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Abstract – Commonly, the notion of “quantum chaos” refers to the fast scrambling of information
throughout complex quantum systems undergoing unitary evolution. Motivated by the Krylov
complexity and the operator growth hypothesis, we demonstrate that the entropy of the population
distribution for an operator in time is a useful way to capture the complexity of the internal
information dynamics of a system when subject to an environment and is, in principle, agnostic to
the specific choice of operator basis. We demonstrate its effectiveness for the Sachdev-Ye-Kitaev
(SYK) model, examining the dynamics of the system in both its Krylov basis and the basis of
operator strings. We prove that the former basis minimises spread complexity while the latter is
an eigenbasis for high dissipation. In both cases, we probe the long-time dynamics of the model
and the phenomenological effects of decoherence on the complexity of the dynamics.

open  access Copyright c© 2024 The author(s)

Published by the EPLA under the terms of the Creative Commons Attribution 4.0 International License
(CC BY). Further distribution of this work must maintain attribution to the author(s) and the published
article’s title, journal citation, and DOI.

Introduction. – In classical mechanics, chaos is typi-
cally considered synonymous to an exponential sensitiv-
ity of the trajectories to initial conditions. However,
rigorously defining quantum chaos is significantly more
difficult [1]. The first breakthrough for defining chaos in
quantum systems originated in the development of random
matrix theory, independently by Wigner [2] and Dyson [3].

Subsequently, interest in dynamical signatures of chaos
has grown, with much focus on the behaviour of autocor-
relation functions [4], the Loschmidt echo [5], and out-of-
time-order correlation functions (OTOCs) [6]. The latter,
in particular, are notable as they place bounds on the rate
of the spread of information in a system and can be used
to calculate a quantum analogue of the Lyapunov expo-
nent. However, the exponential decay of an OTOC is an
indicator of scrambling —the spread of initially local in-
formation throughout a many-body system— a necessary
but not sufficient condition for a system to be chaotic [7,8].
Much progress in recent years has come by shifting focus
to the hydrodynamical behaviour of many-body quantum
systems [9–14], and the spread of support of both states

(a)E-mail: eoin.carolan@ucdconnect.ie (corresponding author)

and operators [15–18]. While an intuitive picture for op-
erator growth is viewing it as the spread of support of an
operator in physics space, we stress that the growth of an
operator refers to the increasing support in Hilbert space,
which is a more applicable definition to models that have
non-local interactions.

Recent work has explored the competition and similar-
ities of scrambling and decoherence [18–26]. Decoherence
is a channel for information from the system to leak into
the environment, as opposed to being spread into entan-
glement structures in a many-body system. The OTOC
has been shown to not distinguish between these two ef-
fects [19], meaning that other measures must be used in
the open system setting.

Complex spacing ratios [27] and dissipative form fac-
tors [18,28] have been developed to characterise the level
repulsion for chaotic systems in non-Hermitian settings,
where the spectrum is no longer purely real. The opera-
tor growth hypothesis (OGH) [29] has gained significance
as a tractable method of calculating the complexity of a
system and has placed upper bounds on the Lyapunov ex-
ponent extracted from the OTOC at infinite temperature.
While successful for closed systems and Markovian master
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equations, it is not clear if the methods prescribed by the
OGH can be applied to more general maps such as those
that give rise to non-Markovian evolution.

This provides the starting point of our work, in which
we propose a tractable method for characterising chaotic
dynamics and operator complexity in open quantum sys-
tems. In particular, we introduce the operator spread en-
tropy as a general notion for examining operator growth
that provides a measure of complexity as well as allowing
for insights into the operator population dynamics. Cru-
cially, the spread entropy does not prescribe a particular
basis, and therefore in principle any suitable basis can
capture the same qualitative behaviour for the spread en-
tropy as the Krylov basis. We apply our framework to the
Sachdev-Ye-Kitaev (SYK) model, probing the late time
dynamics under decoherence, complementing recent work
on operator complexity and decoherence [30,31].

Operator growth and the bi-Lanczos algorithm.
– The OGH [29] defines an analogue of the classical Lya-
punov exponent even for quantum systems which may not
have a well-defined semi-classical limit. To determine the
growth rate, consider a system described by a Hamiltonian
H , and an initially local Hermitian operator, X0, which
one may view as a “vector” in the operator Hilbert space,
denoted by |X0). The operator evolves under the action
of the superoperator L.

The Maclaurin series expansion of the operator follows
as |Xt) = eiLt|X0) =

∑
n

(it)n

n! Ln|X0). In the closed case
L• := [H, •], and operators that do not correspond to a
conserved quantity with respect to the Hamiltonian will
spread in support with repeated applications of this com-
mutator. All of the information about the evolution of
the operator is therefore contained in the set {Ln|X0)},
which is intuitively the minimal basis needed to encode
the dynamics.

We will focus on the case when the time evolution of an
operator X0 is governed by a Markovian Lindblad master
equation,

dX0

dt
= iLX0,

= i[H, X0] +
∑
n

μn

[
±L†

nX0Ln − 1
2
{L†

nLn, X0}
]
,

(1)

where “−” is taken when both the operator X0 and the
jump operators Ln are fermionic [32] and “+” otherwise.
To create a basis for the dynamics from {Ln|X0)} we
first need to define an inner product. Due to an inher-
ent ambiguity over what inner product one should take at
finite temperatures [29,33], we choose to take the infinite-
temperature inner product (A|B) := Tr[A†B]/Tr[1].

A variety of methods to create an orthonormal basis in
this setting have been explored [32,34–37]. We shall focus
on the bi-Lanczos algorithm [34,38], which satisfies the
conditions for being a “K -complexity” as defined in [29],
and recovers the Lanczos algorithm for zero decoherence.

The bi-Lanczos algorithm evolves the left and right vec-
tors of X0 separately, enforcing orthonormality between
elements of each set. We first set b0 = c0 = 0, and then
proceed with the bi-Lanczos algorithm,

|An) := (L − an−1)|On−1) − cn−1|On−2),

|Bn) := (L† − a∗
n−1)|On−1) − bn−1|On−2),

|On) := b−1
n |An), (Õn| = c−1

n (Bn|, with

an := (Õn|L|On), bn =
√

(An|An), cn =

√
(Bn|An)

bn
.

(2)
The algorithm terminates when bn = 0 for finite systems
or when successive Krylov basis elements align. This ter-
mination condition involves a numerical tolerance. We
therefore remark that the dimension of the Krylov space
calculated reflects the number of numerically relevant el-
ements, which may not be the exact dimension of Krylov
space. We output two sets of vectors for which we have
the orthogonality relation (Õn|Om) = δnm, where we re-
mark that each set by itself is not necessarily orthogonal
and in the bi-Lanczos basis the superoperator takes the
tri-diagonal form

L =
∑
n,m

(Õn|L|Om)|On)(Õm| =

⎛
⎜⎜⎜⎝

a0 b1 0 · · ·
c1 a1 b2 · · ·
0 c2 a2 · · ·
...

...
...

. . .

⎞
⎟⎟⎟⎠. (3)

The superoperator is analogous to the tight-binding
chain, which we will refer to as the “Krylov chain”. In this
picture, the operator “hops” to higher basis elements in
the Krylov chain over time, with higher-n elements generi-
cally having larger support. We can write the time-evolved
operator in both spaces as

|Xt) =
∑
n=0

inφn(t)|On), (Xt| =
∑
n=0

(−i)nϕ∗
n(t)(Õn|.

(4)
The Krylov basis allows us to define a dynamical indicator
of scrambling, the Krylov complexity [29,34]

K(t) =
∑MK−1

n=0 nϕ∗
n(t)φn(t)∑MK−1

n=0 ϕ∗
n(t)φn(t)

, (5)

where MK is the dimension of Krylov space. Due to the
fact that the norm of the operator is not preserved in
time for open dynamics, we have to renormalise the pop-
ulations. We can interpret eq. (5) as the expected posi-
tion on the Krylov chain that the operator lies on, i.e.,
how deeply it has saturated into the Krylov basis. Closer
study of the Krylov complexity has given additional in-
sight into operator growth [39,40], deriving the conditions
needed for a model to saturate an upper bound on its rate
of change. The SYK model is such a system. The meth-
ods of Krylov complexity have also been extended to the
Trotter decomposition of unitary dynamics [41], allowing
for new tools to study phenomena in quantum circuits.
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We note that the an coefficients are purely imaginary,
while the bn and cn are purely real. In the limit of closed
system dynamics μ → 0, we have an → 0, cn → bn and
ϕn → φn, recovering both the Krylov basis and the Krylov
complexity of the closed dynamics which forms the foun-
dation of the OGH [29].

In the closed case, the OGH states that the asymp-
totic growth of the Lanczos coefficients is maximal for
chaotic systems. Specifically, this is characterised by a
linear rate, α > 0, such that bn = αn + γ, where γ is a
constant. The OGH has been successful in demonstrating
the linear growth of Lanczos coefficients for chaotic sys-
tems, both analytically and numerically, for a number of
models [42–45]. However, while chaotic systems exhibit
a linear growth in the Lanczos coefficients, unstable yet
integrable systems may do the same [46,47]. Thus, chaos
implies a linear growth in the Lanczos coefficients, but the
converse does not necessarily follow.

The Krylov basis output by the bi-Lanczos algorithm is
the minimal basis for describing the open dynamics of a
particular operator, making it the natural choice of basis
from which to extract universal behaviour. We use it to
probe the long-time dynamics of the SYK model under
decoherence, and demonstrate its usefulness as a basis for
the operator spread complexity. While the bi-Lanczos al-
gorithm lets us probe operator complexity for dynamics
generated by a Markovian Lindbladian, it remains to be
seen how one can generate the Krylov basis for general
open system dynamics, or even those for which the super-
operator is not accessible such as a collision model [48,49].

Operator spread complexity. – We now define an
operator complexity measure for general dynamics. Con-
sider a general orthonormal Hermitian operator basis G =
{|Gn)}. The normalised overlap of an operator, |Xt), at a
time t with the n-th element of this basis is

PG(n, t) =
|(Gn|Xt)|2∑
m |(Gm|Xt)|2 . (6)

The population distribution of an operator can be used
to study the onset of quantum chaos and has been shown
to be intrinsically related to the OTOC [50,51]. It is ex-
plicitly applied to the Krylov space for closed dynamics
in [52]. To turn it into a measure of complexity we first
demand that |G0) = |X0). The extent of the operator in a
given basis [53] is given by the complexity (which can be
recognised as both the diversity [54] and perplexity [55] of
a distribution)

CG(t) = eFG(t), (7)

where FG(t) = − ∑
n PG(n, t) ln PG(n, t) is the Shannon

entropy for the operator distribution. For t = 0 we have
CG(0) = 1, which increases with time due to scrambling
of the operator, ultimately saturating at long times if the
operator is maximally spread over all available basis ele-
ments.

Two things must be noted about this measure: Firstly,
we must choose a priori a basis to measure the spread of

the system over. Secondly, this measure distinguishes av-
erage operator size and complexity. For instance, consider
a spin chain system described using a basis constructed
from the strings of Pauli matrices. One could imagine a
scenario where the time evolved operator has full spatial
support over the chain, but is nevertheless “simply” a lin-
ear combination of a few strings of this maximal length.
The spread complexity will be low in this case, thus re-
flecting its low complexity in the bulk of the spin chain.
This may be the case for certain Clifford circuits [56]. It is
therefore relevant to consider whether other bases, aside
from the minimal one, capture operator dynamics accu-
rately.

Minimisation of the spread complexity. – To show
that the Krylov basis minimises the operator spread com-
plexity we will utilise a similar approach as that given
for the spread complexity of a state governed by the
Schrödinger equation, derived in ref. [15]. We modify their
starting point to that of the evolution of an operator gov-
erned by a superoperator, with the only caveat being that
we can obtain the Krylov space for the dynamics. Taking
k derivatives of eq. (6) gives

P
(k)
G (n, t) =

∂kPG(n, t)
∂kt

=

∑k
j=0 ik(−1)j

(
k
j

)
(Xt|L†j |Gn)(Gn|Lk−j |Xt)

‖Xt‖2

+
(Xt|Gn)(Gn|Xt)∂t‖Xt‖2

‖Xt‖4 , (8)

where we recognise that
∑

n |(Gn|Xt)|2 = ‖Xt‖2 for a
complete basis. Let us assume for both a general basis,
G, and the Krylov basis {|On)} ∈ K that the first ele-
ment, i.e., n = 0, is X0, and that the following m − 1
elements are common to both. Therefore for n < m, we
have that P

(k)
K (n, t) = P

(k)
G (n, t).

Lemma. If the first m elements of G are those of K then
P

(k)
G (n, 0) = 0 for n ≥ m and k < 2m.

Proof. From eq. (8) we see that P
(k)
G (n, 0) has at most

k applications of the superoperator to |X0). Taking k <
m, it is clear that (Gn|Lk|X0) = (X0|L†k|Gn) = 0 for
n ≥ m and k < m as Lk|X0) requires at least k = m
applications of L to generate overlap with the first element
of G that is not also a Krylov element, |Gm). We note
that for all n > 0, the final term in eq. (8) is zero at
t = 0 as (Gn|X0) = δn,0. For k < 2m, all of the terms in
the sum for P

(k)
G (n, 0) will be zero as either (X0|L†j |Gn)

or (Gn|Lk−j |X0) will involve less than m applications of
the superoperator to |X0), making it zero by the same
argument, proving the lemma. �

The spread complexity differs between the two cases
when n ≥ m. We write the Shannon entropy of the terms
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that differ from the Krylov basis as

Fn≥m(t) = −
∑
n≥m

PG(n, t) ln PG(n, t). (9)

We are interested in the behaviour of PG(n, t) when n ≥ m.
We invoke the lemma to identify that the first non-zero
term in the Taylor series expansion around t = 0 occurs
when k = 2m,

PG(n, t) =
∑
k

P
(k)
G (n, 0)tk

k!

=
P

(2m)
G (n, 0)t2m

(2m)!
+ O(t2m+1). (10)

We substitute in eq. (10), and split the logarithm term
into two separate parts,

Fn≥m(t) = − ln(t)t2m

(2m − 1)!

∑
n≥m

P
(2m)
G (n, 0)

−
∑
n≥m

P
(2m)
G (n, 0)t2m

(2m)!
ln[P (2m)

G (n, 0)/(2m)!]. (11)

The non-zero part of P
(2m)
G (n, 0) can be written as

P
(2m)
G (n, 0) =

(
2m

m

)
(X0|L†m|Gn)(Gn|Lm|X0), (12)

noting that ‖X0‖ = 1 and that the final term in eq. (8) is
zero for all n > 0. The non-zero contribution here comes
from |Y ), which is the part of Lm|X0) orthogonal to the
first m basis elements. We then write∑

n≥m

P
(2m)
G (n, 0) =

∑
n≥m

(
2m

m

)
(Y |Gn)(Gn|Y ). (13)

As |Y ) is orthogonal to the first m elements of the basis,
we can extend this sum to start at zero, and invoke the
completeness of G to write

∑
n≥m

P
(2m)
G (n, 0) =

(
2m

m

)
(Y |Y ), (14)

which greatly simplifies the first part in eq. (11) into
something that is basis independent. The second term
has the form f(x) = x

(2m)! ln x
(2m)! with x = P

(2m)
G (n, 0),

which is a convex function that is negative for the do-
main considered. P

(2m)
G (n, 0) is a positive number for

which the sequence (αi) =
((

2m
m

)
(Y |Y ), 0, 0, . . . 0

)
triv-

ially majorises any other sequence (βi) of positive num-
bers that add to

(
2m
m

)
(Y |Y ). This implies, by Karamata’s

inequality [57], that
∑

f(αi) ≥ ∑
f(βi), i.e., that the

entropy (once we take the overall minus sign) is always
greater than or equal to the case where

∑
n≥m P

(2m)
G (n, 0)

has only contribution from a single basis element, mean-
ing that the Krylov basis element |Om) must be part of
the basis to minimise this term, allowing us (by induc-
tion) to conclude that the Krylov basis minimises the
entropy for the populationdistribution for both closed

evolution and under dynamics generated by a Markovian
Lindbladian.

Sachdev-Ye-Kitaev model. – To demonstrate our
framework, we analyze the SYK model, which consists
of N interacting Majorana fermions. This system is a
paradigmatic model of quantum chaos [58]. Majorana
fermions, ψi, are defined through their anticommutation
relation {ψi, ψj} = δij and the dimension of the Hilbert
space of N Majorana fermions is 2N/2. The SYK model
is an all-to-all coupled model with the Hamiltonian

HSYK = (i)q/2
∑

1≤i1<i2<...<iq≤N

Ji1i2...iqψi1ψi2 . . . ψiq ,

(15)
where q denotes the number of fermions that interact in
a vertex, q = 2 being an integrable free fermion model,
and q > 2 giving rise to chaotic behaviour. The sum is
ordered in such a way as to include interactions between
any q fermions once, and the interaction strength is a real
number Ji1i2...iq drawn from a random Gaussian distribu-
tion with a zero mean and a variance

J2
i1i2...iq

=
J2(q − 1)!

N q−1
, (16)

where the overline denotes the disorder average.
The SYK model is both a maximally chaotic model

(viewed through the framework of the operator growth
hypothesis [29]) and a fast scrambler [59,60]). Other
models exhibit this behaviour, such as random unitary
circuits [59,60]. Importantly, it saturates the bound on
the rate of change of Krylov complexity [39,40].

While the SYK and its symmetries are well understood
as a closed many-body system, only recently has its open
dynamical behaviour been examined [61–66].

Operator growth and spread complexity for the
open SYK model. – We consider a Markovian Lindblad
master equation for the SYK model as given by eq. (1)
with the minus sign taken. The fermionic jump opera-
tors are Ln =

√
μψn, where μ governs the strength of the

dissipation. We write it as L = LU + LD, where

LU• = [HSYK , •], (17)

LD• = iμ

N∑
n=1

(
ψn • ψn +

1
4
{
1, •})

, (18)

and we have used the anticommutation relation of the Ma-
jorana operators and that they are Hermitian.

As we shall discuss, the action of the dissipative part of
the master equation leads to a dampening of the Majorana
string terms contributing to the time evolved operator at
a rate proportional to their size. We define a Majorana
string Si of length si to be an operator formed as a prod-
uct of si Majorana fermions ordered such that the indices
are in ascending order from left to right, e.g., ψ1ψ3ψ7 is
a string of length three. We will use the set of Majorana
strings as an orthonormal basis for the spread complex-
ity of the SYK model. For the q = 4 SYKmodel under
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Fig. 1: Dynamics for the open SYK model with N = 8 and 200 disorder realisations. Variance is shown as a shaded region (scaled
to 20% of its value in panel (a) for clarity). (a) The average Krylov complexity (eq. (5)) with µ/J = 0.0, 0.025, 0.05, 0.075, 0.1 cor-
responding to blue, orange, green, red, and black, respectively. (b) The average Krylov complexity at Jt = 120 vs. decoherence
strength µ/J . (c) The average dimension of the Krylov space for the dynamics vs. µ/J .

dissipation, we only need half of the complete basis since
only strings of Majorana fermions of odd length can be
generated by the interaction vertices provided the initial
operator has odd length. Unlike the Krylov basis for the
SYK model, this basis is fixed and identical for each it-
eration for the SYK model. As a basis it is physically
well-motivated as it can be directly used to track the size
of operators [67].

The precise behaviour of the decoherence channel we ap-
ply to the SYK model has been established in [36]. We will
interpret these results to show that decoherence decreases
complexity and Krylov space dimension. We assume an
initial operator X0 =

∑
i piSi.

Considering the action of the non-unitary, decohering
term on one of the strings for now, we find

LDSi = iμ

N∑
n=1

ψnSiψn + iμ
N

2
Si. (19)

Now, we anticommute the first ψn through Si which will
allow us to then square it to 1/2. This typically takes si
anticommutations to move it through, unless ψn appears
in the string Si, in which case it takes si − 1. This leaves
us with

LDSi =
iμ

2
[
(−1)si(N − si) + (−1)si−1si + N

]
Si. (20)

Depending on whether si is odd or even, the right-hand
side reads iμsiSi or iμ(N − si)Si, respectively. Once we
apply the same process to each of the strings that appear
in a linear combination to make X0, we obtain an operator
that is co-linear with X0

LDX0 = iμ
∑
i

αipiSi, (21)

where αi = si or N −si depending on whether si is odd or
even. Note that for our purposes, only odd strings are rele-
vant for the dynamics, meaning that the decoherence term
dampens strings at a rate proportional to their length. It
is clear that the unitary part is the source of the new op-
erators appearing in the support of the time evolved oper-
ator to Majorana strings not originally present in X0, as
described in [67]. In the limit of very strong decoherence,
the Lindbladian does not generate any new support from
its action on the initial operator, so viewed throughthe

lens of the Lanczos algorithm, it terminates immediately,
giving MK = 1.

This has similarities to ref. [30], where the model of
decoherence acts like a measurement operator that is sen-
sitive to the string length. The interplay between informa-
tion scrambling and decoherence interpolates between the
closed case, where the system generates as much support
as is available to it, and the “Zeno-blocked” case where de-
coherence term is measuring the initial string sufficiently
strongly such that it does not grow in support. In the
limit of strong decoherence, the operator evolves as

Xt ≈
∑
i

pie
−µsitSi. (22)

Thus, in the limit of strong decoherence, we see that any
operator strings are eigenoperators for the Lindbladian.

We next compare how the two bases–the Krylov basis K
generated from applying the bi-Lanczos algorithm and the
Majorana string basis S [30,67]–capture the spread com-
plexity. Clearly the Krylov basis is the natural choice to
examine universal behaviour and growth rates for systems.
However, the latter is arguably a more natural basis for
understanding the dynamics explicitly in terms of length
of operator size. We fix

√
2ψ1 as the initial operator.

Figure 1(a) depicts the Krylov complexity for the open
SYK model over 200 disorder realisations for a range of
dissipation strengths. We also show the closed case (top-
most blue line), i.e., μ = 0, where the bi-Lanczos algo-
rithm reduces to the regular Lanczos algorithm. We see
that initial growth in the closed case and under weak deco-
herence is similar, however they saturate at different levels.
This behaviour is consistent with the large-N behaviour of
the SYK Lindbladian model as established in [66], where
the Krylov complexity is shown to plateau at smaller lev-
els for increasing dissipation strength. The saturation
level of the Krylov complexity for a range of decoherence
strengths is shown in fig. 1(b). Its decreasing value as the
open system effects become stronger indicates that infor-
mation scrambles less throughout the system when subject
to decoherence and the dynamics become less “complex”.
Why the complexity of the dynamics is reduced under de-
coherence becomes clear when we plot the dimension of
the Krylov basis for the SYK Lindbladian vs. decoher-
ence strength in fig. 1(c). The dimension of the Krylov
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Fig. 2: Dynamics for the open SYK model with N = 8 and
200 disorder realisations with µ/J = 0.0, 0.025, 0.05, 0.075, 0.1
corresponding to blue, orange, green, red, and black, respec-
tively. Variance is shown as a shaded region scaled to 20% of
its value for clarity. (a) Average spread complexity (eq. (7)) in
the Krylov basis. (b) Average spread complexity in the string
basis.

space corresponds to the number of elements needed to
encode {Ln|X0)}. Even in the closed case we see that
the Lanczos algorithm compresses this information down
into fewer basis states than needed for the entire Hilbert
space. As it becomes less likely for our operator to in-
habit regions of Krylov space with increasing decoherence
strength, this set can be compressed down further. The
scaling of the complexity naturally corresponds to the scal-
ing of the Krylov space. This suggests a competition be-
tween information loss to the environment and the ability
for a system to scramble its information internally.

Somewhat naturally, the cardinality of the Krylov ba-
sis appears as the quantity to infer the scrambling na-
ture of a system. However, only the Krylov complexity,
which weighs the contribution of the basis elements, is
a genuninely dynamical quantity from which scrambling
times and growth rates can be derived. Hence, we plot
the operator spread complexity (eq. (7)) vs. time in fig. 2.
Both the Krylov and string bases show the same hierarchy
in spread complexity for different decoherence strengths.
The rapid early growth of spread complexity in the string
basis case comes from the inherent non-local nature of
the SYK model. A few applications of the superopera-
tor is all that is needed to have contributions from all
strings in the basis. We postulate that for a local model,
the qualitative growth of the spread complexity in both
the Krylov and (Majorana or Pauli) string bases should
be closer. This opens the door to moving past Marko-
vian dynamics, allowing to assess whether information
back flow into the system has a potential competing effect
alongside decoherence and internal scrambling. Maps that
generate dynamics with information back flow, even if

they can be written in a master equation form, are not
amenable to the bi-Lanczos approach. A pre-chosen basis,
such as the string basis, removes this roadblock. Since this
basis still allows to accurately capture the correct quali-
tative behavior as evidenced from fig. 2, it therefore al-
lows one to study the operator complexity in more general
settings.

Concluding remarks. – We have explored competi-
tion between information scrambling within a system with
information leakage to the environment as described by a
Markovian master equation. We demonstrated that the
Krylov basis, constructed via the bi-Lanczos algorithm,
minimises the spread complexity and showed that quali-
tatively consistent operator dynamics can be captured by
considering other suitable bases. Regardless of the spe-
cific choice of basis, we established that decoherence caps
the size of operators, consistent with earlier results in the
thermodynamic limit [31]. Our results demonstrate that a
basis other than the minimal one can still provide insight
into the spread complexity of operator dynamics, open-
ing the possibility to explore the effect of the backflow of
information on the competition between scrambling and
decoherence. A natural framework for these is using mas-
ter equations with time-dependent rates [68] or collision
models with non-zero Markov order.
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