Raising the Level of Abstraction for Sketch-Based Network
Telemetry with SketchPlan

Milind Srivastava*
Carnegie Mellon University
Pittsburgh, PA, USA

Shao-Tse Hung
National Yang-Ming Chiao Tung
University

Hun Namkung
Carnegie Mellon University
Pittsburgh, PA, USA

Taipei, Taiwan

Kate Ching-Ju Lin
National Yang-Ming Chiao Tung
University
Taipei, Taiwan

ABSTRACT

While sketch-based network telemetry is attractive, realizing its po-
tential benefits has been elusive in practice. Existing sketch solutions
offer low-level interfaces and impose high effort on operators to sat-
isfy telemetry intents with required accuracies. Extending these ap-
proaches to reduce effort results in inefficient deployments with poor
accuracy-resource tradeoffs. We present SketchPlan, an abstraction
layer for sketch-based telemetry to reduce effort and achieve high
efficiency. SketchPlan takes an ensemble view across telemetry in-
tents and sketches, instead of existing approaches that consider each
intent-sketch pair in isolation. We show that SketchPlan improves
accuracy-resource tradeoffs by up-to 12x and up-to 60x vs. base-
lines, in single-node and network-wide settings. SketchPlan is open-
sourced at: https://github.com/milindsrivastaval997/SketchPlan.

CCS CONCEPTS

* Networks — Network measurement; Programmable networks;
Network monitoring; In-network processing.

KEYWORDS

Sketching algorithms; Network measurement; Network telemetry

ACM Reference Format:

Milind Srivastava, Shao-Tse Hung, Hun Namkung, Kate Ching-Ju Lin,
Zaoxing Liu, and Vyas Sekar. 2024. Raising the Level of Abstraction
for Sketch-Based Network Telemetry with SketchPlan. In Proceedings of
the 2024 ACM Internet Measurement Conference (IMC '24), November
4-6, 2024, Madrid, Spain. ACM, New York, NY, USA, 8 pages. https:
//doi.org/10.1145/3646547.3689016

1 INTRODUCTION

Network telemetry is essential to observe traffic and drive down-
stream management tasks such as traffic engineering and anomaly
detection. Operators specify telemetry intents to measure statistical

*Corresponding author: milindsr@andrew.cmu.edu

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

IMC 24, November 4-6, 2024, Madrid, Spain

© 2024 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-0592-2/24/11

https://doi.org/10.1145/3646547.3689016

Zaoxing Liu
University of Maryland
College Park, MD, USA

Vyas Sekar
Carnegie Mellon University
Pittsburgh, PA, USA

Status Quo of Sketch- SketchPlan Raises the

Based Telemetry Level Of Abstraction
Observed Error Target: Error Target:
Error: () <3% for all Observed Error: <3% for all

10% DY 5% 2.7% 2% 2.5% _2.2%
|Intent 1 | |Inten‘t 2l |Intent 3| |Intent 1 | |Intent 2 |l | Intent 3 | | Intent 4|

SketchPlan
R -
m (;) gketch selection (3) End-to-end
(2) Resource estimation
[Sketchi ||Sketch2||Sketch3| |Sketch1] [Sketch2| [Sketch3| [Sketchd
High Effort, Inefficient Low Effort, Efficient

configuration

Figure 1: SketchPlan raises the level of abstraction for sketch-
based telemetry.

properties of network traffic in different dimensions such as “the

number of unique 5-tuples in the network™ or “top 10 source IPs

sending traffic to the network”

While sketches [7, 10, 15] are a promising solution to reduce
resource usage and thus telemetry costs, practically realizing the
benefits of sketches is challenging on two fronts:

e High operator effort: To meet intents’ accuracy needs, existing
solutions require manual effort to understand algorithms, map
each high-level intent to suitable sketches, and configure sketch
resources appropriately. Even recent novel sketches [20, 27, 31, 33],
sketch optimizations [19, 23, 32], and data plane frameworks (e.g.,
Sketchovsky [24], HeteroSketch [4]) lack high-level interfaces.

o [nefficient configuration: Extending existing approaches to pro-
vide a high-level interface, results in inefficient accuracy-resource
tradeoffs. A key reason is that existing solutions [4, 23, 24, 28]
view each intent in isolation. Thus, these are fundamentally ineffi-
cient for practical use where operators care about measuring and
optimizing multiple intents jointly, not just one intent.

We argue that reducing operator effort requires raising the level of
abstraction of sketch-based telemetry. Instead of requiring operators
to manually map their telemetry intents and configure sketches,
we envision an abstraction layer called SketchPlan. In SketchPlan,
operator specifies high-level intents of interest with accuracy targets,
such as measuring the entropy and cardinality of 5-tuples with 90%
and 95% accuracies, respectively. SketchPlan automatically maps
these intents to sketches with appropriate resource configurations.

By raising the level of abstraction, SketchPlan also enables novel
opportunities for efficiency via an ensemble view of all intents and

https://github.com/milindsrivastava1997/SketchPlan
https://doi.org/10.1145/3646547.3689016
https://doi.org/10.1145/3646547.3689016
https://doi.org/10.1145/3646547.3689016

IMC 24, November 4-6, 2024, Madrid, Spain

sketches. Instead of viewing each intent-sketch combination in iso-
lation, SketchPlan leverages inherent opportunities for cross-intent
and cross-sketch optimization to offer significantly better resource-
accuracy trade-offs. For instance, MRAC [17] and CountSketch [7]
may be optimized to measure entropy and heavy hitters in isolation;
but given both intents, a single UnivMon [20] instance may be better.

We address key technical challenges in realizing SketchPlan’s
vision. We provide the first practical formulation for mapping an en-
semble of intents to sketches. SketchPlan implements an extensible
sketch coverage map capturing the coverage capability of sketches
for various queries. To achieve desirable accuracy-resource trade-
offs for the intent ensemble, SketchPlan uses offline error-resource
profiles that characterize different query-sketch maps. We show a
practical and robust mechanism for generating such profiles. Finally,
we show how SketchPlan provides benefits in practical single-node
and network-wide settings.

We evaluate SketchPlan on diverse operator intents and deploy-
ment regimes. SketchPlan improves accuracy-resource tradeoffs
over strawman solutions by up-to 12x on a single node and up-to
60x in network-wide settings; successfully providing a high-level
and efficient sketch abstraction layer. We show that SketchPlan’s
benefits are robust in the face of progressively-older error-resource
profiles and that SketchPlan’s design is crucial to providing efficient
sketch-based telemetry.

2 MOTIVATION AND RELATED WORK

We illustrate how the status quo in sketch-based telemetry imposes
significant effort and inefficiency on operators, and why prior work
does not address these problems.

2.1 Background on Sketch-based Telemetry

Operators want to specify high-level telemetry intents to measure
statistical properties that drive their monitoring use cases. Each intent
specifies a query to measure and an optional accuracy target, wherein
each query specifies a statistic/metric to measure on a certain flow-
key. Operators may also specify bounds on data plane resources to
be used for telemetry. For example, an operator may want to measure
the entropy and cardinality of traffic with 90% and 95% accuracy,
respectively, with only 512KB memory resources. Accuracy targets
are driven by requirements from downstream use cases.

Since processing all traffic is expensive and traditional sampling
techniques can be ineffective, sketches emerged as a promising
telemetry solution. A sketch is a randomized approximation al-
gorithm to summarize data streams such as network traffic, and
generate approximate estimates of various statistics. For instance,
CountMin [10] can identify large network flows (heavy hitter) while
MRAC [17] can estimate entropy.

2.2 Illustrative Scenario

To understand the limitations of the status quo, consider a simplified
operational use case. An operator in a Network Operations Cen-
ter [3] wants to monitor the network for traffic engineering and
anomaly detection tasks. To support these, they may be interested
in measuring the cardinality, entropy and top 50 heavy hitter flows
with some target accuracies.

Milind Srivastava et al.

= (Query, Accuracy target); Example Query = (entropy, 5-tuple)

Intent 1| |Intent 2| |Intent 3| |Intent 4 O

| ||nen ||nen ||nen | /5 &l O
N S S sl gl O
[Sketch 1][sketch 2] [sketch 3] 205 O

Effort: (1) Selection

Figure 2: Practically leveraging sketches to estimate intents re-
quires high operator effort.

(2) Configuration (3) End-to-end Estimation

Prior work Selection | Configuration | End-to-end
e | x| x X
Oedas | x| X X
orehestaton 4] X X v
compiles 115,251 x v X
SketchPlan 4 4 4

Table 1: Prior work in sketches provides operators with low-level
interfaces that entail high effort.

Supporting these intents using sketches is easier said than done.
Let us conceptually walk through the effort that an operator must
exert today to estimate these intents [21] (Figure 2).

o Sketch selection: First, the operator must manually comb through
the sketch literature to find specific sketches that support each in-
tent’s query. The design space here is large and complicated. For ex-
ample, should they pick a query-specific sketch (e.g., MRAC [17]
for entropy), or should they pick a “general” sketch like Univ-
Mon [20]. Either way, there are multiple query-specific and general
sketches that the operator must pick from. With no guidelines to
follow, the operator is forced to speculate on the sketches to deploy.
Poor sketch selection can undermine or even nullify the value of
using sketches (as we show in §4).

o Configuration: Second, they must speculate about which sketch is
efficient in their deployment, and guess the amount of data plane
resources to allocate to each chosen sketch. Again, there is little
support in existing literature to guide such configurations, and how
theoretical error guarantees may translate into workload-specific
empirical behavior. Poor configuration can lead to estimation errors
that cause cascading failures in the operator’s downstream tasks.

o End-to-end estimation: Third, the operator needs end-to-end es-
timates of the intents across the network and across various traf-
fic sub-populations of interest such as specific ports and origin-
destination pairs. While there are some recent efforts on this
front [4], they do not address the first two requirements, entail
high effort and are inefficient.

2.3 Related Work and Limitations

Existing work in sketch-based telemetry can be classified into four
broad themes that we discuss below.

Novel sketches: There are several novel sketches for supporting
multiple metrics [20, 27, 31], or multiple flow-keys with the same
data plane implementation [6, 9, 33]. While valuable, these works
provide low-level interfaces that do not address the selection and
configuration tasks discussed above.

Raising the Level of Abstraction for Sketch-Based Network Telemetry with SketchPlan

[intent 1][Intent 2][Intent 3 | s [intent 1][Intent 2 | [intent 3 | intent 4 |

~ .~ |

[Sketch 1][sketch 2] [Sketch 3] [Sketch 4]

1/4
| 13
[sketch 1][sketch 2|[sketch 3] | 1/3

(a) (AnyFeasible, Uniform) (b) (Greedy, Proportional)

Figure 3: Strawman solutions for sketch selection and configura-

tion offer poor accuracy-resource tradeoffs.
Resource

Approach Sketches Usage Errors
. . HLL: 256KB
(AnyFeasible, Uniform) MRAC: 256KB 512KB 0.7%, 9.7%
(Greedy, Proportional) UnivMon: 512KB 512KB 18.4%, 2.7%
UnivMon: 320KB
SketchPlan MRB: 128KB 448KB 2.8%,0.4%

Table 2: Toy scenario showing inefficiency of strawman solutions.

Optimized data plane: Recent efforts [11, 19, 23, 24, 32] have
proposed optimizations to existing sketch implementations or collec-
tions of sketches, e.g., Sketchovsky [24] re-uses data plane resources
across multiple sketches to reduce resource overhead. These works
too require the operator to manually select and configure sketches.

Network wide orchestration: HeteroSketch [4] orchestrates sketches
in a network-wide fashion, but provides a low-level interface, requir-
ing operators to specify the sketches to deploy and their resource

configurations.

Sketch compilers: AutoSketch [28] compiles a stateful operation
like reduce or distinct to a sketch. However, it does not address
operator effort in selection and end-to-end estimation, and considers
each intent in isolation, leading to poor accuracy-resource tradeoffs.
MAFIA [18] requires operators to select and configure sketches
manually.

3 SKETCHPLAN DESIGN

Case for an abstraction layer: In the previous section, we saw
that while sketches are a powerful capability, current sketch-based
solutions offer low-level interfaces that require high operator effort.
To bridge the significant disconnect between an operator’s high-
level intents and the existing low-level sketch-based offerings, we
argue for a sketch abstraction layer for operators to specify high-
level intents. Here, each intent specifies a query to measure and an
accuracy target.

3.1 Strawman solutions and limitations

Building this abstraction layer entails two parts: (1) Intent-to-sketch
Selection: Determining sketches to support an ensemble of intents;
and (2) Resource Configuration: For each selected sketch, we need
to allocate data plane resources.

We consider a few seemingly-natural solutions for sketch selec-
tion and configuration. Intent-to-sketch selection can be done by (1)
(AnyFeasible): randomly picking a sketch capable of estimating an
intent, or (2) (Greedy): using a general sketch like UnivMon [20] to
cover as many intents as possible and {AnyFeasible) for other intents.
Resource configuration can be done by (1) (Uniform): assigning
equal resources to each sketch, or (2) (Proportional): assigning re-
sources proportional to the number of intents estimated by a sketch.
We can combine these to create four strawman approaches. Figure 3
shows two illustrative strawman combinations.

IMC "24, November 4-6, 2024, Madrid, Spain

Inputs: Sketch library Ensemble of Intents Resource
[I[| | I | Constraints

[sketchPlan 1 \ /

Mapper Sketch coverage map T
: Optimizer
5| Profiler | Error-resource profiles /
[| [| [| [| 3/5
Outputs: \ ./ / / 1/5
[I I | 2/5

Intent-to-sketch selection Resource configuration

Figure 4: SketchPlan’s three modules take an ensemble view of
intents and sketches to estimate intents optimally.

Consider a scenario where the operator wants to measure cardi-
nality and entropy with 512KB of memory. Table 2 shows the sketch
selection and configuration of Figure 3’s strawman approaches, and
their poor accuracy in measuring these intents. SketchPlan achieves
both better average accuracy and lower resource usage.

3.2 SketchPlan’s key insight: Ensemble view

Instead of myopically optimizing for each intent in isolation, our
approach takes an ensemble view across intents and sketches. This
allows SketchPlan to leverage cross-intent and cross-sketch interac-
tions, and achieve high efficiency for the entire ensemble. We argue
for an ensemble view along two dimensions:

o Query coverage: Our first insight is to explicitly map the queries
that can be estimated by each sketch. This allows SketchPlan to
explore different sketch selections for a given ensemble of intents.

o Accuracy-resource tradeoffs: Our second insight is to empirically
capture the accuracy-resource tradeoffs for different sketch-query
pairs, allowing SketchPlan to explore the space of resource config-
urations for a set of sketches to deploy.

An ensemble view is beneficial due to three reasons. (1) First, even
sketches not designed to be “general” can estimate multiple queries.
For e.g., CountSketch [7] can estimate heavy hitters, change detec-
tion, and entropy. (2) Next, while a sketch could estimate multiple
queries, it may not be optimal at estimating all of them. For e.g.,
UnivMon [20] can estimate both heavy hitters and cardinality but is
outperformed by HyperLogLog [15] for cardinality estimation, intu-
itively explaining why (Greedy) strawmen perform poorly. (3) Last,
accuracy-resource tradeoffs vary for different queries, and exhibit
different shapes; e.g., doubling the resources of a sketch may halve
the error of one query, but provide only 10% gain for another. Thus,
optimal sketch selection and configuration depends on the queries to
measure and available resources; explaining why resource-agnostic
strawmen like (Uniform) and (Proportional) perform poorly.

3.3 Detailed Design

Figure 4 provides an overview of SketchPlan. SketchPlan takes three
inputs: (1) a library of sketches, (2) an ensemble of intents, and (3)
data plane resource constraints. Each intent specifies a query and an
optional accuracy target. Each query specifies a metric to measure,
the flow-key of traffic to measure it on, and an OD-pair to measure
traffic between. Similar to prior work [4, 20], each OD-pair specifies
an origin and destination network node and represents traffic flowing

IMC 24, November 4-6, 2024, Madrid, Spain

Milind Srivastava et al.

Notation _ Definition Minimize O1: avg;crerr(i.q, map(i)) or 02: Y, d.r
Inputs .)) ~ deD

1 Set of intents. Each intent i has a query g and an optional error bound subject to: Viel | cov(map(i).s,i.q) == ()]

err. Viel | map(i).f ==i.q. 2
Q Set of queries. Each query g is a metric, flow-key, and OD-pair tuple) I p(i).f q.f @

(m, £, p). Vieldne (l.q.p)Pa,h | map(i).n==n 3)
Ppath Set of nodes on the path of OD-pair p.
S Library of available sketches. YneN | (d.r)s np)
ng Resource bound on node n. deD|d.n==n
obj Objective function to minimize.

<
Outputs Viel |err(i.qmap(i))<i.err 5)

D Set of sketch deployments. Each sketch deployment d(s f,,,r) represents . e e

the deployment of sketch s configured with flow-key f and resources r Figure 5: Optimization problem solved by SketchPlan.

on node n.

map(i) Function that maps each intent i to a sketch deployment d.

Internal functions

cou(s,q) Boolean function representing if sketch s can estimate query g.
err(q,d) Function representing the error in estimating query g by sketch deploy-
ment d.

Table 3: Notation for optimization problem formulation.

between these. SketchPlan’s output is a selected sketch for each
intent and resource configurations for each sketch, on each node.

To produce this output configuration, SketchPlan leverages the
three modules described below:

Mapper: This module allows SketchPlan to have an ensemble view
of query coverage. Given a library of sketches, this module examines
the coverage capability of each sketch and generates a sketch-metric
coverage map (represented by a bipartite graph similar to Figure 3).
By selecting different edges in the map, SketchPlan can explore di-
verse sketch ensembles to estimate an intent ensemble. §3.5 specifies
the entire set of sketches and metrics we implement.

Profiler: This module allows SketchPlan to have an ensemble view
of accuracy-resource tradeoffs. Given a library of sketches and some
historical traces, this module generates error-resource profiles for
each sketch-metric pair. An error-resource profile captures the esti-
mation error of a sketch for a given metric with changes in resource
configuration. To generate these profiles, the Profiler runs sketches
offline on the historical traces and considers the median error across
traces. Empirical profiling allows SketchPlan’s Optimizer (discussed
below) to quantitatively compare different intent-to-sketch selections
and configurations, and identify the optimal solution.

Optimizer: The Optimizer takes an ensemble view of the opera-
tor’s intents, resource constraints, sketch coverage capabilities, and
error-resource tradeoffs. It formulates a network-wide optimization
problem that explores deployments where each intent can be esti-
mated by any candidate sketch (as given by the Mapper) and any
resource configuration that satisfies its accuracy target (as given by
the Profiler). For network-wide intents, the selected sketch can be
deployed on any node on its OD-pair’s path. The Optimizer’s out-
put (Figure 4) is the optimal intent-to-sketch selection and resource
configurations for each sketch, on each network node.

Scope: We scope SketchPlan to static configuration of sketches for a
given ensemble of intents. SketchPlan only needs to run the Mapper
and Profiler once. For a new set of intents, we run the Optimizer
to produce an optimal configuration. §6 discusses our future work
to dynamically configure sketches in response to rapidly changing
intents and traffic.

3.4 Optimization problem formulation

Next, we formulate the optimization problem that maps intents to
sketches and selects resource configurations. Table 3 defines the
symbols used in this formulation. Figure 5 shows the constraints and
objective function.

Inputs: Each intent i € I has a query ¢ and an optional error bound
err. Each query q is a metric, flow-key and OD-pair tuple (m, f, p).
Each OD-pair p is specified using a set of devices ppq¢p. Addition-
ally, the operator can specify (1) resource bounds ng for each node
n, and (2) the objective function obj to minimize (details below).

Outputs: The output is (1) a set of sketch deployments D, and (2)
the function map. Each sketch deployment d(g 1,) € D denotes
a sketch s to be deployed on node n configured with flow-key f
and resources r. The map function maps each intent i to a sketch
deployment d.

Internal functions: The boolean function cov(s, q), given by the
Mapper’s output, represents whether sketch s can estimate the query
q. The function err(q, d), corresponding to the Profiler, captures the
error-resource profile i.e. the error in estimating a query g given
a sketch deployment d(s f.,) € D. Note that different resource
configurations of the same sketch are considered different sketch
deployments.

Constraints: First, each intent i must be mapped to a sketch deploy-
ment that “covers” the intent’s query q (Eq. 1). Second, the sketch
deployment used to estimate an intent should be configured with the
intent’s query’s flow-key i.q.f (Eq. 2). Next, the sketch deployment
should be deployed on a node that is on its OD-pair’s path (Eq. 3).
The resource usage of sketch deployments on a node must not vio-
late the node’s resource bound (Eq. 4). Last, the error for an intent i
should be no more than the specified bound i.err (Eq. 5).

Objective function: We consider two goals: the operator may choose
to minimize the average error across all intents (O1) or the resource
usage of all sketch deployments (02).

3.5 Implementation

We implement 5 metrics— heavy hitter, entropy, cardinality, change
detection, and flow size distribution; and support any subset of the
5-tuple (src/dst IP/port, protocol) as a valid flow-key. We imple-
ment 8 sketches— CountMin [10], CountSketch [7], MRAC [17],
LinearCounting [29], MRB [14], LogLog [13], HyperLogLog [15],
and UnivMon [20]. Unless mentioned, the Profiler uses 18 traces
of 30 sec each, from the CAIDA dataset [1] to empirically measure
the error for each sketch-metric pair. It considers the median error
across all epochs and derives a single error-resource profile for each
sketch-metric. We implement the Optimizer’s ILP in Python and use
Gurobi’s Python binding [2] to solve it.

Raising the Level of Abstraction for Sketch-Based Network Telemetry with SketchPlan

B over Greedy-Uniform B over AnyFeasible-Uniform
HEl over Greedy-Proportional EEm over AnyFeasible-Proportional

8 H: Heavy Hitter E: Entropy
12x ° C: Cardinality F: Flow Size Distribution
o © D: Change Detection

o
x

gl

D-E-C-F

u | L
ﬁ'%{- ﬂl‘H‘ %1-1-

H-D-E-C-F

L T

H-D-C-F

N
x

Benefits in error reduction

H-D-E-C H-D-E-F
Ensembles of intents

H-E-C-F

Figure 6: SketchPlan achieves up-to 12x lower error than straw-
man approaches for various intents.

4 RESULTS

Since there are no existing abstraction layers for sketch-based teleme-
try, we demonstrate SketchPlan’s benefits by comparing against the
four strawman solutions from §3.1. We show that: (1) Across var-
ious intent ensembles, SketchPlan provides up-to 12x lower error
compared to strawman solutions; (2) SketchPlan’s benefits extend to
network-wide settings, providing accurate telemetry with up-to 60x
lower resources than strawman solutions, across various intent en-
sembles; (3) SketchPlan’s benefits are robust to stale error-resource
profiles; and (4) SketchPlan’s design choices are crucial to achieving
these benefits.

Evaluation setup: For each ensemble of intents, we use Sketch-
Plan to select sketches and configure them optimally. We perform
experiments on Cloudlab [12] using the c220g2 node (Intel Xeon
Processor E5-2660 v3, 20 2.6 GHz cores). For each strawman ap-
proach, we use five different seeds for random sketch selection.
Unless mentioned, we evaluate each solution by replaying unseen
traces (different from those used by the Profiler) from the CAIDA
dataset [1]. We consider 18 epochs, each of 30 sec, with around
20-30M packets and 1M unique flows (based on destination IP and
destination port). For each trace, we collect query estimates based
on the sketch selection and configuration done by SketchPlan or
strawman solutions. We measure query error compared to ground
truth,! based on standard error measures [31].

Single-node benefits: We compare SketchPlan’s benefits over straw-
man solutions for different ensembles of intents. We associate five
metrics from §3.5 with the same flow-key (dstIP, dstPort) to generate
five intents. We consider all intent ensembles of size 4 and the single
ensemble of size 5. For each ensemble, we set a resource bound of
128kB. We run SketchPlan with the objective function to minimize
the average error of the intent ensemble (O1 from §3.4).

Figure 6 shows SketchPlan’s benefits measured as the ratio of
strawman’s average error to SketchPlan’s average error for a given
ensemble. SketchPlan achieves up-to 12x benefits over strawman
solutions for a diverse set of intents with the median benefit varying
from 2x to 7x depending on the exact ensemble. While this result
is for a 128KB resource budget, we see similar results for other
budgets as well. Interestingly, SketchPlan’s benefits over (Greedy)
strawmen are almost always higher than (AnyFeasible) strawman;
implying that a general sketch may not always be more optimal.

!For brevity, for heavy hitters and change detection, we only show results for estimating
flow sizes, and not precision/recall of flow-keys

B over Greedy-Uniform
I over Greedy-Proportional

IMC "24, November 4-6, 2024, Madrid, Spain

B over AnyFeasible-Uniform
EEl over AnyFeasible-Proportional

c

o

S ° H: Heavy Hitter E: Entropy

5 60x C: Cardinality — F: Flow Size Distribution

5 D: Change Detection L)
IS °

)

£ 40x

2 ¢ .

v ° ° ° o

£ 20x L] [} ® °
£ o °° o8 o0 : g8 °
© [}
%o)(.o.. ’: ®o0e0 %50 ... R
@ D-EC-F H-D-C-F HD-E-C H-D-E-CF H-D-EF H-E-CF

Ensembles of intents

Figure 7: SketchPlan uses up-to 60x lower resources than straw-
man approaches for various network-wide intent ensembles.

Experiment

Experimental setting

Optimizer runtime

Single-node

Num. of intents = 4

2.8 sec (128KB budget)
5.1 sec (1IMB budget)

Num. of intents = 5

12.9 sec (128KB budget)
21.4 sec (IMB budget)

Num. of intents = 4

128.7 sec

Network-wide

Num. of intents = 5

1090.5 sec

Table 4: Runtime for SketchPlan’s Optimizer.

Network-wide benefits: To illustrate SketchPlan’s benefits in a
network-wide setting, we consider a Fat-tree network topology [5]
of degree 6 and generate 50 random OD-pairs. We consider six intent
ensembles as before and associate each intent in each ensemble with
all 50 OD-pairs, yielding one ensemble of 250 network-wide intents
and five ensembles of 200 network-wide intents.

We evaluate different ensembles with varying accuracy targets
and compare SketchPlan’s resource usage to that of strawman ap-
proaches in Figure 7 (O2 from §3.4). For the loosest accuracy target,
SketchPlan achieves up-to 60x benefit in reducing network-wide
resource usage compared to strawman solutionsZ. The x-axis shows
different intent ensembles. The y-axis quantifies benefit by dividing
the strawman’s resource usage by SketchPlan’s resource usage. Each
scatter point denotes a particular strawman solution and seed. Ap-
pendix B provides exact numbers for the accuracy targets and shows
similar trends for stricter targets as well.

Table 4 shows the runtime of SketchPlan’s Optimizer for the
single-node and network-wide settings. Since we envision Sketch-
Plan being used in an offline manner by operators, this does not
introduce any significant overhead in obtaining telemetry. Even so,
insights from prior work [4] could accelerate network-wide plan-
ning.

SketchPlan’s robustness: A natural question is if SketchPlan’s
benefits are robust to stale resource-accuracy profiles. To answer this,
we train the Profiler on six progressively older CAIDA traces and
learn error-resource profiles for each trace. P; denotes the profile
from the oldest trace, P from the newest. For each profile, we
evaluate SketchPlan on the newest trace, corresponding to P for the
ensemble with 5 intents. We do this for three different sets of six
traces. In Figure 8, the left-most point on the x-axis denotes the oldest
profile (P; with “age” 5); the right-most point (P with “age” 0)
shows the profile trained and tested on the same trace. These results

2We use offline profiles to decide accuracy target compliance. In practice, SketchPlan’s
errors on unseen traces are similar to those on offline profiles.

IMC 24, November 4-6, 2024, Madrid, Spain

B over Greedy-Uniform Bl over AnyFeasible-Uniform
Wl over Greedy-Proportional ~ EEE over AnyFeasible-Proportional

o
X

§

5 |
B Bz = = ‘s m
0 T . ¥ . T

v
<

I
X

w
X

N
X

Benefits in error reduction

5(P1) 4(P2) 3(P3) 2(Ps) 1(Ps) 0(Ps)
Profile age (trace used for training Profiler)

Figure 8: SketchPlan’s benefits over strawman solutions are
robust in the face of stale error-resource profiles.

E SketchPlan
SketchPlan-Uniform
SketchPlan-Proportional

Greedy-SketchPlan
Bl AnyFeasible-SketchPlan

6x

4x

ot
2 %$%+ T Tea_, *@%++

Benefits in error reduction

over over over
Greedy-Proportional AnyFeasible-Uniform AnyFeasible-Proportional
Strawman solutions

Figure 9: SketchPlan’s design is crucial to its benefits.

over
Greedy-Uniform

show that SketchPlan’s offline Profiler can still offer significant
benefits robust to workload changes over small time scales. We defer
SketchPlan’s evaluation on, and robustness to, longitudinal changes
to future work (§6).

Design benefits: To examine the benefits of SketchPlan’s Mapper
and Profiler, we enable one of these modules at a time and replace
the other with naive strawmen. We compare SketchPlan with i)
(AnyFeasible, SketchPlan), ii) { Greedy, SketchPlan),

iit) (SketchPlan, Uniformy, and iv) (SketchPlan, Proportional). i) and
ii) replace the Mapper with naive strawmen. iii) and iv) replace the
Profiler with naive strawmen. Figure 9 compares SketchPlan vs.
intermediate versions of SketchPlan. Versions with only the Mapper
enabled ({SketchPlan, Uniform), (SketchPlan, Proportional)) outper-

form versions with only the Profiler enabled ((AnyFeasible, SketchPlany,

(Greedy, SketchPlan)), implying that gains from the Mapper are
greater. In fact, versions with only the Profiler enabled sometimes
perform even worse than strawman solutions (benefits < 1). Thus, the
Mapper’s systematic mapping of the coverage capability of sketches
is crucial to providing benefits.

5 OTHER RELATED WORK

Non-sketch intent-based telemetry: These frameworks [16, 25, 30]
translate intents to data plane primitives. Unfortunately, most of these
consider intents in isolation and support exact telemetry primitives
that are prohibitively expensive.

Sketch error estimation: Multiple works [8, 22] estimate errors
based on statistical properties of sketch counters. Their estimation
logic can be integrated with SketchPlan’s abstraction layer for dy-
namic configuration capabilities.

Milind Srivastava et al.

Dynamic query workloads: FlyMon [34] and DynaMap [26] allow
dynamic workloads with sketches and map-reduce queries, respec-
tively. These frameworks are orthogonal to, and can be integrated
with, SketchPlan.

6 LIMITATIONS AND FUTURE WORK

Before we conclude, we discuss some key limitations and directions
for future work to realize the benefits of SketchPlan in practice.

Long-term robustness: While SketchPlan’s error-resource profiles
are robust to small-scale network changes, they may not be immune
to longer changes in network traffic. Our future work includes ex-
tending SketchPlan to be robust to long-term drifts in network traffic.
One direction is to build a model that can predict a sketch’s accu-
racy based on properties of network traffic such as cardinality and
entropy. Given this, one could actively measure incoming traffic
(e.g., using sketches) and use this to predict the accuracy of other
sketches in the data plane. If a sketch’s accuracy falls below the
operator’s requirement, SketchPlan could re-generate error-resource
profiles using the Profiler and re-run the Optimizer to generate a
sketch deployment. Theoretical techniques [8] that model a sketch’s
error using its counters at runtime can also be a promising solution.

Dynamic reconfiguration: While SketchPlan’s high-level interface
allows the operator to easily specify new intents, SketchPlan only
supports offline planning and sketch deployment to satisfy these
intents. Future work includes runtime data plane reconfiguration to
satisfy new intents. For e.g., given unusually high traffic volume,
the operator may deploy new intents for DDoS detection. While the
operator could re-run the Optimizer offline and re-deploy sketches,
this could be prohibitively expensive for a large intent ensemble.
Ideally, SketchPlan should support new intents at runtime. One
possible solution is to run the Optimizer online incrementally for
the new intents while taking into account the reduced data plane
resources from the already-deployed sketches. While this may not
be globally optimal, this can reduce latency and allow dynamic
sketch deployment for new intents at runtime. Simultaneously, the
Optimizer could be run in background for the entire set of intents to
generate a globally optimal sketch deployment. Prior works [34] can
be used to reduce the downtime during data plane reconfiguration.

7 CONCLUSIONS

While sketches offer powerful capabilities, operators have been
missing a high-level interface to use them efficiently with low effort,
stymieing practical adoption. SketchPlan addresses this key missing
piece by building an abstraction layer on sketches using an ensemble
view, thereby reducing operator effort and improving efficiency in
sketch-based telemetry.

ACKNOWLEDGMENTS

We thank our anonymous shepherd and the reviewers for their
suggestions; and Sanjeev Sridhar for his help in implementation.
This work was funded in part by NSF awards CNS-2132639, CNS-
2111751, CNS-2106214, CNS-2415758, and CNS-2431093; and
was partially supported by Juniper Networks. The views contained in
this article are those of the authors and not of the funding agencies.

Raising the Level of Abstraction for Sketch-Based Network Telemetry with SketchPlan

REFERENCES

[1]
[2]
[3]
[4]

[5

[6

[7]

8

[9

[10]

[11]

[12]

[13]
[14]

[15]

[16]

[17]

(18]

The CAIDA UCSD Anonymized Internet Traces - 2018. https://www.caida.org/ca
talog/datasets/passive_dataset, 2018.

Gurobi Optimization: Python API Overview. https://www.gurobi.com/documenta
tion/current/refman/py_python_api_overview.html, 2024.

‘What is a network operations center (NOC)? https://www.ibm.com/topics/netwo
rk-operations-center, 2024.

Anup Agarwal, Zaoxing Liu, and Srinivasan Seshan. Heterosketch: Coordinating
network-wide monitoring in hetero-geneous and dynamic networks. In 79th
USENIX Symposium on Networked Systems Design and Implementation (NSDI
22). USENIX Association, 2022.

Mohammad Al-Fares, Alexander Loukissas, and Amin Vahdat. A scalable, com-
modity data center network architecture. In Proceedings of the ACM SIGCOMM
2008 Conference on Data Communication, page 63-74, New York, NY, USA,
2008. Association for Computing Machinery.

Ran Ben Basat, Gil Einziger, Roy Friedman, Marcelo C Luizelli, and Erez Wais-
bard. Constant time updates in hierarchical heavy hitters. In ACM SIGCOMM,
2017.

Moses Charikar, Kevin Chen, and Martin Farach-Colton. Finding frequent items
in data streams. In International Colloquium on Automata, Languages, and
Programming, 2002.

Peiging Chen, Yuhan Wu, Tong Yang, Junchen Jiang, and Zaoxing Liu. Precise
error estimation for sketch-based flow measurement. In Proceedings of the 21st
ACM Internet Measurement Conference, pages 113-121, 2021.

Xiaoqi Chen, Shir Landau-Feibish, Mark Braverman, and Jennifer Rexford. Beau-
coup: Answering many network traffic queries, one memory update at a time. In
ACM SIGCOMM, 2020.

Graham Cormode and Shan Muthukrishnan. An improved data stream summary:
the count-min sketch and its applications. Journal of Algorithms, 55(1):58-75,
2005.

Rui Ding, Shibo Yang, Xiang Chen, and Qun Huang. Bitsense: Universal and
nearly zero-error optimization for sketch counters with compressive sensing. In
ACM SIGCOMM, 2023.

Dmitry Duplyakin, Robert Ricci, Aleksander Maricq, Gary Wong, Jonathon
Duerig, Eric Eide, Leigh Stoller, Mike Hibler, David Johnson, Kirk Webb, Aditya
Akella, Kuangching Wang, Glenn Ricart, Larry Landweber, Chip Elliott, Michael
Zink, Emmanuel Cecchet, Snigdhaswin Kar, and Prabodh Mishra. The design
and operation of CloudLab. In Proceedings of the USENIX Annual Technical
Conference (ATC), pages 1-14, July 2019.

Marianne Durand and Philippe Flajolet. Loglog counting of large cardinalities. In
European Symposium on Algorithms, 2003.

Cristian Estan, George Varghese, and Mike Fisk. Bitmap algorithms for counting
active flows on high speed links. In ACM IMC, 2003.

Philippe Flajolet, Eric Fusy, Olivier Gandouet, and Frédéric Meunier. Hyper-
loglog: the analysis of a near-optimal cardinality estimation algorithm. In Discrete
Mathematics and Theoretical Computer Science, 2007.

Arpit Gupta, Rob Harrison, Marco Canini, Nick Feamster, Jennifer Rexford,
and Walter Willinger. Sonata: Query-driven streaming network telemetry. In
Proceedings of the 2018 conference of the ACM special interest group on data
communication, 2018.

Abhishek Kumar, Minho Sung, Jun (Jim) Xu, and Jia Wang. Data streaming
algorithms for efficient and accurate estimation of flow size distribution. In ACM
SIGMETRICS, 2004.

Paolo Laffranchini, Luis Rodrigues, Marco Canini, and Balachander Krishna-
murthy. Measurements as first-class artifacts. In JEEE INFOCOM 2019 - IEEE
Conference on Computer Communications, pages 415423, 2019.

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

IMC "24, November 4-6, 2024, Madrid, Spain

Zaoxing Liu, Ran Ben-Basat, Gil Einziger, Yaron Kassner, Vladimir Braverman,
Roy Friedman, and Vyas Sekar. Nitrosketch: Robust and general sketch-based
monitoring in software switches. In Proceedings of the ACM Special Interest
Group on Data Communication, SIGCOMM ’19. Association for Computing
Machinery, 2019.

Zaoxing Liu, Antonis Manousis, Gregory Vorsanger, Vyas Sekar, and Vladimir
Braverman. One sketch to rule them all: Rethinking network flow monitoring with
Univmon. In ACM SIGCOMM, 2016.

Zaoxing Liu, Hun Namkung, Anup Agarwal, Antonis Manousis, Peter Steenkiste,
Srinivasan Seshan, and Vyas Sekar. Sketchy with a chance of adoption: Can sketch-
based telemetry be ready for prime time? In /IEEE International Conference on
Network Softwarization (NetSoft), 2021.

Masoud Moshref, Minlan Yu, Ramesh Govindan, and Amin Vahdat. SCREAM:
Sketch resource allocation for software-defined measurement. In ACM CoNEXT,
2015.

Hun Namkung, Zaoxing Liu, Dachyeok Kim, Vyas Sekar, and Peter Steenkiste.
Sketchlib: Enabling efficient sketch-based monitoring on programmable switches.
In 19th USENIX Symposium on Networked Systems Design and Implementation
(NSDI 22), 2022.

Hun Namkung, Zaoxing Liu, Dachyeok Kim, Vyas Sekar, and Peter Steenkiste.

Sketchovsky: Enabling Ensembles of Sketches on Programmable Switches. In
USENIX NSDI, 2023.

Srinivas Narayana, Anirudh Sivaraman, Vikram Nathan, Prateesh Goyal, Venkat
Arun, Mohammad Alizadeh, Vimalkumar Jeyakumar, and Changhoon Kim.
Language-directed hardware design for network performance monitoring. In
ACM SIGCOMM, 2017.

Chaofan Shou, Rohan Bhatia, Arpit Gupta, Rob Harrison, Daniel Lokshtanov, and
Walter Willinger. Query planning for robust and scalable hybrid network telemetry
systems. Proceedings of the ACM on Networking, 2(CoONEXT1):1-27, 2024.
Cha Hwan Song, Pravein Govindan Kannan, Bryan Kian Hsiang Low, and
Mun Choon Chan. FCM-sketch: generic network measurements with data plane
support. In ACM CoNEXT, 2020.

Haifeng Sun, Qun Huang, Jinbo Sun, Wei Wang, Jiaheng Li, Fuliang Li, Yungang
Bao, Xin Yao, and Gong Zhang. Autosketch: Automatic sketch-oriented compiler
for query-driven network telemetry. In 21st USENIX Symposium on Networked
Systems Design and Implementation (NSDI 24). USENIX Association, 2024.
Kyu-Young Whang, Brad T. Vander-Zanden, and Howard M. Taylor. A linear-time
probabilistic counting algorithm for database applications. ACM Trans. Database
Syst., 15(2):208-229, jun 1990.

Zhaowei Xi, Yu Zhou, Dai Zhang, Kai Gao, Chen Sun, Jiamin Cao, Yangyang
Wang, Mingwei Xu, and Jianping Wu. Newton: Intent-driven network traffic
monitoring. [EEE/ACM Transactions on Networking, 30(2):939-952, 2022.
Tong Yang, Jie Jiang, Peng Liu, Qun Huang, Junzhi Gong, Yang Zhou, Rui Miao,
Xiaoming Li, and Steve Uhlig. Elastic sketch: Adaptive and fast network-wide
measurements. In ACM SIGCOMM, 2018.

Yinda Zhang, Peiqing Chen, and Zaoxing Liu. OctoSketch: Enabling Real-Time,
continuous network monitoring over multiple cores. In 2/st USENIX Symposium
on Networked Systems Design and Implementation (NSDI 24), pages 1621-1639.
USENIX Association, 2024.

Yinda Zhang, Zaoxing Liu, Ruixin Wang, Tong Yang, Jizhou Li, Ruijie Miao,
Peng Liu, Ruwen Zhang, and Junchen Jiang. CocoSketch: high-performance
sketch-based measurement over arbitrary partial key query. In ACM SIGCOMM,
2021.

Hao Zheng, Chen Tian, Tong Yang, Huiping Lin, Chang Liu, Zhaochen Zhang,
Wanchun Dou, and Guihai Chen. FlyMon: Enabling on-the-fly task reconfiguration
for network measurement. In ACM SIGCOMM, 2022.

https://www.caida.org/catalog/datasets/passive_dataset
https://www.caida.org/catalog/datasets/passive_dataset
https://www.gurobi.com/documentation/current/refman/py_python_api_overview.html
https://www.gurobi.com/documentation/current/refman/py_python_api_overview.html
https://www.ibm.com/topics/network-operations-center
https://www.ibm.com/topics/network-operations-center

IMC 24, November 4-6, 2024, Madrid, Spain

Emm over Greedy-Uniform EmE over AnyFeasible-Uniform

EEl over Greedy-Proportional EEl over AnyFeasible-Proportional

c
o
B o H: Heavy Hitter E: Entropy
5 60x C: Cardinality —F: Flow Size Distribution
5 D: Change Detection o0
IS °
[
£ 40x
2 ¢ .
v ° o ° °
€ 20x L] [} ® °
2 . °° o8 o9 .) [] °
k7] (]
Doleend TTae cane Ceay tel, tuld
m D-E-C-F H-D-C-F H-D-E-C H-D-E-C-F H-D-E-F H-E-C-F
Ensembles of intents
(a) Loose targets
Emm over Greedy-Uniform EmE over AnyFeasible-Uniform
- EEl over Greedy-Proportional EEl over AnyFeasible-Proportional
.2 60x ° -
B H: Heavy Hitter E: Entropy
s Ci Cardinality F: Flow Size Distribution
5 50x D: Change Detection
9]
2
L 40x e e
=
=]
O 30x
g o0
= 20x L] ®e
@ ° [) [] [] °
£10x) o @ o © o0 ° °
5 ° I ° °
g 0x o o0 ') o
m D-E-C-F H-D-C-F H-D-E-C H-D-E-C-F H-D-E-F H-E-C-F
Ensembles of intents
(b) Medium targets
Emm over Greedy-Uniform EmE over AnyFeasible-Uniform
- EEl over Greedy-Proportional EEl over AnyFeasible-Proportional
]
B o H: Heavy Hitter E: Entropy
5 30x Ci Cardinality F: Flow Size Distribution
S D: Change Detection
L 25x
2
o [] [)
£ 20x
3
§15x ee o0 e ee °
£10x o ® ® - -
o] e o ° L)
& 5x ® ge ° ° °
S o LI ° L)) s
X
m D-E-C-F H-D-C-F H-D-E-C H-D-E-C-F H-D-E-F H-E-C-F

Ensembles of intents

(c) Strict targets

Figure 10: SketchPlan’s benefit in resource reduction over straw-
man solutions for three progressively-stricter accuracy targets

Milind Srivastava et al.

A ETHICS

This work does not raise any ethical issues.

B NETWORK-WIDE RESULTS FOR OTHER
POLICIES

heavy ¢ dinalit flow size change

hitter | €MFOPY | car@ndllly | gictribution | detection
Loose 7% 20% 10% 75% 10%
Medium | 5% 15% 7% 75% 10%
Strict 5% 15% 7% 70% 7%

Table 5: Three progressively-stricter accuracy targets

Note that FSD errors are high due to its error metric, which
matches flow sizes exactly between the true and estimated distribu-
tions. Computing the error on binned flow sizes yields much smaller
errors.

	Abstract
	1 Introduction
	2 Motivation and Related Work
	2.1 Background on Sketch-based Telemetry
	2.2 Illustrative Scenario
	2.3 Related Work and Limitations

	3 SketchPlan design
	3.1 Strawman solutions and limitations
	3.2 SketchPlan's key insight: Ensemble view
	3.3 Detailed Design
	3.4 Optimization problem formulation
	3.5 Implementation

	4 Results
	5 Other Related Work
	6 Limitations and Future Work
	7 Conclusions
	Acknowledgments
	References
	A Ethics
	B Network-wide results for other policies

