L)

Check for

updates

SPIMulator: A Spintronic Processing-in-memory Simulator
for Racetracks

PAVIA BERA, University of South Florida, Tampa, USA
STEPHEN CAHOON, University of Pittsburgh, Pittsburgh, USA
SANJUKTA BHANJA, University of South Florida, Tampa, USA
ALEX JONES, University of Pittsburgh, Pittsburgh, USA

In-memory processing is becoming a popular method to alleviate the memory bottleneck of the Von Neumann
computing model. With the goal of improving both latency and energy cost associated with such in-memory
processing, emerging non-volatile memory technologies, such as Spintronic magnetic memory, are of partic-
ular interest, as they can provide a near-SRAM read/write performance and eliminate nearly all static energy
without experiencing any endurance limitations. Spintronic Racetrack Memory (RM) further addresses den-
sity concerns of spin-transfer torque memory (STT-MRAM). Moreover, it has recently been demonstrated
that portions of RM nanowires can function as a polymorphic gate, which can be leveraged to implement
multi-operand bulk bitwise operations. With more complex control, they can also be leveraged to build arith-
metic integer and floating point processing in memory (PIM) primitives. This article proposes SPIMulator, a
Spintronic PIM simulator that can simulate the storage and PIM architecture of executing PIM commands
in Racetrack memory. SPIMulator functionally models the polymorphic gate properties recently proposed
for Racetrack memory, which allows transverse access that determines the number of “1”s in a segment of
each Racetrack nanowire. From this simulation, SPIMulator can report real-time performance statistics such
as cycle count and energy. Thus, SPIMulator simulates the multi-operand bit-wise logic operations recently
proposed and can be easily extended to implement new PIM operations as they are developed. Due to the
functional nature of SPIMulator, it can serve as a programming environment that allows development of PIM-
based codes for verification of new acceleration algorithms. We demonstrate the value of SPIMulator through
the modeling and estimations of performance and energy consumption of a variety of example applications,
including the Advanced Encryption Standard (AES) for encryption primarily based on logical and look-up
operations; multiplication of matrices, a frequent requirement in scientific, signal processing, and machine
learning algorithms; and bitmap indices, a common search table employed for database lookups.

CCS Concepts: « Hardware — Functional verification;

Additional Key Words and Phrases: In-memory computing, domain wall memory, spintronic memory, pro-
cessing in memory

ACM Reference Format:

Pavia Bera, Stephen Cahoon, Sanjukta Bhanja, and Alex Jones. 2024. SPIMulator: A Spintronic Processing-
in-memory Simulator for Racetracks. ACM Trans. Embedd. Comput. Syst. 23, 6, Article 94 (September 2024),
27 pages. https://doi.org/10.1145/3645112

Authors’ addresses: P. Bera and S. Bhanja, University of South Florida, 4202 E Fowler Ave, Tampa, FL 33620, USA; e-mails:
paviabera@usf.com, bhanja@usf.edu; S. Cahoon and A. Jones, University of Pittsburgh, 1238 Benedum Hall, Pittsburgh,
PA 15261, USA; e-mails: stc127@pitt.edu, akjones@pitt.edu.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be
honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM 1539-9087/2024/09-ART94

https://doi.org/10.1145/3645112

ACM Trans. Embedd. Comput. Syst., Vol. 23, No. 6, Article 94. Publication date: September 2024.

https://orcid.org/0000-0002-3495-617x
https://orcid.org/0009-0002-1167-1187
https://orcid.org/0000-0002-3876-3578
https://orcid.org/0000-0001-7498-0206
https://doi.org/10.1145/3645112
mailto:permissions@acm.org
https://doi.org/10.1145/3645112
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3645112&domain=pdf&date_stamp=2024-09-11

94:2 P. Bera et al.

1 INTRODUCTION

Among the most important challenges of system design is speed and efficient data access. Emerging
non-volatile memories (NVMs) have been widely studied, particularly over the past decade, to
improve the energy and density properties of conventional memories, allowing increasingly dense
low-power memories to be placed closer to the processor. Among these, Spin-Transfer Torque
Magnetic memory (STT-MRAM) and Phase-change memory (PCM) [36] have gained com-
mercial traction, the former from Everspin and the latter from Intel and Micron in their Optane
product. STT-MRAM, resistive memory (ReRAM) [3], and ferroelectric memory (FRAM)
have also had industrial development from companies such as Samsung, HP, and TI, respectively.
To increase the density further, multi-level cells (MLCs) have become popular to extend beyond
the one-cell, one-access device methodology by storing multi-bit symbols in a single device by
storing different voltage or resistance levels. This has improved the density but creates challenges
with access speed and fidelity.

Another particular concern for these devices is that many of them have limited endurance. While
Flash has endurance as low as 10> write cycles, PCM and resistive memories exhibit 108-10° and
10'1-10'? write cycles, respectively [26]. STT-MRAM is an attractive alternative due to its near-
SRAM performance, CMOS compatibility, low static power, and good endurance [6]. Unfortunately,
STT-MRAM has insufficient density for storage class applications.

More fundamentally, even these increasingly dense technologies do not directly address the
core problem of the “memory wall” [12, 27]. The memory wall is a side-effect of the Von Neu-
mann architecture, which separates the processor from a distinct memory. The speed differential
between the processor and memory has created a significant bottleneck, as dataset sizes grow to
exceed what can fit within caches. Some paradigms have changed from working sets to operating
on streaming or infrequently reused data. Processing-in-memory (PIM) [10, 11, 21, 28, 31, 32]
has been proposed to reduce demands on the memory bus to relieve the memory wall bottle-
neck. This can allow continued scaling. PIM solutions have been demonstrated for DRAM [21, 28],
PCM [10], ReRAM [23], and STT-MRAM [22] but are limited to two operand operations although
multi-operand extensions for NVMs have been discussed [10].

A recent exciting alternative memory is the spintronic “Racetrack” memory (RM). RM ex-
tends the free magnetic layer of the STT-MRAM magneto tunnel junction (MT]J) into a nanowire
separated by manufactured notches. This allows the magnetization to be segregated into do-
mains, separated by domain walls. As such, it is sometimes referred to as domain-wall memory
(DWM).! Thus, data must be shifted to an access port to be read or written. It serves as a lateral
multi-level cell, but individual bits can be accessed. RM, originally proposed and demonstrated by
IBM [16, 17], retains the static energy benefits of STT-MRAM with a 10x higher density [33]. RM
has a theoretical area per bit as small as 2F2, where F is the technology feature size [1]. Moreover,
RM avoids endurance challenges by providing > 10'¢ write cycles [2], which far exceeds other
technologies.

However, the notion of data shifting requires that RM architectures be designed fundamentally
differently than traditional single or even multi-level cell devices. RM access times depend on both
traditional delays as well as variable shift delays. A variety of solutions have been proposed to
mitigate shifting overheads [2, 9, 24, 29, 30]; however, shift minimization remains an important
challenge. Thus, it is very difficult to adopt existing memory simulation tools for DRAM or other
NVMs to model RM because of this shift delay. For shift minimization, several custom simula-
tors [24, 29, 30] were designed, and one simulator, RTSim [7], was proposed to study large-scale
main memories built from RM [9].

!We refer to RM and DWM interchangeably to refer to the same structure.

ACM Trans. Embedd. Comput. Syst., Vol. 23, No. 6, Article 94. Publication date: September 2024.

SPIMulator: A Spintronic Processing-In-Memory Simulator for Racetracks 94:3

Moreover, the behavior of fault tolerance and PIM for these devices is also fundamentally differ-
ent from existing tools. For instance, the landscape changed recently when a technique to trans-
versely access a portion of the RM nanowire was proposed. This opened up interesting properties
for the device, such as protection against misalignment and pinning while shifting [14]. It also has
interesting properties for PIM, allowing multi-operand bulk bitwise processing, which has been
shown to benefit high-dimensional computing, multi-operand addition, and two-operand opera-
tions for integer and fixed-point data [13], and floating-point data [15], which open up myriad
opportunities for improving the memory wall bottleneck.

Thus, we present SPIMulator, a Spintronic Processing-In-Memory Simulator for cycle-level
functional simulation of RM with PIM capabilities. We demonstrate how the PIM capabilities from
prior work [13, 15, 31] can be written and implemented in SPIMulator to validate bulk-bitwise
operations and arithmetic operations. We demonstrate increasingly complex algorithms to show
how RM using PIM can execute these algorithms to introduce SPIMulator’s capabilities. Unfortu-
nately, RTSim is insufficient for building the SPIMulator because the data is not retained. SPIM-
ulator allows a programming interface to RM PIM processing to develop and validate processing
on actual data. Knowledge about the delays and energy consumption of elements of the memory
pipeline can also provide estimates of performance and energy consumption. Through pipelining
it is possible to extend the tool to model both single-instruction-multiple-data (SIMD) and
tightly pipeline execution models. SPIMulator has been validated for performance and power esti-
mates against cycle-level simulators. We do not claim that the SPIMulator is a fully cycle-accurate
simulator. However, it can provide fast feedback to PIM program designers and is easily extensible
to implement new extensions to the PIM instruction set.

In particular, in this article, we make the following contributions: We

— Present the features and functions of SPIMulator to describe how to articulate PIM algo-
rithms using RM.

— Describe how SPIMulator models shifting faults in RM and demonstrate methods to detect
single-bit and multi-bit errors by implementing parity checking, error correction, and shift-
ing fault recovery.

— Demonstrate how SPIMulator can implement multiplication, arithmetic reduction, and
bitmap indices.

— Demonstrate SPIMulator’s capabilities using each step of the 128-bit AES encryption
algorithm.

— Provide an experimental analysis by reporting the performance and energy consumption of
these algorithms as tested with SPIMulator.

2 BACKGROUND

In this section, we provide a background on RM, its behavior and methods for access, and how it
can be used to build memory arrays. We then discuss recent advances, including the access modes
that allow individual bit-wise and multi-bit access and how this has been used to support multi-
ple applications, including implementing the polymorphic gate that serves as the foundation for
PIM. We then describe details of the PIM approach and memory architecture to support PIM, in-
cluding modifications to the sensing circuit leveraging transverse read (TR) [20] to realize multi-
operand PIM. This includes the algorithms to achieve multi-operand addition and two-operand
multiplication.

Racetrack Memory Fundamentals

Racetrack Memory is a spintronic NVM formed from ferromagnetic nanowires. An example
nanowire is shown in Figure 1. These nanowires consist of domains, shown in blue in the

ACM Trans. Embedd. Comput. Syst., Vol. 23, No. 6, Article 94. Publication date: September 2024.

94:4 P. Bera et al.

B
GND

L=
WWLo={ | RWL,

oy
=={"]

BLB

Reads

Writes
Shifts

WWL ¢=f

Fig. 1. Racetrack memory nanowire example using perpendicular magneto anisotropy (PMA) (Racetrack
memory 2.0) [2] with two access ports that each supported standard reads through an MTJ as well as shift
writing [25]. The access transistors update to correct an error and to support transverse accesses shown using
the green line [25]. During a transverse read, current traverses the nanowire with resistance and resulting
voltage determined by the number of 1’s (number of parallel and antiparallel domains) [20]. For a transverse
write, data is shifted via WWLj into the nanowire, and the value at the rightmost head is shifted to GND
via RWLj [13]. Note that transverse writes can be conducted to either end of the nanowire.

figure, separated by domain wall memory (DWM) formed by explicitly engineered notches.
Each domain is represented by a direction, either perpendicular (+Z/-Z) or parallel (+X/-X) mag-
netic anisotropy (i.e., magnetization direction). The red arrows in the figure show example per-
pendicular anisotropy in the example. Data is read by comparing the direction (anti-parallel or
parallel) to a fixed reference, producing a binary value of 0 or 1. For a domain to be read or written
it must be aligned with a head that is shared among several domains [35]. Domains are shifted by
applying a small current across the nanowire, which moves the correct domain into the domain
aligned with the head. This small current needs to be precise to avoid shifting fault [14, 34], which
is when the incorrect domain becomes aligned with the head due to over- or under-shifting.

Memories constructed from RM can be organized in a hierarchical fashion similar to DRAM
using traditional Ranks, Banks, Subarrays, and Tiles, as shown with an overview in Figure 2(a)
with the bank expanded in Figure 2(c) and the subarray shown in Figure 2(d). A traditional tile
might be 512 rows of 512-bits. However, RM nanowires cannot generally be realized in 512-domain
lengths. Thus, these memories subdivide tiles into Domain Block Clusters (DBCs), as shown in
Figure 2(b). DBCs are collections of nanowires that are shifted together forming the width of a
row. The DBCs in this case are bundled into groups of 512 nanowires but with a length of 32
readable domains, each as shown in Figure 2(b). The nanowires of a DBC are shifted in unison,
which allows each read or write to access 512 bits at a time. In the example, each tile is composed
of 16 DBCs. Thus, rows may target different DBCs, but accessing a particular row in a DBC may
require shifting to align that location of the access port.

The nanowire in the figure has two access ports shown in dark blue. Traditionally, this allows
reduced shifting, because data could be accessed at either access port. At each port, above the
nanowire is a fixed magnetic layer separated from the magnetically free domain of the nanowire
through an insulator, forming a magneto tunnel junction (MTJ) used in STT-MRAM. If
the magnetically free domain is aligned with the fixed layer, then it has a lower tunneling re-
sistance (e.g., a logic “0”) and if anti-parallel, then it has a higher resistance (e.g., a logic “1”) and
can be read by a current applied across the MT]. While it is possible to change the magnetization
using the MTJ with a stronger current, a faster and lower energy solution was proposed to place

ACM Trans. Embedd. Comput. Syst., Vol. 23, No. 6, Article 94. Publication date: September 2024.

SPIMulator: A Spintronic Processing-In-Memory Simulator for Racetracks 94:5

“ﬂimus“

| | |
| L)
Sub-Array
Sub-Array
Bank I/0

Sub-Array

Sub-array
latch
Sub-array

S9ul|pJoM |eqO|D

Memory channel

o
(]
°
o
o
]
°
©
Q
o
(U]

(a) Architecture high-level view.
32
| Nenowie2 |

Nanowire 510
Nanowire 511 Global row buffer

Il Domain Aligned with Access Point (AP)

Wordline Driver

)

@

(@)
o

512

(d) Domain Block Cluster (DBC) (b) DWM Bank (c) DWM subarray

Fig. 2. Racetrack memory main memory architecture [8, 13].

a fixed parallel and anti-parallel region orthogonal to the nanowire to allow an orthogonal shift
rather than a current write [25].

Beyond traditional reading and writing, RM can now leverage a recently proposed transverse
reading technique [20] that counts the number of ones between two “heads” (access points) or
between a head and an extremity by measuring the resistivity between these two locations. This
value of resistivity is only unique to the number of ones and not their respective locations. An
example of this current path is shown in green in the figure. Unfortunately, the sense margin
for these segments decreases as the number of domains in the segment increases [20]. Because
of the increasing sense margin, there is a maximum distance at which this can be performed,
known as the transverse read distance or TRy. If using two heads, then placing them at the
maximum TR, allows for the most coverage of data, which will be useful for PIM operations
discussed later. A second method for counting the number of “1”s in an RM nanowire segment
has been proposed using a multi-domain MT]J [4, 14], which has potentially better scalability
than TR.

CORUSCANT proposes another operation on DWM known as a transverse write (TW) [13].
A transverse write is an operation that allows for a shift and write to be done between the heads
at the same time. As shown in Figure 1, the desired write done via WWL; is pushed into the
nanowire at access port zero AP, and a shift is done between the heads. This results in the value
noted in yellow at the opposing head being pushed out to ground via RWL; at AP;, leaving
the newly written value and all but one of the previous values between the heads.

The memories used for PIM computation require each nanowire in a PIM-enabled DBC to have
an equal number of heads (at least 2) to enable these TR and TW operations. By enabling tranverse
reads, each DWM nanowire can function as a polymorphic gate that is optimized for computing
arbitrary logic functions, sum, and carry logic output. This design approach implements multi-
operand bulk-bitwise operations that can outperform recently proposed main-memory PIM archi-
tectures [35]. Also, this method of counting ones allows for the implementation of multi-operand
addition in memory. Using a carry-save-inspired approach and logical shifts, multiplication can

ACM Trans. Embedd. Comput. Syst., Vol. 23, No. 6, Article 94. Publication date: September 2024.

94:6 P. Bera et al.

also be implemented. By using large reductions, the number of additions for multiplication is re-
duced to one.

3 SPIMULATOR

Processing-in-memory has received great traction from the architectural community, as it can help
address the memory wall problem. Also, it can tackle data latency and excess energy consumption
related to the overuse of the memory bus due to data movement. Processing-in-memory (PIM)
can reduce the stress on the memory bus by handling the operations directly in memory rather
than transferring data to the CPU to perform the computations. Emerging nonvolatile memories
such as Domain-wall memory (DWM) an extension of Spin transfer torque magnetic ran-
dom access memory (STT-MRAM) have shown great potential for memory processing. An
example of a DWM-based in-memory computing device leverages transverse reading to provide
multi-operand bulk-bitwise logic [13]. However, since calculating PIM operations is not traditional,
it can be difficult to design algorithms in memory and verify their correctness. This is where a
tool that simulates such behavior is useful, allowing users to test their designs and tweak their
algorithms as needed.

SPIMulator is a DWM-based PIM simulator capable of simulating the PIM architecture on a
Domain Block Cluster level. SPIMulator is a complete solution that gives the users the reconfig-
urability of access port location and TR distance but also provides a versatile main memory design
through integration with different tools. This versatility of the main memory design and the PIM
block can allow users to explore different memory designs [7] for different algorithms. This allows
the users to streamline the memory size according to their algorithmic needs, saving space and
energy costs. The tool also visualizes each command given on an instruction list, allowing the
users to determine the correctness of any given algorithm and giving them insight into how the
PIM logic functions. Cycle and energy count estimation is also shown at the end of the execution
of the instruction set, which gives the users the ability to customize their design of the algorithm
for better efficiency.

This work demonstrates simulation altering one tile comprising 16 DBCs, as represented in
Figure 4. There is a great deal of importance in simulating one tile, as we can represent a sim-
ple state machine using one tile. The use of multiple small tiles can prove to be beneficial in the
long run, as it can reduce latency through parallel and pipelined execution. Although we have
demonstrated only one tile, SPIMulator can be conceptualized with multiple tiles and written
with modified versions of other simulators, e.g., Reference [7]. We plan on demonstrating the scal-
ability of the main memory and running parallel algorithms in our future work. Although some
existing simulators are capable of modelling the main memory architecture [7, 18, 19], SPIMulator
is the only one with PIM capabilities and multi-operand bulk-bitwise logic while retaining all other
functionality, e.g., read and write. This allows the implementation of a wide variety of algorithms
in memory while having the ability to configure or integrate the memory space with other tools
in accordance with the implementation needs of the algorithms.

The SPIMulator tool is available open-source and can be found athttps://github.com/Pitt-
JonesLab/DWMsimulator

The expected developer design flow would follow the steps outlined in Figure 3. The most crucial
step is step 1, which is to construct the script for the execution of the algorithm. Some significant
constraints and regulations are necessary to run the script successfully. In the following section,
the constraints and regulations are discussed in more detail in Sections 3.1 and 3.3. In Section 3.1,
the DBCs and nanowires addressing are explained. Section 3.3 explains the PIM instructions and
different write operations.

ACM Trans. Embedd. Comput. Syst., Vol. 23, No. 6, Article 94. Publication date: September 2024.

https://github.com/Pitt-JonesLab/DWMsimulator

SPIMulator: A Spintronic Processing-In-Memory Simulator for Racetracks 94:7

Step 2:
Configuration of;
the tool

Step 4: Modify
and Repeat

Fig. 3. SPIMULATOR design flow.

Row 0 [APO
Row
Row
Row
Row 4 |« APt

Fig. 4. DBC architecture.

3.1 Memory Layout and Addressing

SPIMulator defaults to the model from prior work [13] with one PIM-enabled tile constructed
from 16 DBCs and a local row buffer to perform reads and writes to memory.” Per DBC, given
there are 512 nanowires and 32-bit length tracks, this requires 16 DBCs (Figure 4). Each DBC is
assumed to possess at least two access ports AP0 and AP1 at the head and tail of the transverse
access region, separated by TR; domains. SPIMulator will access data by shifting and aligning the
access ports AP0 and AP1 with the data automatically to incur the minimum number of shifts.
Thus, for a traditional read/write access, if the tail, i.e., AP1, is close to the operation location, then
the tail end will move so as not to have more shifts than necessary. The same will be true for the
head, i.e.,AP0. If APO is closer to the operation location, then to minimize shifts, the SPIMulator
will align the head with the operation location. Conventionally, the access points remain fixed
in DWM architectures, and the data moves to align with the access port. To accomplish this, the
device requires unused buffering domains on the exterior of the nanowire. These are overhead
domains required to keep the access port fixed. However, we can change the frame of reference
such that the access point is shifting in relation to the data for the ease of display in SPIMulator.
For executing PIM programs, SPIMulator mimics the translation layer at the memory controller
to convert these instructions in basic memory operations. Aside from logical and arithmetical op-
erations, like prior work [13], the PIM block is capable of logical shifts and transverse reads and
writes, which can also be translated into proper operation from the PIM instructions. To preserve
the expandability and generality of the SPIMulator, we have upheld the following nomenclature
for the instructions shown in Equation (1), below. Each PIM cpim instruction consists of a source
address, “sr¢,” indicating which DBC and nanowire position to align with the nearest access port

%In principle, there is no reason not to simulate multiple PIM enabled tiles per subarray. However, this configuration was
selected due to the peripheral circuitry overhead [13].

ACM Trans. Embedd. Comput. Syst., Vol. 23, No. 6, Article 94. Publication date: September 2024.

94:8 P. Bera et al.

before issuing the operation “op” instruction. For PIM operations, the operation occurs between
the access points, which is the Transverse Read distance (TR,;). SPIMulator also uses one
(or more) new instructions [21] that map the operations to be issued by the memory controller.
‘op” is the operation selected from the PIM block. A more detailed explanation is discussed in
Section 3.3. After the “op” is computed, the result is stored in the local buffer until a “write_op” op-
eration is executed at the destination address “dst” where the result will be stored. To integrate our
write operations with the cpim instruction, we assume the instruction to include the “write_op.”
Here, “write_op” is a three-bit value that represents a write operation in the same DBC address
range where the cpim “op” is executed. It is also important to note that we have an intelligent
alignment of access ports. That means there will be a shift operation before cpim “op” is executed
automatically to align the access ports to the “sr¢” or “dst” address within the DBC. The energy and
the cycle cost for such shifts are also automatically incorporated with the costs of ¢pim instructions.

cpim dst src op blocksize write_op (1)

SPIMulator’s addressing is conducted using an address targeting an organization like Figure 4.
The example presumes a single tile, 16 DBCs per tile, and 32 rows per DBC. After identifying the
tile, addresses are stripped to the lower nine bits starting from “0,” the first row for the first DBC
(DBC 0), continuing to “32,” the first row for the second DBC (DBC 1), and so on. Extrapolating,
we have a total of “512” addresses, and the last row of the last DBC (DBC 15) will be “511.” Since
virtual addresses are used by the tool, the memory controller translates these virtual addresses to
physical addresses.

3.2 Execution and Latency

Each instruction requires a specific time to execute. The tool schedules the busy (wait) time re-
quired for each instruction based on the number of core reads and writes. For instance, multiplica-
tion requires multiple sub-reads and writes to compute the final result. Each of this memory access
requires time to access the row (tgras), a column access delay (trcp), time to shift to the correct
column (tgp), and time to access the column (tcas). Writes also require time to stabilize before
they can be re-accessed (t1yg). Using Equation (2) [13] for example, writes use tgras + Lrcp + trp +
tcas + twr cycles.

DWM(cycles] = tras/trep/trp/tcas/twr = 9/4/25/4/4 (2)

To compute the latency and energy values for an algorithm, each command is split into its base com-
ponents. These components are as follows: Write, Transverse Write, Read, Transverse Read, Shifts,
and Stores. Each affects the latency and energy differently. Reads represent the activation of a
row and column in memory to read a value into the row buffer. Writes are similar to reads in that
they activate a row and column in memory, but instead, they write a value from the row buffer into
memory and require additional time to stabilize. Transverse reads and writes are similar in latency
to their previously mentioned counterparts but require different energy amounts due to shifting
(T Write) or reading through PIM logic (T Read). As explained previously, shifts are required to
align addresses with the access points. Finally, stores are just traditional memory accessed by the
CPU. Since stores are required to do a write as part of their functionality, the additional time spent
for these writes on the bus is also accounted for and does not add any additional cost in energy.
Most PIM instructions require a TR to obtain a result. For tiles/DBCs with more than one access
port to conduct TR, the sensing circuitry (SA) is generally modified, and the output of these SA
is a seven-level sensing circuit, which is the input for the PIM logic as shown in Figure 5(a). The
PIM logic operator is determined by selecting the output through multiplexer, as shown in the
modified rowbuffer that contains the PIM logic as shown in Figure 5(b). Note this rowbuffer is

ACM Trans. Embedd. Comput. Syst., Vol. 23, No. 6, Article 94. Publication date: September 2024.

SPIMulator: A Spintronic Processing-In-Memory Simulator for Racetracks 94:9

Wi-1ﬂ>Ri-1 W; ﬂ?Ri Wi+1ﬂ>Ri+1

AND|
. A4 A4 A4
[driver j-1}>Bj. [_driveri »B; [driver i+1}>B;s

(a) PIM logic for up to seven operands (b) Local buffer extension for PIM and logical shifting

Bj.1 B Bjs1
L L L
l7swa Wezse {L7s
SAL | SA | SAi1 |
$ 7 $ 7 7
PIM | | PM] [PM Lsh,
= L et
I >|| 4 y y I#’CH.!I
: | I V*wr‘rs \r*l‘rs
m—~— —<on] 122 2
6:

Fig. 5. PIM hardware logic tile overview [13].

also modified to support logical shifting. This process is simulated by scheduling the delays and
energy consumption from Equation (2) and the extended peripheral circuitry using event-driven
simulation.

3.3 Instructions

The instruction set for SPIMulator can be divided into two categories of PIM operations: basic
memory and logical/arithmetic instructions. In this section, we will explain each set of instruc-
tions with examples. For logical/arithmetic instructions, we have implemented basic gates ~(AND,
OR, NOT, XOR, XNOR, NAND, and NOR) and addition and multiplication operations ~(SUM and
MULT). We will demonstrate each logical/arithmetic instruction and their behavior in the PIM
block. The PIM capabilities have been assumed to be present in all of the DBCs in the memory
architecture. Figure 4 shows two access points AP0 and AP1, which are spaced according to the
user-assigned Transverse Read distance (TRy). For the examples followed, we have assigned a
conservative TR, of 7, which can be scaled up to 32, as stated in Reference [20]. SPIMulator will
presume that some portion of the virtual memory space will be reserved for PIM operation, and
the operating system can manage this space when conducting virtual to physical address transla-
tion, as is often the case with memory-mapped I/O. Thus, the user can schedule PIM operations in
memory and align with tile and DBC boundaries.

SPIMulator is equipped with Basic Memory Operations such as {WRITE, COPY, STORE, Logical
SHIFT Left, Logical SHIFT Right, READ}. Due to our intelligent alignment of the access ports, either
the head APO or the tail AP1 aligns itself with the given address at “dst.” This helps minimize
the cycle counts and energy consumption. For logical/arithmetical operations “op,” the address in
the “src” is always accessed by APO to ensure that the correct operands are being used. Once the
TRy head has aligned with the given “dst” and “src,” the given “op” is executed between the TR,
distance. The “op” is executed among all of the “blockwise,” i.e., 512 nanowires. The result from
the “op” is temporarily stored in the Local buffer (the information transfer bus among the DBCs)
until the “write_op” is given. “write_op” ~[“0,” “1, “2,” “3” “47 “5” “6”] is a “3-bit” identifier that
represents the seven different types of possible write. Table 1 lists all basic memory instructions
with different write types and Table 2 lists all the Logical and Arthritic operations instruction sets.

(A) Write operations:
(i) Write: “0” is one of the types of write (“write_op”) operation that will overwrite at the des-
tination “dst” after the TRy head or tail aligns with the “dst” address. The data from the

ACM Trans. Embedd. Comput. Syst., Vol. 23, No. 6, Article 94. Publication date: September 2024.

94:10 P. Bera et al.
Table 1. Basic Memory and Write Operation Instruction Sets
CPIM | dst src op Blksize | write_op Description
cpim | $0-$511 | data STORE | 512 “0” Write the data into the destina-
tion addr
cpim | $0-$511 | data STORE | 512 ‘17 Shifts content down within the
(APO) TR, while transverse writing
data at AP0
cpim | $0-$511 | data STORE | 512 “2” shifts content up within the
TR, while transverse writing
data at AP1
cpim | $0-$511 | data STORE | 512 “3” shifts content towards the bot-
tom extremity (last row) and
transverse writes data at AP0
cpim | $0-$511 | data STORE | 512 “4” shifts content up towards the
top extremity and transverse
writes data at AP1
cpim | $0-$511 | data STORE | 512 “5” shifts content up towards the
top extremity and transverse
writes data at AP0
cpim | $0-$511 | data STORE | 512 “6” shifts content down towards
the bottom extremity and trans-
verse writes data at AP1
cpim | $0-$511 | $0- COPY | 512 “0-6” Reads data from src addr and
$511 writes at dst addr following
any 0-6 options
cpim | $0-$511 | $0-$511 | SHL 512 “0-6" Logical data shift by 1/8/32 bits
[1,8,32] left and appends 1/8/32 bits of
zeros at the right extremity
cpim | $0-$511 | $0- SHR 512 “0-6” Logical data shift by 1/8/32 bits
$511 [1,8,32] right and appends 1/8/32 bits of
zeros at the left extremity
local buffer overwrites the data at the “dst” address and thus any previous information at
“dst” will be lost. This instruction is to be used conjoined with other operational instruc-
tions such as “AND,” “SHL,” “ADD,” and so on. The result after performing any operations
at “src” is stored in the local buffer temporarily and then overwritten at “dst” according
to “0.”
(ii) Transverse write at AP0: “1” is a special type of write operation that represents transverse
write at APO. This means that the data present within the TRy is shifted “down” towards
AP1 by one row and then the shifted data is written at “dst” address (see Figure 4). In
doing so, the data is written at the address of AP0 and data between AP0 and row prior
to AP1 are shifted to the next address (similar to a technique used in wear leveling). The
data at AP1is lost. This instruction is issued when there is a need to shift place data while
keeping the head at the same address or to clear out old data.
(iii) Transverse write at AP1: “2” is a special type of write operation that represents transverse

write at AP1. Similar to the above command, except data is shifted into AP1 and the data
between the access ports are shifted into the previous row’s address and the data at AP0
gets lost.

ACM Trans. Embedd. Comput. Syst., Vol. 23, No. 6, Article 94. Publication date: September 2024.

SPIMulator: A Spintronic Processing-In-Memory Simulator for Racetracks 94:11

Table 2. Logical and Arithmetic Operation Instruction Sets

CPIM | dst src op Blksize | write_op Description
cpim | $0-$511 | $0-$511 | and 512 “0-6” and op within the TR, distance
cpim | $0-$511 | $0-$511 | or 512 “0-6” or op within the TR, distance
cpim | $0-$511 | $0-$511 | nand 512 “0-6” nand op within the TR, distance
cpim | $0-$511 | $0-$511 | nor 512 “0-6” nor op within the TR, distance
cpim | $0-$511 | $0-$511 | xor 512 “0-6” xor op within the TR, distance
cpim | $0-$511 | $0-$511 | xnor 512 “0-6” xnor op within the TR, distance
cpim | $0-$511 | $0-$511 | not 512 “0-6” not op within the TR, distance
cpim | $0-$511 | $0-$511 | carry 512 “0-6” carry op counts number of 1’s within
TR, distance and outputs 1 for count =
2,3,6,7
cpim | $0-$511 | $0-$511 | carryprime | 512 “0-6” carryprime C’ op counts number of 1’s
c’ within TR, distance and outputs 1 for
count = 4,5,6,7
cpim | $0-$511 | $0-$511 | add 512 “0-6” add op for operands within the TR, - 2
distance
cpim | $0-$511 | $0-$511 | mult 512 “0-6” 8-bit product
(iv) Transverse write at AP0 shift to bottom extremity: “3” represents transverse write at AP0,
but instead of deleting the data at AP1, it pushes it down by one row beyond the TR
distance. This means that the entire data starting from AP0 is shifted down by one address
until the end of the nanowire. In doing so, only the last row of data at the end of the
nanowire (i.e., modulus 32+31) will be lost.

(v) Transverse write at AP1 shift to top extremity: “4” represents transverse write at AP1 and
pushes the data at the track beyond the TR distance (above APO) towards the top. This
means all addresses beyond the TRy will be shifted up by one, with the top row (i.e.,
modulus 32) of the DBC being logically deleted.

(vi) Transverse write at AP0 shift to top extremity: “5” represents transverse write at AP0 and
pushes the data up the track (above AP0) by one row. This will result in all data above
APO being shifted up by one, and the data at the top address is lost.

(vii) Transverse write at AP1 shift to bottom extremity: “6” represents transverse write at AP1

and pushes the data towards the bottom of the track below the TR,. This means that
the data below AP1 will be shifted downwards. In doing so, only the data at the bottom
address is deleted.

(B) Basic Memory Operations:

()

~—

(i

“STORE”: When issued with this instruction, the “data” is loaded from the CPU to the
local buffer and then is written according to the write_op “(0-6)” after the TR; APO or
AP1 aligns with the destination “dst” address. The peculiarity of this instruction is that
the CPU data to be loaded can be supplied with the instruction. For example, “cpim $96
0xA24B791CEF6 STORE 512 0 implies that Data=0xA24B791CEF6 will be written at
address $96 after the closest of the AP’s aligns with $96.

“COPY”: When issued with this instruction, the closest of the access points will first align
with the source “src¢” address, and then the “data” is read from the source “src” address to
the local buffer. The read data in the local buffer is then written according to the write_op
“(0-6)” after the TR; APO or AP1 aligns with the destination “dst” address. The pecu-
liarity of this instruction is that it reads the “src” first and then writes the read data. For
example, “cpim $96 $12 COPY 512 0” implies that source address “src¢” $12 will be read
and transferred to the local buffer. Then it will be written at “dst” address $96 after the

ACM Trans. Embedd. Comput. Syst., Vol. 23, No. 6, Article 94. Publication date: September 2024.

94:12

(iii)

P. Bera et al.

closest of the APs aligns with the source address $12 and the destination address $96,
respectively.

“SHL” (logical shift left) represents the left shift of each bit at the “src.” This instruc-
tion comes in three forms: SHL1, SHL8, and SHL32. When issuing any of the above,
SPIMulator’s first step is to read at “src” address by using the intelligent alignment of
the TRy access port and then the number of shifts required. The data is then read to the
row buffer and shifted by the instructed number. Data at the left extremity is lost, and
0’s is added to the right extremity. This operation is conducted in the source address, and
the result is stored temporarily in the local buffer until the write instruction is executed.
The write instruction is always accompanied with “SHL” instruction. An example of this
instruction “cpim $32 $0 SHL1 512 0 will first align either of the AP’s nearest to $0
and data will be left shifted by 1-bit. The shifted data will be in the local buffer before it
is overwritten into the destination address $32.

(iv) “SHR” (logical shift right) represents the right shift of each bit at the “src” address. This

instruction comes in three forms: SHR1, SHR8, and SHR32. When issuing any of the above,
SPIMulator first reads the “src” address by using the intelligent alignment of the TRy
access port and then determines the amount to be shifted. The data is then read to the
local buffer and shifted by the desired amount. Data at the right extremity is lost, and
0’s is added to the left extremity. This operation is conducted in the source address, and
the result is stored temporarily in the local buffer until the write instruction is executed.
The write instruction is always accompanied by “SHR” instruction. An example for this
instruction is “cpim $32 $0 SHR8 512 0, which will first align either of the APs nearest
to $0, and data will be right shifted by 8 bits. The shifted data will be in the local buffer
before it is overwritten into the destination address $32.

(v) ‘R AP0 and R AP1” represents a simple read instruction at the src location after aligning

either APO or AP1 access port, which is the head or tail of TR; with src. Although this
instruction is not mentioned in the cpim instruction set, it is important to have these
options to issue a simple read command when necessary. An example of this instruction
is “read $12 AP0, which will align the access port AP0 with source address $12 and
then copy the data into the local buffer. These instructions can be helpful when data is
required to be moved out of the memory to the CPU.

(C) Logical and Arithmetic Operations:
(i) {"AND,” “OR,” “XOR,” “XNOR,” “NAND,” “NOR,” “NOT’} represents the logical operation

(ii

~

» » «

“and,” “or, “xor, “xnor,” “nand,” “nor,” or “not” when issued with the cpim instruction.
The operation occurs among the operands between the TR distance after aligning the
access port APO with the source address “src.” The operation result is temporarily stored
in the local buffer until it is written according to the instruction’s last three bits “(0-6)”
to the destination “dst” address. An example of logical operations is: “cpim $32 $0 and
511 0” in which the “and” operation is executed from source address “src” location to the
TR size. The result is then stored in the local buffer and overwritten at the destination
address “dst.”

“CARRY” and “CARRYPRIME” are special instructions that are required for the “ADD”
and “MULT” operations. They are normally not called by the users, as they are not part
of the arithmetic operations. But users can still have the option to call these instruc-
tions in SPIMulator if they want to create custom functions that will require “CARRY”
and “CARRYPRIME” calculations. Both “CARRY” and “CARRYPRIME” operations count
the number of ones within the TR; distance and will output 1 to the local buffer.
“CARRY” outputs 1 when the number of 1 within the TRy is any of the following: 2,3,6,7.

ACM Trans. Embedd. Comput. Syst., Vol. 23, No. 6, Article 94. Publication date: September 2024.

SPIMulator: A Spintronic Processing-In-Memory Simulator for Racetracks 94:13

Block size
A

f)
APO nus
7 No. of 1’s Output

“ between
(wfufafsfofs]e]s] e | APOaNdAPI

ata
T
[]

[]
~: A - - -

Fig. 6. Addition using TR.

2,3,6,7 CARRY =1
4,5,6,7 CARRYPRIME =1

“CARRYPRIME” outputs 1 when the number of 1 within the TRy is any of the following:
4,5,6,7. An example of the carry instruction is “cpim $32 $0 carry 511 ‘1” which issues
a carry operation at source address $0 and transverse writes at destination address at $0.
Example of carryprime “cpim $32 $0 carryprime 511 ‘0 which issues a carryprime op-
eration at source address $0 and overwrites at destination address at $0. The output from
these instructions can be written according to the instruction’s last “3-bits,” i.e., “(0-6).

(iii) “ADD” represents the arithmetic “addition” operation A + B. We will show an example of
an addition operation for five operands in Figure 6 for TR, = 7. It is important to note that
we can perform addition for (TR; — 2) bits. Therefore, for our example, we can perform
a 5-bit addition for TRy = 7. In step 1, a TR of dwmy, (first nanowire) is conducted. Sy,
which is XOR of ay...ey, (5-bit number) is computed by the PIM block, which is the blue
bits between the AP0 and AP1 access ports. Simultaneously, carry Cy, is computed and
sent to the right to the driver (AP1) for dwm; (second nanowire) shown in orange, and
carry prime C; is sent to the left of the driver APO for dwm; (third nanowire), shown in
green in Figure 6. In step 2, a similar set of steps occurs, except the operations include
Cy in addition to a;...e;. Then, in step 3, TR is conducted over C{, a;...ez, Cy, seven total
elements. We will continue to compute S, C, and C’ for every nanowire until the third last
nanowire (509) is reached. In the general case, for step k+1 (i.e., dwmy), TR is conducted

over C; _,, a...ex, Cx—1 with Sy written to port;, of dwmy, Ci written to portg of dwmy.,
and C, written to porty of dwmy.,,. Figure 6 is an example of addition for (TR; — 2)
numbers of operands placed in between the access points.

(iv) “MULT” represents the arithmetic “multiplication” operation A B. A foundational
method to compute A * B is to sum A, B times; e.g., for B = 3, A* 3 can be computed
as A+ A+ A. Thus, we can perform multiplication by making several additions. Even
with a 5 operand add, this method can quickly require many steps. Consider 9A: This can
be computed by computing 5A in one step and then computing 5A+ A+ A+ A+ Aina
second step. This method could be improved by generating 5A in one additional step, then
replicating 5A and summing to compute 254, and so on, but this clearly scales poorly. One
method to accelerate this process is to shift the copies of A to quickly achieve the precise
partial products that, when summed, produce the desired product. We have reserved our
last DBC DBC;; for the purpose of shifting copies of A and executing carry, carry prime,
and add operations on the shifted copies of A. This is the reduction process, as shown in
Figure 7. One example of “multiplication” is shown in Figure 8. Here, we multiply 0 X FE
and 0 X 1F to generate 0 X 1,588.

ACM Trans. Embedd. Comput. Syst., Vol. 23, No. 6, Article 94. Publication date: September 2024.

94:14

P. Bera et al.

DBC $15: Dedicated for shifting and reduction of operand ‘A’

Operand ‘A’
Shifted A by 1 bit
Shifted A by 2 bits
Shifted A by 3 bits

Shifted A by 4 bits
Shifted A by 5 bits
Shifted A by 6 bits

Shifted A by 7 bits
XOR1
CARRY1
CARRY’1

0x0000000
0x0000000 ...
0x0000000 ...

Calculate XOR,
CARRY1 &

Shifted A by 7 bits

(a) step 1: make copies of shifted ‘A’

0x0000000

Shifted A by 7 bits

XOR1
CARRY1

CARRY’1
0x0000000
0x0000000 .
0x0000000 .

(c) step 3: Call add function after reduction and shifting

(a) Stores the operand A

0x0000000

(b) step 2: Reduction of shifted A by calculating
carry, carry’ and xor

Result ADD
Shifted A by 7 bits
XOR1
CARRY1

CARRY’1

0x0000000
Carry ADD

0x0000000

(d) step 4: Result from add function is the final output

Fig. 7. Multiplication.

(b) Stores the operand B

[] [] Run - DWM simulator [[J Run - DWM simulator
Run: mult & — Run C muit s -
/usr/bin/python3 "/Users/paviabera/Documents/Python Codes/Di!
» instruction: ['CPIM', '$480', 'Ox1f', 'STORE', 'S12', '1'] > v Pyt Ll . 4
s Destinantion DEC No: 1 instruction: ['CPIM', '$Q°, 'Oxff', 'STORE', 'S12', '0']
i X . _ Destinantion DBC No: @
= Destinantion Row No: @ 5
Destinantion Row No: @
% T T T £
= _ | TRd | Row | Hex Data = _ " -
& h , & | TRd | Row | Hex Data
P + + A = | L L
" w0 0 | oxif o N N
| APO | 0 | Oxff
| [11 K
11
| [2 K
2
| [31 K
31
b + +
| APL | 4)
| AP1 4
b + +
T *
(c) Multiplies A* B
LN J Run - DWM simulator
Run: mult & —
> r T
v | TRd | Row | Hex Data
5| F +
o e o | ex
= -
= 1 11
Alw| -
1 1 21
1 1 31
1 APL | 4
L .
{'write': 8, 'TR_writes': 2, 'read’: 8, 'TR_reads': @, 'shift': 14, 'STORE': 2}

The total_cycles and total_energy is :

1595 and 17603.669033472

Fig. 8. Snapshot of SPIMulator tool while performing multiplication of two 8-bit operands.

ACM Trans. Embedd. Comput. Syst., Vol. 23, No. 6, Article 94. Publication date: September 2024.

SPIMulator: A Spintronic Processing-In-Memory Simulator for Racetracks 94:15

3.4 Fault Modeling:

Recalling that DWM retains the high endurance and other positive qualities of STT-MRAM, such
as low energy consumption, it increases density by requiring the device to shift data with the
nanowire to be aligned with the access points. However, DWM is susceptible to shifting faults,
which are shifts in the position of domain walls within the memory cells. Shifting faults in DWM
refer to the unintended movement of magnetization between domain walls within the memory
cells, such as shifting too many to too few domains during a shift operation. Several factors con-
tribute to the occurrence of shifting faults in DWM. Thermal effects, including temperature vari-
ations, fluctuations in the power network, and fluctuations in the material’s magnetic properties,
can impact domain-wall motion. Additionally, external magnetic fields, whether intentional or en-
vironmental, can influence domain-wall motion. Moreover, material defects, such as impurities or
irregularities, can act as nucleation sites for domain wall movement. Manufacturing variations in
cell dimensions or magnetic properties can also contribute to shifting faults and cause domain
walls to remain pinned.

Shifting faults in DWM are persistent and can result in incorrect accesses and data corruption
or loss. When reading or writing data, the memory controller accurately positions domain walls to
determine the stored information. Corrective shifts and even scrubbing may be required to restore
the data if there is incorrect domain-wall movement.

Moreover, frequent shifting faults can degrade both the reliability and the performance of DWM
devices due to the overhead of fault-tolerance actions, which affects the overall speed and effi-
ciency of these systems. Thus, addressing shifting faults is crucial to ensure the reliable operation
of DWM devices. Reference [14] presents promising new fault-tolerance schemes for DWMs, such
that they can detect and correct a wide range of shifting faults without significantly increasing the
power consumption or area overhead of DWMs. PIETT detected and corrected shifting faults at
runtime by employing “Parallel Independent Error and Transverse access Tapes.” SPIMulator im-
plements a PIETT-inspired fault modeling scheme specifically designed to address shifting faults,
misalignment, and pinning errors in Domain-Wall Memories (DWM). This integration of a
fault-handling mechanism underscores SPIMulator’s commitment to enhancing user experience
by ensuring the reliability and accuracy of simulations. Also, this approach aligns with the practi-
cal usability of SPIMulator and adds value to the overall simulation framework.

(i) Parity checking: Parity checking is a simple and efficient way to detect if a single-bit flip
error has occurred. A parity bit must be added to each DWM cell/nanowire. The parity bit is
calculated by XORing the bits in the cell, which can be accomplished through TRs. Checking
the parity bit can also be done to determine a single-bit error has occurred. More sophisticated
codes of these parity bits can be stored to reduce storage, such as the DECC process proposed
in PIETT [14].

(if) Corrective Shifts: By encoding the overhead bits, it is possible to detect over- and undershifting
in the system [14]. In this instance the position can be corrected through “corrective shifts”
SPIMulator allows user-inserted instructions or stochastic misalignment faults to be injected
into the simulation to add performance and energy overheads for these corrective shifts.

(iii) Error correction: To protect the data stored in the memory, error-correcting codes may be em-
ployed to correct single- or multiple-bit errors. SPIMultaor allows the extension of the DBCs
to include extra nanowires to store parity bits to enable user selected protection modes for
protecting memory accesses using Hamming codes, BCH codes, Reed-Solomon codes, among
others. If these errors occur due to a pinning fault, i.e., when part of the nanowire shifts a dif-
ferent number of positions than the rest, then this can permit scrubbing. Need for scrubbing
can be detected through pinning fault detection circuits as described in PIETT [14].

ACM Trans. Embedd. Comput. Syst., Vol. 23, No. 6, Article 94. Publication date: September 2024.

94:16 P. Bera et al.

Table 3. Performance Parameters and Instruction Counts

Algorithm | Write | TW | Read | TR | Shifts | Store | Energy (pJ) | Cycle
Bitmap 15 2 4 3 26 10 8,354.26 683

Dot Product | 380 48 188 120 | 295 16 265,270.34 | 26,426
AES 267 101 | 294 122 | 1,767 | 4 900,482.85 | 76,608

An example of a manually inserted shifting fault overheads is: “cpim $32 $0 CS 511 07 in
which the “CS” operation is executed from source address “src” location to the TR size for all
512 nanowires. The result of the shifting fault operation is then stored in the local buffer and
overwritten at the destination address “dst.” The operation “CS” stands for corrective shifts. Such
operations insert overhead but do not actually shift the nanowires.

4 RESULTS

In this section, we will verify the mutability and versatility of the SPIMulator by demonstrating
the computing in memory (PIM components) through end-to-end execution of the following algo-
rithms: Bitmap indices, Dot product, and AES (advanced encryption standard block cipher).
These three case studies were selected as they are frequently used processes in data indexing, sig-
nal processing, machine learning, and data privacy applications. They also showcase the diverse
algorithmic in-memory execution capabilities of the SPIMulator. We have also conducted quantita-
tive analysis in our three case studies with variable TRy € {4, 5, 7} for verification of user-assigned
TR distance.

We evaluate the robustness of our PIM block in SPIMultor by calculating the writes, reads, and
shifts required to execute the algorithms, end-to-end, in memory. It is important to note that the
writes, reads, and shifts counts in Table 3 may not reflect the minimal scenario for the algorithm
implementation. SPIMulator demonstrates the workability of the algorithm, however, it is possible
the algorithm can be further optimized using approaches such as pipelining or subarray/bank-level
parallelism that can be introduced.

4.1 Case 1: Bitmap Indices

Bitmap indices is a search algorithm where data is stored in a tabular format, and queries are exe-
cuted via multi-operand bit-wise operations. This type of indexing is used for large databases with
low cardinality columns that are used frequently in searches. A bitmap index is a binary num-
ber whose length equals the number of variables entered into the table. Figure 9(a) is an example
where gender has a binary value, males as 0 and females as 1, and it also stores their last logged-in
information. Each person is represented by a column, and the corresponding week logged in will
be represented by 1. So, in Figure 9(a), Person 1 is a male and logged in the current week. The
case study uses data from Figure 9(b), which is the hex equivalent generated in Figure 9(a).

To arrange data in memory, it is best to allow each nanowire to represent an entry in the ta-
ble (Person) and each row to represent a condition. Using bitmap indexing, searching the list will
require performing different logical operations on specific rows to meet the search criteria. For ex-
ample, searching how many males have logged in within the past two weeks will require following
logical operations.

— “STORE” table in Figure 9(b) in DBC 0.

— “COPY” 0th, 1st, and 2nd weeks of data to DBC 1.

— “ORing” together 0th, 1st, and 2nd weeks will give all people that have logged in within two
weeks.

— Save “OR” results in DBC 3.

ACM Trans. Embedd. Comput. Syst., Vol. 23, No. 6, Article 94. Publication date: September 2024.

SPIMulator: A Spintronic Processing-In-Memory Simulator for Racetracks 94:17

[Person [

[

[4]5]

12 4
S [Gender [0x2D |
Gender ofof1]|]of[1]1]0]1
0 Weeks 0x81
0 Weeks 1{of0f[O0]|O0fO0O[O0]|1
1 Week 0x22
1 Week 01]0 1 0|0]O0 1 0
2 Weeks 0x08
2 Weeks 01]0 01]0 1 0|0]O0
3 Weeks || 0x10
3 Weeks 01]0 0 1 0O[0]0]O
4 Weeks || 0x40
4 Weeks 0 1 0Ojo0f[O0O]O0O|O]O 5 Weeks 0x04
5 Weeks 01]0 0]01]O0 1 0|0
a) Bitmap indices of Data (b) Hex equivalent of Table 9(a)

Fig. 9. Case 1: Bitmap Indices. Figure 9(a) shows a set of data representing the gender and weeks since last
logged in. Figure 9(b) is the hex equivalent of Table 9(a), which is stored into the memory of SPIMulator.

— “COPY” Gender row to DBC 2.

— “NOTing” Gender to calculate Gender to make male a required search condition.

— Save Gender in DBC 3.

— “STORE” 0XFF, i.e., 1’s in DBC 3 for AND operation as default DBC state is 0.

— “ANDing” the result of OR and Gender to generate each entry that meets the criteria of the
number of males logged in within the past two weeks.

— Save “AND” result in DBC 2.

Figure 10 is the instruction set for searching how many males have logged in within the past
two weeks. Figure 11 illustrates the execution by the SPIMulator in four steps. The instructions
for this search operation have been designed to minimize shift operations by utilizing the different
DBCs, thus reducing the overhead cost from shifts. Using a unique DBC for each operation, the
energy and cycles used for shifts can be significantly reduced. For example, in Figure 11, the bitmap
indices are stored in DBC 0, the “OR” operations are done in DBC 1, the “NOT” operations are done
in DBC 2, and the “AND” operations are done in DBC 3. This is because the TR access port will
not be required to align with the data every time a logical operation takes place. Note that for
operations like “AND,” rows between access ports not containing operands must be padded with
1’s “STORED” to produce the right result. The default state of every row in the memory is zeroed.
Therefore, we have stored 0xFF in between the TR access ports before the “AND” instruction. Also,
the “NOR” operation is our “NOT” equivalent in SPIMulator.

To illustrate how reliability functions in SPIMulator note lines 4-5 of Figure 10. This shows
how the instruction flow can be modified if a fault occurs in the system. In this example, a shifting
fault in one of the nanowires occurs as the shifter is trying to shift from address 0x2D ($45) to 0x22
$34. Thus, it includes an overhead for corrective shifts to correct this fault.

4.2 Case 2: Multiplication of Matrices

Matrix multiplication is one of the most widely used mathematical operations in the scientific com-
munity. Especially after the proliferation of machine learning such as deep learning, matrix multi-
plication has become an integral part of the basic computation. Therefore, being able to optimize
time and computation speed is of great significance. In-memory matrix multiplication computa-
tion can help alleviate resource consumption and accelerate many machine-learning algorithms.
Equation (3) shows how to obtain the result for the multiplication of two 2 X 2 matrices.

MatrixMult = [a b] . [W x] _ |aw+by ax+bz
¢ d z

cw+dy cx+dz

y ®)

In this case study, the 2 X 2 matrix multiply will be computed entirely in memory. The results of
this case will validate the addition and multiplication capabilities of SPIMulator. Figure 12 is the

instruction set for two 2X 2 matrix multiplication. We have “STORED” (JX4E 0x0F) and (9x1F 0x11)

ACM Trans. Embedd. Comput. Syst., Vol. 23, No. 6, Article 94. Publication date: September 2024.

94:18 P. Bera et al.

Step 1: Storing Bitmap Indices

CPIM $12 0x2D STORE 512 0 #gender

CPIM $13 0x81 STORE 512 0 #week 0

during simulation a shift fault occurs shifting from 0x2D to 0x22

CPIM $45 $34 CS 511 0 # auto inserted instruction to employ corrective shifts
CPIM $14 0x22 STORE 512 0 #week 1

CPIM $15 0x08 STORE 512 0 #week 2
CPIM $16 0x10 STORE 512 0 #week 3
CPIM $17 0x40 STORE 512 0 #week 4
CPIM $18 0x04 STORE 512 0 #week 5

Step 2: Copy to DBC 1 and OR the results

DBC 1 is reset to 0's to enable fewer operand ORs

CPIM $32 $13 COPY 512 0

CPIM $32 $14 COPY 512 1

CPIM $32 $15 COPY 512 1

CPIM $96 $32 OR 512 0 #save OR result in DBC 3

DBC 3 is preset 1's to enable fewer operand ANDs

CPIM $97 0xFF STORE 512 0

CPIM $98 0xFF STORE 512 0

CPIM $98 O0xFF STORE 512 0

Bitmap

Search condition (Example: how many males have logged in within the past two weeks?)
Steps 3 & 4: Copy to DBC 3, NOT (~NOR) extract males Gender AND with logins
CPIM $64 $12 COPY 512 0

CPIM $100 $64 NOR 512 0 # save NOR/NOT result in DBC3

CPIM $64 $96 and 512 0 # save AND result in DBC2

Fig. 10. Bitmap indices CPl assembly example.

and then computed the products of a*w (0xFF x0x1F) and b *y (0x0F * 0xF1). Then they are added
together (a * w) + (b * y) to obtain the first element in the result matrix. These steps are repeated
to compute the other three elements [(a * x) + (b * 2)], [(c * w) + (d = y)], and [(c * x) + (d * z)])
to obtain the final result. Figure 13 shows the final four elements of Equation (3) computed by the
SPIMulator.

4.3 Case 3: Advance Encryption Standard

Advance Encryption Standard (AES) is a standard encryption method standardized in 2001 by
NIST (U.S National Institute of Standards and Technology). AES is a block cipher algorithm
that can use a 128, 192, or 256 bit size cipher key, depending on the required security concerns to
encrypt 128 bits of input data at a time [5]. Depending on the key size, 10, 12, or 14 rounds of per-
mutation, combination and substitution are performed to encrypt the input data. These processes
are known as SubByte, ShiftRows, MixColumns, and AddRoundKey, as shown in Figure 14. In this
case study, we have designed a way to perform AES using the PIM architecture of Reference [13]
and the instruction count was also analyzed in Table 3. It is important to note that these values do
not reflect the best performance capabilities of the SPIMulator.

Before we explain the SubByte, ShiftRows, MixColumns, and AddRoundKey, it is important
to determine how the data will be placed and operated upon in the Domain wall memory. Tra-
ditionally, AES data is shown in matrix format, and the above-mentioned steps are performed
sequentially for the required number of rounds. However, since SPIMulator performs operations
vertically, data is stored across different nanowires for ease of functioning, as shown in Figure 15.
This has a positive side effect of reduced shifts required for access of new rows for the data. With
data placement explained, the next sections will discuss how each process of AES is performed for
the first round of operations.

ACM Trans. Embedd. Comput. Syst., Vol. 23, No. 6, Article 94. Publication date: September 2024.

SPIMulator: A Spintronic Processing-In-Memory Simulator for Racetracks

1: DBC 0: STORE table
Gender—> 0x2d
WEEK 0 = 0x81
WEEK 1> 0x22

WEEK 2-> 0x08
WEEK 3-> 0x10
WEEK 4-> 0x40
WEEK 5> 0x04

Step 2: DBC 3: 'OR’ result
‘OR’ result >0xab
Filled Ones = Oxff

Filled Ones > Oxff
Filled Ones > Oxff

0x00000000

Step 3: DBC 3: ‘NOT’ result
‘OR’ result >0xab
Filled Ones = Oxff
Filled Ones = Oxff

Filled Ones = Oxff
‘not’ result Oxd2

4: DBC 2: 'AND’ result

‘AND’ result—>0x82
0x00000000 ..
0x00000000 ..

0x00000000 ..
0x00000000
0x00000000 ..

LX) Run - DWM simulator
Run: bitmap Index o -
>
% instruction: ['CPIM', '$18', '0x@4’, 'STORE', '512°, '0']
Destinantion DBC No: 0
“® Destinantion Row No: 18
%
= & | TRd | Row | Hex Data
» 5 b . .
I I 12 |
1 I B
1A | 14
I 15|
I 16 | @
1 [
| APL I 18 |
LR Run - DWM simulator
Run: bitmap Index 8 =
> instruction: ['CPIM', '$96, '$32°, 'OR', '512', '0']
& Destinantion DBC No: 3 |
= Destinantion Row No: 0
.y Source DBC No: 1 |
= Source Row No: @ |
-
R 1 r v
¥ | TR | Row | Hex Data |
L ; L |
[I |
11 oxf |
|
1 210
31 oxf |
[U |
|
WM
Run: bitmap Index =
g instruction: ['CPIM', '$100", '$64", 'NOR', '512', '0']
& Destinantion DBC No: 3
= Destinantion Row No: 4
.y Source DBC No: 2
= Source Row No: 0
® TR | Row | Hex Data
| . .
[
11 oxf
| 210
310
| APL | & | OXA2fFFEEEEfEEfeErEeErrrErrrerrrerrrrrrrerrreerreerreerrrees fEff
eo%e Run - DWM simulator
Run: bitmap Index = —
» instruction: ['CPIM', '$64', "$96", 'AND', 512", '@']
- Destinantion DBC No: 2
__ Destinantion Row No: @
“® Source DBC No: 3
.. = Source Row No: @
= r T T
#» % | TRd 1 Row | Hex Data
L L L
| APO | 0 | ox8
1 1 1
I I z21
1 1 31
1 APL | 4

Fig. 11. Logic operational steps to search for males who logged in within the past two weeks. Step 1: stores
the data in hex format, Step 2: OR’s the 0th, 1st, and 2nd weeks and stores it in DBC 3, Step 3: NOTs the
gender and stores in DBC 3, Step 4: ANDs DBC 3 and stores result in DBC 2.

ACM Trans. Embedd. Comput. Syst., Vol. 23, No. 6, Article 94. Publication date: September 2024.

94:20 P. Bera et al.

Use last DBC $480 to $511 to shift the 'A' operand
CPIM $0 O0xFF STORE 512 0 # a

CPIM $480 0X1F STORE 512 0 # w

CPIM $32 $0 MULT 8 0 # axw

CPIM $0 0x0F STORE 512 0 # b

CPIM $480 0xF1 STORE 512 0 # y

CPIM $33 $0 MULT 8 0 # b=y

CPIM $64 $32 ADD 8 0 # a*w + bxy

CPIM $0 OxFF STORE 512 0 # a
CPIM $480 0x11 STORE 512 0 # x
CPIM $32 $0 MULT 8 0 # axx

CPIM $0 0xOF STORE 512 0 # b
CPIM $480 0x01 STORE 512 0 # z
CPIM $33 $0 MULT 8 0 # bxz

CPIM $65 $32 ADD 8 0 # a*x + bxz

CPIM $0 0xAB STORE 512 0 # ¢
CPIM $480 0x1F STORE 512 0 # w
CPIM $32 $0 MULT 8 0 # a=*w

CPIM $0 0x1A STORE 512 0 # d
CPIM $480 0xF1 STORE 512 0 # y
CPIM $33 $0 MULT 8 0 # d=y

CPIM $66 $32 ADD 8 0 # c+w + d=y

CPIM $0 OxFF STORE 512 0 # ¢
CPIM $480 0x1F STORE 512 0 # x
CPIM $32 $0 MULT 8 0 # cxx

CPIM $0 0xOF STORE 512 0 # d
CPIM $480 0xF1 STORE 512 0 # z
CPIM $33 $0 MULT 8 0 # d=z

CPIM $66 $32 ADD 8 0 # c*x + d+z

Fig. 12. Instruction flow for 2 X 2 matrices dot product.

SubByte is the first process of AES where a lookup table known as the S-box (Table 4) is im-
plemented. In this process, the input data is transformed into new values using the S-box lookup
table. This process introduces non-linearity to the encryption algorithm. The S-box is a multiplica-
tive inverse table derived from the Galois field. This look-up table has been stored in memory,
and then the data is substituted from this table. This is done by storing the S-box in memory and
using the “COPY” instruction to substitute the values, as shown in Figure 16. When performing
the SubByte, each byte in a row is used as an address. This will be done repeatedly until all bytes
have been substituted, at which point the results will be put together via an OR operation. The
amount of space required for this can be cut in half by instead having alternating copies of two
adjacent SubBytes stored in the addresses. Accessing the desired SubByte can be done by either
copying the row as is or logically shifting it right by eight. But for simplicity reasons, the S-box in
this case study is stored in 256 regular rows across consecutive DBCs. Due to the SPIMmulators
continuous addressing technique, it is easy to substitute the required bytes from the stored s-box.

ACM Trans. Embedd. Comput. Syst., Vol. 23, No. 6, Article 94. Publication date: September 2024.

SPIMulator: A Spintronic Processing-In-Memory Simulator for Racetracks 94:21

Run:

& Yl

Run - DWM simulator

dot product o —

TRd

Row Hex Data

0xaf88000000000000000000000000000002000000000000000000000000000000000000¢

0x9730000000000000000000000000000002000000000000000000000000000000000000¢

APQ

0xaf88000000000000000000000000000002000000000000000000000000000000000000¢

-

T
|
L
T
|
t
| 0x01f000000000000000AAAAAAANAAAAANAIAAAAAAAAAANNANNANAAANNNANANAAANANDANANE
t
|
t
|
1

{'write': 380, 'TR_writes': 48, 'read': 188, 'TR_reads': 120, 'shift': 283, 'STORE': 16}

aw+by ax+bz)

Fig. 13. SPIMulator output of (cwdy cx+dz

10 Rounds

Input: 128 bits Output: 128 bits
SubByte ShiftRow MixColumn AddRoundKey me—

B0

KeyGen:
128 bits

Fig. 14. AES flow chart.

BO | B4 | B8 |Bl12
B1 | B5S | B9 |B13
B2 | B6 |B10 B14
B3 | B7 |B11 |BI15

Word A

Bl B2 B3 B4 BS B6 B7 B8 B9 BI10 Bll Bl12 B13 B14 BIS

Word

Fig. 15. Data placement in DBC.

ShiftRows is the next process of the AES algorithm and is a relatively simple step to calculate.
In terms of the matrix, it is a circular shift of each row by 0, 1, 2, and 3 columns, respectively. Using
Figure 15 as a reference, this can be translated into circular shifting each byte in words by 0, 32, 64,
and 96 bits based on its position. This step can be done in memory via logical shifts, as discussed
in Section 3.3. For SPIMulator, these steps have to be broken into pieces that are all OR’d together:

ACM Trans. Embedd. Comput. Syst., Vol. 23, No. 6, Article 94. Publication date: September 2024.

94:22 P. Bera et al.

WO0:B0 W1:B0 W2:BO W2:B0 WO0:B'0 W1:B'0 W2:B'0 W2:B'0
WO0:B1 W1:B1 W2:B1 W3:B1 WO0:B'1 W1:B1 W2:B'1 W3:B"
Sub-Byte
W0:B2 W1:B2 w2:B2 W3:B2 WO0:B'2 W1:B'2 W2:B'2 W3:B'2
WO0:B3 W1:B3 W2:B3 W3:B3 WO0:B'3 W1:B'3 W2:B'3 W3:B'3
ROW 0 S_BOX (0000) = 0x63
ROW 1 S_BOX (0001) = 0x7¢c
ROW 2 S_BOX (0002) = 0x77
ROW 3 S_BOX (0003) = 0x7b
ROW 256 S BOX (0ff0) = 0x16

Fig. 16. S-box in memory.

Table 4. AES SubByte Table (S-box)

00 [01{02]|03|04[05|06|07|08|09|0a|0b]|o0c]|od]Ooe]|of
00|63 |7c |77 |7b|f2 |6b|6f [c5 30|01 |67 |2b|fe |d7|ab]| 76
10 |ca |82 |c9|7d|fa |59 |47 |10 |ad |d4 |a2 |af |9c | a4 |72 | cO
20 | b7 [fd | 93|26 |36 | 3f | f7 |cc |34 |a5|e5|f1 |71 |d8 |31]15
30104 |[c7(23|c3|18[96|05|9a |07 |12 |80 |e2|eb |27 |Db2]|75
40 | 09 |83 | 2c |1la|1b|6e |5a|a0 |52 |3b|d6|b3 |29 |e3 |2f | 84
50 | 53 |d1l |00 |ed|20|fc |bl |5b]|6a|cb|be|39]4a]|4c |58 |cf
60 | dO |ef |aa |fb |43 |4d |33 |85 |45 |f9 |02 | 7f |50 | 3c | 9f | a8
70 | 51 | a3 |40 | 8f |92 |9d |38 |f5 | bc | b6 |da|21 |10 |ff |f3 |d2
80 |cd | Oc |13 |ec |5f |97 |44 |17 |c4 |a7 | 7e |3d |64 |5d]|19 |73
90 | 60 | 81 | 4f | dc |22 |2a |90 |88 |46 |ee | b8 | 14 | de | 5¢ | Ob | db
a0 | e0 |32 [3a|0a |49 | 06|24 |5c|c2|d3|ac|62|91]95 |ed |79
b0 |e7 | c8 |37 |6d|8d|d5|4e |a9|6c |56 |f4 |ea| 65| 7a |ae |08
c0 |ba|78 |25 |2 |1c|a6 | b4 |co6|e8|dd |74 | 1f | 4b | bd | 8b | 8a
do| 70 | 3e | b5 |66 |48 |03 |f6 |[0e | 61|35 |57 |b9|8 |cl|1d]| 9e
e0 el |[f8 |98 |11 169 |d9 |8 |94 |9b|1le |87 | €9 |ce |55 |28 |df
f0 | 8c |al |8 |0d |bf |e6 |42 | 68|41 |99 |2d|0f | b0 |54 | bb| 16

a row of the first bytes, two rows of the second bytes shifted left and right by 32 bits, two rows
of the third bytes shifted left and right by 64 bits, and two rows of the last bytes shifted left and
right by 96. Each of these rows will need to be masked to place to values in the correct position.
An example of this is shown in Figure 17. Since the first byte of each word is not shifted, they start
in the correct place and are highlighted in green. The whole line is then shifted right by 4 bytes
at a time (1 word) and masked to orient a portion of the words. The remaining words are placed
by then shifting the line left 4 bytes and masking off the excess. The final correct result should be
obtained by OR’ing the individual masked pieces together.

ACM Trans. Embedd. Comput. Syst., Vol. 23, No. 6, Article 94. Publication date: September 2024.

SPIMulator: A Spintronic Processing-In-Memory Simulator for Racetracks 94:23
WO0:BO | W1:BO | W2:BO | W2:BO W0:B0 W1:B0O | W2:BO | W2:BO
Wo:B1 | W1B1 | W2B1 | W3:B1 W1:B1 | W2:B1 | W3:B1 | WO:B1
Shift Rows
Wo:B2 | Wi:B2 | w2:B2 | wa:B2 w2iB2 | WaB2 | woB2 | WiB2
WO0:B3 | W1:B3 | wW2:B3 | W3:B3 W3:B3 Wo:B3 | W1:B3 | W2:B3

‘WO:BO|WO:B1 |W0:B2|W0:BS‘W1 :BO|W1 :B1 |W1 :BZ|W1 :BS‘WZ:BO|W2:B1 |W2:BZ|W2:BS‘W3:BO|W3:B1 |W3:BZ|W3:BS|

|0 ‘W1:B1| 0 | 0 | 0 ‘WZ:B1| 0 | 0 | 0 ‘WS:B1| 0 | 0|

|O | 0 ‘WZ:BZ‘ 0 | 0 | 0 ‘WS:BZ‘ 0 |

o o[o s

|0 | 0 | 0 |W0:BS| 0 | 0 | 0 |W1:BS| 0 | 0 | 0 |W2:BS‘

(o T o Jwoed o [o [o jweed o |

|O ‘WO:B1| 0 | 0|

‘WO:BO‘W1 :B1 ‘WZ:BZ‘WS:BS‘W1 :BO‘WZ:B1 ‘WS:BZ‘WO:BS‘WZ:BO‘WS:W ‘WO:BZ‘W1 :B3‘W3:BO‘W0:B1 ‘W1:BZ‘W2:B3‘

Fig. 17. Shift rows demonstration in memory: Each green box represents when a byte is in its desired position
in memory. When the first row is masked to obtain the first byte of each word, the respective shifted and
masked values can all be OR’d together to get the final result.

s,] T02 03 01 015,] o= ({02} ¢ 5,) @ ({03} 0 5,)@ 5, @ s,

s | |01 02 03 o1f|s, | s

syz’ 01 01 02 03]|s,. $5.= 50.® 5,® ({02} 85,)@ ({03} es,,)

2,c

So.® ({02} @5,) D ({03} @5,)D 55,

Se] [03 01 01 02][Si.| 4 = ({03}05,)® 5,0 s5,® ({02} es,,)

Fig. 18. MixColumn from FIPS 197 [5].

MixColumns is the combinational step after ShiftRows, and it involves mixing data around via
matrix multiplication so each input affects each output. Since this operation is done in a Galois
Field, traditional multiplication is not required. Figure 18 from FIPS 197 [5] gives further detail
about this operation.

Notice that what would usually be an addition in matrix multiplication is, in fact, an XOR op-
eration. For multiplication, if the number is less than 127 (no 1 at the most significant bit), then
multiplication by two is a logical shift and multiplication by 3 is a logical shift and an XOR with
the operand. If any operand is greater than 127 prior to multiplying, then an additional XOR with
the polynomial of the Galois field 0x1B. For the tool, the overflow is handled by creating the 0x1B
constant via the first bit of each byte, as shown in Figure 19. If the MSB is 1 (B0), then the 0x1B
constant is created, otherwise it will simply create 0x00. By using this overflow handler and shifts,

ACM Trans. Embedd. Comput. Syst., Vol. 23, No. 6, Article 94. Publication date: September 2024.

94:24 P. Bera et al.

Bl fe]o]lnls] (oo oMM o]o]o]o]
OnDDanaE 4 OOon oD
: (o fooofo]o [Nl |

(o oolofo]o]. /I
N I

AND

et [IR - EIEIENL KN

Fig. 19. Overflow demonstration.

Initial Key Kooz m

i e [N I I I

Shift Left

Circ. Shift SubByte B [o] - |
SR | [[ENENENEE o

I I I — 1

I I N previous [T I I

Result Result l:l l:l l:l l:l Result Kaawnse

Fig. 20. Key generation in memory.

multiplication by both 2 and 3 can be handled, and the final result is obtained by XORing each
word with its respective values.

AddRoundKey is the last step in the algorithm. For this step, a round key must first be gener-
ated. Starting with an initial round key, the next round key is made with word (4 bytes) at a time.
The first word is the most involved, as it requires the XOR of a round constant, the first word of
the old key, and a final value. This final value is generated by circular shifting the last word of the
current key by 1 byte and then performing SubByte upon it. An equation for the first word is as
follows:

knewln] = SubByte(kold[4] >>8) @1 @ koal0],
where kje,, is the new round key, ko4 is the previous round key, and r; is the round constant.
Both the methods for circular shifting and SubByte were shown to be executable in memory, so

this step can be done in the tool. The final three words are generated by performing XOR with the
prior word and the word in the old key’s position, as seen in the following equation:
knew[n] = kora[n] ® knew[n — 1].

After generating the key, executing AddRoundKey can be done with an XOR of the key with the
data. In memory, this can be executed as shown in Figure 20. Before doing the SubByte, the data
is shifted and two copies are made, one with the first half of the circular shift and one with their
remaining bit. These pieces are OR’d together then substituted. After this, the initial key and round
constant are XOR’d with the SubByte result to get the first new word. Each additional word can
be obtained by logical shifting the previous result in to align with the next word and performing
XOR. Each calculated word can be combined via an OR to get the final answer. The generated
key is verified and the instruction set for AES with the SPIMulator can be found in the github
repository at https://github.com/Pitt-JonesLab/DWMsimulator

4.4 SPIMulator with Other Racetrack Memory PIM Proposals

In this section, we demonstrate how SPIMulator can be customized and leveraged to implement
other DWM PIM approaches, such as the XOR operation implemented using giant magnetore-
sistance (GMR) [31]. SPIMulator’s framework provides a flexible platform for customizing the

ACM Trans. Embedd. Comput. Syst., Vol. 23, No. 6, Article 94. Publication date: September 2024.

https://github.com/Pitt-JonesLab/DWMsimulator

SPIMulator: A Spintronic Processing-In-Memory Simulator for Racetracks 94:25

I 1 1 1
| | Row | Hex Data |

Input 0 | oxfofofefo

1 | oxoffoffof

Output 2 | exffeoefff
l 1 ! |

{*write': 96, 'TR_writes': 8, 'read': 32, 'TR_reads': 8, 'shift': 124, 'STORE': 2}
The total_cycles and total_energy is : 2828 and 2214.3999999999996

Fig. 21. XOR operation from Reference [31].

behavior of domain-wall memory in a processing-in-memory setting. In accordance with the prin-
ciples presented in Reference [31], we first adapt SPIMulator’s memory architecture to emulate
their non-volatile domain-wall memory. SPIMulator allows for the definition of the key parame-
ters and characteristics of domain-wall memory organization, such as the width of the memory and
the number of nanowires. For example, the display is modified to show two neighboring nanowires
as well as a third output nanowire. To validate the effectiveness of the XOR operation implemented
within our customized SPIMulator, we analyze the performance metrics, such as cycle count and
energy consumption, and compare them to traditional computational approaches. Figure 21 il-
lustrates the implementation of XOR after SPIMulator was tailored based on the principles of
non-volatile domain-wall memory PIM.

5 CONCLUSION

In summary, SPIMulator is a simulator for Spintronic Processing in Memory (PIM) that models
PIM architecture in Racetrack memory. The simulator provides real-time performance estimates
such as cycle count and energy consumption and is capable of simulating the polymorphic gate
properties of Racetrack memory. In this article, SPIMulator has been used to model, validate, and
estimate the performances of various applications including encryption, dot product, and database
search algorithms. This includes functional simulation to ensure the algorithm is programmed cor-
rectly. SPIMulator can also assess the potential benefits of using Spintronic PIM technology to
alleviate the memory bottleneck of the Von Neumann computing model and to improve latency
and energy cost associated with in-memory processing. We also demonstrate how additional fault
tolerance instructions can be introduced to correct faults both through manual fault injection and
faults stochastically generated by the simulator to mimic the impact of reliability and error correc-
tion schemes. In future work, it would be desirable to integrate a memory tool like RTSim with
SPIMulator to implement detailed cycle-level simulation and massively parallel (e.g., subarray-
level) implementation and estimation.

REFERENCES

[1] C. Augustine, A. Rachowdhur, B. Behin-Aein, S. Srinivasan, J. Tschanz, Vivek K. De, and K. Ro. 2011. Numerical anal-
ysis of domain wall propagation for dense memory arrays. In IEEE International Electron Devices Meeting (IEDM’11).
IEEE, 17-6.

[2] R. Blasing, A. A. Khan, P. C. Filippou, C. Garg, F. Hameed, J. Castrillon, and S. S. P. Parkin. 2020. Magnetic racetrack
memory: From physics to the cusp of applications within a decade. Proc. IEEE 108, 8 (2020), 1303-1321. DOI: https:
//doi.org/10.1109/JPROC.2020.2975719

[3] Y.-C.Chen, H. Li, and W. Zhang. 2012. A RRAM-based memory system and applications. In the Non-volatile Memories
Workshop.

ACM Trans. Embedd. Comput. Syst., Vol. 23, No. 6, Article 94. Publication date: September 2024.

https://doi.org/10.1109/JPROC.2020.2975719

94:26 P. Bera et al.

[4] Prayash Dutta, Albert Lee, Kang L. Wang, Alex K. Jones, and Sanjukta Bhanja. 2023. A multi-domain magneto tun-
nel junction for racetrack nanowire strips. IEEE Trans. Nanotechnol. 22 (2023), 581-583. DOI : https://doi.org/10.1109/
TNANO.2023.3298920

[5] Morris Dworkin, Elaine Barker, James Nechvatal, James Foti, Lawrence Bassham, E. Roback, and James Dray. 2001.
Advanced Encryption Standard (AES). DOI : https://doi.org/10.6028/NIST.FIPS.197

[6] Yiming Huai. 2008. Spin-transfer torque MRAM (STT-MRAM): Challenges and prospects. AAPPS Bull. 18, 6 (2008),

33-40.

Asif Ali Khan, Fazal Hameed, Robin Blasing, Stuart Parkin, and Jeronimo Castrillon. 2019. RTSim: A cycle-accurate

simulator for racetrack memories. IEEE Comput. Archit. Lett. 18, 1 (Jan. 2019), 43-46. DOI : https://doi.org/10.1109/LCA.

2019.2899306

Asif Ali Khan, Sebastien Ollivier, Fazal Hameed, Jeronimo Castrillon, and Alex K. Jones. 2023. DownShift: Tuning

shift reduction with reliability for racetrack memories. IEEE Trans. Comput. 72, 9 (2023), 1-14. DOI : https://doi.org/10.

1109/TC.2023.3257509

Asif Ali Khan, Fazal Hameed, Robin Blédsing, Stuart S. Parkin, and J. Castrillon. 2019. ShiftsReduce: Minimizing shifts

in racetrack memory 4.0. ACM Trans. Archit. Code Optim. 16, 4, Article 56 (Dec. 2019), 23 pages. DOI : https://doi.org/

10.1145/3372489

[10] Shuangchen Li, Cong Xu, Qiaosha Zou, Jishen Zhao, Yu Lu, and Yuan Xie. 2016. Pinatubo: A processing-in-memory
architecture for bulk bitwise operations in emerging non-volatile memories. In 53rd Annual Design Automation Con-
ference. 1-6.

[11] Bicheng Liu, Shouzhen Gu, Mingsong Chen, Wang Kang, Jingtong Hu, Qingfeng Zhuge, and Edwin H.-M. Sha. 2017.
An efficient racetrack memory-based processing-in-memory architecture for convolutional neural networks. In IEEE
International Symposium on Parallel and Distributed Processing with Applications and IEEE International Conference on
Ubiquitous Computing and Communications (ISPA/IUCC’17). IEEE, 383-390.

[12] Sally A. McKee. 2004. Reflections on the memory wall. In 1st Conference on Computing Frontiers (CF’04). Association
for Computing Machinery, New York, NY, 162. DOI : https://doi.org/10.1145/977091.977115

[13] Sebastien Ollivier, Stephen Longofono, Prayash Dutta, Jingtong Hu, Sanjukta Bhanja, and Alex K. Jones. 2022. COR-
USCANT: Fast efficient processing-in-racetrack memories. In 55th IEEE/ACM International Symposium on Microarchi-
tecture (MICRO’22). 784-798. DOI : https://doi.org/10.1109/MICRO56248.2022.00060

[14] Sebastien Ollivier, Stephen Longofono, Prayash Dutta, Jingtong Hu, Sanjukta Bhanja, and Alex K. Jones. 2023. Toward
comprehensive shifting fault tolerance for domain-wall memories with PIETT. IEEE Trans. Comput. 72, 4 (2023), 1095-
1109. DOI : https://doi.org/10.1109/TC.2022.3188206

[15] Sébastien Ollivier, Xinyi Zhang, Yue Tang, Chayanika Choudhuri, Jingtong Hu, and Alex K. Jones. 2022. POD-RACING:
Bulk-bitwise to floating-point compute in racetrack memory for machine learning at the edge. IEEE Micro 42 (2022).
DOI:10.1109/MM.2022.3195761

[16] Stuart Parkin and See-Hun Yang. 2015. Memory on the racetrack. Nature Nanotechnol. 10, 3 (2015), 195-198.

[17] Stuart S. P. Parkin, Masamitsu Hayashi, and Luc Thomas. 2008. Magnetic domain-wall racetrack memory. Science 320,
5874 (Apr. 2008), 190-194.

[18] M. Poremba and Y. Xie. 2012. NVMain: An architectural-level main memory simulator for emerging non-volatile
memories. In IEEE Computer Society Annual Symposium on VLSL 392-397.

[19] M. Poremba, T. Zhang, and Y. Xie. 2015. NVMain 2.0: A user-friendly memory simulator to model (non-)volatile
memory systems. [EEE Comput. Archit. Lett. 14, 2 (July 2015), 140-143.

[20] Kawsher Roxy, Sébastien Ollivier, Arifa Hoque, Stephen Longofono, Alex K. Jones, and Sanjukta Bhanja. 2020. A
novel transverse read technique for domain-wall “racetrack” memories. IEEE Trans. Nanotechnol. 19 (2020), 648-652.
DOI: https://doi.org/10.1109/TNANO.2020.3014091

[21] Vivek Seshadri, Donghuk Lee, Thomas Mullins, Hasan Hassan, Amirali Boroumand, Jeremie Kim, Michael A. Kozuch,
Onur Mutlu, Phillip B. Gibbons, and Todd C. Mowry. 2017. Ambit: In-memory accelerator for bulk bitwise opera-
tions using commodity DRAM technology. In 50th Annual IEEE/ACM International Symposium on Microarchitecture
(MICRO’17). IEEE, 273-287.

[22] Nishil Talati, Saransh Gupta, Pravin Mane, and Shahar Kvatinsk. 2016. Logic design within memristive memories
using memristor-aided loGIC (MAGIC). IEEE Trans. Nanotechnol. 15, 4 (2016), 635-650.

[23] Minh S. Q. Truong, Eric Chen, Deanyone Su, Liting Shen, Alexander Glass, L. Richard Carley, James A. Bain, and
Saugata Ghose. 2021. RACER: Bit-pipelined processing using resistive memory. In 54th Annual IEEE/ACM Interna-
tional Symposium on Microarchitecture (MICRO’21). Association for Computing Machinery, New York, NY, 100-116.
DOI: https://doi.org/10.1145/3466752.3480071

[24] Rangharajan Venkatesan, Vivek Kozhikkottu, Charles Augustine, Arijit Raychowdhury, Kaushik Roy, and Anand
Raghunathan. 2012. TapeCache: A high density, energy efficient cache based on domain wall memory. In ACM/IEEE
International Symposium on Low Power Electronics and Design (ISLPED’12). ACM, New York, NY, 185-190. DOI: https:
//doi.org/10.1145/2333660.2333707

[7

—

8

[

[9

—

ACM Trans. Embedd. Comput. Syst., Vol. 23, No. 6, Article 94. Publication date: September 2024.

https://doi.org/10.1109/TNANO.2023.3298920
https://doi.org/10.6028/NIST.FIPS.197
https://doi.org/10.1109/LCA.2019.2899306
https://doi.org/10.1109/TC.2023.3257509
https://doi.org/10.1145/3372489
https://doi.org/10.1145/977091.977115
https://doi.org/10.1109/MICRO56248.2022.00060
https://doi.org/10.1109/TC.2022.3188206
https://doi.org/10.1109/MM.2022.3195761
https://doi.org/10.1109/TNANO.2020.3014091
https://doi.org/10.1145/3466752.3480071
https://doi.org/10.1145/2333660.2333707

SPIMulator: A Spintronic Processing-In-Memory Simulator for Racetracks 94:27

[25] Rangharajan Venkatesan, Mrigank Sharad, Kaushik Roy, and Anand Raghunathan. 2013. DWM-TAPESTRI—An en-
ergy efficient all-spin cache using domain wall shift based writes. In Conference on Design, Automation and Test in
Europe. EDA Consortium, 1825-1830.

[26] Jeffrey S. Vetter and Sparsh Mittal. 2015. Opportunities for nonvolatile memory systems in extreme-scale high-
performance computing. Comput. Sci. Eng. 17, 2 (2015), 73-82. DOI : https://doi.org/10.1109/MCSE.2015.4

[27] Oreste Villa, Daniel R. Johnson, Mike O’connor, Evgeny Bolotin, David Nellans, Justin Luitjens, Nikolai Sakharnykh,
Peng Wang, Paulius Micikevicius, Anthony Scudiero, Stephen W. Keckler, and William J. Dally. 2014. Scaling the
power wall: A path to exascale. In International Conference for High Performance Computing, Networking, Storage and
Analysis (SC’14). 830-841. DOI : https://doi.org/10.1109/SC.2014.73

[28] Xin Xin, Youtao Zhang, and Jun Yang. 2020. ELP2IM: Efficient and low power bitwise operation processing in DRAM.
In IEEE International Symposium on High Performance Computer Architecture (HPCA’20). IEEE, 303-314.

[29] H.Xu,Y. Alkabani, R. Melhem, and A. K. Jones. 2016. FusedCache: A naturally inclusive, racetrack memory, dual-level
private cache. IEEE Trans. Multi-Scale Comput. Syst. 2, 2 (Apr. 2016), 69-82. DOI : https://doi.org/10.1109/TMSCS.2016.
2536020

[30] Haifeng Xu, Yong Li, R. Melhem, and A. K. Jones. 2015. Multilane racetrack caches: Improving efficiency through com-
pression and independent shifting. In 20th Asia and South Pacific Design Automation Conference. 417-422. DOI : https:
//doi.org/10.1109/ASPDAC.2015.7059042

[31] Hao Yu, Yuhao Wang, Shuai Chen, Wei Fei, Chuliang Weng, Junfeng Zhao, and Zhulin Wei. 2014. Energy efficient

in-memory machine learning for data intensive image-processing by non-volatile domain-wall memory. In 19th Asia

and South Pacific Design Automation Conference (ASP-DAC’14). 191-196. DOI : https://doi.org/10.1109/ASPDAC.2014.

6742888

Masoud Zabihi, Zamshed Igbal Chowdhur, Zhengang Zhao, Ula R. Karpuzcu, Jian-Ping Wang, and Sachin S. Sapat-

nekar. 2018. In-memory processing on the spintronic CRAM: From hardware design to application mapping. IEEE

Trans. Comput. 68, 8 (2018), 1159-1173.

[33] C.Zhang, G. Sun, W. Zhang, F. Mi, H. Li, , and W. Zhao. 2015. Quantitative modeling of racetrack memory, a tradeoff
among area, performance, and power. In Design Automation Conference.

[34] Chao Zhang, Guangyu Sun, Xian Zhang, Weiqi Zhang, Weisheng Zhao, Tao Wang, Yun Liang, Yongpan Liu, Yu Wang,
and Jiwu Shu. 2015. Hi-fi playback: Tolerating position errors in shift operations of racetrack memory. In International
Symposium on Computer Architecture (ISCA’15). 694-706. DOI : https://doi.org/10.1145/2749469.2750388

[35] Y. Zhang, W. Zhao, J. Klein, D. Ravelsona, and C. Chappert. 2012. Ultra-high density content addressable memory
based on current induced domain wall motion in magnetic track. IEEE Trans. Mag. 48, 11 (Nov. 2012), 3219-3222.
DOI : https://doi.org/10.1109/TMAG.2012.2198876

[36] Ping Zhou, Bo Zhao, Jun Ang, and Outao Zhang. 2009. A durable and energ efficient main memory using phase change
memory technology. In ACM SIGARCH Computer Architecture News, Vol. 37-3. ACM, 14-23.

[32

—

Received 10 February 2023; revised 8 January 2024; accepted 21 January 2024

ACM Trans. Embedd. Comput. Syst., Vol. 23, No. 6, Article 94. Publication date: September 2024.

https://doi.org/10.1109/MCSE.2015.4
https://doi.org/10.1109/SC.2014.73
https://doi.org/10.1109/TMSCS.2016.2536020
https://doi.org/10.1109/ASPDAC.2015.7059042
https://doi.org/10.1109/ASPDAC.2014.6742888
https://doi.org/10.1145/2749469.2750388
https://doi.org/10.1109/TMAG.2012.2198876

