
11) Check for updates 

 

 

 

 

 
JOURNAL OF TIME SERIES ANALYSIS 
J. Time Ser. Anal. 45:333-360 (2024) 
Published online 25 August 2023 in Wiley Online Library 
(wileyonlinelibrary.com) DOI: I0.Ill l/jtsa.12714 

 

 

ORIGINAL ARTICLE 

 

 

STATIONARY JACKKNIFE 

 
WEILIAN ZHou·· ANDSOUMENDRA LAHIRibG) 

'Department of Statistics, North Carolina State University, Raleigh, NC, USA 
b Department of Mathematics and Statistics, Washington University, St. Louis, MO, USA 

 

Variance estimation is an important aspect in statistical inference, especially in the dependent data situations. Resampling 

methods are ideal for solving this problem since these do not require restrictive distributional assumptions. In this paper, we 

develop a novel resampling method in the Jackknife family called thestationary jackknife. It can be used to estimate 

the variance of a statistic in the cases where observations are from a general stationary sequence. Unlike the moving block 

jackknife, the stationary jackknife computes the jackknife replication by deleting a variable length block and the 

length bas a truncated geometric distribution. Under appropriate assumptions, we can show thestationary jackknife 
variance estimator is a consistent estimator for the case of the sample mean and, more generally, for a class of nonlinear 

statistics. Further, the stationary jackknife isshown to provide reasonable variance estimation for a wider range of 

expected block lengths when compared with the moving block jackknife by simulation. 
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1. INTRODUCTION 

The Jackknife (cf. Quenouille, 1949, 1956; Tukey, 1958) is an intriguing non-parametric method for estimating 

the bias and variance of statistics we are interested in. The role of the jackknife in bias correction and robust con­ 

fidence interval has been fully explained in Miller (1974). A general resampling method, the bootstrap method 

(cf. Efron, 1979) is introduced to work satisfactorily on a variety of estimation problems. Efron and Gong (1983) 

provide a comparison between the jackknife, the bootstrap and another important non-parametric method, cross 

validation at an accessible mathematical level. However, for all these methods, the assumption of the indepen­ 

dence of the observations is very crucial. It seems that the standard jackknife or bootstrap will give an unreliable 

estimation if dependence is ignored. In most cases, especially in applications involving time series, dependence 

between observations is not negligible. When fitting a parametric model to a given time series, it is always very 

difficult to model all important features of the observed time series, and the parametric inference approach often 

suffers from the risk brought in by the effect of the parameter estimation or model misspecification. Thus, it is 

very important to modify the jackknife estimator for the dependent data. 

Carlstein (1986) proposed a block-wise resampling method where the variance estimator is computed using 

non-overlapping blocks. In some cases, especially for the arithmetic mean, selection of blocks is equivalent to 

the deletion of complementary blocks. The moving block jackknife (bootstrap) of Kunsch (1989), an extension 

of the standard jackknife (bootstrap) method, computes the statistics of interest by deleting (selecting) overlap­ 

ping fixed length data blocks. It shows that the moving block method works well for arbitrary stationary time 

series with short range dependence. The circular block bootstrap of Politis and Romano (1992) wraps the data in a 

 

• correspondence to: Weilian Zhou, Department of Statistics, North Carolina State University, Raleigh, NC 27606, USA. 
Email: wzhoul l@ncsu.edu 

 

© 2023 John Wiley & Sons Ltd 

http://crossmark.crossref.org/dialog/?doi=10.1111%2Fjtsa.12714&domain=pdf&date_stamp=2023-08-25
https://orcid.org/0000-0002-1247-8197
mailto:l@ncsu.edu


J. Time Ser. Anal. 45: 333--360 (2024) 

DOI: 10.1111/jtsa.12714 

wileyonlinelibrary.com/joumal/jtsa © 2023 John Wiley & Sons Ltd  

 

 

 

 

 

 

334 W. ZHOU AND S. LAHIRI 

 

 

circle before selecting the overlapping blocks. Every data point is assigned the same probability mass in the con­ 

ditional distribution (condition on the original data) by the circular block bootstrap. This provides a more accurate 

approximation with respect to the mean. The stationary bootstrap of Politis and Romano (1994) selects blocks of 

random lengths to make the bootstrap observations stationary. Some theoretical results about the stationary boot­ 

strap have been obtained in Lahiri (1999) and Nordman (2009). It is surprising that the variance of the stationary 

bootstrap matches that of a block bootstrap based on non-random, non-overlapping blocks. For more details on 

related properties of block bootstrap methods, see Lahiri (2003).Some other developments in the jackknife resam­ 

pling literature, such as the delete-d jackknife (Wu, 1986; Shao and Wu, 1989), the threshold jackknife (Park and 

Willemain, 1999) and the artificial jackknife (Pellegrino, 2022), discuss the variance estimation in dependent data 

situations. In this article, we introduce a new resampling method called the stationary jackknife. Simi­ 

lar to the extension made in the stationary bootstrap (Politis and Romano, 1994) on the moving block bootstrap, 

our method is anextension of the moving block jackknife. We apply a variable block length in each deleted block. 

This is the reason why we call our method the stationary jackknife. 

The stationary jackknife is suitable for variance estimation of statistics from observations generated 

by weakly dependent stationary time series.The stationary jackknife can be applied insituationssimilar 

to the moving block jackknife. The major difference between the stationary jackknife and the moving 

block jackknife lies in the block length. For the stationary jackknife, we delete l; consecutive observa­ 

tions as the ith block to compute the ith pseudo value. In the settings of the moving block jackknife, t', = t', 

the block length is a constant for all pseudo-value computation. However in the stationary jackknife, 

t';isnot necessarily the same every time and we treat t', as a random variable with a truncated geometric dis­ 

tribution. Since a variable with the geometric distribution is unbounded, we set an upper bound on the variable 

to avoid deleting a large segment of the observations. Moreover, the fact that the tail of the geometric distribu­ 

tion decays exponentially helps constrain the block length to within a reasonable range. For the starting point of 

the block near the end of the observations, the last observation serves as a natural cutting point for the block. 

After deleting the block, we perform a smooth transformation on the remaining observations to get the statistic. 

The stationary jackknife variance estimator is the standardized version of sample variance of statistics 

obtained in the way mentioned above. One common difficulty in the moving block jackknife is the choice of the 

optimal order of the block length. The optimal order of the block length may vary when jackknifing different 

statistics or thesame class of statistics under different data generatingdistributions. Nonetheless, we observed that 

the randomness in the block length makes the stationary jackknife method more robust to the expected 

block length. The simulation results in Section 5 illustrate that the stationary jackknife provides a rea­ 

sonable variance estimation in a wider range of the expected block length compared with the moving block 

jackknife. 

In Section 2, we introduce the stationary jackknife and illustrate its differences with the moving 

block jackknife. In Section 3, we prove the consistency of the stationary jackknife variance estima­ 

tor in the case of the arithmetic mean. We derive the asymptotic bias and variance terms of the stationary 

jackknife variance estimator. By minimizing the mean square error (MSE), we get the optimal order of the 

expected block length for the stationary jackknife. In Section 4, we investigate the consistency of the 

stationary jackknife variance estimator for more general statistics. In Section 5, we compare thesta­ 

tionary jackknife with different resampling methods suchas the movingblockbootstrapin Kunsch (1989), 

the moving block jackknife and the stationary bootstrap in Politis and Romano (1994) on different simulated 

datasets. 

 

2. FORMULATION OFTHE STATIONARY JACKKNIFE METHOD 

We formalize the definition of the stationary jackknife. One important issue is that we need to define 

the statistic with a variable length missing block of the observations. The issue can be overcome by focusing on a 

certain class of statistics we are going to introduce later in this section. This class of statistics is sufficiently rich 

to include many commonly used statistics. 
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2.1. Estimator defined on the empirical distribution 

For observations {X1,X2,- • • ,XN} from a stationary process, following the definition in section 2.1 of 

Kunsch (1989), we define the empirical k-dimensional marginal distribution as 

 
N-k+l 

Pt= (N-  k + 1)-
1 

D(x;.x,+,·•-x,+,-,)• 
i-1 

 

where Dy is the point mass on y E JRk. For any functional T(·) defined on all probability measures on JRk, we 

consider the statistic TN of the form 

 

Denote n = N - k +1 as the number of k-tuples in the observations. For notational simplicity, we use the equivalent 

relationship below as in the examples in the section 2.1 of Kunsch (1989), by setting 

 

 

where Pn is the empirical distribution of n observations. 

 

2.2. The stationary jackknife 

Before deriving the formula for the stationary jackknife, we recall how the moving block jackknife 

works to produce the pseudo values. In the moving block jackknife, the length of the block -t' is fixed over the 

time. In producing the jth pseudo value, the corresponding marginal ;ff,) after deleting the jth data block as defined 

in Kunsch (1989) is, 

n 

p )=n-l wll ,L(l-wn(t-f))Dr,, j=l,2 ... n--t'+l, 
n 1 t-1 

 

where wn represents the scale of downweight for each observation, and wn satisfies the following properties 

 

1 Wn (i) > 0 0 i < -t', 

wn (i) = 0 otherwise, 

 

and llwnll1 = L;wn (i). In our case, we focus on removing the data blocks rather than downgrading them. So we 

have wn(i) = ].([O,t'-l]) (i) and the corresponding marginal Pt can be written as 

 

;ff,)= n -t' L(1 - ].([;J+t-l]) (t)) Dy,, j = 1, 2 ... n  -  -t' + 1. 
1-1 

 

Then the jth moving block jackknife replication is represented as the estimator defined on the empirical 

marginal "ff/,>, 
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Finally, the moving block jackknife variance estimator a-Jack is defined as 

 

 

 

 

where T-(·)= -- ( L ,,,J.1) 

n-,, _l _ ('f-J)_to) 
nt' n - t' + 1 +-.J n n ' 

t=I 

 

(1) 

n n-t'+I 
1• 

n 
. 

For the stationary jackknife, the deleting block length L follows a truncated geometric distribution 

TGeo(p, T) with the probability density function (pdf) as following. 
 

P L
- 
-k - {p(l - pi-' 1:::; k::; T- 1, 

( - )- (1  _p)IUlogn]-1 k= T, 

 
where T is the truncated value and p is the parameter of the geometric distribution. In the stationary jackknife, 

we set T = [2t'Iog n] ( with t' = .!. and [a] representing the largest integer not exceeding a). The corresponding 

cumulative density function Fi  is 
J 

 

 

Fr, (k) = {:- (I - p)' 

k<l 

1:::; k::; T- 1, 

k"?::. T. 

 

As we can see, the main difference between the stationary jackknife and the moving block jackknife is 

that the length of our deleted block is no longer a constant but a random variable. Weset an upper bound [2t' logn] 

on the block length to make sure the length of the missing part is much smaller than the length of the original 

observations. 

To derive the expression of the stationary jackknife, we need to define {L1, li,  ... Lm;m = n - [2t' log n] + l} 
to represent the block length variables. More specifically, {L,,li, ... Lm} are independent and each has the same 

distribution as L.The realization of {L;} can be generated by a series of geometric distribution variable { Ld due 
to the following relationship 

 

L = min (L, [2t'logn]), 

where Lis a random variable with a geometric distribution L ~Geo(p). In the jth pseudo value computation, the 

corresponding empirical marginal p ) is defined as 

 

P ) =  L-.L(1- ]([jj+L,-t])(t)) 8r,  j = 1, 2 ... n - [2t' Iogn] + l. 
n 11-1 

 

Then thejth stationary jackknife replication is calculated as 

I;{)= T (p )) j = 1, 2 ... , n - [2t'logn] + l. 

 
From the definition of thestationary jackknife replication, there aretwo layers of randomness in the stationary 

jackknif e, onecomesfrom theempirical distribution, the other one comesfrom the realizations of the truncated 

geometric distribution. 
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The stationary jackknife estimator of the variance of Tn is a standardized version of the sample 

variance of the T';/1 

 
(2) 

 

 

where m = n - [2t'logn] + 1 and r-·) =r:;,r,:'.The estimator can be decomposed into two parts. The first part 

is sample variance of the stationary jackknife replications ; r;I ( T';P - -))
2
. The second part is the 

2 

standardizing factor (n
n

-,
e

!) . The standardizing factor is inversely proportional to the expected block length t'. The 

larger the expected deleting length we choose, the larger the ratio we down weight on the sample variance of the 

jackknife replications.Thestandardizing factor in formula (2) is thesame as thestandardizing factor of the moving 

jackknife estimator (l). lnthe moving block jackknife, n - t' can be treated as the remaining observations in each 

jackknife replication, and in the stationary jackknife, n - t' can be treated as the expected remaining observation 

in each replication. Moreover, the standardizing factor helps the estimator enjoy the consistency property reported 

in Section 3. 

 

3. CONSISTENCY OF THE STATIONARY  JACKKNIFE ESTIMATOR 

Here, we show the consistency of the stationary jackknife variance estimator for the arithmetic mean 

under several assumptions. The assumptions are similar to the assumptions for the moving block jackknife. The 

routine method inproving theconsistency of the estimator is toshow both the bias and the variance of theestimator 

converge to zero. We derive the exact formula of the bias and variance in the following theorems. Moreover, we 

investigate the optimal expected block length by minimizing the mean squared error of the estimator. 

Here, we investigate the properties of the stationary  jackknife for the arithmetic mean. The arithmetic 

mean is obviously a member of the class of estimators defined in section 2.1. It corresponds to the population 

mean T (F) = f xF (dx) = lE(x) = µ. The functional is linear and allows for explicit calculations of all quantities 

of interest. 

Suppose that {X1}r-t,z,... 00 are from a weakly stationary processes. Then X1 enjoys the following properties, 

lE (x,) = µ. 

lE (X;) < oo. 

IE ((Xt+h - µ) (X, - µ)) = R(h), Vt. 

 

According to the stationarity of the observations, we can write the the standardized variance of the arithmetic 

mean, var( ynX ), analytically as 

 

 
(3) 

 

 

We denote u;s as the limit of Var ( ynX ). When R(h) is absolutely summable, then we have 

 

h-oo 

u! = R(h). 
l>=-oo 

 

(4) 
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For thejth stationary jackknife replication T;;) in the arithmetic mean case, we have 
 

yv=) 
n X.-S-r, 
-'-'i-1 • ,, ; 

n - • 
n-L; 

 

where S;,1 = L '.- 'Xi, the partial sum of {X1}. 

Before looking at the bias and the variance terms of the stationary jackknife variance estimator, we 

need to first specify some assumptions to ensure the consistency of the estimator. Here are some assumptions 

needed for the later theorems. 

Assumption 1.e 1 
+ -

(

;
2 

0. 

Assumption 2. r:_00 lkl IR (k)I < 00. 

Remark 1. Assumption 1 represents two conditions, the first one is .
t
!. 0 and the second one is !

n
: 0. This 

means that the expected blocklength t' goes to infinity as n goes toinfinity. The order oft' isnot comparable to the 

observation length since we do not want to delete almost the whole series. Overall, the Assumption 1 is equivalent 

to 

t' = t'(n) oo, 
 

Assumption 2 focuses on the weak dependence of the observations. The constraint on the infinite sum of the 

autocovariance of {X1} avoids the existence of the long dependence. The autocorrelation needs to have the decay 

rate at least k
2

 •. The exponential decay rate on the autocorrelation is a sufficient condition for the Assumption 2, 

so the stationary AR, MA, ARMA time series satisfy the assumption. 

 

 

3.1. Bias of the stationary jackknife variance estimator 

Theorem 1. Under the Assumptions 1 and 2, the bias of the stationary jackknife estimator (2) for the 

arithmetic mean is following. 

 
(5) 

 

Proof  See Appendix A.l. 

Toderive the variance expression of the stationary 

assumptions, for some 8 E (0, oo): 

Assumption 3. E ( 1xil6+5
) < co. 

 

Assumption 4. 
0

-'-
0

'k--ook2a(k)•= < oo. 

■ 

jackknife estimator n8-
2

k.' we need two additional 

The Assumption 3 imposes a constraint on the moment of X1that X1has a finite (6 + 8)th moment. Assumption 4 

allows the series X1to be weakly dependent. It is sufficient for us to impose a strong mixing condition on X1. For 

any two u-algebrasd and P.B,define 
 

a(d,f!.B) = sup IP(A)P(B)-P(A n B)I. 
AEd ,BE9li 

(6) 
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Roughly speaking, we require the mixing coefficient a (k) = a ( :Ji'!} , :li't),to decrease polynomially ask oo, 

where :Ji':,
2 is the a-algebra generated by {X1}T, . 

With respect to the a-mixing coefficient, we introduce a fundamental inequality for the covariance of mixing 

random variables. 

Lemma 1. Let X and Y be measurable random variables with respect to two a-algebras &f and Si. Define IIXIIP = 
P)-

I

 I I I 

(IEIXI •. Then, for any p,q,r 1 and -
, 

+ - + - = 1, 
 

I 

ICov (X, Y) I 8a 7 (&f,Si) IIXllpIIYllq• 

Proof. See section 1.2.2 in Dou.khan (1994). 

(7) 

■ 

Theorem 2. Under Assumptions 1 to 4, the expression of the variance of thestationary jackknife 

variance estimator n&Jack of the arithmetic mean is 

var(n&2 k)  = !...a4 +0 (f). 
 

(8) 

Proof. See Appendix A.2. ■ 

Remark 2. Through the expression of bias and variance of the stationary jackknife estimator we can 

see that when f  oo and f = o (n), both bias and variance goes to zero. This shows the consistency of our 
estimator in this case. 

 

 

3.2. Rate of optimal block length 

After obtaining the expression of bias and variance, we can obtain the optimal block length f in the order of n by 

minimizing the MSE of our estimator. By the standard decomposition of the MSE, we have 

 

MSE ( n&J,.,k) = Bias
2 

( n&fack) + Var ( n&J,.,k) = (:)( )2 ) + (:) ( ) · 
 

Then we get f = 
I 

B(n,) tobethe rate of optimal block length. 

 

4. EXTENSION TO THE NONLINEAR STATISTICS 

In this part, we generalize the consistency results to the nonlinear statistics. The corresponding result for the 

block jackknife has been well developed in Kunsch (1989). Under suitable assumptions, thestationary 

jackknife estimator is a consistent estimator for the nonlinear statistics. 

 

4.1. The stationary jackknife on nonlinear statistics 

The population parameter of Tn = T (X1,X2, ... Xn) is{}= T (F) where Fis the marginal distribution of X. Many 

estimators can be included in the nonlinear statistics. As described in Kunsch (1989), M-estimator, U-statistics 

(Hoeffding, 1948) and statistics defined implicitly as solutions of an equation. The linearization of Tn at F gives 

n 

Tn = T(F) +n-1_L IF {X;,F) + Rn 
i=I 
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where IF is the influence function that IF (x, F)=  lime o[T(O-eJF+e<>,)-T(F)]. Then we have 
e 

 

n 

1;/) = T (F) + (n - Ljr' ,__L, (  1 - 11.(i:Si +Lrl)) IF (X;, F) + K-/? 
 

 

For large n, the behavior of o}ack (Tn) is similar as the behavior of o}ack (Ln) if R ) is in the small order. One 

sufficient condition for the reminder ) imsa x ) E  ( R ) ) = tJ (n- ). 

Under this condition, it is obvious that r,;::){ 2 
=('JP ( n-1

). Moreover we have 

 

 

and the standardized factor for the stationary jackknife estimator is tJ (7).Thus we have 

 
n&2 (T ) = n&2  {L ) + n&2 (R ) + 2 (n-  t')

2 

{Lv) - L0) (RV) - R0) 

Jack n Jack n Jack n t'm 4 n n n n 
1 

 

n&!ck {Ln) + 2 {Rn) +2nJ &Jack (Ln) &Jack (Rn) 
n&j ack 

= n&Jack (Ln) + tJP (r½). 

 

The reason why we get the last line in 9 is due to the following fact. 

 

(9) 

 

 

 

Together with n&Jack {Ln) = ('JP(1), we have n &Jack (Ln) &!ck (Rn) = ('JP( r½). In summary we have 

Theorem 3. 

Theorem 3. If maxjIE ( R )
2

) = tJ ( ), then we have n&Jack ( Tn) = no}ack ( Ln) + tJP ( r ½). Under the 

assumptions in Section 3, we have n&Jack converges to uJs, where 

 

00 

a = IEIF (X0, F) IF (xk,F). 
k--oo 

 

(10) 
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More precise we look at the linearization of Ton Pn instead of F. Assume that IF (y,Pn) exists, then we can write 

 

T;) =T(Pn) +(n - Lj)-1LP- 11.(Uj+L;-ID(L))IF (xi,Pn) + S/,) 
i-1 

 

 

The distance between p ) and Pn is much closer than the the distance between p ) and F. The expected value of 

the total variation distance between p ) and Pn is 

 

 

 

 

 

 
 

 

From this, it is reasonable to expect S';,) to be at most of the order ('JP ( f,-).Then we have the Theorem 4 

Theorem 4. If L S';,)2 = ('JP ( t4n-3) and &jack {Mn) = ('JP G).Then we have 

 

Proof 

(11) 

 

 

 

 

 

 

 

(12) 

 

 

 

 

 

 

 

 

 

(13) 

■ 

The sufficient conditions for L (S';,))2 = ('JP ( t4n-3) for the different kinds of statistics are given in the lemma 

4.1--4.3of Kunsch (1989).Then for the difference between LX) and M \ assumption (C) in Kunsch (1989) describes 

the order of the difference between n&fack (Mn) and n&fack ( Ln) that 

 

(14) 

 

Then we have a natural consequence. 

Theorem S. Under the former conditions, we have 

 

(15) 
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We can see that when -t' - oo and -t' = o ( n½ ), the nonlinear part will decay and linear part will dominate 

all effects. Under the conditions on the /F(X, F), the no-Jack ( Ln) will converge in probability to the asymptotic 

variance of Tn. 

 

5. SIMULATION 

Here, we use some numerical examples to illustrate what we have developed in the former sections. We apply 

our stationary jackknife variance estimator in different scenarios. Also, we will compare our method 

stationary jackknife (SJ) with several existing resampling variance estimator such as Moving Block 

Bootstrap (MBB), Stationary Bootstrap (SB) and Moving Block Jackknife (MBJ). 

 

5.1. Two simple models 

In this part. we follow the examples in section 3 of Politis and Romano (1994). The simulated data comes from 

two MA models 

 

 

and 

(Model 1) 

 

 

 

(Model 2) 

 
iid 

where Z1  N(0,1). We generate N  1000 observations X1 from each model and we want to estimate the quantity 

Var(yNX1) by the stationary jackknife and the moving block jackknife. Moreover, we are interested in 

investigating the estimation performance under a wide range of the (expected) block length. From the derivation 

in Section 3 we know that the optimal block length for the case of the scaled variance of the arithmetic mean is 
I I 

of order N,. In our case this quantity is 1000, 10. In the simulation, we set the range of the block length as 

-t' E [l, 80] which contains the optimal block length for both stationary jackknife and moving block 

jackknife as well as some extreme block length. In the stationary jackknife the corresponding parameter 

pin the truncated geometric distribution is - InModel 1 we have r: xt 41;: zp thus Var(VWOOX1) 
16Var(.v -1u\NZ ) = 16. Fi. gure 1 shows the result under Model 1. In Model 2 we have 1000

X
 Lt

1
=

0
I
00

Z , so we 
1 Lr=I  1 1 

expect that Var ( y!OOOX1)  var(y'iooo.z1) = l. Figure 2 shows the result under Model 2.The main difference 

between the two models is that the autocovariance in Model 1 is always positive for all lags k E [0,3] while the 

autocovariance alternates in sign until the lag k is greater than 4 in Model 2. In both figures, we use sj to represent 

the stationary jackknife and mbj to represent the moving block jackknife. From the results, we can see 

(especially from the second graph) the moving block jackknife estimator is more sensitive to the block length 

and the estimation is not reliable when the block length is not chosen suitably. The stationary jackknife 

gives a reasonable estimation over a wide range of the block lengths. This gives us an intuition that when we do 

not know the optimal block length for the block jackknife beforehand, the stationary jackknife estimator 

can be the better choice for inference. 

 

5.2. Application in time series model 

Here, we are interested in estimating the variance of sample mean of different time series data with the optimal 

block length order. In each model we will use all four resampling methods to estimate the variance. In each 

model we will generate N = 1000 data as our original data X1. The block length is an important variable in 
I I I 

all methods. Therefore, we will use different values of block length -t' E  {N,, 2N,, 3N, } in our simulation. 
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The variance estimator is a level-2 estimator. The level-2 estimator (Athreya and Lahiri, 2006) is the estimator 

which relieson the samplingdistribution of alevel-I estimator. The level-I estimator directly relies on the sampling 

distribution of the observations. MSE of an estimator is a common level-2 estimator. The variance can be treated 

as the MSE of sample mean. For MBB and SB, we need a positive number B as the number of bootstrap replicates 

to calculate the Monte Carlo approximation of MBB and SB estimator for this level-2 parameter. We choose 

B = 1000 in our situation. Lastly, to get the estimator of SE of variance estimator, we do 800 simulations for each 

model. 
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5.2.1. AR(]) model 

The first example follows the AR(l) model X1 = </JX,_1 + w1 in section 3 of Politis and Romano (1994), where 

w1 ~
i i d  

N(0, 1). We consider the AR parameter <p vary in {-0.3,0.5,0.8}. We want to estimate the standardized 

variance of the mean of the data. &2 = Var ( VNX N) Figure 3 shows the results of three different AR(1) processes. 

The black solid line in each facet is the true variance of the arithmetic mean. We use the coefficients {1, 2, 3} to 

represent thecorresponding blocklength {N,, 2N,, 3N,}.The black interval oneach barrepresents theconfidence 

interval of the estimation. Moreover, we record the computing time for four methods in Figure 4. 

 
5.2.2. ARMA(2,I) model 

The second modelts a ARMA(2,1) model X1-0.6X1_1+0.05X1_2 = W1+0.2W1_1, where w1 ~ N(0, 1). It ts a causal 

and invertible ARMA processes. This model can be expressed as (1 - 0.5B)(l - 0.1B)X1 = (1 + 0.2B)W, where 

B is the backward shift operator. The Var(VNXN) converges to a finite quantity which means u s is well-defined. 

However the computation of this value is a little bit complex, so we use the standardized standard variance of the 

mean value of data from the 200 simulations to approximate the true value. Figure 5 shows the result under the 

ARMA model. The red solid line represents the true variance 6.994. 
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From the comparison of the four methods in estimating the standardized variance of the mean in different time 

series methods, the behavior of four methods are pretty similar and all four methods give a reasonable estimate 
I 

when block length is 3N,. The block jackknife and the stationary jackknife give us the variance esti- 

mator with the smaller bias. In the AR(l) process, there is a gap between estimation from all four methods and 

the true value when </J = 0.8. This is due to the fact that the true value is computed as the asymptotic variance. We 
have a limited sample size 1000 and the large AR(l) coefficient makes the covariance decay much slower than the 

cases when AR(l) coefficient is 0.3. 

Since variance estimator is a level-2 parameter, the bootstrap method needs the Monte Carlo approxima­ 

tion which requires more computation compared with the jackknife method. This can be clearly found in 

Figure 4. Also, both the stationary jackknife and the stationary bootstrap need to generate random samples 

from a geometrical distribution. They will consume more time compared with the corresponding moving block 

methods. 

 

5.3. Simulation for AR(l) parameter 

The AR(l) model x = <px _ + € , where e if/ N(0, 1). Denote q> as the least square estimator of¢, and this is a 
1 1 1 1 1 

nonlinear statistic of {x1}. We investigate the behavior of stationary jackknife estimator on the variance 
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Table I. The variance estimate bystationary jackknife for AR(]) parameter with different block length (SE is in 

parenthesis). 
 

 
bl= 2 bl= 3 bl= 4 bl= 5 

SJ 0.791(0.013) 0.732(0.014) 0.723(0.014) 0.743(0.0 l6) 

PB 0.786(0.015) 0.724(0.013) 0.719(0.012) 0.731(0.013) 

True 0.75 0.75 0.75 0.75 

 

estimation of¢. Based on the theoretical result, we have yn(<P- ¢) N(O, l - ¢2). In the simulation setting, 

¢ = 0.5, data length is 200 and the block length l varies in {2, 3, 4, 5}. For each block length, we repeat the 

simulation for 500times to compute the SE of the estimator. For reference, we also compute the variance estimator 

produced by the pair-wise bootstrap (PB) Efron and Gong (1983). The number of bootstrap replication is B = 500 

in this simulation. Result is in Table I. 

From the result, wecan see thatthe stationary jackknif egives the reasonable estimators to the variance 

of AR(l) parameter. The behavior is pretty similar to the pairwise bootstrap. 
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5.4. Trimmed mean 

In this part, we check the stationary jackknife variance estimator's performance on the trimmed mean 

of an AR process. The trimmed mean is a method of averaging after removing the designated percentage of the 

smallest and the largest values. In our case, we focus on the 60% trimmed mean. This means that we need to 

remove the 20% extreme values on both ends of the data beforehand. Forma1ly, for the observations {X;}7-i it is 

defined as 

µ,m- -[-0.
i-6n.] 

[0.8n) 

H0.2nl 

X(,), 

where [a] is the largest integer not exceeding a and X(I)is the ith-order statistics of {X;}. 

In the simulation, the quantity we are interested in is the variance of the scaled mean var(y[0.6n] µ1m). We 

investigate the stationary jackknife estimator performance for the trimmed mean in different AR(l) 

models. We choose the AR(l) coefficient a in [0.2,0.5,0.8] and in each AR(l) model we generate n = 1000 

samples. Ineach setting, werepeat the experiment for 800times to get the expectation and the SE. For the different 

strength of the correlation, we choose the different expected block length. The block lengths are 9,18 and 27 for 
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the cases when AR(l) coefficients are 0.2,0.5, and 0.8.The block lengths are approximate to n"i,2n"i and 3n"i.The 

true variance of the trimmed mean is approximated by the Monte Carlo method. The number of replications in the 

Monte Carlo method is 10,000. For the convenience of the visualization, we scale both the estimated value and the 

true value by the sample size. Figure 6 shows the result of the stationary jackknife estimation. The three 

blue bars represent the value of the stationary jackknife estimator, the orange intervals represent the 

confidence interval for the estimation and the red points are the true variance under three different data generating 

processes. 

From the result, we can see the stationary jackknife variance estimation is pretty close to the true 

value. Moreover, the true variance is inside the confidence interval of the stationary jackknife estimation. 

 

5.5. Personal savings rate data 

In this section, wecompare thefourresampling methods on personal saving rate (psavert) data. Psavert is calculated 

as the ratio of personal saving to disposable personal income (DPI). The rate can be generally viewed as the 

portion of personal income that is used for investments. In Figure 7, we have monthly psavert data in a 30-year 

interval from September 1988 to August 2018 (totally 360 data points). We take the first difference of the series 
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Figure 7. Monthly personal saving rate (psavert) time series in 1988-2018 
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Table II. The SE of the ARMA(l,1) coefficients under four methods 
 

 
MBB SB 

 
SJ 

AR_coefficient 0.135 0.141 0.138 0.140 

MA_coefficient 0.114 0.120 0.112 0.116 

 

to make it stationary. The transformed series (Figure 8) can be interpreted as the personal saving rate increment. 

An ARMA(1,1) model is used to model psavert increment series {Yi}, 

 

 

We are interested in the performance of the four resampling methods in estimating the SE of the coefficients 

in the ARMA(l,l) model. For simplicity, we introduce the AR_coefficient and MA_coefficient to represent the 

corresponding coefficients. In this case, we adopt t' = 8 (p = 1/8) that is roughly equal to N,
I 

. For Bootstrap 

methods (MBB and SB), we choose B = 800. The result is shown in Table II. The SB and SJ have slightly larger 
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estimates which is coincidence with the randomness in the method. Moreover, a few extreme values also amplify 

the SB SE estimator. 

 

6. CONCLUSION 

The main contribution of this article is to propose a new resampling method, called the stationary jackknife, for 

estimating the variance of a statistic of interest for weakly dependent data. Consistency of variance estimation 

is proved under certain assumptions for both the sample mean and for certain nonlinear statistics. The results on 

the optimal block length order are consistent with the existing results for the moving block jackknife. From both 

simulation data and the real data, it is evident that the stationary jackknife estimator is comparable to other classical 

resampling methods. Because of the simple form of the stationary jackknife, the computing time is much lower 

when compared to Bootstrap methods. Moreover, the stationary jackknife can provide reasonable estimates for a 

wide range of the (expected) block lengths, primarily due to the introduction of the randomness in the blocklengths. 

 

ACKNOWLEDGEMENTS 

This research is partially supported by NSF grants No: DMS 2006475, 2131233 and 2235457. 

 

DATA AVAILABILITY STATEMENT 

Data sharing not applicable to this article as no datasets were generated or analyzed during the current study. 

 
REFERENCES 

Athreya K, Lahiri S. 2006. Measure Theory and Probability Theory. Springer, New York. 

Carlstein E. 1986. The use of subseries values for estimating the variance of a general statistic from a stationary sequence. The 
Annals of Statistics 14(3):1171-1179. 

Doukhan P. 1994. Mixing: Properties and Examples, Vol. 85. Springer-Verlag, New York. 
Efron B. 1979. Bootstrap methods: another look at the jackknife. The Annals of Statistics 7:1-26. 
Efron B, Gong G. 1983. A leisurely look at the bootstrap, the jackknife, and cross-validation. The American Statistician 

37(1):36-48. 
Hoeffding W. 1948. A class of statistics with asymptotically normal distributions. Annals of Statistics 19:293-325. 

Kunsch H. 1989. The jackknife and the bootstrap for general stationary observation. The Annals of Statistics 17:1217-1241. 
Lahiri SN. 1999. Theoretical comparisons of block bootstrap methods. Annals of Statistics 27(1):386-404. 
Lahiri SN. 2003. Resampling Methods for Dependent Data. Springer Science & Business Media, New York. 
Miller R. 1974. The jackknife- a review. Biometrika 61:1-15. 
Nordman D. 2009. A note on the stationary bootstrap's variance. The Annals of Statistics 37(1):359-370. 
Park D, Willemain T. 1999. The threshold bootstrap and threshold jackknife. Computational Statistics & Data Analysis 

31(2):1171-1179. 

Pellegrino, F. (2022). Selecting time-series hyperparameterswith the artificial jackknife. arXiv preprint arXiv:2002.04697. 

Politis D, Romano J. 1992. A circular block-resampling procedure for stationary data. Exploring the Limits of Bootstrap (pp. 
263-270). Wiley, New York. 

Politis D, Romano J. 1994. The stationary bootstrap. Journal of the American Statistical Association 89(428):1303-1313. 

Quenouille M. 1949. Approximate tests of correlation in time-series. Journal of the Royal Statistical Society, Series B 
(Methodological) 11(1):68-84. 

Quenouille M. 1956. Notes on bias in estimation. Biometrika 43:353-360. 

Shao J, Wu C. 1989. A general theory for jackknife variance estimation. The Annals of Statistics 17(3):1176-1197. 
Tukey J. 1958. Bias and confidence in not quite large samples(abstract). The Annals of Mathematical Statistics 29(614). 
Wu C. 1986. Jackknife, bootstrap and other resampling methods in regression analysis. The Annals of Statistics 

14(4):1261-1295. 



J. Time Ser. Anal. 45: 333-360 (2024) 

DOI: 10. I I I l/jtsa.12714 

© 2023 John Wiley & Sons Ltd wileyonlinelibrary.com/joumal/jtsa  

L ) 
-Lj m 

n
 

- n \-¾Bn \i · 

2 2 

-2 - _!_ -2 + j,ij - _!_ j,Lj 

1- ,- .F .F 

 

 

 

 

 

 

STATIONARY JACKKNIFE 351 
 

 

 

 

APPENDIX  A 
 

 

A.I.  Proof of Theorem 1 

Proof By the simple algebraic operations, for any constantcthejth stationary jackknife replication can 

be expressed as 
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Notice that the second equality is due to the following 

 

n2 1 
< 

- (n-2flogn)2 n2 

= ( l + (? ( fl:gn)) :
2
. 

Under the Assumption 1, we have 
n 

0. This means 

=o(l). 

So we only consider the leading term in (A3). 

 

 

We decompose the leading term of n&!ck into four parts and investigate the order of the each part. 

For A1,We have 
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During the derivation, we use the following two facts, 
 

:::; L IR(k)I 
k~-n+l 

:::; L
00

 

 

 
and 

IR(k)I. 
k=-oo 

 

 

 

lE ( LJ)= 
[2t' l

L
ogn]-1 

i2p(l - p/-l +[2t'logn]\1 -pi2t'logn]-l 

i-1 

00 

::; Li2p(l - Pi-l 
i-1 

=y
2-

·
p 
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where b1 is a random variable with the following relationship 
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Now we focus on the quantity IE ( b1br+k). For any k 0, we have 

t+k I 

lEbtbt+k = ]EL11.(L,->t+k-j)L11.(Lj>t-j) 
j-1 j-1 

t+k t+k t 

::; lE llc1,>1+k-1)  +E LlcLj>1+k-1)E lcLj>t-1) 
}=1 }=1 j-1 



wileyonlinelibrary.com/joumal/jtsa © 2023 John Wiley & Sons Ltd J. Time Ser. Anal. 45: 333-360 (2024) 

DOI: 10.1111/jtsa.12714 
 

<-+­ 

i 

 
 
 
 
 

 

354 W. ZHOU AND S. LAHIRI 

 

 

t+k t+k I 

_L/1 - p)'+k-j + _L/1- py+k-j.LP - py-i 

j=l j=l j=l 

1 1 

- p  p2" 

 
Consequently, we have 

 

 

Based on the bound ofv(lkl), we can derive the bound for A2, 

 
2 n-1 

IIE(A2)I+-_Li (t'+t'
2

 
m nt' k=-n+t 

 
 
 

 
) IR(k)I 

 

=! IR(k)l+o(!) 

=C?(;)· 
 

For partA3 
 

 

[2t"togn]-t s-I 

= L L (s-lkl)R(k)p(l-p)'_I 

l ( S=l k=-s+t n 

 
+  [ui]-t ([2t'logn]n-lkl)R(k)(l-p)[2t"togn]l 

k=-[2t"logn]+l 

[Ulogn]-I [2t"logn] 

= _Li _Li (s- lkl)R(k)p(l - p)s-l + (? 

k=-[2t"togn]+I S=lkl+l 

[Ulogn]-I [2t"logn]-lkl 

L L (1-p)'k1R(k)tp(l-p)'-
1+C?(n ) 

k=-[2t"logn]+I 1=1 

[Ulogn]-I 

= L (1 - p)lkl+l - (1 - Pi2t"logn]R(k) + (? (:2) +(?( 

k=-[2t"togn]+t 

c ) 

n ) 

=i 



J. Time Ser. Anal. 45: 333-360 (2024) 

DOI: 10. I I I l/jtsa.12714 

© 2023 John Wiley & Sons Ltd wileyonlinelibrary.com/joumal/jtsa  

r 

 
 
 

 
 
 
 
 

 
[2t'logn]-I 

s 

STATIONARY JACKKNIFE 355 

(1 +p(lkl + l))R(k) + (')c ) 
k~-[2t'logn]+I 

 

= CT  + (')( 7 ) . 

 
The derivation is based on repeatedly using the Lemma 2. 

Lemma 2. Assume that p +(npr1 0 as n oo. Let tn be a sequence of positive number such that tn oo as 

n oo. L 
1 

follows a Geometric distribution with the parameter p. Then we have 
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For the cross part A4, from the result of the former part it follows from the Cauchy-Schwarz inequality that 
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A.2. Proof of Theorem 2 

Proof Without loss of generality, we assume IE (X;) = 0.Then it is obvious that 
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Hence we have 

L Cov2(s1,r,,Sj,LJ L r>(t'2logn)a.!.(j-[2t'logn]+[t½]) 
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When j [2t' log n], we can write the expression of Cov ( S1,L,, Sj.L;) as 
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In the last step we use the facts that (1 - p)ll = ('.) ( exp ( -)) and L is a random variable with the truncated 

geometric distribution. 

From (A4) we know the coefficient for R(O) in Cov ( S1.L, ,sj,LJ is f(l - p)li-11, which is denoted as at For 

any j 1, we are interested in the coefficient of R (k), lkl t' in the quantity Cov ( S1,i,, SjL; )- The reason is that 

 

 

Denote at as the coefficient of R(k) in Cov ( S1,L,, Sj.L; ), then for lkl t', we have a bound for a \ that is 
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Due to limp o(1 - pf = e-1
, we know a%) is the same order of a ). Thus we have 

 

By repeatedly applying the equation (A4), we have 

 

Then we need to show that 

 

The key method to prove (A6) is the following inequality, for s s t s u s v, 

 

 

 

 

 

 

(AS) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(A6) 

 

 

(A7) 

 

This is followed by a repeated application of theorem 17.2.3 of (Politis and Romano, 1994). 

In our case, for a certain maximum gap t between variable, there are at most 3k2[2t' log n] sets of indices 

{s, t, u, v} where {s, t} E {1, 2 • • • [2t'log n]} and {u, v} E U,j + 1, ... j +[2t' logn] - 1} for any j. Now we have 

 

[U' lognJi+[U' logn) m j+[U'logn)) • 

S 
( 

Li Li + Li Li 3[2t'logn]k2a=(k) 
j-1 ka:() [U' logn)+I k-0 

[2t'logn) oo oo j+[U' logn) 

s Li  L3[2t'logn]k2a (k) + Li Li 3[2t'logn]k2a•!.(k) 
I  k-0 j-[2t'logn) k-j-[2/t' logn) 

[2t' logn) oo oo j+[U' logn) 

S Li  L3[2t'logn]k2a (k) + Li Li 3[2t'logn]k2a.!•(k) 
I 1.:-0 [2t'logn) k-j-[U'logn) 

 
2[2t'logn] [U'logn)+k m k+[2t'logn) ) 

= <9(t'logn) + Li Li + Li Li 3[2t'Iogn]k2a.!•(k) 
k-1  j-[2t'logn)+I 1.:-[U'logn)+I j-k-[U'logn) 

= <9(t'logn) + (9 (t2(logn)2) 

=0 (t3
). 

 

 

 

(A8) 
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Above derivation is based on the fact that whenj > [2t' logn] + l the maximum gap between the indices is at least 

j-  [2t'logn] and assumption in theorem 3.2 that L:0k2a&i'.i(k) < oo. 

Then it is obvious that 
 

m  m m  m 

LL Cov s( i.L;s' JiJ = L ( Cov(Si.L;s' JiJ - 2Cov2(S;i,,, Sii,) 
1 1 1 1 

 

+2Cov\S;,L,,sj,L)) 

 

4a!_(l +o(l)). 

Back to the variance of our jackknife estimator, we have 

 

 

where we denote 

 

Notice that w':') are all random variables but it is easily to verify that lw(J)I = ('JP('no gn). 

 

 

 

 

 

 

(A9) 

 

From the d' erivation above, we can naturally get that ' n 

 

 

1 t'3 
---ma (1 + o(l)) 
m2t'2 4 as 

= t' 4 (1+o(l)).  (AlO) 
-
4
a
n as 

 

 

 

 

 

 

 

 

 

 

 

(All) 

= 2 



wileyonlinelibrary.com/joumal/jtsa © 2023 John Wiley & Sons Ltd J. Time Ser. Anal. 45: 333-360 (2024) 

DOI: 10.1111/jtsa.12714 
 

Jae 4n as n 

 

 

 

 

 

 

360 W. ZHOU AND S. LAHIRI 

 

 

From this we can seethat in theexpression of the variance of the stationary jackknife variance estimator, 

the part Var(L_;'.;'., , ; )plays the dominant role, so we can ignore the other parts and the expression for our 

variance is 

var(n&2 k) = !...a4 + o ( ) . 

■ 


