,. O

Lemma 3.23. Fix N > 0 and P € Q[x]. Then G D 8 is a projective scheme over S.
Moreover, there exists m € N (depending on N ) such that for all n > m the line bundle Ly, is
S-ample on Gr); ﬁ};'

Proof. The isomorphism ¢y described in Lemma 3.17 identifies Gr)? D’ ¢ With the
component QuotX / s(E(ND)/€) of tjl\}epquot scheme determined by the Hilbert polynomlal
H = Pg(yp) — P.In particular, Gry X.D.6 1S projective over .

It suffices to prove the claim when the base is a field, because S is quasi-compact, ample-
ness is an open condition on the base [17, Corollaire 9.6.4], and ampleness can be checked on
fibers [17, Corollaire 9.6.5]. After base-change we can assume that k is infinite. We will keep
these assumptions for the rest of the proof.

We start by showing that M, is ample for n big enough. We can apply cohomology and
base-change [50, Tag 0A1D] to the fiber diagram

<N.,P
X xsGrgpe — X

<N,P
Gryple —2— S8

to conclude that p* det R« (6 (ND)(n)) = det Rm, ((& (ND))g,=n.p (n)), where we are using
X.D.&
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the notation (€ (ND)) <n.» to denote the base-change E(ND)| XxgGr=N: 2 - Therefore,
X.D.& X.D.€
M, = M, ® det R, ((E(ND)) =n.7 (n)).
X.D.g

Let (Funiv, Yuniv) denote the universal bundle on X x GNP

X.D.¢- Lhe additivity of the determi-
nant implies that for all n € Z we have

M, = det R, (((E(ND))gzm.r / Faniv) ().

Under the isomorphism ¢y : Gr)fva”% = Quot,l({ (6(ND)/§), the line bundle M, cor-
responds to det R, (Quniv(7)) on the quot-scheme. Here
Quniv = (8 (ND)/g)GrSN,P /\{Funiv/gGrsN,P
X.D.€ X.D.&
denotes the universal quotient. It is known [25, Proposition 2.2.5] that det Rz} (Quniv(1)) is
ample for n big enough. It follows that M, is ample for n big enough. To conclude the proof,
we show jhat there exists some positive integer r such that 55” is trivial, which implies that
L& ~ MP" is ample.

Notice that the support of &(ND)/E& has dimension < d — 1. After replacing X with this
support, we can assume that X has dimension < d — 1. Now [26, Theorem 4] shows that the
family of line bundles M, is a polynomial of degree d in the variable n with coefficients in
the Picard group. By definition, we see that Ed is the legdinﬂg coefficient of this polynomial.
This leading coefficient b; gets replaced by a multiple b?r whenever we replace @O (1) by
a multiple O (r). Hence, we can assume without loss of generality that (1) is very ample.

We can use O (1) to embed X into a projective space ;. Choose a linear subspace L of
dimension m —d in " that is disjoint from X . The corresponding projection P/ \ L — P]f -1
restricts to a finite map f : X — ]P]f ~1. The Quot-scheme Quot)f{ (6(ND)/8&) can be identi-
fied with the functor parameterizing flat families of quotients of f«(&(ND)/&) as a module
over the coherent (919;3 -algebra f«(Ox). Such a quotient is determined by the quotient of under-
lying Op-modules, so the morphism Quoty! (€ (ND)/€) — Quotl,_, (f«(§(ND)/€)) that
forgets the f«(Ox)-module structure is a proper monomorphism, ard hence a closed immer-
sion. Note that the formation of M, is compatible with this closed immersion, because derived
pushforward commutes with Tor-independent base change [50, Tag OA1H]. We have therefore
reduced to the case when X = IP’]f -1

Set

Quot := Quotgg_l (f«(E(ND)/€)).

Let @iy denote the universal quotient on P]f ~1 % Quot. Let p denote the structure morphism
p: P]f_l x Quot — Quot. By definition, we have M,, = det Rp,(Quniv(n)). By Lemma 3.24
below applied to 7" = Quot, there is a finite resolution

0— p*Vi(a;) — p*Vi_i1(aj—y) = -+ = p*Vi(a1) - Quyiy — 0,

where each V; is a vector bundle on Quot. By using additivity of the determinant and the
projection formula, we conclude that

l .
M, = ® det(V,-)®(_1)l+l x(O(n+a;))

i=1
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Here x(O(n + a;)) denotes the Euler characteristic of O (n + ;) on IP’,? ~1. This is a polyno-
mial of degree d — 1 in the variable n. So we see that M, is a polynomial of degree d — 1 in
the variable n with coefficients in the Picard group of Quot. By definition, Zd is the coefficient
of nd, which is trivial as desired. O

Here we include the resolution result needed for the proof of the last lemma.

Lemma 3.24. Let T be a Noetherian scheme and d a positive integer. Consider the
projective space p : Pg — T. Let Q be a T-flat coherent sheaf on ]P’f’f . Then, there exists an
integer n € Z and a tuple of vector bundles ('Vi)flzo on T such that  admits a resolution of
the form

0— p*Vy(-n—d) — p*Vy_i(—n—d + 1)
— o= p*Vi(=n—1) = p*Vo(—n) - @ — 0.

Proof. Consider the following diagram given by the first and second projections:

P¢ xp P4
>y
d d
Pg PZ.

Let O A denote the structure sheaf of the diagonal IP’% — IP’% X1 IP’;‘!. By Beilinson’s resolution
of the diagonal [8] [24, Lemma 8.27], O A admits a locally free resolution

002, (dRO(-d)— Q (d—1)RO(—d + 1)

d—1
P4/T P4/T

- Ql, (DR OC-1)—> 0RO - Op — 0.

Pe/T
For any integer n, we can tensor with the pullback ¢} @(n)to obtain the following acyclic
complex in IP’;! XT IP’%

€ =0~ Q0 ®QN+d))BO(=d) > > (Qpg,, ® Qn + 1) BO-1)

- QRO — O0x ®(q1)*Q(n) — 0].
Choose n > 0 so that . .
pr*(QfP,%,/T ®Qn+1i) =0
forall j > 1 andi > 0. Then by applying [50, Tag 0A1H] and truncation, it follows that

Vi = p*(Q;.P%/T ®Q(n +1))

is a locally-free @7 -module for all i > 0. Also, the projection formula implies that

Rf'(@)*(ssz,%/T ® Q(n +i)R O(—i)) =0

for all j > 1 and i > 0. The first page of the spectral sequence for the derived pushforward
R(g2)«€, of the complex €, is concentrated in a single column and shows that the pushfor-
ward complex
(@2)+Cy = [0 = p*Va(=d) = p*Va_1(=d + 1) = --- = p*Vi(=1)
— p*Vo — Q(n) — ()]

is acyclic. We obtain our desired resolution by tensoring with @ (—n). m)
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3.5. Affine Grassmannians for related moduli. In this subsection, set M to be either
Pairi (X) or A Coh? (X).Let (D, &, B) be an S-point of the stack of rational maps M.

Definition 3.25. We define the affine Grassmannian Gr ¢, x, p ¢ g to be the right comma
fiber product M X 4, S.

Notation 3.26. In latter sections we will occasionally simplify notation and write Gr ¢
instead of Gry, x,p,¢,p (omitting the data X, D, &, B) whenever this extra data is clear from
context.

By definition, Gry x, p,g,g(T) is the set of triples (¥, ¥, B) with (¥, ¥) € Grx p.e(T)
and B a morphism |y, — ¥ (resp. a A|x,.-module structure on ) such that B|x,\p, is
identified with 8|y, p, under the isomorphism v/ |x,\ p,.. There is a forgetful morphism

Gryx.p.ep — Gix.pe, (F,0.B) (F,9).

Proposition 3.27. The forgetful morphism exhibits Gry x p g g as a closed ind-sub-
scheme of Gry p g.

Proof. We set U to be the open complement X \ D, T an S-scheme, and T — Grx p ¢
a morphism represented by a pair (¥, V).

Proof for M = PairdeA (X). Consider the composition

Y = (¢|UT)_1 °:8|UT . ‘A’lUT - 37|Ur-

The fiber product Gry x,p,e,8 XGry p.e I 1s the functor that takes a T-scheme Y to the set
of morphisms B': Alxy — Flx, such that §|UY = Bluy . Since Dr is F -regular, if such
E exists, then it is unique. There exists some m > 0 and a morphism Alx, — F (mDT)
extending y. Consider the composition

E . A|XT — ?(mDT) —> ?(mDT)/?.

Then Gry x,p.g.8 XGry.p.g I 1s the subfunctor of 7" consisting of morphisms ¥ — 7" such
that |y, = 0. We know that ¥ (mDr)/¥ is T-flat by Lemma 3.5 (c). Therefore, Lemma 2.16
can be applied to show that the functor Hom(sA|x,, ¥ (mD1)/¥) is representable by a sepa-
rated scheme over 7'. The morphisms & and 0 determine two sections of the structure morphism
Hom(A|x,, F (mD7)/F) — T. We conclude that Grpyir x, p.6,8 XGry pe I 1S represented
by the closed subscheme of 7" where these two sections agree.

Proof for M = A Coh? (X). We can use the A |y, -module structure on & |y, and the
isomorphism ¥|y,. : €|y, — ¥ |u, in order to define a A|y,.-module structure on ¥ |¢7,.. By
Proposition 2.22, this amounts to the data of a morphism b : A1|y, ® ¥ |y, — F |y, satisty-
ing conditions (A1) and (A2) in that proposition. The fiber product Grp con, x,D,8,a XGrx p.g |
is the functor that takes a T-scheme Y to the set of morphisms b:A Xy ® ¥ — ¥ that extend
b|y, and satisty (A1) and (A2). Since Dt is ¥ -regular, it follows that b is uniquely deter-
mined whenever it exists. By the same uniqueness argument, if b exist, then (A1) and (A2) are
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automatically satisfied, because they are already satisfied for the restriction b|y, . This shows
that Gr con, x,D,€,8 XGry.pe I 18 the subfunctor of T consisting of morphisms ¥ — T such
that the morphism » admits an extension to Xy. The same argument as in the case of pairs
shows that this is represented by a closed subscheme of 7', as desired. O

These affine Grassmannians admit natural morphisms to M given by forgetting the iso-
morphism ¥ defined away from D. We have just seen that there is a closed immersion into
Gry, p ¢ such that the following diagram commutes:

Gray,x,pep ——— M

\[ lForget

Gry.p.g — Coh?(X).

We use the forgetful morphism Gry x p.e,g — M to restrict the line bundle Ly to
Gr, x,p,e,p- This is the same as the pullback of the line bundle L, on Grx p g. Therefore,
we obtain the following corollary as an immediate consequence of Proposition 3.20.

Corollary 3.28. Let N € N and P € Q[x]. Then there exists some m > 0 such that for

all n > m, the line bundle L, on Gri{NX;(PD ep = Gry.x,p,6,8 N Gri%lg is S-ample. D

4. Monotonicity via “infinite-dimensional GIT”

In this section, we define a polynomial numerical invariant v on the moduli stacks we are
considering. Furthermore, we prove that v is strictly ®-monotone and strictly S-monotone.

4.1. The numerical invariant. We refer the reader to Section 2.5 for a discussion of
filtrations and graded points. In the case of the stack Coh? (X), a k-valued point is the same
thing as morphism Spec(k) — S and a pure sheaf & of dimension d on X}, and a filtration of
¥ in the stack Coh? (X) is a G, -equivariant A}c—ﬂat relative torsion-free sheaf # on X x A}c.
Using the Rees construction [19, Proposition 1.0.1] we can view this as a sequence (¥7,)mez,
of subsheaves of ¥ satisfying

@ Fm+1 C Fm,

(b) Fu/ Fm+1 is pure of dimension d,

() Fn =0form > 0and ¥, = F form < 0.
The line bundle L, |@, for such a filtration will be a G, -equivariant line bundle on A}c. All such
line bundles come from the base [Spec(k)/G,,], and so they are classified by the isomorphism
class of the fiber L,|o as a one-dimensional G,,-representation. These isomorphism classes
are just characters of G, which are classified by an integer called the weight. We will denote
this integer by wt(Ly|o).

By [50, Tag 0A1D], the restriction My | of the line bundle M,, (Definition 2.6) is iso-

morphic to det( Ry «(F |o)(n)). We have an equality of graded sheaves

}1|0 = @(ym/?m+l)

meZ
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Here G, acts on %, / 75, +1 with weight m. We can take derived pushforward and determinant
in order to conclude that

wi(Mnlo) = Y (Pg,,(n) = Pg,,,, (n) - m.
mez

In particular, this yields wt(bz41]0) = 0, hence the expansion in Definition 2.9 implies that

wt(bglo) = d! - (coefficient of n? in wt(My o))
= Z (kg,, — kg, ) -m.

meZ

We conclude that wt(Ly|o) is given by

Wt(Lplo) = Wt(Mylo) — pg(n) - wt(bglo)

=Y m- Pz, (1) = Pr() - Kegy 15,0
meZ

One can also give the following alternative formula.

Proposition 4.1. Let k be a field over S. Let ¥ be a pure sheaf of dimension d on Xj.
Let (F1)mez be a filtration of ¥ in the stack Coh? (X). Then we have

wi(Lalo) = Y (Pg, (1) = Pz () - kg,

meZzZ
Proof. We have seen that

K/ F i

Wi(Lalo) = Y m- (me/'ﬁmﬂ(n) T kg

meZ

Py:(n)).

By condition (c) above, we can express this as a finite sum

N

wi(Lalo) = Y m'(me/me(n)—

m=—N

rk
ﬁm/?’dm+1 Pf’(n)).
k¢
Here N is a big positive integer, and we have ¥y = 0 and ¥_y = ¥ . By summation by parts
and additivity of the Hilbert polynomials, we can rewrite the sum above as

N

wt(Lylo) = Z (Pg:m (n) — K, ng(n)),

rk
m=—N+1 ¥

We can express this in terms of reduced Hilbert polynomials to conclude that

wi(Lnlo) = Y (Pg, () = Py (n)) - kg, o

meZ

Before defining our numerical invariant, we need to specify a rational quadratic norm on
graded points of Coh? (X).
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Definition 4.2. Let g : (B Gm)Z — Coh? (X) be a Z4-graded pure sheaf

F= @ Fa
meZ4
of dimension d on Xj. We define b(g) to be the positive definite rational quadratic form on R?
given by
b)) = ) tky_ - (7 v)’.
mezZ4

Here -gq denotes the standard inner product on R?.

If ¢ = 1 above, then the rational quadratic form b(g) on R is uniquely determined by its
value at 1. From now on, it will be convenient to abuse notation and write b(g) to denote the
value b(g)(1) for any graded point g : (BGy)r — Coh? (X).

Given the sequence of line bundles L, on Coh? (X) and the norm on graded points b,
we can define a numerical invariant v as explained in Section 2.5. For our discussion we only
need to understand the corresponding polynomial v(f) assigned to a given nondegenerate
filtration f.

Definition 4.3. Let f : O — Coh? (X) be a nondegenerate filtration given by the
sequence (F)mez. We define the numerical invariant v( f) to be the polynomial in R[n]
given by

Wi(Lnlo)  2mez ™ (P, 5y — P5)  TKE By

v(f) = =
v b(f|0) \/(ZmGZ I‘kym/ym_H -m2)

We use the same formula to define a numerical invariant v for each of the moduli stacks
described in Section 2.4. In each case, the corresponding sequence of line bundles L, and the
rational quadratic norm b are pulled back using the forgetful morphism Coh? (X).

We end this subsection by recording one simple observation that will be useful in our
proof of monotonicity. Namely, we observe that the rational quadratic norm b is well-defined
on the stack of rational maps.

Lemma 4.4. Let M = Coh? (X), Pairfi (X)orA Coh? (X). Let

1,92 : (BGm)k — Mg

be two graded points. Let g1 and g, denote the underlying graded pure sheaves of dimension d
on Xy, corresponding to @1 and @,. If there exists a 2-morphism 1 = @2, then b(g1) = b(g2).

Proof. Suppose that g (resp. g») is represented by the graded sheaf P, <7 F m (resp.
@D,z F by defined on Xj. By the definition of b, it suffices to check that kg = 1kg for
all m € Z. The 2-morphism ¢; = ¢, yields a morphism of graded sheaves v : g1 — g2 that
restricts to an isomorphism away from a principal subscheme D — X, which is regular for
both g; and g». This implies that the ranks of corresponding graded terms agree, as desired. O

4.2. Rational filling conditions for torsion-free sheaves. Let R be a complete dis-
crete valuation ring over S, with residue field « and fraction field K. We refer the reader to
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Section 2.1 for the definitions of © g, ST g. The following is the main condition we will study
in this subsection.

Definition 4.5. Let M be one of the stacks defined in 2.4. Set X to be either O g
of ST gr. We say that M admits ¥ rational filling if the following is satisfied: for all mor-
phisms f : X\ 0 — M, there exists a morphism g : ¥ — My and a 2-commutative diagram
of pseudofunctors

x\0 — = m
e ]
E g Mo,

where j is the open immersion of stacks X \ 0 < X. Note that the direction of the 2-morphism
matters, because M,y is not valued in groupoids.

Remark 4.6. If we set Y to be Yo, (resp. YWR)’ as defined in Notation 2.1, then
a G, -equivariant morphism Y \ 0 — M is the same thing as a morphism ®g \ 0 — M (resp.
STr\ 0 — M). We will use this alternative description in proofs without further elaboration,
and work with G,,-equivariant morphisms from Y and Y \ 0.

We start by reducing rational filling conditions to the case of the stack of pure sheaves
Coh? (X).

Lemma 4.7. Suppose that the stack Coh? (X) admits O rational filling (resp. ST g
rational filling). Then both of the stacks Pairi (X) and A Coh? (X) admit ©g rational filling
(resp. ST g-rational filling).

Proof. SetY tobe Yg, (resp. Yﬁk)’ as defined in Notation 2.1. We denote by W the
open complement of O in Y.

Proof for PairdA (X). Suppose that we are given a G,,-equivariant morphism
W =Y \0— Paird (X).

This consists of a G,-equivariant W -pure sheaf ¥ of dimension d on Xy and a G,-equivar-
iant morphism f : Alx,, — ¥ . Assume that Coh? (X) satisfies © g rational filling (resp. ST g
rational filling). Then we can obtain the following:

(1) a G,,-equivariant Y -pure sheaf & of dimension d on Xy,
(2) a Gyy-stable principal subscheme D < Xy that is §-regular,
(3) amonomorphism v : €|x,, < ¥ such that ¥|x,,\ py, is an isomorphism.

It suffices to show that the morphism « obtained by the composition

@ Alxy\py ———— Flxy\oy ———— Elxy\Dy

extends to a Gp,-equivariant morphism @ : A[x,\p — €|x,\p-
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Let U denote the open complement Xy \ D. Note that the closed fiber Uy is cut out by
a two-term regular sequence coming from Y (either (@, ) or (s,7)). Since &|y is Y -flat, the
sequence is also a regular sequence for the sheaf &|y . This shows that & |y has depth at least 2
at all points of the closed fiber Uy. We conclude from [50, Tag 0AVS5] that Hom(A|y, & |y ) also
has depth at least 2 at all points of Up. By [50, Tag OE9I] applied to the open subscheme Uy
inside U, it follows that the morphism « extends uniquely to a morphism & : A|y — &|y.
Moreover, this section is automatically G,-equivariant. This can be seen by applying [50, Tag
OEO9I] again to the pullbacks of Hom(A|y, &|y) to the product G,, x U under the action and
projection morphisms.

Proof for A Coh? (X). Suppose that we are given a G,,-equivariant morphism
W =Y \0— ACoh?(X).

This consists of a G,,-equivariant A [x,,-module F that is W-pure of dimension d on Xy . If
Coh? (X) satisfies the appropriate rational filling conditions, then we can find a triple (€, D, ¥)
as in the previous case of pairs. Set U = Xy \ D. The isomorphism v |y, :  |v,, — Eluy,
can be used to equip €|y, with a G,,-equivariant A |y, -module structure. We are left to show
that this can be extended to a G,,-equivariant A |y -module structure on &|y .

By Proposition 2.22, a G,-equivariant A |y, -module structure on &|y,, is equivalent
to the data of a Gy,-equivariant morphism a : A|y,, ® €|y, — €|u, satisfying condi-
tions (A1) and (A2). We just need to check that a extends to a G,,-equivariant morphism
a: M|y ® €ly — 8|y satisfying (A1) and (A2).

Since &|y has depth at least 2 at all points of Up, we can apply [50, Tag 0AVS5] to
conclude that Hom(A 1|y ® &|u, &|y) also has depth at least 2 at all points of Uy. Now we
can use [50, Tag OE9I] in the same way as in the case of pairs to conclude that there is a unique
Gm-equivariant extension @ : A1|y ® |y — €|y of the action morphism a. We are left to
check conditions (A1) and (A2). We showed in the course of the proof of Proposition 2.23 that
these are closed conditions on the base Y. Since they hold over the schematically dense open
subset W C Y, they automatically hold over the whole of Y. O

We now proceed to prove the rational filling conditions in the case when the fibers of
X — § are geometrically integral of dimension d. In this case pure sheaves of dimension d
are the same as torsion-free sheaves.

Lemma 4.8. Suppose that the morphism X — S is flat with geometrically integral
fibers of dimension d. The following stacks admit both ® g and ST g rational filling:
(i) Coh?(X),
(i) Pair? (X),
(iii) A Coh?(X).

Proof. By Lemma 4.7, it suffices to prove (i). Let X denote either ® g or STR. Set
Y := Y%. Note that the closed fixed point 0 is cut out by a regular sequence (y1, y2) in Oy.
We write W for the open complement of 0 in Y. Let Xg denote the pullback under the mor-
phism Spec(R) — S. We can further pullback using the structure morphism ¥ — Spec(R)
to obtain Xy.
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Suppose that we are given a G,,-equivariant morphism W =Y \ 0 — Coh? (X), which
amounts to a G,-equivariant W-flat family ¥ of torsion-free sheaves on Xy . Observe that
a principal subscheme of Xy is regular with respect to a nontrivial torsion-free sheaf if and
only if all of its Y -fibers are Cartier divisors if and only if it is a Y -relative Cartier divisor
[50, Tag 062Y]. Our goal is to find the following:

(1) a Gy-equivariant Y -pure sheaf & of dimension d on Xy,
(2) a Gy-equivariant relative Cartier divisor D — Xy,
(3) a Gy-equivariant morphism v : €|x,, — F such that ¥|x,,\ p,, is an isomorphism.

This automatically implies that ¥ |x,,, is a monomorphism, because Dy is both &|x,, -regular
and ¥ -regular.

Let j denote the open immersion j : W <— Y. Let jx : X < Xy be the base-change.
We observe that the pushforward F = (Jx)«F is G,,-equivariant. F is coherent and Y -flat
by [2, Lemmas 7.16 and 7.17], where we take the base ring k = R and we set the abelian
category + to be the category QCoh(XR) of quasi-coherent sheaves on X . Note that the
hypothesis that the discrete valuation ring R is essentially of finite type in [1] is not necessary
in this case, since the abelian category 4 = QCoh(XR) is Noetherian.

Since Xy is integral, there exists some dense open subset Vo C Xo such that ¥ lv, is
a free graded Oy,-module. Say ¥ Vo = @D;er Ov,(mi), where I is a finite indexing set and
(m;) denotes a shift in the G,,-grading. Set & = @;<; Ox, (m;). This is a Gp,-equivariant
Y -flat torsion-free sheaf on Xy.

There exist n >> 0 and a nonzero section so € H°(Xg, @ (n)) such that s¢ vanishes at all
points of the closed complement Xg \ Vo. By increasing n if needed so that H!(Xy, Ix, (1))
vanishes, we can lift 5o to a G,,-invariant global section s € H%(Xy, ©(n)). The section s is
nonzero when restricted to the fiber over every point of Y, because the non-vanishing locus
of s is open, G,,-stable, and contains a point in the fiber over the fiber over 0. Thus the
G -equivariant principal subscheme D < Xy cut out by s is a relative Cartier divisor.

We denote by U the affine open complement Xy \ D. There is a G,,-equivariant isomor-
phism ¢ : E|y, = F |, because Up C Vo by construction. Consider the exact sequence of
graded sheaves B B B

0—> (1, y2) Flu > Fluv = Flu, — 0.

Applying Hom(& |y, —), we get an exact sequence
Hom(€|y. ¥ |v) — Hom(€|y,. ¥ |v,) — Ext' (Ely. (1. y2) - F|v)-

The third term vanishes, because 8|U is locally free and U is affine, so we can lift ¢ to
a G, -equivariant map w Elu — ¥ |u. After pos51bly replacing & with a subsheaf &(—n D),
we can extend this further to a morphism w & — ¥ . We shall prove the following claim.

Claim. There exists a G- -equivariant relative Cartier divisor D’ < Xy such that the
restriction W|U\D’ Elu\p — ~77|U\D’ is an isomorphism.

This claim will conclude the proof of the proposition, by replacing D with the sum
D + D’ and setting ¥ = 1;| Xy, - In order to show the claim, it suffices to find a D’ such that
1}|U\ p- is surjective. This is because the kernel of J |z\ pr will then be a torsion-free sheaf of
rank 0, which is therefore 0.
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Consider the G,,-equivariant cokernel J# of ¥/|y. By definition, # is a sheaf on U that
is supported at the points where 1;|U is not surjective. Let Z g be the G,,-equivariant closed
subset of U cut out by the 0-Fitting ideal Fito(#). It suffices to find a relative Cartier divisor
D’ < Xy that contains Z g. By construction, Z g does not contain any point in the fiber Uy.
Let Oy denote the graded coordinate ring of the affine scheme U. The closed subscheme
Z g is cut out by a graded ideal J. Since Z gz does not meet the fiber Uy, we know that
10y 4+ y20y + J = Op. This means that we can find elements u, v € Oy and an element
i € J such that yju 4+ y,v 4+ i = 1. After passing to graded components, we can assume that
i € J is homogeneous of degree 0. This gives a G,,-equivariant section i : Oy — Op. Note
that i cuts out a principal subscheme of U that does not meet Uy and contains Z g. There is
some m > 0 such that we can extend i to a homogeneous section iy : Ox, — Ox, (mD). Let
D’ be the principal subscheme of Xy cut out by iy. The support of Dy is contained in Dy, so
Dy, is a Cartier divisor on IP’SZ . The same argument as the one for D above shows that D’ is a
relative Cartier divisor. By construction D’ contains Z g, so /|y p- is surjective. O

4.3. Proof of monotonicity via “infinite-dimensional GIT”. We refer the reader to
Definition 2.28 for the relevant definitions of strictly monotone. We prove the main theorems
of this section using the affine Grassmannians we have defined. This type of argument is what
we refer to as “infinite-dimensional GIT.”

Theorem 4.9. Suppose that the morphism X — S is flat with geometrically integral
fibers of dimension d. Then the invariant v (Definition 4.3) is strictly ©®-monotone and strictly
S-monotone on the stacks Coh? (X), Pairi (X), and A Coh? (X).

Proof. We set M to be one of the stacks Coh? (X), Pairi (X)or A Coh? (X). Let R be
a complete discrete valuation ring with residue field k. We set Y to denote either Yo , of Yo7 .
Suppose that we are given a morphism f : [(Y \ 0)/G,,] — M. The rational filling properties
proved in Lemma 4.8 yield a G,,-equivariant commutative diagram

f

MS'(MMI Y % M

| |

Y — % M

Here j denotes the open immersion j : Y \ 0 < Y. By definition, the right comma fiber prod-
uct M X ¢, Y is an affine Grassmannian Gr ¢ (as in Definition 3.25, replacing X — S with
Xy — Y). The diagram above can be rewritten as follows:
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Since the data used to define Gr ¢ is G,,-equivariant, the affine Grassmannian acquires a natu-
ral G, -action such that the structure morphism Gry, p ¢ — Y is Gy, -equivariant. This action
can be defined explicitly in each moduli problem by pulling back sheaves and their associated
structures under the morphism induced by multiplication by an element of G,,. This description
shows that each Y -projective stratum GriN Pis G -stable. By construction, all of the mor-
phisms in the commutative diagram above are G,,-equivariant.

Since Y \ 0 is quasi-compact, there is a stratum Grle’P through which t factors. Hence

we obtain the following G,,-equivariant commutative diagram.

Forget
Gr=NP 2y

M
=
Y\0 —— Y

Let X C Grj{N’P denote the schematic closure of ¥ \ 0 in GriN P Note that ¥ is a reduced

G -scheme with a natural structure morphism to Y. The map ¥ — Y is projective, because
GrilN’P is projective over Y and X is a closed subscheme of Gri{N’P. By construction, the
morphism ¥ — Y is G,,-equivariant and restricts to an isomorphism over Y \ 0. The compo-
sition X — GriN’P — M restricts to f : Y \ 0 — M over the open subset ¥ \ 0 C X. Since
everything is G,,-equivariant, we obtain a morphism ¢ : [X/G;,] — M satisfying condition
(M2) in Definition 2.28.

We are left to check condition (M3) in Definition 2.28. By Corollary 3.28, there exists
some m >> 0 such that L,\{|GriN-P is Y -ample for all n > m. For any a > 1, any field «, and
any equivariant line bundle on £ pm P[], one has wt(&£o) — Wt(£|0) = a deg(£), where
0 :=lim;—¢? - x for a general point x and oo is the other G,,-fixed point. In particular, for
any finite G,-equivariant morphism P [a] — 2o, Wt(Ly|oo) > Wt(Ly|o) for all m > n. The
commutative diagram

[PL/Gm] —— M
=]
(BGm)e — Mea

shows that there exists a 2-morphism between the compositions

[00/Gom] & M = Mo
and B
[0/Gm] S M — Moy
By Lemma 4.4, this implies that b(¢|[s0/G,,]) = (®l[0/G,,])> and hence for n > 0,
Wi(Lnloo) _ wt(Lnlo)
Vb@lico/Gn)  VO0(@l10/G,1)

V(?l[oo/Gp]) = =v(?lo/Gn1)- o

We will use Theorem 4.9 to bootstrap to the more general case. We shall need the
following lemma.

Lemma 4.10. Let Y be a Noetherian scheme, and let p : Z — P be a finite mor-
phism of Y -schemes. Suppose that Z and P are schemes of finite type over Y with Y -fibers of
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dimension d. Then the pushforward ps« establishes an equivalence between the following two
categories:

(A) the category of Y -pure sheaves of dimension d on Z,
(B) the category of p«(OQz)-modules on P that are Y -pure of dimension d.

Moreover, if the schemes Z and P admit compatible G, -actions, then ps also induces an
equivalence of the Gy, -equivariant versions of categories (A) and (B).

Proof. The only thing to check is that a Y -flat sheaf § on Z has Y -fibers that are pure
of dimension d if and only if the pushforward p.(¥) on P has Y -fibers that are pure of dimen-
sion d. Since the morphism p is affine, the formation of the pushforward p.(—) commutes
with passing to Y -fibers. Hence, we can reduce to the case when py, : Z, — P, is a finite
morphism of projective schemes of dimension d over a field k(y).

Let ¢ be a coherent sheaf on Z. Suppose that p«(§) has an associated point of dimen-
sion < d — 1. Let T C p« (&) be the maximal subsheaf of p4(¥) that is supported on a closed
subscheme H C P of dimension < d — 1. The p«(0@z)-module generated by 7 is also sup-
ported on H, and so it must coincide with 7. Therefore, T is a p«(@z)-submodule of p«(§).
The subsheaf of § corresponding to 7 is also supported on dimension < d — 1, because the
morphism p is finite. We conclude that § is not pure of dimension d.

Conversely, if § is not pure of dimension d, then there exists some nontrivial subsheaf
T C & supported in dimension < d — 1. The pushforward p«(7) C p«(§) is then supported
in dimension < d — 1, and so p«(¥) is not pure of dimension d. m|

Theorem 4.11. The invariant v is strictly ®-monotone and strictly S-monotone on the
stacks Coh? (X), Pair? (X), and A Coh? (X).

Proof. Let R be a complete discrete valuation ring over S. Let x be the residue field
of R and let K be the fraction field. Let ¥ denote either @ g or ST g. Set Y := Yx. Let Xg
denote the pullback under the morphism Spec(R) — S. We can further pullback Xy using the
structure morphism Y — Spec(R). Let j : W < Y denote the open complement of 0 in Y.
Let jx : X — Xy be the base-change.

Proof for Coh? (X). Suppose that we are given f : X \ 0 — Coh? (X). The morphism
f amounts to a Gy,-equivariant W -pure sheaf ¥ of dimension d on Xy . The pushforward
F o= (Jx)«F is a Gy,-equivariant Y -flat coherent sheaf by [2, Lemmas 7.16 and 7.17]. Let
Z C Xy denote the G,,-equivariant subscheme of Xy cut out by the O-th Fitting ideal of 7.
Note that the Y -fibers of Z have dimension d. We can view ¥ as a G,,-equivariant W -pure
sheaf of dimension d on Zy .

Embed X g into some projective space Pg by using a multiple Ox (M) := Ox (M)|x
of the ample line bundle @, (1). Consider the d-dimensional closed subvariety Zo C PY.
After replacing R with a finite extension, we can assume that there exists a linear subspace
L, C IP’,gV of dimension N —d — 1 such that L, N Zg is empty. We lift L, to a linear sub-
space LR C P g ,and denote by Ly C IP’I],V the base-change. The scheme theoretic intersection
Ly N Z is a Gy,-equivariant proper Y -scheme. The image of the projection Ly N Z — Y is
a Gy, -stable closed subset of Y that does not contain 0, since Zo N Ly = @ by construction.
We conclude that the image is empty, and therefore Z does not intersect Ly .
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Consider the affine projection IP’I]QV \Lr — Pg. We base-change to Y and consider the
composition
p:Z;)IP’{Y\LYeIP’ff.
The morphism p is finite, because it is proper and affine. Let ® be the G, -equivariant sheaf of
algebras p«(@z) on IP’)‘?. We regard @ as a ring of differential operators by setting

Dy = Im(@Pd — p«(0Qz)) and & = O.

By Lemma 4.10, (p|z,, )«(F) is a Gm—equlvarlant W -pure CI>|IP,d -module of dimen-
sion d on IP’d Lemma 4.8 applied to X = IP’ shows that there exist

(1) a G-equivariant Y -pure sheaf & of dimension d on PZ,
(2) a Gy-equivariant relative Cartier divisor D — P,

(3) aGyp-equivariant morphism B : ®1|pd \ p ® E|pg \ p — E|p¢ \ p thatequips &|pd \ D
with the structure of a <I>|P¢\ p-module,

(4) a Gyp-equivariant morphism ¥ : &|pd, — (p|zy )«F such that ¥|pd \ py, is an iso-
morphism of ®[pd \ py,-modules.

Observe that the G,,-equivariant ®|]P,d -module (p|z, )+F can be interpreted as a G,-equi-
variant morphism
7 : W — Grocond (PY), PE, D, €, B

over Y.
By Lemma 4.10, there is a well-defined G,,-equivariant morphism over Y

Gro cont (p¢), P4, D, &, — Coh? (Xy)

that sends a 7"-point (&, ¢, ,g) in Groe con? (P¢), P¢, D, €, 8(T) to the T'-pure sheafon Zr C X7
corresponding to the q’th -module (¥, B). We summarize all of the data we have obtained so
far in the following G,-equivariant commutative diagram:

S

T

Y\ 0 —= Grg o pey pg p,6p — Coh? (Xy).

~

Y

Now we can take the scheme closure ¥ of Y \ 0 inside Gre con? P4, P¢, D, &, B- Recall that
M denotes the multiple O, (V) that we used to embed X into a projective space. Note that
the rational line bundles L, on Gre con? Pg), Pd D, &, coming from Coh? (Xy) agree with
the ones pulled-back from Cohd (Pd ), where IP’ is equipped with the Q-ample polarization

L 7 Opd (1). It follows from Proposition 3.20 that L, is eventually relatively ample on each
projective stratum of Gre con? (P¢), P¢, D, €, 8- We can therefore apply the same argument as in
Theorem 4.9 to conclude in this case.

Proof for either M = PairdA (X) or M =A Coh? (X). Choose a Gy,-equivariant
morphism W =Y \ 0 — M, which amounts to a G,,-equivariant W -pure sheaf ¥ of dimen-
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sion d on Xy and some extra structure ¢ in the form a morphism of sheaves with target &
We can ignore the extra data « at first and apply the same argument as in the previous case to
obtain the data (1)—(4) above.

Let C denote the principal subscheme of Z given by the inverse image of p~!(D).
C is given by a G,-equivariant global section s of @z (n). After replacing D and p~!(D)
with some multiple and scaling n accordingly, we can lift this to a Gy,-equivariant global
section of Oy, (n). We denote by D the G,-invariant principal subscheme of Xy cut out by
5. By construction the intersection D N Z has dimension < d — 1, and hence D is regular
with respect to any Y -pure sheaf of dimension d supported inside Z. By Lemma 4.10, we
can view the ®pd \ p-module E|pg \ p as a Gm-equwarlant Y -pure sheaf on Z \ p~1(D).
Since Z \ p_l(D) Z\Disa closed subscheme of Xy \ D, we can also view €|pd\ p as
a Gy,-equivariant Y -pure sheaf on Xy \ D.

By Lemma 4.10, for any T-point (&, (p,,g) in Grcpcohd(]p;l),]pd,p,@,ﬁ we can view §
as a T'-pure sheaf on X7 supported inside Z7. The isomorphism ¢|x, \ p, can then be used
to transport the extra structure & to the restriction §|x, \ p,-. Let H denote the subfunctor of
Gro con? P4),P¢,D,E,B consisting of T -points such that this extra structure & on §|x, \ Dp
extends (uniquely) to X7.

We claim that H is a closed strict-ind subscheme of Gre con (P¢), P¢, D, €, - Indeed, for
any such 7'-point the structure & is given by a morphism

@ : Blx;\Dr = Glxs\ Dr

where B is a finitely presented coherent sheaf on X7 (either B = A or B = Aq|x, ® §).
There exists some N > 0 such that the morphism & extends uniquely to a morphism

£:8 —>E(ND7).

Consider the composition

v 85 g(NDr) — (N Dr)/5.

Note that the fiber product H7 represents the locus where this 7'-section y of the Hom func-
tor Hom(B, (N D1)/$) is equal to the 0 morphism. By Lemma 2.16, the Hom functor
Hom(B, % (N D7)/§) is represented by a separated scheme over T'. Therefore the locus Hr
where y = 0 is a closed subscheme of 7', as claimed.

By definition, H admits a morphism to M. The triple (¥, ¥, &) represents a G,,-equi-
variant morphism 7 : ¥ \ 0 — H. We get a similar G,,;-equivariant commutative diagram as
in the proof for Coh? (X) above:

N

By the same reasoning as before, the pullback of (L,)" to each projective stratum of the closed
ind-subscheme H C Grg cond P¢),P¢,D,&,B is Y -ample for n > 0. Therefore we can apply
the same argument as in Theorem 4.9 to conclude. O
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5. Applications to the moduli of A-modules

In this section we will derive the main structural results for the stack of A-modules
A Coh? (X)) using strict monotonicity (Theorem 4.11). We will need the following facts.

Theorem 5.1. Let v denote the numerical invariant on the stack A Coh? (X) pulled
back from Coh? (X ) (Definition 4.3). We have the following:

(a) The numerical invariant v satisfies HN-boundedness.

(b) The semistable locus A Coh? (X)VS consists of p-semistable A-modules (as in [44, Sec-
tion 3]). For each P € Q[n], the substack A Coh? (X)p* of semistable A-modules with
Hilbert polynomial P is bounded.

Proof. 'This will be shown in the companion paper [21]. |

Theorem 5.2. The numerical invariant v on the stack A Coh? (X) pulled back from
Coh? (X)) (Definition 4.3) defines a weak ®-stratification on A Coh? (X).

The semistable locus A Coh? (X)VSS consists of p-semistable A-modules. For each poly-
nomial P € Q[n], the substack A Coh? (X)p* of semistable A-modules with Hilbert polyno-
mial P is bounded. If S is defined over Q, then A Coh? (X)p* admits a separated good moduli
space.

Proof. We need to check the hypotheses of Theorem 2.27. The numerical invariant
v is strictly ®-monotone and strictly S-monotone by Theorem 4.11. Moreover, v satisfies
HN-boundedness by Theorem 5.1 (a). By Theorem 2.27 (1), this implies that v defines a weak
O-stratification on A Coh? (X).

On the other hand, we know that each open and closed substack A Coh? (X)p* of the
v-semistable locus is bounded. Therefore, if S is defined over Q, it follows by Theorem 2.27 (2)
that A Coh? (X )p°° admits a separated good moduli space. |

In [21] we will provide the necessary results (Theorem 5.1) for the construction of the
©-stratification on A Coh? (X) using the numerical invariant v. We shall also describe this
stratification in terms of the Harder—Narasimhan stratification in the context of p-stability. Our
canonical filtrations are coarser than the Gieseker—Harder—Narasimhan filtration described in
[44, Section 3]. We call our filtration of an unstable sheaf the leading term filtration. Theo-
rem 5.2 gives an alternative proof of the existence of these filtrations that does not use Harder—
Narasimhan theory. The Gieseker—Harder—Narasimhan filtration can be recovered from the
leading term filtration by iterating the construction for the associated graded sheaves. This is
explained in the paper [14] in the more general context of p-sheaves.

6. Applications to moduli of pairs

In this section we define a family of Laurent polynomial numerical invariants @) on
Pairi (X). They are indexed by a choice of rational Laurent polynomial § € Q[n,n~!]. We
show that each numerical invariant v®) induces a ©-stratification on Pairfi (X).1f § > 0, then
the corresponding notion of stability agrees with the ones considered in [29] and [48].
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6.1. Numerical invariants on Pair? 4 (X). We start by describing filtrations of objects
in Pair 4(X). Let k be a field over S. Let (f B) be a pair in Pair?, 4 (X)(k), where ¥ is a pure
sheaf of dimension d on X and B is a morphism B : Alx, — F. A filtration f of (¥, B)
consists of a Z-indexed filtration (¥7,),,ez of the pure sheaf # (as in Section 4.1) such that
B : Alx, — F factors through 5, for all m < 0. In other words, o must contain the image
of B. For any such filtration, the associated graded point f'|¢ is the pair (gr(¥), gr(8)) on Xi
consisting of the graded sheaf gr(¥) = ,,,cz Fm/Fm+1 and the homogeneous morphism
gr(B) : Alx, — gr(¥) given by the composition

B lrod lrod R vd
gr(B) : Alx, = Fo = Fo/ 1 = D Fn/Fm1.

meZ

In the case of the moduli of pairs, it is useful to have some variations of the line bundle L.

Definition 6.1. Let § € Q[n,n~'] be a Laurent polynomial in n with rational coef-
ficients. For any n € 7Z, we define the line bundle L,(, ) on each open and closed substack
Pairi (X)p C Pairi (X) given as follows:

S(n)

)
L( ) Mn|Palr (X)p (bd|Pa1ri(X)p)

Here we are using the forgetful morphism Pair? “X)p — Coh? (X)p to pull back the line
bundles, and the locally constant functions p(n) and rk on |Cohd (X)| are as defined in Sec-
tion 2.3.

Remark 6.2. Note that L = L,, for all .

For any fixed §, denote by p®) the Laurent polynomial numerical invariant on Pair? % (X)
determined by the pullback of the family L( ) and the rational quadratic norm b. This numer-
ical invariant takes values in the group R[n,n~!], which can be equipped with the structure
of a totally ordered R-vector space by defining p; > p» if and only if pi(n) > pa(n) for
alln > 0.

We record here the value of v®) for filtrations.

Definition 6.3. Choose § € Q[n,n~!]. Let f : O — Pairi (X) be a filtration given by
f = (Fm)mez. Then v@® (f) is the Laurent polynomial given by

_ s _
ZmGZ m- (pfm/fm_H T kg pf) ’ rkfm/g’“m—l—l

vO(f) =
\/(Zmez rkfm/?mﬂ -m?)

For each fixed §, the arguments in Section 3.4 apply without change to the family Lf,s).
Indeed, the argument in the proof of Lemma 3.23 shows that the line bundle b, is torsion
on each projective stratum Gry Iy D 8 C Gry,p,e up to a line bundle coming from the base.

Therefore, the family
LOW =LY g b?(S(n)/rk)

is eventually relatively ample on each projective stratum of the affine Grassmannian Grpir?, (x)
associated to some data &, D, B. We can use the same argument as in Theorem 4.11 to conclude
the following.



Halpern-Leistner et al., Moduli spaces of sheaves via affine Grassmannians 201

Theorem 6.4. Fix § € Q[n,n~']. The numerical invariant v'®) is strictly ©-monotone
and strictly S-monotone on the stack Pairi (X). m]

6.2. Semistable locus and canonical filtrations when deg(§) > d. Let us define the
degree deg(3) of a Laurent polynomial § to be the maximum among the integers 4 such that nh
has nonzero coefficient in §.

Proposition 6.5. Fix § € Q[n,n™"] with deg(§) > d. Let (¥ ,p) € Pair%(X)(k) be
a field-valued point.

(1) If 6 <0, then (¥, B) is always V) unstable. There is a unique (up to scaling) canonical
filtration f = (Fm)mez that maximizes the numerical invariant v®. It is given by
0 ifm=>=2
.(j:'m == f -

Foifm<2.
(ii) If 6 > 0, then (¥, B) is v®) semistable if and only if the cokernel of B :Alx, — F is
supported in dimension < d — 1. If (¥, B) is unstable, then up to scaling there is a unique

filtration f = (Fin)mez, maximizing v®. It is given by

0 ifm>1,
Fm = {Im(B)** ifm =0,
F if 0 > m.

Here the saturation Im(L)%" denotes the smallest subsheaf Im(L) C Im(L)** C F
such that ¥ /Im(B)%*" is pure of dimension d.

Proof.  For this proof we set D := deg(d).

Proof of (i). Let f denote the filtration described in the proposition. If 81) denotes
the leading coefficient of §, then the leading coefficient of v® ( f) is given by — b This is
=
positive by assumption, and hence f is destabilizing.
For any other filtration f" = (¥,,,)mez with vE £y > 1@ (£) we have

deg(v® (/") = D
The leading coefficient of v ( ') is given by

Ymez ™ wr Kgy 7
\/(ZmeZ rk‘f’ 1y M%)

—8p ZmeZ(m\/rkTr%/?};H) : (\/rkf/n/?"y;-i-l)
tky J Cmez kg, m?)

To understand this formula in the case D = d, we note that the degree d terms in p g /g »
and p ¢ cancel out.
The Cauchy—Schwarz inequality implies that

v@(fMp <

vO(f)p =

—p
NoTa
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with equality if and only if there is single m for which %, /%, .| # 0. In this latter case we
have that f” is equal to f up to scaling. Therefore, f is the unique maximizing filtration for
the pair (¥, B).

Proof of (ii). Suppose that the cokernel of 8 is supported in dimension < d — 1. Let
f = (Fm)mez be afiltration of (¥, B). We shall show that f is not destabilizing. By assump-
tion, ¥ itself is the only saturated subsheaf of ¥ containing Im(f). It follows that %, = ¥
for m < 0. Hence

— s —
Ymsom: (p?m/\'f”m-i-l T kg pff”) K F, ) Fr

vO(f) =
\/(ZmeZ K,y Frpgr m?)

Observe that p

m- (ﬁfm/fm_yl - E _ﬁj«') 'I'kf'm/f’m-i-l <0

for all m > 0, because deg(8) = d, § > 0, and the degree d terms of pz and pg, /5, ., can-
cel whenever 1k, /7, ., # 0. Therefore, every summand in the numerator is < 0, and hence
v@(f) <o.

On the other hand, suppose that the cokernel of f is not supported in dimension < d — 1.
Then Im(B)%" is a proper subsheaf of % . Let f be the filtration defined in the statement of the
proposition. We have

)
] _ — —
V( )(f) - (E +pg — py/lm(lg)sat) : ,/I’kg’/lm(ﬂ)sa:.

The leading coefficient v® (f)p = 6p - \/W /rkg is positive, so this filtration is
destabilizing. We end by showing the following claim: any other filtration f' = (¥, )mez
with V@ (£7) > v ( £) must coincide with f up to scaling. This claim implies that f is the
unique maximizing filtration of (¥, §) up to scaling.

For any such filtration f”, we have seen that the leading term of v® ( f")p is given by

—8p

2mez ™M T Ky 5
.

\/(ZmEZ kg, 57, M)

If some of the ¥;,, with positive weight m > 0 are nonzero, then setting them all to 0 increases
the numerator and decreases the denominator in the formula above. Hence, setting ,, = 0
for all m > 0 defines another filtration f” with bigger numerical invariant, and the equality
V@ (£ = v (£) holds if and only if all nonzero weights m with %, # 0 were negative
to begin with. Therefore, we can reduce to showing the claim in the case when all nonzero
weights m of f are negative. The formula above then reads

8p Y m<o((=m)- rk’f”r%/?;%ﬂ) ’ (\/rk‘?%/j%—&-l)
kg \/ (Xm<otkey 77 - (=m)?)

An application of the Cauchy—Schwarz inequality shows that

5
®) ! < —D . k ’
v (f)p = Ty VIKF 7

v (fp =

v@(fp =
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with equality if and only if there is single m for which %, /%

a1 # 0 and m < 0. Therefore,
up to scaling we can reduce to the case when

0 ifm>1,
Fm = Fy ifm=0,
F  if0>m,

)
O = 2 o
v (f)p g VEEI5g:

Since Im(f)™ is the smallest saturated subsheaf containing Im(f), we have Im(B)*" C F. It
follows that the inequality

5p ) @) pry. _ D
E . k‘?’/lm(ﬁ)szﬁ =V (f)D E v (f )D - E . I.k‘$‘/‘$’6

implies #§ = Im(B)**, and so f' = f. O

and so

Proposition 6.6. Let 6 € Q[n, 1}‘1] with deg(8) > d, and suppose that § > 0. For any
polynomial P € Q[x], let Pairi (X )"P( s denote the open substack of v'®)-semistable pairs
with Hilbert polynomial P. Then:

(1) Pairi (X )});5)-35 does not depend on the choice of 8,

2) Pairi (X )}’3(8)'55 is represented by an algebraic space that is proper and of finite presen-
tation over S.

Proof.  Proposition 6.5 (ii) sglows that Pairi (X )}’,(8)'“ does not depend on §. In fact, the
explicit description of Pairi (X )”P( 55 shows that it coincides with the quotient husk functor
QHuskp (+A) defined by Kollar in [27]. Part (2) follows from [27, Theorem 10]. O

Remark 6.7. When A = Ox and d = 1, the space Pair(lpx (X )}’,(8)'55 described above
recovers the moduli space of stable pairs in the sense of Pandharipande and Thomas [37].

For the rest of this section we will focus on the case when deg(6) < d — 1. These cases
yield more interesting ®-stratifications.

6.3. HN-boundedness for pairs. As preparation for the proof of HN-boundedness, we
prove the following lemmas. Recall that [ is the generalized slope defined in Section 2.3.

Lemma 6.8. For any bounded subset B of geometric points in Coh? (X) and real
number ¢ € R, the subset

C { @ Fn | Fm1 : there exists F € B such that (F1,)mez is a filtration
meZzZ

of ¥ and ((Fy, ) Fins1) = ¢ forallm € Z}

is bounded.
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Proof. Let T be a quasi-compact S-scheme and morphism 7" — Coh? (X) such that B
is contained in the image. The morphism 7" — Coh? (X) is represented by a T'-pure sheaf ¥
of dimension d on X7. By base-changing to X7 and applying Noetherian approximation
(see for instance [47, Appendix C]), we can assume without loss of generality that the base
scheme T is Noetherian. Note that the rank rkg, of the fibers takes only finitely-many val-
ues on 7'. This provides a uniform bound for the number of nonzero graded pieces in each
graded sheaf @,,cy Fn/Fm+1 € ©p,c. We will induct on the maximum N (B) of the number
of nonzero graded pieces in elements of ©p .. The base case N(B) = 1 is clear, since then
Gp,c CH{Fr: l(Fy) = c}.

We proceed with the induction step. For each element @ %,/ Fin+1 € ©p.c, we denote
by Fm,./ Fm,.+1 the nonzero graded piece with largest weight mp,x. Notice that then we
have %7, +1 =0, and so Fm, ../ Fm,u+1 = Fm,, is a subsheaf of a fiber F; satisfying
W(Fm,,.) = c. It suffices to show that the set

{€ : thereexists t € T with & C F; and ji(§) > c}

is bounded, because then we can use the induction hypothesis on the bounded collection B’
consisting of all quotients %; /%y, (note that by construction N(B’) = N(F) — 1).

After passing to a (finite) Zariski cover of 7', and replacing Oy, (1) with Ox,. (M) and
¢ with ¢/M for some sufficiently large M > 0, we can assume without loss of generality
that the ample line bundle Ox. (1) induces a closed immersion i : X7 < Pz. For any point
t € T and any pure sheaf ¥ on X;, the pushforward (i;)«¥ will be a pure sheaf of dimen-
sion d on P/ with [i((i;)+%) = [i(¥). Therefore, we can reduce to the case X = P”" for
the bounded set of sheaves { (i;)«F; : t € T}. Now we can conclude by [25, Lemma 1.7.9],
because the set of Castelnuovo—Mumford regularities {reg((i;)«¥;) : ¢t € T} and the set of
Hilbert polynomials {P(;,),#, : ¢ € T} are both finite by [25, Lemma 1.7.6] (note that the
bound on [25, Lemma 1.7.9] only depends on the Hilbert polynomial and regularity of the
sheaf). ]

Lemma 6.9. Assume deg(6) < d — 1. Let (¥, B) be a field-valued point of Pairi (X),
and let [ be a nondegenerate filtration such that v(‘g)( f) > 0. Then there is another non-
degenerate filtration f' with v® (f") > v (f) that corresponds to an unweighted filtration
09y S 94q-1) S+ & G0 = F withassociated graded sheaves G; := §(;)/G(; +-1) such
that either

() a(E) =a(F)+(d—1)-84_1/tkg foralli, or
Q) fmax(F) = W(Fg) > - > Q(Fj4+1) > (G j-1) > -+ > [1(F0) = [lmin(F).
In case (2), j denotes the largest index such that In(B) C §(;y, and [Lymax(F) (resp. fimin(F))

denotes the maximum (resp. minimum) slope among the graded pieces of the Gieseker—Harder—
Narasimhan filtration of ¥ . Moreover,

_ 1 _
AE) = o (-2 - ik, 380

kg, oy

Proof. Any filtration f; of the pair (¥, B) is given by an unweighted filtration

0% 9 -1 & S0 =7F
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along with a choice of integer weights w := (wo)?=0 satisfying wg < -+ < wg and w; > 0,
where j is the largest index such that Im(8) C & ;. By the definition of the numerical invari-
ant v(g), we have

Yioowi - (Pg, — sy — Py -tkg,
S kg, -0?)

The Laurent polynomial v(®)( Jf&) has degree at most d — 1. Let us denote by vg_;(f;;) and
841 the coefficient of degree d — 1 in v®)( J&) and § respectively. By the formula above,
we have

vO(fz) =

AE)-A(F)  Su_
; "(M( (d)—ll;! = rifl) “tkg,

i=0 Wi
JE i, -u?)

This formula makes sense if we take w to be a tuple of real numbers, so we regard it as
a function vy_; : R4t1\ 0 — R. Note that v;_; is continuous and scale invariant. We will
use the general fact that for any vector % € RYT! and positive definite matrix B, the function
v(w) = (W - i)/~ W - Bw is strictly quasi-concave on the subset of R9*1 \ 0 where v > 0 (see
[19, Lemma 4.1.15]). By this we mean that for any linearly independent vectors w; and 1w, such
that v(w;) > 0 fori = 1,2, one has v(twy + (1 — £)wz) > min(v(wy), v(wy)) forz € (0, 1).

Suppose that the filtration f given in the statement has underlying unweighted filtra-
tion Y. We shall show that one can produce the required filtration f’ satisfying (1) or (2) by
a process deleting steps in the underlying unweighted filtration G and changing the weights w.
Because we are only interested in weights up to scaling by a positive integer, and @) is invari-
ant under scaling, it suffices to construct f” as an R-weighted filtration then observe a posteriori
that f’ has rational weights.

If vg_1(fz) < 0 for all choices of W in the cone of weights

(6.1) va-1(fig) =

Cg, = {0 e R 1wy < --- < wy and w; > 0},

then v ( f&) > 0 implies that vg_1(fgz) = 0. In this case, you must have the coefficient of
each w; vanish in (6.1), or else you could perturb the w; so that vg_1(f) > 0. Thus f itself
satisfies condition (1) of the lemma.

Otherwise, assume for the moment that there exists a w* that maximizes vg_; on Cg,
and such that vy_;(f;z+) > 0. This means that either:

(A) w]* > 0 and the weights are an unconstrained local max of vg_; on all of R¢T1\ 0, or
(B) the weights are an unconstrained local max of v;_; on the subspace {w; = 0} C R? 1y 0.
Either way, the critical point equations imply that

AE)—aF) 3d—1)
d—1)! kg

(6.2) w¥=0- (

for some positive rational number Q and all i # j. The weight wj* is either O in case (B) or
is given by the same formula (6.2) in case (A). Therefore this maximizer occurs at a rational
point. It is unique because vy _1 is strictly quasi-concave. Thus if the original weights of f are
not a multiple of this maximizer w*, then vg_1(f) < vg—1(fiz+), so we can set f/ = fgzx.
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The inequalities in condition (2) of the lemma now follow from combining the explicit formula
for w} in terms of fi(G;) and the hypothesis that w§ < -+ < Wy N

In general, vy_; does not achieve a maximum on Cg,. However, if we denote by Cg,
the closure of Cg, in R9*!, then the continuous function vz_; must achieve a maximum on
the compact space (Cg, \ 0)/ RZ,. In particular, vz _; must attain a global maximum at some
point of Cg, \ 0, which is unique up to scaling because of the strict quasi-concavity of vg_;. If
this maximizer does not lie in Cg,, then it must lie on one of the boundary components where
w; = wj+1. The restriction of v;_; to this boundary component can be identified with the
formula (6.1) on the cone of weights Cg;, where &, is the unweighted filtration obtained from
Y. by deleting the i-th step. Hence, after deleting finitely many steps we get an unweighted
filtration §, such that v;_; does admit a maximum w* on Cg;. We have already shown that
the resulting filtration f ! satisfies the condition (2) of the lemma. Furthermore, f ., max-
imizes vy_; on Cyg, \0 by construction, so vg_1(f) < vgz_ 1(fa ), which in turn 1mphes
v () <v®(fLL).

The 1nequal1t1es With [lmin(F) and fimax(F) follow from the fact that §¢ and ﬁ are
pure quotients and subobjects of ¥ respectively. Finally, the formula for fi(§;) follows from
the additivity of Hilbert polynomials. O

Proposition 6.10 (HN-boundedness). Fix § € Qn,n Y\ withdeg(8) <d — 1. Let T be
an affine Noetherian scheme. Let g : T — Pair? %(X). Then there exists a quasi-compact open
substack U of Pair A(X ) satisfying the following: For all geometric points t € T and all
v _destabilizing filtrations f of g(t), there exists a nondegenerate filtration [’ of g(t) with

o € Ur and v () = v® ().

Proof. The natural forgetful map Forget : Pairi (X) — Coh?(X) is quasi-compact by
Proposition 2.15. Hence, it suffices to show that there is a quasi-compact open substack ‘Wr of
Coh? (X)) such that for all destabilizing filtrations f for a pair g(¢) as in the statement of this
proposition we can find a filtration /' such that Forget( f’]o) € Wr and v® (") = v@® (f).

The morphism 7" — PairdA (X) is represented by a pair (¥, B) consisting of a T -pure
sheaf ¥ of dimension d on X7 and a morphism B : Ay, — F. Lemma 6.8 shows that it
is sufficient to find a uniform lower bound C such that for all # € T and all destabilizing
filtrations f of the pair (Fx,. fx,). there exists another filtration f’' = (F,)mez satisfying
V(£ > @ and f(Fpn/Fms1) = C forallm € Z.

By Lemma 6.9, we can always find a filtration £’ with v® (f”) > v©®) () and such that
forall i # j the associated graded piece §; satisfies either

() @) = A(F1) + (d — 1) 84-1/rkg,, or
(2) ﬁmax(‘(Ft) = ﬁ(gl) = /tzmin(?t)-
Since the family #; is bounded, either case yields uniform upper and lower bounds for [i(§;)

if i # j. The slope of the remaining associated graded piece ?1- can be bounded using the
formula

~ 1 e ~ =
AE) = (rkf, A=Y kg -u(ﬁi))
g i#]
from Lemma 6.9, because we have established that all the terms in the right-hand side admit
uniform upper and lower bounds. O
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6.4. ©O-stratifications on Pair‘j% (X).

Theorem 6.11. Let § € Q[n, n~"] with deg(8) < d — 1. Then the invariant v® defines
a weak ©O-stratification of the stack Pairzi (X). If the scheme S is defined over Q, then v(®
defines a ©-stratification.

Proof.  We use Theorem 2.27 (1). By Theorem 6.4, the invariant ICEN strictly ®-mono-
tone. On the other hand Proposition 6.10 implies that v®) satisfies the HN-boundedness con-
dition. O

In particular, every unstable pair (¥, 8) defined over a field admits (after maybe passing
to a purely inseparable field extension) a canonical filtration (F,;,);,ez that maximizes the
numerical invariant v®) . Such canonical filtrations are unique up to scaling the weights.

One interesting feature of the “non-abelian” moduli problem Pairfi (X) is that the canon-
ical filtration (F7,)mez of a pair (¥, ) need not be convex with respect to the numerical
invariant. This is illustrated by the following example.

Example 6.12. Set§ =0.Let X =Pland A=0.Set F =0(5) @ O(1) ® O. We
define B : @ — F to be the inclusion into the last component. Then, the canonical filtration
(Fm)megz of the pair (¥, 5) is given up to scaling by

0 form > 3,

7, = o(5) for3>m > 0,
OB for0>m> —1,
F for —1 > m.

The associated graded pieces are @ (5) in weight 3, @ in weight 0, and @ (1) in weight —1.

This phenomenon (i.e., nonconvexity of canonical filtrations) does not arise for the mod-
uli stacks Coh? (X) and A Coh? (X).

Remark 6.13. We note, however, that the canonical filtration of a pair is always “nearly
convex”. More precisely, one can modify the proof of Lemma 6.9 (possibly replacing vy _; with
a lower order term) to see that the numerical invariant v(®) of the graded pieces Fy, / Fn4+1 will
form a convex sequence except possibly at £/ F7.

Remark 6.14. The canonical filtration coming from the ®-stratification agrees with the
Harder—Narasimhan filtration for Bradlow pairs in the case of rank 2, as defined in [45].

In higher rank, we find a definition of Harder—Narasimhan filtrations for Bradlow pairs in
[33, 3.3.2]. It is interesting to note that our canonical filtration does not necessarily agree with
Mochizuki’s Harder—Narasimhan filtration when the rank is bigger than 2. As an example, take
Example 6.12 for some constant 0 < § < 1.

6.5. Moduli spaces for pairs. Let§ € Q[n, n~!] with deg(§) < d — 1. Since the invar-
iant v®) induces a weak O-stratification, it follows that the locus of v(®)-semistable pairs is
an open substack of Pairi (X). We denote this open substack by Pairi (X )"(8)'55. For each
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rational polynomial P € Q[x], we set Pairfi(X )‘;,(6)‘53 to be the open and closed substack
of Pairi (X )"(6)‘SS parametrizing @) _semistable points such that the underlying pure sheaf
has Hilbert polynomial P.

Proposition 6.15. Assume deg(8) < d — 1. The stack Pairi (X )}’3(8)'55 is quasi-compact.

Proof. By Proposition 2.15, the forgetful morphism Pairi (X) — Coh?(X) is quasi-
compact. Hence, it suffices to show that the image of

Paird (X% — Coh? (X)

is quasi-compact. Let k be a field and let (¥, B) € Pairfi (X )}(5)'53 (k). We want to show that ¥
belongs to a fixed bounded family relative to S. By Noetherian approximation and [28, Theo-
rem 4.4], it suffices to show that there exists a uniform upper bound o such that every proper
saturated subsheaf & C ¥ satisfies ji(&) < wo.

Let §7_ denote the coefficient of 791 in the Laurent polynomial 8. Note that the slope
[A(F) and rank rk¢ are fixed, since they only depend on P. We claim that

e, Ba
Mo = [i(F) +——

kg
is a valid upper bound. To see this, let & C F be a proper saturated subsheaf. Consider the
filtration f = (F;)mez of the pair given by

0 ifm>1,
Fm =48 ifm=1,
F if0<m.

Then we have v® ( f) = /Ikg - (Pe — % — 7). The leading coefficient in degree d — 1 is

given by
Sd—
VO (f)a-1 = Vike - (ﬁ(S) . —ﬁ(?))-

Since (¥, B) is semistable, we must have v®) ( f);_; < 0. This implies that

R R Sa_
aE) < a(F) + 41,
k¢

as desired. O

In order to check the existence part of the valuative criterion for properness for pairs,
we will use the following.

Proposition 6.16. Let R be a complete discrete valuation ring with fraction field K.
Suppose that we are given a 2-commutative diagram as follows:

Spec(K) — Coh?(X)

! |

Spec(R) ——— S.
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Then there exist a morphism Spec(R) — Coh? (X)) such that the diagram

Spec(K) — Coh? (X)

I 1

Spec(R) ——— S
is 2-commutative.

Proof. The map Spec(K) — Coh? (X) amounts to a pure sheaf ¥ of dimension d
on Xg. By [50, Tag O1PF] we can extend it to a coherent sheaf ¥ on X R. Let @ be a uni-
formizer of R and let k denote the residue field. Let j : Spec(K) <> Spec(R) denote the open
immersion. Then we can kill the w-torsion by taking the image of the unit F - Jx] 7,
so we can assume without loss of generality that ¥ is R-flat. Let B C fK be the maximal
subsheaf of dimension < d, and form & = ker(3v~‘ — Fr /B). We can again replace & with
ker(6 — & /B’), where B’ C & is the maximal subsheaf of dimension < d. The proof of
[25, Theorem 2.B.1]% applies verbatim to show that iterating this procedure results in a sheaf &
with €|y, pure and &y, = ¥ |x - This is the morphism Spec(R) — Coh? (X) that we were
looking for. |

Theorem 6.17. Suppose that deg(6) < d — 1. Choose a Hilbert poglynomial P € Qlx].
Suppose that the scheme S is defined over Q. Then the stack Pairi (X )}’,( s admits a proper
good moduli space over S.

Proof.  'We use Theorem 2.27 (2). First, @) js strictly ®-monotone and strictly S-mono-
tone by Theorem 6.4. HN-boundedness follows from Proposition 6.10. On the other hand,
Proposition 6.15 implies that the stack Pair? G (X)) P 5 is quasi-compact.

We are only left to check that Pair? "4 (X)) satisfies the existence part of the valuative crite-
rion for properness. Let R be a complete discrete valuation ring over S with fraction field K
and uniformizer w € R. Let (¥, B) be a pair on X (k- By Proposition 6.16, we can extend ¥
a R-pure sheaf ¥ of dimension d on Xg. Since ¥ is R-flat, for any n > 0 we have an mclu-
sion ¥ C w™" - ¥ that restricts to an isomorphism on the generic fiber Xg. The morphism
B:Alx, = F extends to a morphism ,g cAY, > - F for some n > 0. The resulting
pair (w ™" - 7. ,g) on X g extends (¥, B), as desired. |

Remark 6.18. The same proof as in Proposition 6.5 (i) shows that the @) _semistable
locus is empty whenever § < 0. Hence, we can restrict our attention to § > 0 for the purposes
of studying the moduli space.

Example 6.19. If § = 0, then a pair (¥, 8) is v®)-semistable if and only if the sheaf
F is Gieseker semistable. Indeed, given any destabilizing filtration f of & we can obtain a fil-
tration f” of the pair (¥, B) by shifting the weights so that F( contains the image of . Since
1 remains unchanged after shifting weights, it follows that f” is a destabilizing filtration for
the pair (¥, B).

2 The smoothness hypothesis is unnecessary for the argument. Using the notation in [25], a sheaf is
semistable in Cohy 4_; if and only if it is pure of dimension d.
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Using the scaling action on ¥, one can show that every such semistable pair (¥, )

. . s .. . . 8)_
contains the semistable pair (¥, 0) in its closure. Thus, the moduli space of Palri (X )"( s
agrees with the moduli space of Gieseker semistable pure sheaves on X.

Next we give an alternative description of v(®)-semistability in this case when § > 0. This
shows that our stability condition is analogous to the notion of §-stability for coherent systems
considered by Le Potier [29]. See also [48] for a formulation that is closer to ours.

Proposition 6.20. Suppose that deg(8) < d — 1. Let (¥, B) be a field-valued point of
Pairi (X). Let § € Q[n,n" Y] with § > 0. Then (¥, B) is v ( f)-semistable if and only if the
following two conditions are satisfied:

(@) B #0.
(b) All proper saturated subsheaves & C ¥ satisfy
_ § :
Py + —— =Deg if Im(B) £ €,
rk¢
8
D —>7 — ifl Cé&.
Py + iy = e + ke if Im(p)

Proof.  'We show that “semistability” implies (a) and (b). Suppose that (a) is not satisfied,
so B = 0. Then the filtration f = (F1,)mez given by

. 0 ifm>—1,
j’m =
Foif—1>m,

is a destabilizing filtration for the pair (¥, §). On the other hand, suppose that (b) is not satis-
fied. Let & C ¥ be a proper saturated sheaf violating condition (b) above. We show that (¥, )
is unstable in each case.

(C1) Assume that Im(B) ¢ &. Let f = (Fm)mez denote the filtration of (¥, B) defined by

0 ifm>1,
Fn=186 ifm=1,
F if0>m.
Then we have B 5 B
VO (f) = (Pe — iy — Ps) ke
kg

By assumption, this is strictly positive, and hence f is a destabilizing filtration.
(C2) Assume that Im(8) C &. Let f = (F)mez denote the filtration of (¥, ) defined by

0 ifm>0,
Fm =136 ifm=0,
Fif 0> m.

Then we have 5
(—Pgie + 57 + P5) Kgye

@)y —
v (f) e
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Note that this can be rewritten as follows:
Y = —— + — - -——.
() e (pg e 7T,

By assumption this is strictly positive. Therefore f is a destabilizing filtration. This
concludes the “only if” direction.

We show that (a) and (b) imply “semistability”. Suppose that (¥, B) satisfies conditions
(a) and (b) in the statement of the proposition. Let f = (F;;;)mez be a filtration of (¥, B). We
shall show that f is not destabilizing. By definition, the numerical invariant is given by

1

\/(ZmEZ rk?m/g”m-i-l ’ m2)

_ 5 _
’ (Z m: (pf'm/fmﬂ - E _p?) 'rkfm/?"m-i—l
m>1

_ s _
+ Z m'(pﬂ”m/’f”mH_E_pf)'rkfm/fmﬁ)'

m<-—1

?m-:l#?

6.3) vO(f) =

Two applications of summation by parts produce the following two equalities:

_ §
(6.4) Q. m: (me/me - Pf'?) 1K F ) Fonr
fkf
m>1
S (75— 5 75 ) 1
= Fw — =~ Py | 1K,
et k¢

_ 5 _
Z m‘(p-?rm/?'m+l_E_pﬁ).rkym/fm-i-l
1

m<—
Fn1#F

_ 8 _
- Z (pf/-{pm-l—l_rkf_pf)'rkf/fm_H'
m<—1

?m-:ﬁ‘é?’d

We can use (6.4) to rewrite the summations appearing in formula (6.3). This yields

8
Z (ﬁfm - —?37) -1k g,

m=1 I‘ky,“

65 vO(f) = 1 - (
\/(ZmEZ I-1(-(127111/-77m-i-1 : mZ)

_ 8 _
+ Z (p7/7m+1 _E_p?) 'rk?/?’mﬂ)-

m<-—1

Fn1#F
Let us further rewrite the terms in the second summation appearing in (6.5) above. For each
m < —1, we have
Im(B) C Fm+t1.
Since B # 0, we have
37m+1 7é 0.
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If in addition ¥,,41 # ¥, then we have

_ 5 _
(6.6) - (Pﬁ/%,,ﬂ T kg Pﬁ) K7/ 7,
(_ + 5 D 5 ) k
=|p —p — — | I f‘m .
?m-&-l rk?m_t,_] F I‘k}’ +1
Using (6.6), we rewrite equation (6.5) as
®) ! LA
6.7 v(f) = > PFy ~ g~ P7 ) K,
\/(ZmeZ K,/ Frr mz) m=1 ¥
] )
+ (ﬁf'm + —Dg — —) . rkgrm .
m§1 kg, kg i

?(m-ﬁ-l?é?(

In order to see that f is not destabilizing, we shall show that each term in the two summations
appearing in (6.7) is < 0.

(1) We show
8 ]
U P
m;l ( +1 I‘kj:m_H rkf' +1
?m-i-l?éj:

For all m < —1 with ¥,,41 # ¥, we know that Im(B8) C F;,+1 & F. Therefore, by
condition (b), we have

) )
7 — Py —— ) kg . <0

for each term in the sum.

(2) We show

8
Py —— —Pg | -tkg, <O.
Z(me Ky P'f) IKFy =

m>1

Letm > 1. If Im(B) ¢ F, then condition (b) implies that

5
Dy —— —Dg | -tkg. <O.
(me kg P.‘F) IKg,, =

On the other hand if Im(8) C %3, then we know that ,, # 0 and

1 1
¥ — _p.— ") .-tke <O.
(me + kg Py I'kg,') Ky, =

Using the fact that § > 0, we get the chain of inequalities

) 8 8
Py —— —Pg | ke < (P — —Pg—— ) -tkg <O,
(Pﬁm kg Pﬁ) Fm = (Psvm + Ky, Dy rky:) Fn =

thus concluding the proof. O
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Example 6.21. (1) Suppose that § > 0 with deg(§) < —1. In this case, Proposition 6.20
implies that a pair (%, B) is v®)-semistable if and only if B # 0 and ¥ is Gieseker semistable.
The resulting moduli space of Pairi (X )"(5)'Ss is projective over the moduli space of Gieseker
semistable pure sheaves on X.

(2) Fix the choice of a Hilbert polynomial P. We restrict to the moduli stack Pairi (X)p
parametrizing pairs with Hilbert polynomial P. Let § be a positive (constant) rational number.
If § is small enough, then Proposition 6.20 implies that a pair (¥, ) € Pairi (X)p is semi-
stable if and only if B # 0, the sheaf ¥ is Gieseker semistable, and all proper subsheaves
& C ¥ with pg = pg satisty Im(B) ¢ €. If 4 is Gieseker semistable with the same reduced
Hilbert polynomial as %, then this last condition is equivalent to requiring that # /Im(B)%* is
Gieseker stable.

(3) Suppose that S = Spec(k) for a field k. Let X be a smooth projective geometri-
cally connected curve over k, equipped with the choice of a polarization Ox (1). Set A = Oy
and take d = 1. Then Pair}QX (X) is the stack classifying vector bundles on X along with the
choice of a section. We can take § to be a constant in Q. If § > 0, then Proposition 6.20 shows
that v(‘s)—stability coincides with stability for Bradlow pairs as considered by Thaddeus in his
work on the Verlinde formula [45].> Therefore, we recover the moduli space of §-semistable
Bradlow pairs.
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