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Variance estimation is an important aspect in statistical inference, especially in the dependent data situations. Resampling
methods are ideal for solving this problem since these do not require restrictive distributional assumptions. In this paper, we
develop a novel resampling method in the Jackknife family called thestationary jackknife. It can be used to estimate
the variance of a statistic in the cases where observations are from a general stationary sequence. Unlike the moving block
jackknife, the stationary jackknife computes the jackknife replication by deleting a variable length block and the
length bas a truncated geometric distribution. Under appropriate assumptions, we can show thestationary jackknife
variance estimator is a consistent estimator for the case of the sample mean and, more generally, for a class of nonlinear
statistics. Further, the stationary jackknife isshown to provide reasonable variance estimation for a wider range of
expected block lengths when compared with the moving block jackknife by simulation.
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1. INTRODUCTION

The Jackknife (cf. Quenouille, 1949, 1956; Tukey, 1958) is an intriguing non-parametric method for estimating
the bias and variance of statistics we are interested in. The role of the jackknife in bias correction and robust con-
fidence interval has been fully explained in Miller (1974). A general resampling method, the bootstrap method
(cf. Efron, 1979) is introduced to work satisfactorily on a variety of estimation problems. Efron and Gong (1983)
provide a comparison between the jackknife, the bootstrap and another important non-parametric method, cross
validation at an accessible mathematical level. However, for all these methods, the assumption of the indepen-
dence of the observations is very crucial. It seems that the standard jackknife or bootstrap will give an unreliable
estimation if dependence is ignored. In most cases, especially in applications involving time series, dependence
between observations is not negligible. When fitting a parametric model to a given time series, it is always very
difficult to model all important features of the observed time series, and the parametric inference approach often
suffers from the risk brought in by the effect of the parameter estimation or model misspecification. Thus, it is
very important to modify the jackknife estimator for the dependent data.

Carlstein (1986) proposed a block-wise resampling method where the variance estimator is computed using
non-overlapping blocks. In some cases, especially for the arithmetic mean, selection of blocks is equivalent to
the deletion of complementary blocks. The moving block jackknife (bootstrap) of Kunsch (1989), an extension
of the standard jackknife (bootstrap) method, computes the statistics of interest by deleting (selecting) overlap-
ping fixed length data blocks. It shows that the moving block method works well for arbitrary stationary time
series with short range dependence. The circular block bootstrap of Politis and Romano (1992) wraps the data ina
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circle before selecting the overlapping blocks. Every data point is assigned the same probability mass in the con-
ditional distribution (condition on the original data) by the circular block bootstrap. This provides a more accurate
approximation with respect to the mean. The stationary bootstrap of Politis and Romano (1994) selects blocks of
random lengths to make the bootstrap observations stationary. Some theoretical results about the stationary boot-
strap have been obtained in Lahiri (1999) and Nordman (2009). It is surprising that the variance of the stationary
bootstrap matches that of a block bootstrap based on non-random, non-overlapping blocks. For more details on
related properties of block bootstrap methods, see Lahiri (2003).Some other developments in the jackknife resam-
pling literature, such as the delete-d jackknife (Wu, 1986; Shao and Wu, 1989), the threshold jackknife (Park and
Willemain, 1999) and the artificial jackknife (Pellegrino, 2022), discuss the variance estimation in dependent data
situations. In this article, we introduce a new resampling method called the stationary jackknife. Simi-
lar to the extension made in the stationary bootstrap (Politis and Romano, 1994) on the moving block bootstrap,
our method is anextension of the moving block jackknife. We apply a variable block length in each deleted block.
This is the reason why we call our method the stationary jackknife.

The stationary jackknife is suitable for variance estimation of statistics from observations generated
by weakly dependent stationary time series.The stationary jackknife can be applied insituationssimilar
to the moving block jackknife. The major difference between the stationary jackknife and the moving
block jackknife lies in the block length. For the stationary jackknife, we delete /; consecutive observa-
tions as the ith block to compute the ith pseudo value. In the settings of the moving block jackknife, ¢, = ¢/
the block length is a constant for all pseudo-value computation. However in the stationary jackknife,
t';isnot necessarily the same every time and we treat ¢, as a random variable with a truncated geometric dis-
tribution. Since a variable with the geometric distribution is unbounded, we set an upper bound on the variable
to avoid deleting a large segment of the observations. Moreover, the fact that the tail of the geometric distribu-
tion decays exponentially helps constrain the block length to within a reasonable range. For the starting point of
the block near the end of the observations, the last observation serves as a natural cutting point for the block.
After deleting the block, we perform a smooth transformation on the remaining observations to get the statistic.
The stationary jackknife variance estimator is the standardized version of sample variance of statistics
obtained in the way mentioned above. One common difficulty in the moving block jackknife is the choice of the
optimal order of the block length. The optimal order of the block length may vary when jackknifing different
statistics or thesame class of statistics under different data generatingdistributions. Nonetheless, we observed that
the randomness in the block length makes the stationary jackknife method more robust to the expected
block length. The simulation results in Section 5 illustrate that the stationary jackknife provides a rea-
sonable variance estimation in a wider range of the expected block length compared with the moving block
jackknife.

In Section 2, we introduce the stationary jackknife and illustrate its differences with the moving
block jackknife. In Section 3, we prove the consistency of the stationary jackknife variance estima-
tor in the case of the arithmetic mean. We derive the asymptotic bias and variance terms of the stationary
jackknife variance estimator. By minimizing the mean square error (MSE), we get the optimal order of the
expected block length for the stationary jackknife. In Section 4, we investigate the consistency of the
stationary jackknife variance estimator for more general statistics. In Section 5, we compare thesta-
tionary jackknife with different resampling methods suchas the movingblockbootstrapin Kunsch (1989),
the moving block jackknife and the stationary bootstrap in Politis and Romano (1994) on different simulated
datasets.

2. FORMULATION OFTHE STATIONARY JACKKNIFE METHOD

We formalize the definition of the stationary jackknife. One important issue is that we need to define
the statistic with a variable length missing block of the observations. The issue can be overcome by focusing on a
certain class of statistics we are going to introduce later in this section. This class of statistics is sufficiently rich
to include many commonly used statistics.
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STATIONARY JACKKNIFE 335

2.1. Estimator defined on the empirical distribution

For observations {X;,X»-.+ XN} from a stationary process, following the definition in section 2.1 of
Kunsch (1989), we define the empirical k-dimensional marginal distribution as

N-f+l
Pt= (N— k + 1)'1 D(X;,X,+,"'X,+,‘,)'

i-1

where .. is the point mass on y E JRk. For any functional ...defined on all probability measures on JRk, we
consider the statistic 7N of the form

Ty (X1.X,, ... . Xy) =T (p},) -
Denote n = N- k+1 as the number of k-tuples in the observations. For notational simplicity, we use the equivalent
relationship below as in the examples in the section 2.1 of Kunsch (1989), by setting
Ph = Prs

where Pn is the empirical distribution of » observations.

2.2. The stationary jackknife

Before deriving the formula for the stationary jackknife, we recall how the moving block jackknife
works to produce the pseudo values. In the moving block jackknife, the length of the block -¢" is fixed over the
time. In producing the jth pseudo value, the corresponding marginal ,ff,) after deleting the jz# data block as defined
in Kunsch (1989) is,

p)=n-lwll ,L-wn(t-H)Dr,, j=1,2 ... n--t'+I,

n 1t-1

where wn represents the scale of downweight for each observation, and wn satisfies the following properties

1 Wn (1) >0 0 i<—f',

wn(i) =0 otherwise,

and llwnll1 = L,’ wn (i). In our case, we focus on removing the data blocks rather than downgrading them. So we
have wn(i) = 1.0.t-11) (i) and the corresponding marginal P can be written as

)= _t’l(l - 1(GIH1D) (1) Jj=12. '+ 1L
1-1

Then the jth moving block jackknife replication is represented as the estimator defined on the empirical
marginal "ff/,>,

7 =7 (7).
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336 W.ZHOU AND S. LAHIRI

Finally, the moving block jackknife variance estimator a-Jack is defined as

g2 2 f-J to 2
nt' n- z +1 +-§ ) ) €))

where T_(. ): - ( L .

n n-t'+1 “n
For the stationary jackknife, the deleting block length Z follows a truncated geometric distribution
TGeo(p, T) with the probability density function (pdf) as following.

PLk - {p(- pi-' Lk T- 1,
(- F (1 _p)Ulogn]-1 k=T,

where 7 is the truncated value and p is the parameter of the geometric distribution. In the stationary jackknife,
weset 7 = [2t'Togn] ( with ¢/ =.!. and [a] representing the largest integer not exceeding ). The corresponding
cumulative density function Fi is

J

k<l
Fr, k)= {- (- p)' Tl ke, T- 1,
K'2:. T.

As we can see, the main difference between the stationary jackknife and the moving block jackknife is
that the length of our deleted block is no longer a constant but a random variable. Weset an upper bound [2t' logn]
on the block length to make sure the length of the missing part is much smaller than the length of the original
observations.

To derive the expression of the stationary jackknife, we need to define {L1,%, ... Lm;m=n- [2t'logn]+ l}
to represent the block length variables. More specifically, {L,,Zi, ... Lm} are independent and each has the same
distribution as L.The realization of {L;} can be generated by a series of geometric distribution variable { Ld due
to the following relationship

L = min (L, [2t'logn]),

where Lis a random variable with a geometric distribution L ~“Geo(p). In the jth pseudo value computation, the
corresponding empirical marginal ), is defined as

P) L;.L(l- 1Gi+L-)(®) 8r, j=1,2 ... n- [2t' logn] +

11-1

n
Then thejth stationary jackknife replication is calculated as

)=T(p)) j=1,2 .. ,n- [2tlogn]+I.

From the definition of thestationary jackknife replication, there aretwo layers of randomness in the stationary
jackknif e, onecomesfrom theempirical distribution, the other one comesfrom the realizations of the truncated
geometric distribution.
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STATIONARY JACKKNIFE 337

The stationary jackknife estimator of the variance of 7n is a standardized version of the sample
variance of the 77/1

=k "”)Z % ©

Jac ném

where m = n - [2t'logn] + 1 and ) =r...r. " The estimator can be decomposed into two parts. The first part

is sample variance of the stationary jackknife replications ; r,1 (TP- —))2. The second part is the

standardizing factor mn_cl; . The standardizing factor is inversely proportional to the expected block length #. The
larger the expected deleting length we choose, the larger the ratio we down weight on the sample variance of the
jackknife replications.Thestandardizing factor in formula (2) is thesame as thestandardizing factor of the moving
jackknife estimator (1). Inthe moving block jackknife, n - ¢’ can be treated as the remaining observations in each
jackknife replication, and in the stationary jackknife, n - ¢’ can be treated as the expected remaining observation
in each replication. Moreover, the standardizing factor helps the estimator enjoy the consistency property reported
in Section 3.

3. CONSISTENCY OF THE STATIONARY JACKKNIFE ESTIMATOR

Here, we show the consistency of the stationary jackknife variance estimator for the arithmetic mean
under several assumptions. The assumptions are similar to the assumptions for the moving block jackknife. The
routine method inproving theconsistency of the estimator is toshow both the bias and the variance of theestimator
converge to zero. We derive the exact formula of the bias and variance in the following theorems. Moreover, we
investigate the optimal expected block length by minimizing the mean squared error of the estimator.

Here, we investigate the properties of the stationary jackknife forthearithmetic mean. The arithmetic
mean is obviously a member of the class of estimators defined in section 2.1. It corresponds to the population
mean T (F) = I xF (dx)= lE(x) = p. The functional is linear and allows for explicit calculations of all quantities
of interest.

Suppose that {X1}r-tz,..., arefrom a weakly stationary processes. Then X; enjoys the following properties,

IE (X,) = L
IE(X;) < oo.

IE (Xt+h - L) (X,- L)) =R(h), Wt

According to the stationarity of the observations, we can write the the standardized variance of the arithmetic

mean, var( ynX ), analytically as

ar(\/_nf()— Z = lhl)R(h) 3)

h=—n+1

We denote u,s as the limitof Var ( ynX ). When R(h) is absolutely summable, then we have

h-oo
ul=L rew. @
1>=-00
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338 W.ZHOU AND S. LAHIRI

For thejth stationary jackknife replication T;) in the arithmetic mean case, we have

— 72 X.—S—r,

Wi il e .
7z - =
n-L;

where S;,1= L ".-'Xi, the partial sum of {Xi}.

Before looking at the bias and the variance terms of the stationary jackknife variance estimator, we
need to first specify some assumptions to ensure the consistency of the estimator. Here are some assumptions
needed for the later theorems.

1 2
Assumption 1.6 + - 0.
Assumption 2. - oo Ikl IR (k)I < oo.

Remark 1. Assumption 1 represents two conditions, the first one is . !. 0 and the second one is !ni 0. This
means that the expected blocklength t' goes to infinity asn goes toinfLmity. The order oft' isnot comparable to the
observation length since we do not want to delete almost the whole series. Overall, the Assumption 1 is equivalent
to

t'=t(n) 00,
=0 (n% ) .

Assumption 2 focuses on the weak dependence of the observations. The constraint on the infinite sum of the
autocovariance of {X1} avoids the existence of the long dependence. The autocorrelation needs to have the decay
rate at least k,.. The exponential decay rate on the autocorrelation is a sufficient condition for the Assumption 2,

2=
4

so thestationary AR, MA, ARMA timeseries satisfy the assumption.

3.1. Bias of the stationary jackknife variance estimator

Theorem 1. Under the Assumptions 1 and 2, the bias of the stationary jackknife estimator (2) for the
arithmetic mean is following.

]E(n&ick)=ci+(9(%)+(9((§)%). )

Proof See Appendix A.L [ |

Toderive the variance expression of the stationary  jackknife estimator n8—fDIg "weneed two additional
assumptions, forsome 8 E (0, 00):

Assumption 3. E ( 1 Xi|6+5) < co.

Assumption 4. “2%%--0k Z(k)= < oo.

The Assumption 3 imposes a constraint on the moment of X;that Xhas a finite (6 + 8)th moment. Assumption 4
allows the series Xjto be weakly dependent. It is sufficient for us to impose a strong mixing condition on X;. For
any two u-algebrasd and P.B,define

a(d,fl.B)= sup IP(A)P(B)-P(A nB)I. (6)
AEd ,BE9li
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STATIONARY JACKKNIFE 339

Roughly speaking, we require the mixing coefficient a (k) = a (:Ji'!} i 't),to decrease polynomially ask oo,

where .Ji";” is the a-algebra generated by {X;:T..
With respect to the a-mixing coefficient, we introduce a fundamental inequality for the covariance of mixing
random variables.

Lemnﬂl. LetX and Y be measurable random variables with respect to two a-algebras & and Si. Define IIXIIP =
[

(lElXI . Then, forany p,q,» 1 and -ttty =L

1
ICov (X,Y)I 8a7 (&fSi) 1IXllpllYilge (7
Proof. Seesection 1.2.2 in Dou.khan (1994). [ |

Theorem 2. Under Assumptions 1 to 4, the expression of the variance of thestationary jackknife
variance estimator n&Jack of the arithmetic mean is

var(n&’ b =, at +o (.[,:) . ®)
Proof. See Appendix A.2. [ |

Remark 2. Through the expression of bias and variance of the stationary jackknife estimator we can

see that when f 0o and f = o (n), both bias and variance goes to zero. This shows the consistency of our
estimator in this case.

3.2. Rate of optimal block length

After obtaining the expression of bias and variance, we can obtain the optimal block length f in the order of n by
minimizing the MSE of our estimator. By the standard decomposition of the MSE, we have

MSE (n&J,..k) = Bias” (n&fack) + var (n&J,.k) =()( 1) +()( )
Then we get y — B(ni ) tobethe rate of optimal block length.

4. EXTENSION TOTHE NONLINEAR STATISTICS

In this part, we generalize the consistency results to the nonlinear statistics. The corresponding result for the
block jackknife has been well developed in Kunsch (1989). Under suitable assumptions, thestationary
jackknife estimator is a consistent estimator for the nonlinear statistics.

4.1. The stationary jackknife on nonlinear statistics

The population parameter of 7n = T (X,Xo. .. Xn) is{}= T (F) where Fis the marginal distribution of X. Many
estimators can be included in the nonlinear statistics. As described in Kunsch (1989), M-estimator, U-statistics
(Hoeftding, 1948) and statistics defined implicitly as solutions of an equation. The linearization of 7n at F gives

n

= 1(F)+n-"_LTF {XF) + Rn

i=/

=M, +R,.
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340 W.ZHOU AND S. LAHIRI
where IF is the influence function that IF (x, F)=  lime O[T(Q-eJF+e<>)-T(F)]. Then we have
e

w=T®+m- Lr' _ L (1- 1068 +00) ¥ (. F) + K-/?
9 9

— 7@ )]
=LY% +RY.

For large n, the behavior of o}ack (772) is similar as the behavior of ojack (Ln) if R ) is in the small order. One

sufficient condition for the reminder » 1 m=ax)E (Ié) ) ) =tJ(H- ).

. o . . . . 00 2
Under this condition, it is obvious that Fysss =("JP (n-"). Moreover we have

X (RO —R)) < Y RY”,

and the standardized factor for the stationary jackknife estimator is #J (7) « Thus we have

2
n& (T)=n&’ {L)+n& [R)+2@- t)- {Lv)- LO) RV)- RO)
Jack n Jak n Jack 1 tm 4 n n n n
1

natek {Ln) +n&j2ack {Rn) +2n_&Tack (a7 &Jack Ry

— né&Jack (Ln) +tJP(I'1/2). (9)

The reason why we get the lastline in 9 is due to the following fact.

Together with n&Jack {Ln) = ("JP(1), we have n  &Jack (Ln) &!ck (Rn) = (‘JP( 1'1/2) In summary we have
Theorem 3.

2
Theorem 3. If maxjIE(R) ) = tJ(), then we have n&Jack (Tn) = nojack (Ln) + tJP (1" '2). Under the

assumptions in Section 3, we have n&Jack converges to uJs, where

a= K IEIF (Xo, F) IF (XK, F). (10)
k--00
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STATIONARY JACKKNIFE 341

More precise welookat thelinearization of Ton Prn instead of F. Assume thatIF (y, Pn) exists, then we can write

r) =T(Pn) *(n - L])—]LP = 11.(Uj+L;-ID(L)IF (Xi,Pn) +S/,)
i-1

= M9+ 59.

The distance between p) and Prn is much closer than the the distance between p) and F. The expected value of
the total variation distance between p ) and Pn is

B (dry (00:0)) < T E
4 4
n * n—2¢logn

(ﬁ)_ (11)
n

From this, it is reasonable to expectS';,) to be at most of the order (‘JP ( f,').Then we have the Theorem 4

1 1
1—1r. _ 2
) Py '

IA

Il
G

Theorem 4. If L S';,)> = ([]P(l‘4n-3) and &jack {Ml’l) = (JP G) . Then we have

n6 g (T,) = néhy (M,) +0,

(f%n—'). (12)

Proof

n6 ) (T,) —né . (M,)

<ns?, (S,) + 2”(3,-2ack (5,) 8%, (M,,))Z
( o 2 A ) &

< ”f_m) X 59+ 20(80,, (S,) 8k (M) )
=0, (*n2) +0,(#in ). (13)
]

The sufficient conditions for L (S';,))2 = ('JP (t4 n-3) forthedifferent kinds of statistics are given in the lemma
4.1--4.30f Kunsch (1989).Then for the difference between LX) and M\ assumption (C) in Kunsch (1989) describes

the order of the difference between n&fack (Mn) and n&fack (Ln) that

162y (M) = 162 (L,) + O, (%) +0, (en7"). (14)

Then we have a natural consequence.

Theorem S. Under the former conditions, we have

~2 ~2 SLLE .o P
6, (T,) = n6, 4 (L) + Op(max(£7in~", n"7)). (15)
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342 W.ZHOU AND S. LAHIRI

We can see that when -#' - oo and -#' = o (n’), the nonlinear part will decay and linear part will dominate

all effects. Under the conditions on the /F(X, F), the no-Jack ( Ln) will converge in probability to the asymptotic
variance of 7n.

5. SIMULATION

Here, we use some numerical examples to illustrate what we have developed in the former sections. We apply
our stationary jackknife variance estimator in different scenarios. Also, we will compare our method
stationary jackknife (SJ) with several existing resampling variance estimator such as Moving Block
Bootstrap (MBB), Stationary Bootstrap (SB) and Moving Block Jackknife (MBJ).

5.1. Twosimple models

In this part. we follow the examples in section 3 of Politis and Romano (1994). The simulated data comes from
two MA models

Xf = Zr + Zr_l + Zf_’)_ + Zf_'{s (Model 1)
and

X;=Z—-2_+Z ,-2Z, 3+7Z_, (Model 2)

iid
where Z1 = N(0,1). We generate N = 1000 observations X; from each model and we want to estimate the quantity
Var(yNXi by the stationary jackknife and the moving block jackknife. Moreover, we are interested in
investigating the estimation performance under a wide range of the (expected) block length. From the derivation
in Section 3], we know that the optimal block le[:ngth for the case of the scaled variance of the arithmetic mean is

of order N,. In our case this quantity is 1000, = 10. In the simulation, we set the range of the block length as
-t E [1,80] which contains the optimal block length for both stationary jackknife and moving block
jackknife as well as some extreme block length. In the stationary jackknife thecorresponding parameter

pin the truncated geometric distribution is - InModel 1 we have 7= xz 41;: zp thus Var(VWOOX1)

16Var(v' 1u\NZ) = 16. Fi-gure 1 shows the result under Model 1. In Model 2 we have 1000 0% Lt=1 7 sowe

1 Lr=I 7, 1
expect that Var (y!OOOX1) Var(y'iOOO.Zl) = 1. Figure 2 shows the result under Model 2.The main difference

between the two models is that the autocovariance in Model 1 is always positive for all lags £ E [0,3] while the
autocovariance alternates in sign until the lag & is greater than 4 in Model 2. In both figures, we use sj to represent
the stationary jackknife and mbj to represent the moving block jackknife. From the results, we can see
(especially from the second graph) the moving block jackknife estimator is more sensitive to the block length
and the estimation is not reliable when the block length is not chosen suitably. The stationary jackknife
gives a reasonable estimation over a wide range of the block lengths. This gives us an intuition that when we do
not know the optimal block length for the block jackknife beforehand, the stationary jackknife estimator
can be the better choice for inference.

5.2. Application in time series model

Here, we are interested in estimating the variance of sample mean of different time series data with the optimal

block length order. In each model we will use all four resampling methods to estimate the variance. In each

model we will generate N = 1000 data as our original data X;. The block length is an important variable in
I

I 1
all methods. Therefore, we will use different values of block length -+ E {N,, 2N,,3N,} in our simulation.
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‘o

Variance estimate

0 20 40 60 80

Block length

Figure 1. The stationary jackknife and Block Jackknife variance estimator formodel X, =Z,+Z, ++Z, ,+ Z, 3

mbj
V.”"I.!. Sj

Block length

Figure 2. The stationary jackknife and the Block Jackknife variance estimator for model X, = Z,- Z, (+ Z, ,-
z,_ 3+Z, 4

The variance estimator is a level-2 estimator. The level-2 estimator (Athreya and Lahiri, 2006) is the estimator
which relieson the samplingdistribution of alevel-I estimator. The level-I estimator directly relies on the sampling
distribution of the observations. MSE of an estimator is a common level-2 estimator. The variance can be treated
as the MSE of sample mean. For MBB and SB, we need a positive number B as the number of bootstrap replicates
to calculate the Monte Carlo approximation of MBB and SB estimator for this level-2 parameter. We choose
B = 1000 1in our situation. Lastly, to get the estimator of SE of variance estimator, we do 800 simulations for each
model.
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Figure 3. Comparison of four resampling methods in the AR processes

5.2.1. AR(]) model
The first example follows the AR(l) model X; = </JX, | + wj in section 3 of Politis and Romano (1994), where

iid

wy =~ N(0, 1). We consider the AR parameter <p vary in {-0.3,0.5,0.8}. We want to estimate the standardized
variance of the mean of the data. & = Var ( VNX N) Figure 3 shows the results of three different AR(1) processes.
The black solid line in each facet is the true variance of the arithmetic mean. We use the coefficients {1, 2, 3} to

represent thecorresponding blocklength {N,, 2N,, 3N,}.The black interval oneach barrepresents theconfidence
interval of the estimation. Moreover, we record the computing time for four methods in Figure 4.

5.2.2. ARMA(2,1) model

The second modelts a ARMA(2,1) model X,-0.6X,_,+0.05X,_, = W, +0.2W,_,, where w, = N(0, 1). It ts a causal
and invertible ARMA processes. This model can be expressed as (1 - 0.5B)(1- 0.1B)X; = (1 + 0.2B)W, where

B is the backward shift operator. The Var(VNXN) converges to a finite quantity which means u s is well-defined.
However the computation of this value is a little bit complex, so we use the standardized standard variance of the
mean value of data from the 200 simulations to approximate the true value. Figure 5 shows the result under the
ARMA model. The red solid line represents the true variance 6.994.
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Figure 4. Comparison of four resampling methods' computing time in the AR processes

From the comparison of the four methods in estimating the standardized variance of the mean in different time
series methods, the behavior of four methods are pretty similar and all four methods give a reasonable estimate
1

when block length is 3N,. The block jackknife and the stationary jackknife give us the variance esti-
mator with the smaller bias. In the AR(1) process, there is a gap between estimation from all four methods and
the true value when <= 0.8. This is due to the fact that the true value is computed as the asymptotic variance. We
have a limited sample size 1000 and the large AR(1) coefficient makes the covariance decay much slower than the
cases when AR(]) coefficient is 0.3.

Since variance estimator is a level-2 parameter, the bootstrap method needs the Monte Carlo approxima-
tion which requires more computation compared with the jackknife method. This can be clearly found in
Figure 4. Also, both the stationary jackknife and the stationary bootstrap need to generate random samples
from a geometrical distribution. They will consume more time compared with the corresponding moving block
methods.

5.3. Simulation for AR(l) parameter
The AR(1) model x = <px_ * ¢, where e i// N(0, 1). Denote g>as the least square estimator of¢, and this is a
1 11 1 1

nonlinear statistic of {x|}. We investigate the behavior of stationary jackknife estimator onthe variance
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Figure 5. Comparison of four resampling methods in the ARMA(2,I) processes

Table I. The variance estimate bystationary jackknife for AR(]) parameter with different block length (SE is in

parenthesis).
bl= 2 bl= 3 bl= 4 bl=5
sJ 0.791(0.013) 0.732(0.014) 0.723(0.014) 0.743(0.016)
PB 0.786(0.015) 0.724(0.013) 0.719(0.012) 0.731(0.013)
True 0.75 0.75 0.75 0.75

estimation of¢. Based on the theoretical result, we have }/f1 ( <P- ¢) N(O,1 - ¢2). In the simulation setting,

¢ = 0.5, data length is 200 and the block length / varies in {2,3,4,5}. For each block length, we repeat the
simulation for 500times to compute the SE of the estimator. For reference, we also compute the variance estimator
produced by the pair-wise bootstrap (PB) Efron and Gong (1983). The number of bootstrap replication is B = 500
in this simulation. Result is in Table I.
From theresult, wecan see thatthe stationary jackknifegives the reasonable estimatorsto the variance
of AR(l) parameter. The behavior is pretty similar to the pairwise bootstrap.
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5.4. Trimmed mean

In this part, we check the stationary jackknife variance estimator's performance on the trimmed mean
of an AR process. The trimmed mean is a method of averaging after removing the designated percentage of the
smallest and the largest values. In our case, we focus on the 60% trimmed mean. This means that we need to
remove the 20% extreme values on both ends of the data beforehand. Formally, for the observations {X;}7-i it is
defined as
[TSH)
X

(),
HO.2nl

- 06N

where [a] is the largest integer not exceeding a and X(I)is the ith-order statistics of {X;}.

In the simulation, the quantity we are interested in is the variance of the scaled mean var(y[0.6n] x/m). We
investigate the stationary jackknife estimator performance for the trimmed mean in different AR(1)
models. We choose the AR(l) coefficient « in [0.2,0.5,0.8] and in each AR(l) model we generate n = 1000
samples. Ineach setting, werepeat the experiment for 800times to get the expectation and the SE. For the different
strength of the correlation, we choose the different expected block length. The block lengths are 9,18 and 27 for

W

1 1
0.25 050 0.75
alpha

Figure 6. The stationary jackknife estimation on the trimmed mean
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348 W.ZHOU AND S. LAHIRI

the cases when AR(1) coefficients are 0.2,0.5, and 0.8.The block lengths are approximate to n”i,12n "i Iand 3n ”i.IThe
true variance of the trimmed mean is approximated by the Monte Carlo method. The number of replications in the
Monte Carlo method is 10,000. For the convenience of the visualization, we scale both the estimated value and the
true value by the sample size. Figure 6 shows the result of the stationary jackknife estimation. The three
blue bars represent the value of the stationary jackknife estimator, the orange intervals represent the
confidence interval for the estimation and the red points are the true variance under three different data generating
processes.

From the result, we can see the stationary jackknife variance estimation is pretty close to the true
value. Moreover, the true variance is insidethe confidence interval of the stationary jackknife estimation.

5.5. Personal savings rate data

In this section, wecompare thefourresampling methods on personal saving rate (psavert) data. Psavert is calculated
as the ratio of personal saving to disposable personal income (DPI). The rate can be generally viewed as the
portion of personal income that is used for investments. In Figure 7, we have monthly psavert data in a 30-year
interval from September 1988 to August 2018 (totally 360 data points). We take the first difference of the series

12-

[ S—"

6-
3 .
LA R Y
3 $ & §
& 5 $ 5
¥ ¥ ¥ 4

Year

Figure 7. Monthly personal saving rate (psavert) time series in 1988-2018

wileyonlinelibrary.com/joumal/jtsa © 2023 John Wiley & Sons Ltd J. Time Ser. Anal. 45:333--360 (2024)
DOLI: 10.1111/jtsa.12714

1€ "FIOT ‘TERELIF]

SUOLIPUO) PUE SULAL, 3 308 [FZ0T/60/L 1] uo Amnar] suug Sjia © [00ps Arsian ) uodunse y, - unpe] epeumoes S p1LZ0 01 oo pumes fm:

MO KM

U201 FUOUNIO ) aanE) djqedde s Aq pouwmaod o spruE v e J0 S 0y ATRKIT AU K[ U0 |



STATIONARY JACKKNIFE 349

0.5-

-0.S-

- - 4
I I'f ' )i
Year

Figure 8. Monthly personal saving rate timeseries (psavert) increment in 1988-2018

Table II. The SE of the ARMA(],1) coefficients under four methods

MBB SB SJ
AR _coefficient 0.135 0.141 0.138 0.140
MA_coefticient 0.114 0.120 0.112 0.116

to make it stationary. The transformed series (Figure 8) can be interpreted as the personal saving rate increment.
An ARMA(1,1) model is used to model psavert increment series {Yi},

Y, =0.374Y,_, + € — 0.756¢,_,.

We are interested in the performance of the four resampling methods in estimating the SE of the coefficients

in the ARMA(L,]) model. For simplicity, we introduce the AR coefficient and MA_coefficient to represent the
1

corresponding coefficients. In this case, we adopt ¢ = 8 (p = 1/8) that is roughly equal to N, . For Bootstrap

methods (MBB and SB), we choose B = 800. The result is shown in Table II. The SB and SJ have slightly larger
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350 W.ZHOU AND S. LAHIRI

estimates which is coincidence with the randomness in the method. Moreover, a few extreme values also amplify
the SB SE estimator.

6. CONCLUSION

The main contribution of this article is to propose a new resampling method, called the stationary jackknife, for
estimating the variance of a statistic of interest for weakly dependent data. Consistency of variance estimation
is proved under certain assumptions for both the sample mean and for certain nonlinear statistics. The results on
the optimal block length order are consistent with the existing results for the moving block jackknife. From both
simulation data and the real data, it is evident that the stationary jackknife estimator is comparable to other classical
resampling methods. Because of the simple form of the stationary jackknife, the computing time is much lower
when compared to Bootstrap methods. Moreover, the stationary jackknife can provide reasonable estimates for a
wide range of the (expected) block lengths, primarily due to the introduction of the randomness in the blocklengths.
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APPENDIX A

A.l. Proof of Theorem 1

Proof By the simple algebraic operations, for any constantcthejth stationary jackknife replication can
be expressed as

1 J+L—1
W — ¥ F (¥ —¢) — -
) =%+ ——=|L; (X, ~¢) D> (X - (Al
il t=j
We let
m 1
) Ej=l n___ngjL,-
C=Hp= T L
Xt
j+L.—1
where 'S:fl;- = H.’ X,.
Now we have
J— m
n=) ' m
n L,J u
ml

Moreover

TV)_I"=> _ 7 | —Z5m— )

Lt
Cn-1 miqn- L

-1 3 . (A2)

X

n

After plugging the formula (A2) of T/ - 7;.->into the expression of no-Jack' we have

2= fe e "o Lo L0 L) x (SOl Lys o
Jack mt'" £J  n- IL- mE-Fn_E " n- £. mf.'ijn- £.
F1 J 1 J J — ,
2
:( 1_|_t)( ﬂ_@%) :& ( é_ ;_L”1-§§X}!Lm %_ B _!_(Lm %ﬂ)
& mtt 14 n megn A7 ot
-2k @ 2 - ./”L'L,') (SJ.L. - _L_”s:& xn . (A3)
1 72 7EZN n mis=t n
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352 W.ZHOU AND S. LAHIRI

Notice that the second equality is due to the following

— ( rn? 2flogn)zn2

=(1+(?.(_‘El_gn);_2- -

Under the Assumption 1, we have 0. This means

£1
o(252)-+(3)
n n3

=A| —A') +Aq—Ai.

We decompose the leading term of n&!ck into four parts and investigate the order of the each part.
For A1,We have

(5 3
=—( X IR®IE| ¥ =

k=—co
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During thederivation, we use the following two facts,
n—1
> 2 |X|
EnX,” = Z (1 - T) R (k)
k=—n+1

ey nl R(K)!
=L

IR(K)I.

k=-00
and
[2t'lggn]-1
lE(LJ): t i2p( - p/-l F[2t'logn|\1 -piz2tiogn}-I
i-1

iy Li2p(d - Pi-1
i-1

2P

N/

For part A2, we consider the coefficient of the X; in the summation o l‘,; . $:.r.- We denote

m n
Y5 = Yk
P =1
where b; is a random variable with the following relationship

bl = L Il(Lpt-j)-

=1

Suose L :2 u(L1,LiL'—Lm), the sigma algebra generated by the block length variables. Hence
IE (K g915iLi) canbe expressed as

(5))H{E)

= IEZ V(IKDR(%),

-n+l

where v(Ikl) =.T,;, ."t’b;bwk‘
Now we focus on the quantity IE ( b:6r+k). Forany & 0, we have

t+k |
IEbtbt+k = JELI1.(L,->t+k-j)L11.(Lj>1-j)
-1 j-1
t+k t+k t
3 lELlc1 >1+k-1)  FE LicLj>1+k-1)E lchj>r-1)
=1 =1 -1
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t+k t+k I

_LM- p)+k-j + _LINM- py+k-j.LP - py-i
= = =

1 1

<-+-_.
-p p2

Consequently, we have

n—lk| n-—|k|
v(k]) £ — + ——.
p p?

Based on the bound ofv(lkl), we can derive the bound for A,
2 n-1 >
IHEA2)I+-__ L_i (t'+t ) IR(K)I

m nt' k=-n+t

=1 IR(K)I+o(!)

=C20)
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STATIONARY JACKKNIFE 355

[2t'logn]-1

s (1+p(Ikl + D)R() +()C_).

k~-[2t'logn]+I
=cr +()(7).

The derivation is based on repeatedly using the Lemma 2.

Lemma 2. Assume thatp +(npr’ Oasn oo.Lettnbe asequence of positive number such thatn oo as
n  oo.L followsa Geometric distribution with the parameter p. Then we have

P(Ly > t,p7") = O (exp (-1,)).
Proof Let ¢ =1- p,then we have

P(L,>tp")= Z pq!
i=p-lt,
la.-t

Sap

=exp([p-\- 1]iogq)
= ()(exp(-P (p-lm- 1))
=()(exp (-tn)) .

|
For the cross part A4, from the result of the former part it follows from the Cauchy-Schwarz inequality that
me (L 1wl (%L 1wSL ),
E(A)=E| =— ———) — —— =) —1]X
(4) (mzf’Z(n mZn n m,Z n "
=1 i=1 i=1
1
- 2 7
2| (L <L\ <
<ZIEYy(Z- 1Igii) g
me| 4 n médp n
=1 i=1
1
2\2
m g
W1 L
D ;(ZT)
j=1 =1
2\ ?
= (;) -
Finally based on the resultsof the A A A and A we have
IE(n&l,ck) =E(A; +Ax+As+Ay.
oo (Y5)-
=3+ +C)( 2
]
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356 W.ZHOU AND S. LAHIRI

A.2. Proof of Theorem 2

Proof Withoutloss of generality, we assumeIE (X,) =0.Thenit is obvious that

IE(Sp,;) = IE( IE( SiL;ILi)
= E (Li) IE (Xi)
=0.

" 2 _ ; i [2# logn] 2
We look at L1_|Cov (s|.r|,S,.Jr), it can be decomposed into Zi=1 Cov (Slll"s}l,-) and

2
L_;:[Ulogn]+ICov (sI,r,,SiL;)- Whenj [2t'logn] +1, wehave

Cov (Sy1,-5,1, ) = E(S11,51) = EE(S, 1,51, |E1. L)

[Ulogn]-l
= Li |ESIksjLf(l - P}/ +IESI [Ulogn]sj,L/1- p)lUlogn]-I
k-l
[Ulognl-[/M [Ulognl]-1
li t li IES1 ksj.rf(l - Pi-1

(k-1 [Ulogn]- [t +I

n Lloam)¥4)
) w
[U logn}Ht'|

arle (e KISLKIE. IS-r11 p(1—p)"-

L_i 6HJI2 1 6+FJ2

[2# logn]—1 flog%n
+ Y (/ESLES p-pft+ (9( —

1
k=[2¢logn]-[£T ]+1

S

Y

[Ulogn)-it"]

S auu(i- [2tlogn] F[t:J)CiptYs  Li k(l - p?k.-lJi
(ke

(le1oer] - [4])° +0(M)

o fetoonl
= () (tlogin) aii+zi(i- [2tlogn] + [t'2]) +(9( (Egn) )

1 E "FIOT ‘TERELIF]

sy usosy

OO0y £im

) suornipuo)) pue suual, s 08 Trzozieo/L1] ve Amrgry suuo M, * 0ops SIS unFunEs p - unE] Bpeumos 44 #1271 EE
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STATIONARY JACKKNIFE 357

Hence we have

Z Covz(Sl,r,,Sj,LJ Z >(t%togn)a.!.(j-[2t'logn]+[t4])

j-[Ulogn]+t fa-[Ulogn]+t

Ll ta.l (jHC>(tlogn)

[er I

L fa.!l. (H)C>(t'logn)
fa-[t! T
= C>(t'logn).

Whenj [2t' logn], wecan write the expression of Cov (S1,L,,Sj.L;) as
Cov (S1,i, sj,LJ = IE (S1,1,8],Z,)
[Ufn]
= b(uw)R(G-1+uw),
u--[2t'logn]

where

[2t'togn]-lul

b(u)= P(L )P(L i+lul)
i-1

[ gn]-lul
= (1 _ p)lul 't (1 _ p)2<i-1)
-1

4 4 _
=2(1—- lu| _ & 1-— 2[2¢ log n]+2—|u|
Za-pM-La-p)

=§u_mw+@(f). (Ad)

nt

In the last step we use the facts that (1- p)Il = (")(exp (- ) and L is a random variable with the truncated
geometric distribution.
From (A4) we know the coefficient for R(O) in Cov (S;.L,,sj,LJ is f(I - p)li-'1, which is denoted as at For

anyj 1, weare interested in the coefficient of R (k),lkl ¢’ in the quantity Cov ( Sy, SiL;)- The reason is that

ZR(K):O(%).

IKI>¢

Denote at as the coefficient of R(k) in Cov (Sy,L,, Sj.L;), then for Ikl t' we have a bound fora | thatis

a}(;'j IS [(1 —p)'k'agj,(l —p)"k'a{?] .
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358 W.ZHOU AND S. LAHIRI

Dueto limpo(1- pf =e-!, weknow a%) is the same order of @ ). Thus we have

Cov (81,51, ) = 0 (ao2). (AS)

By repeatedly applying the equation (A4), we have

[2¢1ogn] [2#10gn] )
Y Cov(SiSy)= Y, af o
j=1 =1
) [Zt’logn]
= Z a-p?
f3

= ?o-:s(l+o(1)).

Then we need to show that

Cov( 2,5ty ) - 2Cov? (SI,L],%_)|=0(£3)_ (A6)

m
=
The key method to prove (A6) is the following inequality, for sS ¢S u S v,

|E (X.rXtXaXv] -E (X.rXr) E (Xu'Xv) -E (X.qu) E (Xva] -E (X.\'Xv) E (Xqu) |
[ ]
S Ca(max(t- s,u-t,v- u)) . (A7)
This is followed by a repeated application of theorem 17.2.3 of (Politis and Romano, 1994).

In our case, for a certain maximum gap t between variable, there are at most 3k’[2t' logn] sets of indices
{s,t,u,v} where {s,t} E {I,2e<[2t'logn}} and {u,v} E U, * 1, .. j*[2t logn] - 1} for any j. Now we have

m
2 2 2
Y, |Cov(s;, .S 1)~ 2CoV(8,1,.5,1)
i=1
[U' lognJi+[U' logn) m j+[U'logn))
S Li Li + Li Li 3[2t'lognlk2a=(k)
j-1 ka:() [U" logn)+I k-0
[2t'logn) o0 00 jHU" logn)
S Li [L32tlognlk®a (k) + Li Li 3[2tlognlk2a-!.(k)
I k-0 j-[2t'logn) k-j-/2/t' logn)
[2t"logn) oo 00 j+[U" logn)
S Li L3[2tlognik’a (k) + Li Li 3[2tlogn]k2a.l+(k)
I 1.-0 [2t'logn) k-j-[U'logn)
2[2t'logn] [U'logn)+k m k+[2tlogn) )
= <9(tlogn)+  Li Li + Li Li  3[2tlognlk’dl-(k)
k-1 j-[2t'logn)+I 1.:-[U'logn)+T j-k-[U'logn)
= <9(t'logn) + (9 (t*(logn)2)
=0 (3. (A8)
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STATIONARY JACKKNIFE 359

Abovederivation is based on the fact that whenj > [2t' logn] + 1 the maximum gap between the indices is at least

q
J- [2t'logn] and assumption in theorem 3.2 thatL.'okza&i'.i(k) < oo.
Then it is obvious that

m m n m
LL Covs(iLsyis =l L (Cov(SiLis JiJ - 2Cov3(S:i,., Sii,)
1 1 1 1

—12Cov\S;,L,,sj,L))
:4r-nta’3!_(1 +o(D)). (A9)

Back to the variance of our jackknife estimator, we have

2
Var(ng? ) = v 3 ﬁ+n Dx 1+0(%
ar(nojack) = s Var ; ~ gw‘, ; o(=))-

where we denote

L 1 &1 1S o
j Z i\ 5 Z iL; Z 0)
(n m&in " m& on &0

Notice that w':") are all random variables but it is easily to verify that lw(J)I = (IP(no gn).

From the d erivation above, we can naturally get that "
n* - S.r'zl 1 v /(%
il _ 3
— 3 Var ;n—z = meZZ; (;C()Vz(sili,sj 1)+ o ))

_ Sz (1 +o)
m2t'2 4 as

_ 7 (1+o). (AIO)
i as

2
For part —Var (E}’:] (2:‘ Iw?)Xi) ) we have

=1\ =l i1
#og'n
=0 g
n3
—o(Z). (AID)
n
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360 W.ZHOU AND S. LAHIRI

From this we can seethat in theexpression of the variance of the stationary jackknife variance estimator,
the part Var(L ;5. 2 )plays the dominant role, so we can ignore the other parts and the expression for our

variance is

2 =/ 4+
Var(n&laek) 277% T ° ( )I’l
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