
Invited Paper: Actuator Trajectory Planning for
UAVs with Overhead Manipulator using

Reinforcement Learning

Hazim Alzorgan∗, Abolfazl Razi∗, Ata Jahangir Moshayedi†
∗School of Computer Science, Clemson University, Clemson, SC Emails: {halzorg,arazi}@clemson.edu

†School of Information Engineering, Jiangxi University of Sci. & Tech., Jiangxi, China Email: ajm@jxust.edu.cn

Abstract—In this paper, we investigate the operation of an
aerial manipulator system, namely an Unmanned Aerial Vehicle
(UAV) equipped with a controllable arm with two degrees of
freedom to carry out actuation tasks on the fly. Our solution is
based on employing a Q-learning method to control the trajectory
of the tip of the arm, also called end-effector. More specifically,
we develop a motion planning model based on Time To Collision
(TTC), which enables a quadrotor UAV to navigate around obsta-
cles while ensuring the manipulator’s reachability. Additionally,
we utilize a model-based Q-learning model to independently
track and control the desired trajectory of the manipulator’s
end-effector, given an arbitrary baseline trajectory for the UAV
platform. Such a combination enables a variety of actuation tasks
such as high-altitude welding, structural monitoring and repair,
battery replacement, gutter cleaning, sky scrapper cleaning, and
power line maintenance in hard-to-reach and risky environments
while retaining compatibility with flight control firmware. Our
RL-based control mechanism results in a robust control strategy
that can handle uncertainties in the motion of the UAV, offering
promising performance. Specifically, our method achieves 92%
accuracy in terms of average displacement error (i.e. the mean
distance between the target and obtained trajectory points) using
Q-learning with 15,000 episodes 1.

Index Terms—Aerial Manipulators, Q-learning, Unmanned
Aerial Vehicles, Trajectory Optimization

I. INTRODUCTION

Unmanned Aerial Vehicles (UAVs) are being heavily uti-

lized in numerous applications for their high levels of agility

and flexible maneuverability compared to Unmanned Ground

Vehicles (UGV) and legged robotics. They are involved in a

wide range of perception-based applications, including surveil-

lance, landscaping, smart agriculture, structural monitoring,

search and rescue, and border control to name only a few [1]–

[3]. Perhaps among the most popular forms of such vehicles

are the quad-rotor drones, equipped with four propellers, that

offer high maneuverability, stable flight, and large payload

capacity with respect to their size.

In recent years, there has been a gradual paradigm shift

in the use of drones. Alongside their traditional role in

monitoring tasks, aerial manipulators have been receiving

increasing attention. The core idea is to use hybrid systems

taking advantage of the agility of quad-rotors for flexible

mobility as well as the manipulators’ capability to carry out

1This material is based upon the work supported by the National Science
Foundation under Grant Numbers 2204721 and 2204445.

complicated tasks on the fly using AI-based control. Such

integration opens the door to a wider range of applications

beyond the conventional passive perception applications of

UAVs, moving towards active functionalities, particularly in

complex, hazardous, and hard-to-reach environments.

Recently, several works have emerged showcasing such

active controllers for aerial manipulators. For instance, in [4],

a three-armed manipulator was used to perform landing and

docking tasks in uneven terrain and high-altitude situations.

Similarly, [5] proposed an image-based impedance force con-

troller for accurate force tracking of an aerial manipulator.

A recent review by [6] shows that the majority of control

strategies have primarily relied on physics-based approaches

with offline data processing, lacking the robustness to operate

in highly dynamic environments with moving obstacles [7]. In

this paper, we aim to explore the potential of dynamic path

planning by developing a simulation environment that emu-

lates the behavior of a hybrid system, where the trajectory of

the arm-tip (also called end-effector in this paper) depends on

the main platform trajectory as well as the arm manipulators’

control signal. We train a Q-learning-based controller using

a dataset of state-action pairs collected from the simulation

environment while implementing a Time to Collision (TTC)-

based motion planning method to design an obstacle-avoiding

trajectory for the UAV, demonstrated by drawing an arbitrary

end-effector target trajectory.

Our proposed approach shown in Fig. 1 consists of three

main stages. The first stage is to scan the environment and

define the target trajectory of the end-effector, the second

stage defines the feasible range of motion of the UAV using

inverse kinematics and then designs the UAV’s motion plan

based on TTC. Lastly, Q-learning is used to modify the joint

torques of the manipulator according to the tracked end-

effector trajectory providing a robust controller capable of

performing in different environments. This method separates

the arm controller functionality from the flight controller to

maintain the convenience of using arbitrary remote-controlled

or autonomous flight controllers with common firmware such

as ArduPilot, PX4, etc.

Our proposed method paves the road to utilizing arm-

equipped drones for executing complicated tasks in remote,

inaccessible, and hazardous environments. We envision that

the proposed approach has great potential to impact various

20
23

 IE
EE

 3
4t

h
A

nn
ua

l I
nt

er
na

tio
na

l S
ym

po
siu

m
 o

n
Pe

rs
on

al
, I

nd
oo

r a
nd

 M
ob

ile
 R

ad
io

 C
om

m
un

ic
at

io
ns

 (P
IM

RC
) |

 9
78

-1
-6

65
4-

64
83

-3
/2

3/
$3

1.
00

 ©
20

23
 IE

EE
 |

D
O

I:
10

.1
10

9/
PI

M
RC

56
72

1.
20

23
.1

02
93

89
1

Authorized licensed use limited to: CLEMSON UNIVERSITY. Downloaded on September 17,2024 at 15:21:10 UTC from IEEE Xplore. Restrictions apply.

fields such as agriculture, industrial, and medical domains.

This project also emphasizes the importance of developing

a robust control strategy that can plan an optimal trajectory

for both the quadrotor and the equipped manipulator while

considering their kinematics and dynamics constraints.

Fig. 1. Left: Drone equipped with a manipulator, Right: Demonstration of
the base trajectory (solid-blue line) and end-effector trajectory (dashed-red
line). The approximate feasible region for the base trajectory is shown by the
shaded-blue region.

Fig. 2. Model Dynamics. (A) represents the two-dimensional body diagram
of the manipulator, (B) represents the two-dimensional body diagram of the
quadrotor.

II. SYSTEM MODEL

A. Model Kinematics

Fig. 2 illustrates the schematics used for calculating and

utilizing the model’s kinematics to determine the approximate

feasible region, which hosts allowable UAV paths that can be

used to achieve the end-effector target trajectory. The main

idea is to provide the motion planner with the kinematic

constraints dictated by the manipulator’s joint limits ensuring

that the target end-effector trajectory is always reachable from

any point on the resultant feasible region [8], [9].

Model inverse kinematics are obtained using Cartesian

coordinates [10] as follows:

q2 = cos−1 x2
t + y2t − l21 − l22

2l1l2
, (1)

q1 = tan−1 xt

yt
+ tan−1 l1 sin q2

,
l1 + l2 cos q2 (2)

where (xee, yee) the end-effector coordinates and li are the

arm lengths. These kinematic equations are essential at differ-

ent stages of this experiment as they are utilized to determine

the kinematic reachability of the aerial manipulation system.

Also, they are used to enforce kinematic constraints during the

RL training stage, ensuring reasonable joint torques are being

fed to the controller at all times.

B. Model Dynamics

A hybrid system consists of two main dynamic parts that can

be modeled independently from each other [11]; therefore, we

can consider our platform, the UAV along with the equipped

manipulator, as a hybrid system. This decision is driven by the

assumption that the UAV propellers provide adequate thrust

such that the motion of the manipulator does not affect the

overall stability of the hybrid system. This assumption is com-

mon in robotic motion planning and trajectory optimization

[12] and helps simplify the model to serve as a proof of

concept. However, it becomes invalid and poses approximation

errors when the mass of the manipulator is significant enough

to disturb the UAV’s motion plan, making it beneficial to adopt

a more complex hybrid dynamic model to accommodate such

disturbances. We start the kinematics formulation with this

assumption for convenience but our model is general and can

handle baseline disturbance during the training phase. Indeed,

we include some stability analysis in section II-C showing

the effects of the manipulator dynamics of the drone, and the

effect of the path deviation on the learned control.

Fig. 2 illustrates the schematics used for calculating the

UAV/quadrotor dynamics (A) and the manipulator dynamics

(B). For the quadrotor dynamics, the main constraint concerns

the angle of attack (α), which must be maintained within

a certain limit depending on the overall UAV design and

its center of mass specifications. The equations of motion

governing this behavior can be derived from single rigid body

dynamics [10], as follows.

moẍo = −(u1 + u2) sinα, (3)

moÿo = (u1 + u2) cosα−mg, (4)

Ioα̈ = r(u1 − u2), (5)

Here, u1, u2 are the propeller thrust forces, mo is the mass,

ẍo, ÿo are the horizontal and vertical accelerations respectively,

and I is the moment of inertia, α is the angle of attack, and

r represents the distance between the center of mass to the

propeller.

The dynamic constraints for the manipulator follow a sim-

ilar rule and are also bound by the kinematic constraints of

the system since joint torques are decided by the required

joint angles. This is turned into an inverse expression during

the training process where the training model uses joint

limits to verify the validity of the learned joint torque. The

motion equations of the manipulator can be represented in the

Lagrangian form, as described in [13].

This system has two active joints, which means there exist

two torque values acting on the two joints. The joint angles

(q1, q2) are used as input for the derived model. Cartesian

coordinates are used to define the position vector of each joint,

which is then used to calculate the joint velocity. Joint velocity

and joint coordinates are then used to calculate the kinetic

Authorized licensed use limited to: CLEMSON UNIVERSITY. Downloaded on September 17,2024 at 15:21:10 UTC from IEEE Xplore. Restrictions apply.

and potential energies of the system, respectively. The position

vectors are defined as

r1 =

⎡
⎣l1 cos q1l1 sin q1

0

⎤
⎦ , r2 =

⎡
⎣l1 cos q1 + l2 cos q2
l1 sin q1 + l2 sin q2

0

⎤
⎦ . (6)

Position vectors are plugged into the velocity calculations,

combining longitudinal and angular velocities that are then

used to calculate the kinetic energies of the system, while

potential energies are calculated using the position vectors and

mechanical properties of the system:

v1 = ω1 × r1, (7)

v2 = ω2 × r2 + ω1 × r2, (8)

T1 =
1

2
m1v

2
1 +

1

2
ωT

1 I1ω1, (9)

T2 =
1

2
m2v

2
2, (10)

V1 = m1gl1 cos q1, (11)

V2 = m2gl2 cos q2, (12)

where ω1, ω2 are the angular velocities of the manipulator

joints,I1, I2 represent the moment of inertia at each manip-

ulator arm, and T1, T2, V1, V2 are the kinetic and potential

energies of the system respectively. The Lagrangian is calcu-

lated as the difference between the kinetic and potential energy

as L = T − V , which is then plugged into the Lagrangian

derivation formula to produce the generalized equation of

motion:

d

dt

(
∂L
∂q̇

)
− ∂L

∂q
= τ , (13)

M(q)q̈ + C(q, q̇)q̇ = τ . (14)

Following are the derived equations for the motion of the

two-arm manipulator mounted on the UAV:

M(q) =

[
I1 + I2 +m2l

2
1 + 2m2l1lc2c2 I2 +m2l1lc2c2

I2 +m2l1lc2c2 I2

]
,

(15)

C(q, q̇) =

[
2m2l1lc2s2q̇2 m2l1lc2s2q̇2
m2l1lc2s2q̇1 0

]
, (16)

τ(q) =

[
m1glc1s1 +m2g(l1s1 + lc2s1+2)

m2glc2s1+2

]
, (17)

where M(q) is the mass matrix, C(q, q̇) is the Coriolis and

gravity matrix, and τ(q) is the control torque matrix. Those

equations are used in the action constraint enforcement phases

in the training model, assuring a physically sound model

behavior.

C. Hybrid System Instability

Unlike Manipulator-equipped Ground Vehicles [14] where

the system is supported by its ground contacts, Aerial Manip-

ulators have the disadvantage of being susceptible to unstable

behavior caused by external conditions as well as the system’s

own components. In our prototype, the motion of the overhead

manipulator creates a challenge in managing the UAV’s flight

stability due to the shift in the center of mass caused by the

manipulator’s movement. The shift in the center of mass can

lead to changes at the moment and thrust acting on the aerial

manipulator, impacting its flight stability.

To analyze the effect of the manipulator on the UAV’s

stability, we consider both static and dynamic moments. Re-

ferring back to Fig.2, the static moment Mstatic represents the

moment caused by the manipulator arms’ weight given by:

Mstatic = −L1

2
m1g sin(q1 − α) +

L2

2
m2g sin(q1 + q2 − α),

(18)

where L1, L2 are the manipulator arm lengths, α is the angle

of attack, and m1,m2 are the manipulator arm masses.

In addition to the static moment, the dynamic moment

Mdynamic accounts for the effects of the angular acceleration

and torques applied by the manipulator’s joints:

Mdynamic = −I1q̈1 + I2(q̈1 + q̈2), (19)

where I1, I2 are the moments of inertia of the manipulator’s

arms. Considering both the static and dynamic moments, the

overall moment acting on the aerial manipulator hybrid system

is given by:

M = Mstatic +Mdynamic. (20)

To maintain a stable flight, it is crucial to carefully control

and compensate for the effects of these moments. A proper

control strategy must be designed to adjust the UAV’s attitude

and compensate for the moment disturbances caused by the

manipulator’s motion. Thanks to the flexibility of RL meth-

ods (e.g., QL, DQN) in modeling intricate relations between

actions and outcomes as a black box, our model automatically

captures and handles such turbulence if given sufficient real-

world data or precise modeling in simulation environments.

In this paper, we investigate the impact of the manipulator

movement in our simulation, under different learning rates.

III. CONTROL MODELS

Fig. 3 depicts the overall experimental setup for our project,

consisting of three main stages. In the first stage, the en-

vironment is mapped into the simulation environment by

obtaining the mission-oriented target end-effector trajectory.

This trajectory is then processed using the system kinematics

discussed in Section II-A to determine the feasible flight

region for the UAV. In the second stage, a TTC-based motion

planning algorithm is utilized to generate a motion plan within

the feasible region. This motion plan is subsequently integrated

into the RL algorithm along with the target end-effector

trajectory, forming the final stage. In this final stage, Q-

learning is employed to learn the optimal joint torque sequence

for the simulation, enabling the tracking of the end effector

trajectory.

Authorized licensed use limited to: CLEMSON UNIVERSITY. Downloaded on September 17,2024 at 15:21:10 UTC from IEEE Xplore. Restrictions apply.

Fig. 3. Experimental setup.

A. TTC-Based Motion Planning

Time to Collision (TTC) [15], [16] refers to the time it

takes for a moving object (UAV in our case) to collide with

an obstacle (considering that all moving objects continue with

their current speed) or come to a complete stop without

utilizing any braking control system upon completely releasing

the throttle. By considering various parameters, this model

estimates the time that remains until the UAV collides with

an obstacle along its trajectory. In this section, a TTC based

motion plan is utilized to provide a motion plan for the UAV

within the designated feasible region. TTC-based planning is

known to be highly beneficial in unknown environments with

dynamic obstacles.

The fundamental concept behind TTC-based obstacle avoid-

ance revolves around calculating the time it would require for

the vehicle to reach the obstacle based on its present velocity

and the distance to the obstacle [18], [19]. Continuously

monitoring and updating these values allows the system to

make real-time decisions on steering, braking, or altering the

vehicle’s speed to prevent a collision.

Implementing TTC-based obstacle avoidance typically in-

volves utilizing sensors such as cameras, LiDAR, or radar to

detect and track obstacles in the vehicle’s surroundings. These

sensors provide information regarding the position, velocity,

and size of the obstacles. By combining this data with the

vehicle’s own speed and trajectory, the system can estimate

the TTC.

Once the TTC is determined, the system compares it to

predefined safety thresholds or criteria. If the TTC falls

below a specific threshold, indicating an imminent collision,

the system triggers appropriate evasive actions to avoid the

obstacle.

Once the TTC-based motion planning is completed for the

UAV platform, this base trajectory is used as an input for the

subsequent RL-based arm controller module that exerts joint

torque on the arm joints as discussed in Eq. (14) - Eq.(17), to

yield the desired end-effector trajectory.

B. Q-Learning

In Q-learning algorithms [20], [21], an agent learns to take

action in an environment by interacting with it and receiving

rewards or punishments for its actions. The goal of the agent

is to obtain a policy that maximizes the total reward it receives

over time. This can be mathematically represented by the

following optimization problem:

argmax
π

E

T∑
t=0

γtRt|π, (21)

where Rt|π = Rt(st, at = π(st), st+1) is the reward received

at time t starting from an initial state s0 and following policy

π : S �→ A that maps states state st ∈ S at time point t
to action at ∈ A. The expectation is taken over all possible

states noting that st
at−→ st+1 transitions are probabilistic in

general for Markov Decision Processes (MDPs). The horizon

T can be finite or infinite. The discount factor 0 < γ ≤ 1
is used to promote collecting awards faster and also to have

a bounded total reward for an infinite horizon. In our case,

states are the discretized values of the current position of the

drone and its orientation (base position) as well as the current

joint angles, and actions are the applied torque to the arm

manipulator motors to adjust angles q1, q2, as detailed in the

sequel.

To solve this optimization problem, the agent maintains a

value function Q(s, a), which represents the expected total

reward the agent will receive if it takes action a in state s and

follows the optimal policy thereafter. The value function can

be updated using the following Bellman equation:

Q(s, a) ← Q(s, a) + α[R+ γmax
a′

Q(s′, a′)−Q(s, a)],

where s′ is the next state of the system, a′ is the action taken

in that state, α is the learning rate.

To solve the tracking problem for the manipulator tip using

Q-learning, we would need to define the state space, action

space, reward function, and transition model.

The state space in this experiment can be defined as the UAV

pose data and current joint states [q1, q2, to], and the action

space for the training model, in this case, is the joint torque

commands [τ1, τ2]. The reward function is calculated based on

the distance between the obtained end-effector trajectory and

the desired target trajectory. The transition model describes

how the state of the system changes based on the current state

and the action taken by the agent.

To define the transition model for our system, the equations

of motion of the manipulator are taken into consideration.

Specifically, if the current state of the system is represented by

the vector s =
[
q1 q2 poseUAV

]T
, and the action taken by

the agent is represented by the vector a =
[
τ1 τ2

]T
, then the

Authorized licensed use limited to: CLEMSON UNIVERSITY. Downloaded on September 17,2024 at 15:21:10 UTC from IEEE Xplore. Restrictions apply.

Fig. 4. Top: Target end-effector trajectory, middle: Generated feasible region
with obstacles, bottom: TTC-based UAV trajectory plan(dashed-green)..

transition model can be expressed as a function s′ = f(s,a)
that takes the current state and action as inputs and returns the

next state of the system.s′ = f(s,a) is described in the model

dynamic in section II-B.

IV. SIMULATION RESULTS

The overall experimental setup designed for this project is

shown in Fig.3, including three stages of environment scan,

TTC-based motion planning, and Q-learning training for end-

effector trajectory. The first step is to acquire the target end-

effector trajectory in the simulation environment as shown

in Fig.4, which is then plugged into the system kinematic

calculations to produce the feasible region for the UAV flight

path; next, a TTC-model is used to plot the best motion plan

for the UAV within that region such that the end-effector

trajectory is reachable at all times.

The last phase involved executing a reinforcement learning

algorithm over 15,000 episodes, utilizing a learning rate of

0.1. The outcome exhibited an average reward of 7.96 (the

maximum reward is 10) and a Root mean Squared Error

(RMSE) value of 0.08. As shown if Fig.5, the algorithm effec-

tively regulates the joint coordinates by employing joint torque

commands to follow the desired end-effector trajectory. The

performance of the algorithm in facilitating appropriate state

transitions during the simulation process was commendable.

However, it should be noted that the learned trajectory appears

discontinuous due to the discretization of the model’s state

space and action space.

An analysis of the effect of learning parameters and dis-

cretization samples on the overall performance of the learning

agent is presented in Table. I. It can be seen that reducing the

learning rate from α = 0.1 to α = 0.001 negatively affects

the performance of the RL agent. Also, a discount factor of

Fig. 5. Q-learning results. The manipulator is able to track its end-effector
target trajectory with an overall accuracy of %92.

TABLE I
IMPACT OF RL PARAMETERS ON THE SIMULATION, LEARNING

ALGORITHM RAN FOR 15,000 EPISODES

RMSE Avg Reward

Learning rate

0.1 0.08 7.93

0.01 0.093 5.54

0.001 0.11 -1.89

Discount factor

0.9 0.08 7.93

0.5 0.085 3.63

0.2 0.089 1.92

Number of samples

+%25 0.098 5.77

-%25 0.16 -2.67

0.9 shows the highest performance since using an extremely

low discount factor (like γ = 0.2) undermines the optimality

of the selected solution. As expected increasing the number

of samples improves the performance of the algorithm at the

cost of longer training time.

In order to examine how dynamic instability influences the

system’s behavior, we abandoned the simplifying assumption

that the manipulator arm motion has a negligible effect on

the UAV’s base trajectory explained in II-B. To this end,

we amplify the masses of the manipulator’s arm, leading

to the activation of Eq.(20). By altering the moment at the

center, we intentionally destabilized the UAV, resulting in an

immediate deviation from its intended trajectory. Moreover,

this destabilization affected the angle of attack, increasing the

risk of surpassing its limitations.

Fig. 6 illustrates the influence of the manipulator’s move-

ment on the trajectory and angle of attack of the UAV. In order

to mitigate these effects, a basic reactive model was utilized

to regulate the thrust forces, as described by Eq.(5), with

the objective of maintaining the intended trajectory. However,

due to response delays, the UAV faces difficulty in fully

restoring its planned motion. This challenge arises from the

active motion of the manipulator, which generates a non-

constant moment. Furthermore, the deviation in the UAV’s

motion disrupts the acquired joint torques, further deteriorating

Authorized licensed use limited to: CLEMSON UNIVERSITY. Downloaded on September 17,2024 at 15:21:10 UTC from IEEE Xplore. Restrictions apply.

Fig. 6. Effects of the manipulator motion

the overall system performance. Although the RL model was

successful in managing disruptions caused by deviations in the

planned motion, it encountered more difficulty in overcoming

disturbances at points where there were significant changes in

the angle of attack. This difficulty stems from the relationship

between joint angles and the angle of attack in Cartesian space.

V. CONCLUSION

A three-stage RL-based solution is developed to carry out

complicated tasks on the fly using drones with overhead ma-

nipulators. Our solution includes three stages, i) the acquisition

and mapping of the target end-effector trajectory to generate

a feasible UAV flight path using kinematic calculations, ii)

employing a TTC-based path planning for the drone center of

mass within the feasible region, ensuring continuous reacha-

bility of the end-effector trajectory, and iii) using Q-learning

algorithm to control the torque acting on the manipulator’s

joint coordinates to track the target trajectory. We showed

that the proposed approach in the simulation environment

achieves a promising performance of 90% plus accuracy in

following the mission-oriented trajectory. This is achieved by

the separation of drone path planning and mounted actuator

control to keep compatibility with arbitrary path planners and

flight control firmware, such as ArduPilot, PX4, and more.

Additionally, we investigated the instability of the drone

flight path caused by the motion of the overhead manipulator

which can alter the center of mass and the angle of attack.

We showed that RL-based algorithms are capable of handling

mild instabilities without a significant deviation from the

desired target trajectory given that the simulation environment

incorporates such static and dynamic instabilities or sufficient

training data points are provided for such situations. This

work underscores the need for developing more robust RL

algorithms and employing techniques such as model-predictive

control, closed-loop control, and adaptive control to improve

the overall performance and reliability of the actuator drone

operation under more severe disturbances.

REFERENCES

[1] Chen, Xiwen, et al. ”Wildland Fire Detection and Monitoring Using
a Drone-Collected RGB/IR Image Dataset.” IEEE Access 10 (2022):
121301-121317.

[2] Shamsoshoara, Alireza, et al. ”Aerial imagery pile burn detection using
deep learning: The FLAME dataset.” Computer Networks 193 (2021):
108001.

[3] Fule, Peter Fule, et al. ”FLAME 2: Fire detection and modeLing: Aerial
Multi-spectral imagE dataset.” (2022).

[4] Paul, Hannibal, et al. ”Lightweight Multipurpose Three-Arm Aerial
Manipulator Systems for UAV Adaptive Leveling after Landing and
Overhead Docking.” Drones 6.12 (2022): 380.

[5] Xu, Mengxin, An Hu, and Hesheng Wang. ”Image-based visual
impedance force control for contact aerial manipulation.” IEEE Trans-
actions on Automation Science and Engineering (2022).

[6] Xilun, D. I. N. G., et al. ”A review of aerial manipulation of small-scale
rotorcraft unmanned robotic systems.” Chinese Journal of Aeronautics
32.1 (2019): 200-214.

[7] Ollero, Anibal, et al. ”Past, present, and future of aerial robotic manip-
ulators.” IEEE Transactions on Robotics 38.1 (2021): 626-645.

[8] Singh, Randheer, Vikas Kukshal, and Vinod Singh Yadav. ”A review
on forward and inverse kinematics of classical serial manipulators.”
Advances in Engineering Design: Select Proceedings of ICOIED 2020
(2021): 417-428.

[9] Kumar, RV Neeraj, and R. Sreenivasulu. ”Inverse Kinematics (IK) Solu-
tion of a Robotic Manipulator using PYTHON.” Journal of Mechatronics
and Robotics 3.1 (2019): 542-551.

[10] Tedrake, Russ. ”Underactuated robotics: Learning, planning, and control
for efficient and agile machines course notes for MIT 6.832.” Working
draft edition 3 (2009): 4.

[11] Nikou, Alexandros, Georgios C. Gavridis, and Kostas J. Kyriakopoulos.
”Mechanical design, modelling and control of a novel aerial manipula-
tor.” 2015 IEEE International Conference on Robotics and Automation
(ICRA). IEEE, 2015.

[12] Winkler, Alexander W., et al. ”Gait and trajectory optimization for
legged systems through phase-based end-effector parameterization.”
IEEE Robotics and Automation Letters 3.3 (2018): 1560-1567.

[13] Raibert, Marc H. Legged robots that balance. MIT press, 1986.
[14] Moubarak, Paul M., and Pinhas Ben-Tzvi. ”Adaptive manipulation of a

hybrid mechanism mobile robot.” 2011 IEEE International Symposium
on Robotic and Sensors Environments (ROSE). IEEE, 2011.

[15] Sabikan, Sulaiman, Sophan Wahyudi Nawawi, and Nor Azlina Ab Aziz.
”UAV Control System with Time to Collision (TTC) Prediction Capa-
bility.” Proceedings of the 11th International Conference on Robotics,
Vision, Signal Processing and Power Applications: Enhancing Research
and Innovation through the Fourth Industrial Revolution. Singapore:
Springer Singapore, 2022.

[16] Sabikan, Sulaiman Bin, Sophan Wahyudi Nawawi, and N. A. A. Aziz.
”Modelling of time-to collision for unmanned aerial vehicle using
particles swarm optimization.” IAES International Journal of Artificial
Intelligence 9.3 (2020): 488.

[17] Boroujeni, Sayed Pedram Haeri, and Elnaz Pashaei. ”Data clustering
using chimp optimization algorithm.” 2021 11th international conference
on computer engineering and knowledge (ICCKE). IEEE, 2021.

[18] Davis, Bobby, Ioannis Karamouzas, and Stephen J. Guy. ”NH-TTC: A
gradient-based framework for generalized anticipatory collision avoid-
ance.” arXiv preprint arXiv:1907.05945 (2019).

[19] Forootaninia, Zahra, Ioannis Karamouzas, and Rahul Narain. ”Uncer-
tainty Models for TTC-Based Collision-Avoidance.” Robotics: Science
and Systems. Vol. 7. 2017.

[20] Sutton, Richard S., and Andrew G. Barto. Reinforcement learning: An
introduction. MIT press, 2018.

[21] Li, Yuxi. ”Deep reinforcement learning: An overview.” arXiv preprint
arXiv:1701.07274 (2017).

Authorized licensed use limited to: CLEMSON UNIVERSITY. Downloaded on September 17,2024 at 15:21:10 UTC from IEEE Xplore. Restrictions apply.

