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ABSTRACT
Determinantal Point Process (DPP) is a powerful technique to enhance data diversity by promoting the

repulsion of similar elements in the selected samples. Particularly, DPP-based Maximum A Posteriori (MAP)

inference is used to identify subsets with the highest diversity. However, a commonly adopted presumption

of all data samples being available at one point hinders its applicability to real-world scenarios where data

samples are distributed across distinct sources with intermittent and bandwidth-limited connections. This

paper proposes a distributed version of DPP inference to enhance multi-source data diversification under

limited communication budgets. First, we convert the lower bound of the diversity-maximized distributed

sample selection from matrix determinant optimization to a simpler form of the sum of individual terms.

Next, a determinant-preserved sparse representation of selected samples is formed by the sink as a surrogate

for collected samples and sent back to sources as lightweight messages to eliminate the need for raw data

exchange. Our approach is inspired by the channel orthogonalization process of Multiple-Input Multiple-

Output (MIMO) systems based on the Channel State Information (CSI). Extensive experiments verify the

superiority of our scalable method over the most commonly used data selection methods, including GreeDi,

Greedymax, random selection, and stratified sampling by a substantial gain of at least 12% reduction in

Relative Diversity Error (RDE). This enhanced diversity translates to a substantial improvement in the

performance of various downstream learning tasks, including multi-level classification (2%-4% gain in

accuracy), object detection (2% gain in mAP), and multiple-instance learning (1.3% gain in AUC).

INDEX TERMS Determinantal Point Process, Data Diversification, Distributed Learning, Distributed Sources.

I. Introduction
Many AI platforms in modern smart city applications, such as

Smart Transportation Systems (STS) [1], [2], AI-based Energy

Management Systems (EMS) [3], Smart Healthcare Systems

(SHS) [4], [5], AI-enabled Live Event Monitoring Systems

(LEMS) [6], and Smart Budget Allocation (SBA) [7] rely

on data-driven methodologies for service provisioning. The

essence of such platforms is exploiting learnable contextual

patterns from accumulated data from distinct and often

geographically distributed data sources. Nevertheless, these

systems are typically constrained in terms of communication

bandwidth and storage capacity. A significant source of

inefficiency is collecting raw data indiscriminately from

these sources. To reduce transmission resource overuse, one

may benefit from more refined and selective data pooling,

in addition to deploying efficient infrastructure, such as

intelligent reflecting surface [8], the ambient backscatter [9],

and wireless power transfer technologies [10].

Several solutions have been proposed to improve data

accumulation efficiency under constrained communication

and computation power, from different and somewhat com-

plementary perspectives. These methods include Data Com-

pression [11], Semantic Communication (SC) [12], and Edge

Computing (EC) [13]–[15], which aim to minimize or fully

eliminate raw data exchange in one form or another while

not compromising the ultimate quality of service for learning-
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based applications. Although these methods substantially

enhance the efficiency of network-based learning, determining

the most effective data collection strategy remains a legitimate

challenge.

Our key contribution is developing a formal way of

distributed diversity-maximizing data selection policy to

improve the learning quality of downstream learning tasks

without allowing full convention among sources. The col-

lected samples are utilized as a training dataset by the center

to train a library of Machine Learning (ML) models for

service provisioning via performing inference on incoming

and unseen data from users.

While adopting random selection strategies can be relieving,

it is often suboptimal in many cases. This is because

random selection does not consider the inherent relations

between data points, particularly the potential overlaps in

the feature space, which may result in the failure of a

subset in accurately representing the entire dataset, especially

when the collected samples are limited. Indeed, it has been

known for decades that the diversity of selected samples can

dramatically enhance the quality of learning applications [16]–

[19]. Therefore, selecting data samples that closely mimic

the geometrical distribution of the entire dataset (for FL-

based applications, this can be the distribution of gradient

information) by maximizing cross-sample distances in the

original or transformed domain can be advantageous. From

the statistical learning theory perspective, diverse data enables

the reduction of generalization errors through minimizing

the empirical risk during the training phase (i.e., training

error). In other words, diverse training data ensures that this

approximation is as close as possible to the true risk in the

underlying distribution. Additionally, diverse training data

can preserve a similar hypothesis space (i.e., a set of possible

models) with the entire dataset, leading to a higher probability

of obtaining a more generalizable model compared to models

trained on less diverse data with limited hypothesis space [20].

Due to its simple form, high interpretability, and high

efficiency, Determinantal Point Processes (DPP) is commonly

used for diversity maximization. DPP can also be used as

a probabilistic approach to generate diverse data points. In

contrast to other point processing methods, such as Poisson

point processing, DPP can be formed solely based on the

correlation among elements. It assigns a high probability to

the measurement of sets of data points with low similarity,

making it a valuable tool for tasks like dimensionality

reduction and representative sample selection from large

datasets [21], [22]. Additionally, by leveraging the properties

of linear algebra, DPP can be used to effectively select subsets

from a given dataset [23]–[25].

When data exchange, storage, and processing capacity

of learning systems are constrained, we often desire to

identify and select the most diverse subset. This goal can

be implemented through DPP-based Maximum A Posteriori
(MAP). Recent studies have implemented a centralized

version of this algorithm, where all samples are available

in the same location or sources are allowed to share their

information with no constraint [22], [26], [27]. However,

in most practical systems, data samples are generated by

sources located at different positions, where cross-source

communication is often infeasible, prohibited, or costly.

To mimic such limitations, we also presume band-limited

communication between data sources and the processing

center, which translates to strict limits on the number of

accumulated samples, as considered in the system model in

Section IV. Specifically, we assume neither the sources nor

the coordinator has global knowledge about the collected

samples. Therefore, a conventional DPP MAP inference [22]

by traversing all data samples is infeasible, and using some

sort of distributed implementation is unavoidable. Perhaps,

the most popular approach to distributed DDP inference is a

multi-stage method proposed in [28], which first implements

a local greedy search by each source to collect candidate

samples that are diverse within that source regardless of

other sources’ samples, and then performs another selection

on the accumulated candidates to obtain the final set of

samples. This method is suboptimal because the original

selection neglects global diversity, as will be presented in

our comparative results. Furthermore, this protocol involves

sending candidate samples to a central unit, some of which

are ultimately discarded in the second stage. In contrast, we

impose a zero-communication overhead policy by merely

sending the selected samples.

In this paper, drawing inspiration from specific techniques

in Multiple-Input Multiple-Output (MIMO) transmission [29]–

[31] — particularly those relating to power optimization and

pre-coding processes based on Channel State Information

(CSI) — we propose an effective and scalable scheduling

strategy. It is noteworthy that this strategy is not designed to

enhance existing MIMO techniques, rather it borrows ideas

from MIMO systems to implement similar techniques to

implement a distributed version of diversity-maximizing data

collection applicable to a wide range of applications with

arbitrary communication systems. The only requirement is

the presence of a feedback channel from the sink to data

sources that encompasses almost all modern communication

systems. The key idea is developing a lightweight feedback

mechanism to eliminate the need for sharing actual samples

among sources to facilitate global diversity assessment (as

shown in Fig. 1). For instance, the total MIMO capacity

expression is decomposed to the sum of disjoint individual

capacity terms to simplify power optimization (decomposing

log det() in Eq. 3). We use a similar methodology to break

down the global diversity measure into quantifiable terms,

each of which depends only on the samples of one source

(Theorem 1). An inherent assumption of our approach is

interval-by-interval transmission. This approach enables us

to design a feedback mechanism to send surrogate diversity

measures to each data source. With this feedback, each source

can adjust its local selection strategy to select diversity-

maximizing samples in a global sense without having access
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Figure 1. The workflow of the proposed MIMO-like distributed diverse data selection framework.

to the samples collected by other sources. These two steps

are analogous to Channel State Information (CSI) estimation

and Pre-coding, respectively.

Contributions. We propose a MIMO-inspired strategy for

performing the MAP inference on distributed data under

communication constraints with the following steps. First,

we reformulate the lower bound of the global diversity,

which allows us to decompose it into a sum of factors,

where each of them can be quantified locally from its

source. Afterward, we show that the feedback mechanism can

improve the lower bound of diversity (we name it conditional
lower bound). This tighter lower bound further enhances the

diversity of selected samples. Additionally, to address the

bandwidth-limited transmission, we propose a determinant-

preserving approximation of the feedback messages based

on Cauchy–Binet’s formula to achieve near-optimal global

diversity without sharing data samples. Finally, we investigate

the practical benefits of our distributed data selection by

evaluating the performance of downstream learning tasks

in multiple applications, including Classification, Object

Detection, and Multiple-Instance Learning (MIL).

II. Related Work
In this section, we delve into the existing methods to improve

data accumulation efficiency from different perspectives,

including Data Compression, Semantic Communication, and

Distributed and Federated Learning.

Data Compression along with Individual and Distributed

Source Coding [32], [33], and Compressive Sampling meth-

ods [34] aim to reduce the accumulated data size by exploiting

temporal and spatial correlations and sparsity patterns to

design more efficient source encoders while retaining essential

information to minimize the storage and communication

overhead. Conventional compression methods led to the

design of efficient encoders for common data modalities (such

as MP3/AAC format for audio, JPEG/HEIF for images, and

H.264/H.265 for video). Compressive sensing on the other

hand intends to take samples far below the Nyquist rate when

the signal representation is sparse in a potentially unknown

domain (e.g., fMRI imaging [35]). Distributed compression

also aims to exploit spatial correlations for joint recovery

of data collected from distinct sources (e.g., multi-view

imaging [36], [37]). Beyond conventional methods, a recently

emerged trend is to harness the astonishing power of Deep

Learning (DL) architectures to implement learning-based data

encoder-decoder methods for image and video compression,

demonstrating enhanced compression ratios [38]–[41].

Another fundamental paradigm shift is departing from

content delivery, namely transmitting raw and compressed

data batches towards developing Semantic Communication, a

knowledge-based approach to convey the semantic content of

data to users, especially for learning-based applications. As

an illustration, in a traffic safety monitoring system, instead

of transmitting complete video frames captured by roadside

units, a set of representative features gauging the overall safety

of traffic on the road can be sent to the control station [1],

[42]. Likewise, Semantic Communication can be deployed by

wireless vehicular networks [43] to enable efficient service

provisioning for multiple users in vehicle-to-vehicle networks

without sharing high-throughput raw imagery. This method

involves constructing Knowledge Bases (KBs) that facilitate

the extraction and interpretation of semantic information by

the sender and receiver, respectively [12]. Such methods

well integrate with Edge Computing architectures, where the

bulk of the processing is pushed to the network edge in the

proximity of data origination sources [44].

Another avenue to solving this issue is using Distributed

and Federated Learning (DL/FL), an increasingly embraced

approach. FL substitutes data exchange with model-sharing

strategies, orchestrating locally constructed models to form

unified learning models without the need for sharing massive

information. While reducing communication costs, it also

mitigates data privacy concerns, especially when equipped

with privacy-preserving calculations [13], [45]–[47] and

encryption methods [48]. FL has found a particularly warm

reception in medical applications, where patient privacy is

of paramount concern. Similar to semantic communication,

FL can also hugely benefit from the expanding capabilities

of ever-growing EC platforms [49].

Our method is applicable to central processing methods

where data aggregation is an integral part. It is also applicable

to FL, which involves some sort of data delivery to local

processors. Further, the global learning quality metrics can

be enhanced by selecting the most diverse samples across

local models. Our method also well integrates with semantic

computation, if proper similarity kernels are designed to

characterize the semantic diversity of shared content. In short,

our discern data selection method, does not replace, but

complements the modern EC, FL, and SC approaches.

III. Background Knowledge
A. Determinant Point Processing (DPP)
DPP is a probability measure defined over 2|S| subsets of S ,

where |S| denotes the cardinality of the set S . Suppose a finite

dataset is represented by Z = [z1, z2, · · · , zn]� ∈ R
n×m.

VOLUME , 3

This article has been accepted for publication in IEEE Transactions on Machine Learning in Communications and Networking. This is the author's version which has not been fully edited an
content may change prior to final publication. Citation information: DOI 10.1109/TMLCN.2024.3421907

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



Author Xiwen Chen et al.:

Here, zi is a m× 1 column vector representing the ith data

sample. Given a Gram Matrix L = ZZ�, L-ensemble DPP
is presented by having an arbitrary subset A drawn from

the entire set S to satisfy, P(A) ∝ det (LA) , where P(A)
denotes the probability of selecting subset A from the entire

set S and LA denotes the submatrix of L with rows and

columns indexed by set A. The MAP inference for K-DPP

is formulated as,

argmax
A⊆S

det(LA), s.t. |A| = kT , (1)

where A denotes the index set of selected samples and

constant kT denotes the given fixed cardinality, and kT ≤
rank(L) is a necessary condition to ensure LA is full-rank,

and accordingly, its determinant is greater than 0. This is

because the rank of a submatrix never exceeds that of the

original matrix, i.e., rank(LA) ≤ rank(L) [50]. If we have

kT > rank(L), the identity rank(LA) < rank(L) implies

that rank(L) < kT meaning that LA is not full rank. Without

this constraint, kT could be greater than rank(LA), leading

LA not to be full-rank.

From the geometric perspective, det(LA) represents the

square of the volume formed by the feature vectors of selected

samples, which occurs for orthogonal vectors [21]. Hence, the

DPP MAP problem (Eq. 1) is equivalent to orthogonalizing

feature vectors, which leads to a better representation of the

feature space.

Since MAP inference is an NP-hard problem, one popular

solution is using greedy search and formulating the following

sub-modular function, j = argmaxi∈S\A log det
(
LA∪{i}

)−
log det (LA), which can give a (1−1/e)-approximation of the

optimal solution [28]. Here, j denotes the selected index in

each round. The current fastest greedy search proposed in [22]

is based on the Cholesky decomposition and requires O(n3)
complexity for initialization and O(k2Tn) to return kT items.

We denote selection by this method with given Gram matrix

L and the set cardinality kT as A∗ = MAP-DPP(L, kT ).

B. Multiple-Input Multiple-Output (MIMO) systems
Before delving into the design of our distributed selection

strategy for transmission scheduling, let us briefly review

the fundamental principles of MIMO systems that inspired

us to develop the proposed method. In a MIMO system,

a signal vector s ∈ C
mt is transmitted by M antennas

(TX1, · · · , TXmt , ) to be received as a vector r ∈ C
mr

by N antennas (RX1, · · · , RXmr ). The link between a

transmitting antenna TXi and a receiving antenna RXj

is represented by an element Gi,j of the channel matrix

G ∈ C
mt×mr . The channels are influenced by factors

such as multi-path fading and interference, causing different

link conditions. Mathematically, a MIMO system can be

presented as r = Gs+ n, where n ∈ C
mr is often modeled

as an additive zero-mean Gaussian-distributed noise with

covariance σ2I, i.e. n ∼ CN (0, σ2I). Apparently, when

the channels are highly correlated and the rank of G is

low, the equations for recovering s from r become under-

determined. To mitigate the interference of different antennas

at the receiver, pre-coding is employed to orthogonalize data

between channels by utilizing channel state information (CSI).

We assume mt = mr and let Q = E[ss†] denote the

covariance matrix of s, where s† denotes the conjugate

transpose of s. Inequality trace(Q) ≤ ρ always holds for

preserving the overall power constraint. The capacity of the

system measures the maximum amount of information that

can be transferred with an arbitrary small error. According

to [51], the capacity is:

max
Q

C= log det(I+
1

σ2
GQG†) s.t. trace(Q) ≤ ρ. (2)

Let SVD of G be svd(G) = USV†, and λi represent the

i-th singular value of G, which corresponds to the diagonal

element of S. Then, the optimal solution of Q can be

expressed as VPV†, where P is a diagonal matrix with

elements {pi}1≤i≤N . Then, the problem in Eq. (2) can be

reformulated accordingly:

max
trace(P)≤ρ

log det

(
I+

1

σ2
US2PU†

)
(3)

(a)
= max

trace(P)≤ρ

N∑
i=1

log

(
1 +

piλ
2
i

σ2

)
.

The equality (a) holds because
(
1 +

piλ
2
i

σ2

)
is the eigenvalue

of
(
I+ 1

σ2US2PU†), and the product of the all eigenvalues

of a square matrix is equal to its determinant [52]. Note

that log
(
1 +

piλ
2
i

σ2

)
is concave in pi and represents the

capacity of the Single-Input Single-Output (SISO) channel

with transmission power pi, channel gain λi, and noise

variance σ2. Therefore, using SVD-based pre-coding can

translate the original matrix optimization problem in Eq. (2)

to a much simpler form of Eq. (3), which can be solved by

standard convex optimization algorithms. To realize SVD-

based precoding, we use s̃ = VP1/2s to orthogonalize

the transmitted signal. We will use a similar approach to

decompose the global diversity measurement into a sum of

individual terms that purely depend on the samples within

each source.

IV. System Model
In this work, we will follow a system model presented in

Fig. 2, which consists of a processing center, distributed

sources, and several distinct data users. This model ensures

generalization to different data types, learning models, appli-

cation domains, and communication systems. Although we

considered one target application, one processing center, and

distinct data source and users, extension to more complex

setups where some nodes have both source and service

user functions or systems with multiple processing centers

is straightforward. The processing center pools data from

distributed sources in an interval-by-interval fashion to build a

learning-based data processing model (or a library of models).

In each interval, the processing center computes and sends
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the spare feedback to sources based on the received data.

These messages can be used as surrogate measures for the

accumulated data to compute and enforce global diversity.

Then, each source adjusts its selection strategy based on

the received feedback and prepares data for the next round

of transmission. The interval-by-interval transmission fully

aligns with the current trend of online deep learning methods

where training is typically performed for a received data batch,

because re-training for a single data sample is known to be

inefficient. This continued process enables the processing

center to train and maintain a library of Machine Learning

(ML) and inference models for seamless service provisioning.

Our main objective is to develop optimal data selection

strategies by distributed sources with minimal data sharing

overhead. It is worth mentioning that the selected samples

in the center are used to train the models, and the inference

is performed on new, unseen data samples from users. The

workflow of our proposed method is presented in Fig. 1.

We evaluate the effectiveness of the selection methods from

two perspectives: i) the diversity of the selected samples

defined by DPP, and ii) more importantly, the learning quality

of the downstream tasks, which can be evaluated by task-

specific metrics (e.g., accuracy and F1 score for classification

and mean average precision (mAP) for object detection). A

summary of metrics used in our evaluation is provided in

Table 1. Please refer to Section VII and Section VIII for the

detailed evaluation.

Figure 2. A typical workflow of data-driven service provisioning systems.
In each round, data sources select data samples and transmit them to the
center. Data selection is rendered based on feedback messages provided
by the center. After data acquisition, the center can train a library of ML/DL
models for service provisioning.

V. Problem Formulation
First, we present the notations in Table 2. Suppose

there are N data sources with disjointed index sets

S1, S2, · · · , Si, · · · , SN , and S = S1∪S2∪Si∪· · ·∪SN rep-

resenting the indices of the entire set, and Si∩Sj = ∅, ∀i 
= j.

The total number of samples is n =
∑N

i=1 ni, where ni = |Si|

Figure 3. Illustration of the approximation in computing diversity in
logarithmic scale. Here, the accurate diversity is computed by
det( 1

εZAZ�
A) (shown with solid line and � marker) and its approximation

is det( 1
εZAZ�

A + I) (shown with dashed line and � marker). We randomly
generate a data matrix ZA, where (ZA)i ∼ N (0, Im). Parameters n and m

denote the number of samples and dimensions of ZA, respectively. For
sufficiently small ε, the approximation is accurate.

denotes the cardinality of the set Si. Also, let Z ∈ Rn×m be

the data matrix of the entire set, where zi is a m× 1 data

vector. Recall that to maximize diversity, we need to optimize

the following problem under communication constraints to

select a subset A:

argmax
A⊆S

log det(LA), s.t. |A| = kT , (4)

where, again, LA denotes the columns and rows of L indexed

by A, and kT is the total number of samples we afford to

transmit. Likewise, XA,B denotes a submatrix of X with rows

and columns indexed by A and B, respectively. If A = B and

X is a square, it can be denoted as XA, otherwise XA only

denotes the rows of a non-squared matrix X indexed by A.

Conventional MAP methods require transmitting all samples

to the center to solve this optimization problem, which is

impractical or costly when data is distributed across different

sources. In these cases, the construction of L is not feasible.

However, LS1
, · · · ,LSN

can be easily obtained at different

sources, where LSi
= ZSi

Z�
Si

, and the subproblems of the

global MAP inference include

arg max
Ai⊆Si

log det
(
(LSi)Ai

)
, s.t. |Ai| = ki, (5)

where (LSi)Ai
denotes the matrix LSi indexed by Ai.

Although these sub-problems can be solved locally to maxi-

mize within-source diversity, their resulting samples do not

necessarily maximize the global diversity, for not considering

the similarity of samples across different sources. On the other

hand, sharing full knowledge about samples across sources

is costly. To mitigate this issue, we propose a lightweight

feedback mechanism in our method as a surrogate measure for

the diversity of samples. The problem now is to collectively

select Ai for source i, which can be achieved by maximizing

of det(LA) with A = A1 ∪ A2 ∪ Ai ∪ · · · ∪ AN subject

to the constraint
∑ |Ai| = kT and Ai ∩ Aj = ∅, ∀i 
= j.

Following [28], we assume each source transmits the same

number of samples, which is denoted as, ki = kT /N .
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Table 1. The metrics used in our evaluation. ↑ means higher is better, and ↓ means lower is better. The range of all metrics is 0-1.

Tasks Metrics Evaluation

Diversity-based Selection Relative Diversity Error (RDE) (Eq. 24) (↓) Section VII

Downstream

Learning Tasks

Classification Accuracy (↑), F1 score (↑) Section VIII.A

Object Detection mean Average Precision (mAP) (↑), F1 score (↑) Section VIII.B

Multiple-instance Learning
Accuracy (↑), F1 score (↑),

Area Under the Receiver Operating Characteristic Curve (AUC) (↑)
Section VIII.C

Table 2. Some important notations used in Sections V and VI.

Notation Description

Ai The index set of selected samples from source i.

A The index set of selected samples from all sources.

A = A1 ∪A2 ∪Ai ∪ · · · ∪AN .

B The index set of selected samples until this moment.

C The index set of selected columns and rows of Hi.

kT The total number of selected samples.

ki The number of selected samples from source i.

[ki] The set {1, · · · , ki}.

L The Gram matrix of the entire dataset. L = ZZ�.

LSi The Gram matrix of data in source i. LSi = ZSiZ
�
Si

.

m The dimensions of the dataset.

[m] The set {1, · · · ,m}.(
[m]
ki

)
The set of ki-combinations of [m]. i.e. {V | V ⊆ [m], |V| = ki}.

e.g.,

(
[3]
2

)
= {{1, 2}, {2, 3}, {1, 3}}.

n The number of samples in the dataset.

ni The number of samples in source i.

N The total number of sources.

r0 The cardinality of C,. |C| = r0.

r1 The number of transmitted singular vectors in Eq. 22.

R The total tolerable sparsity in transmission.

S The index set of entire dataset.

Si The index set of all samples from source i.

Yi

Information in the center. The index set of selected samples

at this moment that are not from source Si.

i.e. Yi = B \Ai.

Y Information in the center. Y = {Y1, · · · , YN}.

Hi
Perfect feedback information (analogous to CSI in MIMO).

Please refer to Eq. 16.

Ĥi The sparse approximation of Hi.

Z The data matrix of the dataset. Z ∈ Rn×m.

ZSi The data matrix of the source i. ZSi ∈ R
ni×m.

Z̃Si
. ZSi

after pre-coding (Eq. 23). Z̃Si
∈ Rni×m.

XA,B
A submatrix of X with rows and columns

indexed by A and B, respectively. A and B are some index sets.

XA

If A = B and X is a square, XA can be denoted as XA (i.e. LAi),

otherwise XA only denotes the rows of a non-squared matrix X
indexed by A (i.e. ZAi ).

VI. Methodology
A. MIMO-like Decomposition
Similar to [53], since LA is always a positive-definite

Hermitian matrix, we can use the approximation det(LA) =
ε|A| det( 1εLA) ≈ ε|A| det( 1εLA+I) for a very small ε. Some

examples shown in Fig. 3 demonstrate there is negligible

approximation error for a very small ε. Therefore, we can

rewrite the optimization problem as,

argmax
A

log det(
1

ε
LA + I). (6)

This formula can then be presented as

Lε := log det(
1

ε
LA + I) = log det(

1

ε
ZAZ�

A + I) (7)

(a)
= log det(

1

ε
Z�

AZA + I)

= log det(
1

ε

N∑
i

Z�
Ai
ZAi

+ I).

The validity of (a) in Eq. 7 can be established through

SVD decomposition. When N � 1
ε holds, 1/(Nε) is still

a large number, and we can use approximation det(LA) =
(Nε)|A| det( 1

NεLA) ≈ (Nε)|A| det( 1
NεLA + I), which en-

ables us to solve the following equation (adopted from Eqs.

6 and 7) instead of directly maximizing det(LA),

arg max
A1,··· ,AN

log det(
1

ε

N∑
i

Z�
Ai
ZAi/N + I). (8)

Here, we have A = A1 ∪A2 ∪Ai ∪ · · · ∪AN and Ai ∩Aj =
∅, ∀i 
= j. In summary, from now on, our goal is to maximize

the following approximate diversity expression

LεN := log det(
1

ε

N∑
i

Z�
Ai
ZAi/N + I). (9)

Theorem 1. The lower bound of the approximated problem
LεN is given as,

LεN ≥ Llower :=
1

N

N∑
i

log det(
1

ε
ZAiZ

�
Ai

+ I). (10)

Proof:
First, we apply the concavity of f(X) = log detX
for positive definite Hermitian matrices X [50], namely,

log det(αX1 + (1 − α)X2) ≥ α log detX1 + (1 −
α) log detX2 for α ∈ (0, 1) and positive definite Hermitian

matrices X1, X2. Therefore, we can easily obtain, L ≥
Llower = 1

N

∑N
i log det( 1εZ

�
Ai
ZAi + I). Then we apply the

equality presented in Eq. 7(a) to complete the proof.

Remark 2. theorem 1 allows us to decompose the global

diversity measurement into the sum of individual local

diversity measurements.
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Figure 4. The Venn Diagram of the set relations. Left: The largest ellipse
denotes A. The second largest ellipse denotes B. Two inner ellipses denote
the index set A1 andA2, respectively. Right: The shadow area denotes Y1.

B. MIMO-like CSI Estimation and Pre-coding
Similar to the MIMO systems, where the goal is selecting

samples from different sources with minimal interference

(through orthogonalization), here we aim to reduce the chance

of selecting samples in each source that are similar to the

samples of other sources. Ideally, we expect that regardless

of the selection by other sources, each source should perform

the selection process in parallel so that their collected samples

achieve the maximum global diversity, as close as possible.

Our approach is block-diagonalization of the similarity matrix

L, which is analogous to the orthogonalization process in

MIMO. For example, if we achieve full orthogonalization,

meaning that all samples of source 1 are orthogonal to all

samples of source 2 (ZiZ
�
j = 0 for ∀i ∈ S1, ∀j ∈ S2), then

each source can individually maximize the diversity because

their samples lie on orthogonal subspaces.

We can achieve this goal by pre-coding the samples in each

source ZSi to Z̃Si by Z̃Si = ZSiWi. However, learning Wi

by accessing extra data samples in all sources may not be

feasible due to the limited communication budget. Instead, we

propose a sparse diversity measurement of selected samples

that serves as the pre-coding matrix to tighten the lower

bound and guide the selection process.

Recall that A represents the collection of all selected sam-

ples after the completion of the entire selection process. We

then denote selected samples until a time point by B ⊆ A and

define Yi as the index set of selected samples at this time point

that are not from source Si, i.e., Yi = B \ (Ai ∩B) = B \Ai.

Apparently, we have Ai ∩ Yi = ∅. It is noteworthy that at

that time point, A is not fully known. Fig. 4 illustrates the

relationship of the index sets.

There are two considerations. First, the sources do not drop

selected samples because they are used in the next rounds

to calculate diversity, but never re-selected for transmission.

Second, the feedback message for each source is calculated

based on the collected samples from other sources, excluding

its own samples to avoid information loss.

To this end, we define Y = {Y1, · · · , YN}, where we

have B = Y1 ∪ · · · ∪ YN . Therefore, we can rewrite the

approximation of the problem in Eq. 7 when conditioned by

Y as

Lε = log det(
1

ε

N∑
i

Z�
Ai
ZAi

+ I) (11)

(a)

≥ L(· | Y)

(b)
:= log det(

1

ε

N∑
i

(Z�
Ai
ZAi

+ Z�
Yi
ZYi

)/N + I)

(c)
= log det(

1

ε

N∑
i

(Z{Ai∪Yi}Z
�
{Ai∪Yi})/N + I),

where equality (a) holds when A = Ai ∪ Yi = B and (b)

defines the conditional problem. The conditional lower bound

L(· | Y) can be obtained as,

L(· | Y)
(a)

≥ Llower(· | Y) (12)

:=
1

N

N∑
i

log det(
1

ε
Z�

Ai
ZAi +

1

ε
Z�

Yi
ZYi + I)

(b)
=

1

N

N∑
i

log det(
1

ε
Z{Ai∪Yi}Z

�
{Ai∪Yi} + I),

where equality (a) holds when A = Ai∪Yi = B. The equation

(b) holds is because of Ai ∩ Yi = ∅.

Theorem 3. Llower(· | Y) is a tighter bound than Llower

(presented in Theorem 1) to the problem Lε, which is
presented as Lε ≥ Llower(· | Y) ≥ Llower.

Proof:
First, Lε ≥ Llower(· | Y) is proved in Eq. 11. Now, we need

to prove Llower(· | Y) ≥ Llower,

1

N

N∑
i

log det(
1

ε
Z{Ai∪Yi}Z

�
{Ai∪Yi} + I) (13)

(a)

≥ 1

N

N∑
i

log det(
1

ε
ZAiZ

�
Ai

+ I).

To this end, we observe LFS and RHS have the same form

of a submodular function. Since Ai ⊆ Ai ∪ Yi, obviously,

the inequality is proved.

An example is shown in Fig. 5, which shows that the

conditional lower bound is a tighter bound than the bound

presented in Theorem 1.

Remark 4. We note that Llower(· | Y) is still a form of the

sum of individual terms. Therefore, this theorem demonstrates

that, by taking the received information Y merely from the

center as feedback, we can adjust the future selection in each

source to enhance the overall diversity.

Remark 5. in fact, Llower(· | Y) can be updated sequentially

asLlower(· | Y) : Llower(· | Y0) → Llower(· | Y1) → · · · ,
if the selection is online. Here, Yt is formed after receiving

data samples in the first t intervals.
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Figure 5. Demonstration of the lower bound and conditional lower bound
of the diversity of a two-source scenario, developed in Theorem 3. We
generate ZA1

∈ R
80×200 by (ZA1

)i ∼ N (0, I200). Similarly, we generate
ZA2

∈ R
80×200 by (ZA2

)i ∼ N (0, α2I200). Y1, Y2 are randomly selected
from A2, A1, respectively. The diversity increases with element variance
α2, as expected. The derived condition lower bound is consistently tighter
than the original lower bound.

Now, according to Remark 4, the target of each

source is switched to perform local selection ad-

justed by feedback, which is equivalent to maximize

log det( 1εZ{Ai∪Yi}Z
�
{Ai∪Yi}+ I) individually in each source.

Fortunately, this problem rolls back to a MAP inference as

max
Ai⊆Si

det
(
Z{Ai∪Yi}Z

�
{Ai∪Yi}

)
, (14)

s.t. |Ai| = ki, Ai ∩ Yi = ∅.
According to Schur’s complement, we can re-write it as,

det(Z{Ai∪Yi}Z
�
{Ai∪Yi}) (15)

=det(ZYi
Z�

Yi
) det

(
ZAi

(
I− Z�

Yi
(ZYi

Z�
Yi
)−1ZYi

)
Z�

Ai

)
.

Since det(ZYi
Z�

Yi
) is fixed, the only information depending

on Yi is

Hi :=
(
I− Z�

Yi
(ZYi

Z�
Yi
)−1ZYi

)
. (16)

Now, we only need to maximize det(ZAi
H

1/2
i H

1/2
i Z�

Ai
),

where Ai ⊆ Si and |Ai| = ki still hold. Without loss of

information, we can send Hi (which can be viewed as the

CSI) from the center to each source and adjust (which can

be viewed as the pre-coding) the data matrix ZSi
to Z̃Si

=

ZSi
H

1/2
i , where Wi = H

1/2
i .

C. Sparse Representation of MIMO-like CSI
To further accommodate the band-limited communication

requirements, we seek sending a sparse representation of Hi

than sending the entire information of Hi. To this end, we

can obtain the upper bound of the problem,

Theorem 6. The upper bound of det(ZAiH
1/2
i H

1/2
i Z�

Ai
) is

given as

det(ZAi
H

1/2
i H

1/2
i Z�

Ai
) (17)

≤ det(ZAi
Z�

Ai
)×

∑
J1∈

⎛
⎝ [m]

ki

⎞
⎠
det((Hi)J1

).

Proof:
First, we apply the Cauchy–Binet formula to re-write the

optimization problem as,

det(ZAiH
1/2
i H

1/2
i Z�

Ai
) (18)

=det((ZAi
H

1/2
i )(ZAi

H
1/2
i )�)

=
∑

J1∈
⎛
⎝ [m]

ki

⎞
⎠

(
det

(
(ZAi

H
1/2
i )[ki],J1

))2

,

where [m] denotes the set {1, ...,m} and

(
[m]
ki

)
de-

notes the set of ki-combinations of [m], e.g.,

(
[3]
2

)
=

{{1, 2}, {2, 3}, {1, 3}}. As before, ki denotes the cardinality

of Ai. Then, it is sufficient to prove(
det

(
(ZAi

H
1/2
i )[ki],J1

))2

≤ det(ZAi
Z�

Ai
) det(HJ1

).

(19)

This is because,(
det

(
(ZAi

H
1/2
i )[ki],J1

))2

=
(
det

(
ZAi

(H
1/2
i )[m],J1

))2

(20)

=

⎛
⎜⎜⎜⎜⎜⎜⎝

∑
J2∈

⎛
⎝ [m]

ki

⎞
⎠
det

(
(ZAi

)[ki],J2

)
det

(
(H

1/2
i )J2,J1

)
⎞
⎟⎟⎟⎟⎟⎟⎠

2

(a)

≤
∑

J2∈
⎛
⎝ [m]

ki

⎞
⎠

(
det

(
(ZAi)[ki],J2

))2

×
∑

J2∈
⎛
⎝ [m]

ki

⎞
⎠

(
det

(
(H

1/2
i )J2,J1

))2

(b)
=

∑
J2∈

⎛
⎝ [m]

ki

⎞
⎠

(
det

(
(ZAi

)[ki],J2

))2

× det
(
(H

1/2
i )J1,[m]((H

1/2
i )J1,[m])

�
)

(c)
=

∑
J2∈

⎛
⎝ [m]

ki

⎞
⎠

(
det

(
(ZAi

)[ki],J2

))2
det((Hi)J1

)

(d)
= det(ZAi

Z�
Ai
) det((Hi)J1

),
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where (a) applies Cauchy–Schwarz inequality and (b)(c)(d)

apply Cauchy–Binet formula. Substituting Eq. 19 in Eq. 18

completes the proof.

Now we consider Ĥi denotes the approximate Hi by its

sparse representation. To preserve the determinant of the

upper bound, we should ensure∑
J1∈

⎛
⎝ [m]

ki

⎞
⎠
det((Ĥi)J1

)
(a)≈

∑
J1∈

⎛
⎝ [m]

ki

⎞
⎠
det((Hi)J1

).

(21)

Figure 6. An exemplary visualization of approximation in Eq. 21. We
generate ZAi

,ZYi
∈ R

4×10. Hi is accordingly computed based on ZYi

by Eq. 16. The ground upper bound is computed by the left side of Eq. 21.
Now, J1 is a 4-th combination of [10], resulting in a total of
10!/(4!(10 − 4)!) = 210 sub-matrices. The red line presents a case where
we select nH sub-matrices with largest det((Ĥi)J1

) while the blue line
denotes we randomly select nH sub-matrices. It is observed that choosing
the first nH largest sub-matrices can obtain a lower error than randomly
choosing these sub-matrices.

If a sub-matrix (Hi)C is allowed to transmit with a

constraint |C| = r0, to minimize the difference between the

left term and right term of (a) in Eq. 21, it is not feasible to

traverse all possible sub-matrices when r0 and ki are a little

bit large (i.e. ki!/(r0!(ki − r0)!) combinations); however,

we can immediately obtain a good sub-optimal solution

by DPP greedy search as C∗ = MAP-DPP(Hi, r0), since

it has to be selected at least the first r0 − ki + 1 largest

det((Hi)J1) in the greedy search. Here C∗ denotes the index

set of selected representative dimensions. Fig. 6 demonstrates

the approximation by choosing nH first largest sub-matrices

det((Ĥi)J1) can obtain a lower error than random choose

these sub-matrices.

We define tolerable sparsity R×m for compression as the

number of elements that can be losslessly transmitted from

the center to each source. Transmitting the symmetric matrix

(Hi)C∗ requires (r20 + r0)/2 elements, which corresponds to

the number of elements in the lower triangular matrix of

(Hi)C∗ . Furthermore, in cases where additional sparsity can

be utilized for compression purposes, we can compress the

residual matrix (Hi)C̄∗ through singular value decomposition

(SVD). Here C̄∗ = [m] \ C∗. By considering only the first r1
singular vectors and values, we only require a sparsity of r1m
for the compression. Hence, the constraint on the tolerable

sparsity Rm can be expressed as (r20 + r0)/2 + r1m ≤ Rm.

Mathematically,

Ĥi = (Hi)C∗ +V(:, 1 : r1)diag(λ1, · · · , λr1)V
�(:, 1 : r1)

(22)

s.t. (r20 + r0)/2 + r1m ≤ Rm,

C∗ = MAP-DPP(Hi, r0),

Vdiag(λ1, · · · , λm)V� = svd(Hi − (Hi)C∗).

Therefore, the data samples in each source can be pre-coded

as Z̃Si
= ZSiĤ

1/2
i . In fact, since the CSI information

is not completely reliable, we precode the data samples

conservatively and use a momentum way, which is presented

as

Z̃Si
= ZSi

Wi = ZSi
(I+ Ĥ

1/2
i ). (23)

A summary of our approach is shown in Algorithm 1.

Algorithm 1 DDPP: MAP Inference for MAP for Distributed
Data Source.
Input: Source data ZS1

, · · · ,ZSN
, Center information Y =

{Y1, · · · , YN}, the number of items selected in each
interval ki for each source. Sparsity parameters r0, r1.
The index set of selection A.

Output: The updated index set of selection A.
for i in 1 : N do

#In each source i. #All sources do these steps in parallel.
Computed CSI information Ĥi based on Eq. 22.

Pre-code data in source i: Z̃Si
= ZSi

(I+ Ĥ
1/2
i ).

#ZSi and Z̃Si are the original and pre-coded data
matrices, respectively.

Compute new Gram matrix L̃Si : L̃Si = Z̃SiZ̃
�
Si

.
Ai ← ∅. #Init. index set for selection.
while |Ai| ≤ ki do

#Selection based on DPP MAP. j is the index of the
selected sample.

j = argmaxi∈Si\Ai
log det

(
L̃Ai∪{i}

)
−

log det
(
L̃Ai

)
.

if j /∈ A then Ai ← Ai ∪ j end if
end while

end for
A ← A∪Ai ∪ · · · ∪AN .

D. Complexity Analysis
In this section, we evaluate the computational complexity of

the proposed method during one interval. We consider the

added computational load in both sources and the center. In

each source, the computation cost includes two terms for

i) pre-coding via matrix multiplication (i.e. Z̃Si
= ZSi

(I+

Ĥ
1/2
i )), which is O(nim

2), and ii) generating candidates in

each source by DPP, which is O(n3
i ) +O(nik

2
i ). Recalling

that ni and ki denote the number of total samples and the

number of selected samples in source i, we have ki < ni
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and the overall computation complexity in each source can

be approximated as follows O(nim
2)+O(n3

i )+O(nik
2
i ) =

O(ni max(m2, n2
i )). All sources perform the computations

independently and in parallel. If the total number of samples

n = n1 + n2 + · · ·nN is fixed, when the number of sources

N increases, we have ni = n/N � m and the complexity

reduces to O(nim
2). In the center, the complexity comes

from the computation of CSI (Eq. 22), which requires

O(m3) + O(mr20) to generate C∗ and then a complexity

of O(m3) for SVD decomposition. Noting that m � r0,

the computational complexity in the center becomes O(m3).
In summary, the added computation load is O(nim

2) per

source and O(m3) for the center. Fortunately, the computation

load is polynomial in the dimension of the data samples m
and grows only linearly with the number of samples ni. In

most practical systems, the computational load of sources

is more important because the central processing servers

are typically equipped with higher computational resources.

It is noteworthy that the computational cost per source in

our method (O(nim
2)) is in the same order as the other

competitors, such as GreeDi [28]. with the additional benefit

of our method in replacing heavy transmission of raw samples

with lightweight diversity-representing messages.

VII. Experiment
A. Comparison Method
In our experiments, we use the exact greedy search proposed

in [22] across all samples as the Ground Truth. We consider

multiple alternative methods for comparison, including

• GreeDi: A two-round method, the most known dis-

tributed solution, in which, in the first round, each source

greedily finds a set of size αkT samples, and in the

second round, it performs another greedy search on

all candidates NαkT from the previous round [28]. To

meet a zero-communication overhead policy, we set

α = 1/N . It is also equivalent to our method without

using the feedback mechanism.

• MaxDiv Source: It performs the exact greedy search

in one source with the largest Information-theoretical

diversity measured as log det(I+ m
|Si|εZ

�
Si
ZSi

) [53].

• Random Selection: It involves random selection of

samples by each source. While the total number of

samples is the same as ours kT , the number of samples

selected by each source can be different.

• Stratified Sampling: Similar to random selection, but

with an equal number of samples selected by each source

(kT /N ).

• Greedymax: A two-round method, in the first round,

each source greedily finds a set of size kT samples, and

in the second round, the set from the source with the

maximum diversity, is sent to the center [28].

B. Dataset and Experiment Setup
The first experiment involves diversity evaluation using two

datasets, CIFAR10 [54] and CIFAR100 [54]. Image datasets

were preferred due to the following reasons: i) they have

relatively high dimensions, which enables DPP to choose

a subset with a larger number of samples, ii) semantic

features can be easily obtained by pre-trained models, and iii)

images are the predominant data type used in many practical

applications, including our own projects of drone-based aerial

monitoring [55], [56] and AI-based traffic monitoring [1],

[42]. As a proof-of-concept experiment, we used a pre-

trained ResNet-181 to extract the latent features of images

and set the number of dimensions to m = 512. For the

sake of completeness, we consider different numbers of

sources N = 5, 10, 12, 15, 20. Each source includes a non-

overlapping set of 500 different samples. We executed all

of our experiments on a node of a cluster with an Intel(R)

Xeon(R) Gold 6148 CPU with 125 gigabytes of memory. Note

that the primary algorithm does not require a GPU to operate.

For simplicity, we consider selecting a total of kT = 120
samples in tT = 2 intervals. Therefore, a total of 60 samples

is selected in each interval. Note that the feedback mechanism

is utilized only once per interval. We set the tolerable sparsity,

defined in Section C, to R = 0.75× kT /tT = 45. Note that

R = kT /tT leads to a trivial scenario where we can send all

the previously received samples back to each source.

C. Comparative Results
The original DPP-diversity for a selected subset Ã is defined

as det(ZÃZ
�
Ã
), where a higher value represents a higher level

of diversity. For comparison convenience, the performance

is presented as the Relative Diversity Error (RDE) with

respect to the ground truth. Specifically, if the ground truth

is A∗ and the inference subset by one approach is Ã. Then,

the RDE is defined as

1− log det(ZA∗Z�
A∗)/ log det(ZÃZ

�
Ã
), (24)

with a range of 0 to 1 (the lower is better). The results

from running 20 times are shown in Table 3 and Fig. 7(a-b).

The main observation is that our approach outperforms all

baselines and alternative methods, exhibiting a considerable

gain consistently for different numbers of sources on both

datasets. Our approach significantly improves upon the

random, stratified random and MaxDiv selection with a

considerable reduction of 75% in RDE. More importantly, we

found the feedback mechanism can decrease RDE varying

from 12% to 26% in CIFAR-10 and 19% to 21% in

CIFAR-100 compared to the method without feedback (i.e.

GreeDi). The diversity increases for all methods by collecting

samples from more sources as expected, but the performance

superority for our method does not diminish. We also

perform a two-sample t-Test for the selection performance

to demonstrate the reliability of our method. According to

the results shown in Table 4, the P-value is tiny and much

smaller than 0.05, which indicates our method indeed has a

statistical superiority over the second-best method, GreeDi.

1This model can be found at https://pytorch.org/vision/stable/models.html.

10 VOLUME ,

This article has been accepted for publication in IEEE Transactions on Machine Learning in Communications and Networking. This is the author's version which has not been fully edited an
content may change prior to final publication. Citation information: DOI 10.1109/TMLCN.2024.3421907

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



5 10 12 15 20
0.00

0.05

0.10

0.15

# of Sources

R
DE

MaxDiv
Random Selection
Stratified Sampling

Greedymax
GreeDi
Proposed Method

5 10 12 15 20
0.00

0.05

0.10

0.15

# of Sources

R
DE

MaxDiv
Random Selection
Stratified Sampling

Greedymax
GreeDi
Proposed Method

(a) CIFAR-10 (b) CIFAR-100
Figure 7. Comparison of the performance (↓) of different selection strategies on CIFAR-10 and CIFAR-100 datasets in terms of Relative Diversity Error
(RDE).

5 10 12 15 20
0.00

0.01

0.02

0.03

0.04

0.05

# of Sources

R
DE

GreeDi
SVD

Random Sketch
Proposed Method

0.25 0.4 0.5 0.75
0.020

0.022

0.024

0.026

Compression

R
DE

GreeDi SVD Proposed
 Method

5 10 12 15 20
0.00

0.02

0.04

0.06

# of Sources

R
DE

GreeDi
SVD

Random Sketch
Proposed Method

0.25 0.4 0.5 0.75
0.026

0.028

0.030

0.032

0.034

0.036

0.038

Compression

R
DE

GreeDi SVD Proposed
Method

(a) (b)

(c) (d)

CI
FA

R-
10

CI
FA

R-
10

0

Figure 8. Comparison of the performance (↓) of different compression strategies (a)(c) and tolerable sparsity (b)(d) on CIFAR-10 and CIFAR-100 datasets.

D. Ablation Analysis
We conduct the following experiments to investigate the

benefits of sensing the compressed version of CSI messages,

Hi, through the feedback channel. , we compare our method

against the following alternative method,

• SVD replaces the proposed way of compressing Hi

with an SVD-based compression (i.e. using the first R
singular vectors of Hi).

• Random Sketch generates set C by randomly sampling

from the set [m] in Eq. 22. As before, [m] = {1, · · · ,m}
represents the index set of dimensions.

The results are shown in Table 5 and Fig. 8(a)(c), con-

firming that both SVD and the proposed method can be

used to improve the selection over Random Sketch method.

Nonetheless, our method outperforms both two alternative

compression strategies,SVD and Random Sketch. We found

Random Sketch, at some time, is even worse than the selection

without any feedback (GreeDi), indicating that a naive way

of forming feedback messages can be misleading.

Additionally, we evaluate the impact of different tolerable

sparsity (R) in Table 6 and Fig. 8(b)(d). The results show

that our method can outperform SVD-based compression in

different tolerable sparsity. Even at 0.25 level, our methods

obtain improvement and achieve a reduction of 10% in RDE

compared to GreeMi and SVD in CIFAR-100 dataset.

VIII. Potential Applications
In most practical data-driven AI-platforms, the ultimate goal

is not only escalating the sampling diversity, but also to

improve the users’ Quality of Experience (QoE), reflected in

the performance of the downstream learning-based tasks (e.g.,

classification, object detection, etc.). Translating diversity

gain to learning quality often needs to adopt a proper
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Table 3. The relative diversity error (RDE) of different selection methods.

(↓): Lower is better.

Dataset #ofCluster 5 10 12 15 20

CIFAR10

Ground Truth 0.0000 0.0000 0.0000 0.0000 0.0000

MaxDiv Source 0.1004 0.1115 0.1130 0.1194 0.1281

Random Selection 0.1074 0.1186 0.1205 0.1259 0.1270

Stratified Sampling 0.1083 0.1167 0.1194 0.1238 0.1277

Greedymax 0.0344 0.0450 0.0491 0.0528 0.0565

GreeDi 0.0158 0.0250 0.0278 0.0327 0.0392

DDPP (Proposed) 0.0139 0.0203 0.0216 0.0268 0.0209

CIFAR100

Ground Truth 0.0000 0.0000 0.0000 0.0000 0.0000

MaxDiv Source 0.1126 0.1128 0.1271 0.1270 0.1337

Random Selection 0.1090 0.1195 0.1295 0.1291 0.1322

Stratified Sampling 0.1096 0.1195 0.1243 0.1236 0.1300

Greedymax 0.0357 0.0470 0.0501 0.0534 0.0574

GreeDi 0.0200 0.0359 0.0394 0.0432 0.0510

DDPP (Proposed) 0.0158 0.0283 0.0318 0.0349 0.0399

Table 4. The P-value (↓) of two-sample t-Test between the proposed and

GreeDI methods.

Dataset #ofCluster 5 10 12 15 20

CIFAR10 GreeDI-DDPP (Proposed) 1.1E-04 1.1E-07 3.6E-09 6.3E-10 1.9E-16

CIFAR100 GreeDI-DDPP (Proposed) 1.6E-07 2.4E-11 1.4E-08 8.0E-08 9.1E-11

distance metric for DPP-based analysis. Designing a proper

measure is out of the focus of this paper; however, as

mentioned in Section B, we can simply use dot vectors

among feature vectors, extracted by a pre-trained ResNet-18

as a low-dimensional semantic representation of data samples

when calculating inter-sample correlations. This approach

benefits both efficient selection and the resulting learning

quality, while not requiring a custom-built similarity metric.

It means that even a higher learning quality is attainable for

each task if we use a tasks-specific distance metric and

compromise the generalizability. This idea is commonly

used to build knowledge base in the realm of semantic

Table 5. Comparison of the performance in RDE (↓) by different compression

strategies with different numbers of sources.

Dataset #ofCluster 5 10 12 15 20

CIFAR10

GreeDi 0.0158 0.0250 0.0278 0.0327 0.0392

SVD 0.0289 0.0215 0.0254 0.0306 0.0336

Random Sketch 0.0164 0.0251 0.0278 0.0306 0.0359

DDPP (Proposed) 0.0139 0.0203 0.0216 0.0268 0.0289

CIFAR100

GreeDi 0.0200 0.0359 0.0394 0.0432 0.0510

SVD 0.0178 0.0307 0.0341 0.0358 0.0411

Random Sketch 0.0207 0.0348 0.0374 0.0423 0.0471

DDPP (Proposed) 0.0158 0.0283 0.0318 0.0349 0.0399

Table 6. Comparison of the performance in RDE (↓) by different compression

strategies with different tolerable sparsity.

Dataset Sparsity (×kT /tT ) 0.25 0.4 0.5 0.75

CIFAR10
GreeDi 0.0250 0.0250 0.0250 0.0250

SVD 0.0246 0.0238 0.0236 0.0215

DDPP (Proposed) 0.0231 0.0225 0.0221 0.0203

CIFAR100
GreeDi 0.0359 0.0359 0.0359 0.0359

SVD 0.0356 0.0335 0.0308 0.0301

DDPP (Proposed) 0.0317 0.0313 0.0298 0.0283

communication networks [44]. The following examples show

the boosted learning performance when using our sample

selection strategy.

A. Classification
This test involves conducting classification on CIFAR-10 and

CIFAR-100 datasets. We use the k-nearest neighbors (KNN),

a non-parametric method, to evaluate the representation of

selected samples. The classification results on both datasets

are shown in Tables 7 and 8, respectively. The results suggest

that training the classifier with data samples selected by our

method outperforms all other methods on both datasets. For

example, our method achieves at least 3% higher accuracy

on CIFAR-10. The F1 score improvement is at least 0.02.

Fig. 9 presents the selected samples by different methods

in CIFAR-10 visualized by Principal Component Analysis

(PCA). It can be observed that our method, overall, selects a

more diverse set of samples (shown by red circles), compared

to random selection. This is the ground for achieving higher

learning quality.

For the sake of completeness, we also investigate the

classification results on Tiny-ImageNet [57], a very chal-

lenging large-scale dataset. For example, training a ResNet

classifier on the entire dataset can only achieve about top-

1 classification accuracy of 55%. In this experiment, we

use pre-trained ResNet-50 to extract the latent feature and

select 1200 samples in total. We compare our methods

with the recent state-of-the-art data selection methods in

the distributed setting. These methods include K-Center

selection [58], submodular mutual information selection

(MIV2) [59], density-aware selection (DACS) [60], and

coverage-centric Selection (CCS) [61]. The results are shown

in Table 9. Our methods consistently demonstrate superiority

over other methods with an average improvement of 1.6% in

accuracy and 2.5% improvement in F1 score across different

numbers of sources. Additionally, our method obtains a

substantial gain over the random selection with a 4%-6%

improvement in accuracy. Another interesting observation is

that although the recent selection methods (i.e., DACS and

CCS) occasionally outperform GreeDi (our method without

utilizing the feedback mechanism), our method, by leveraging

the feedback mechanism, can easily compete with them. This

further underscores the crucial role of the proposed feedback

mechanism under distributed sources.

B. Traffic Sign Detection
In order to investigate a more practical scenario, we consider

traffic sign detection in the realm of smart transportation [62].

It involves the identification and localization of traffic signs

in images, an integral part of Autonomous Vehicles’ (AVs)

control stack, Advanced Driver Assistance Systems (ADAS),

or traffic management enterprise. As a proof-of-concept, we

use a small dataset [63] in our experiments. This dataset

contains 877 images of 4 distinct classes, including Traffic

Lights, Stops, Speed limit, and Crosswalk. We use 177 images
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Figure 9. Selected data points by our method in comparison with random selection. We use the first two principal components of data for visualization.
The selected samples are denoted by � markers. We draw the ε−ball (i.e. Ball(x0, ε) = {xi : ‖xi − x0‖2 < ε} ) for each selected point as shown in the
red area to denote its coverage in the feature space. This concept is employed from Covering Number [20]. The proposed method presents better
coverage, reflected in the elevated accuracy of a classifier that uses our method to select training samples.

Table 7. Comparison of classification results on CIFAR-10 by different

strategies.

Method #of Sources 5 10 12 15 20

Random Accuracy (↑) 53.16 52.79 52.66 52.92 53.96

F1 (↑) 0.533 0.483 0.499 0.500 0.519

Stratified
Sampling

Accuracy (↑) 53.85 53.16 53.43 54.26 53.76

F1 (↑) 0.517 0.512 0.509 0.519 0.514

GreeDi Accuracy (↑) 55.52 54.84 54.62 54.65 53.05

F1 (↑) 0.523 0.512 0.502 0.514 0.500

DDPP
(Proposed)

Accuracy (↑) 58.51 57.27 57.40 58.05 56.52
F1 (↑) 0.560 0.540 0.543 0.554 0.538

Table 8. Comparison of classification results on CIFAR-100 by different

strategies.

Method #of Sources 5 10 12 15 20

Random Accuracy (↑) 46.71 45.58 44.26 44.15 42.43

F1 (↑) 0.439 0.431 0.420 0.428 0.392

Stratified
Sampling

Accuracy (↑) 46.52 46.05 43.36 44.33 44.55

F1 (↑) 0.442 0.432 0.406 0.410 0.418

GreeDi Accuracy (↑) 48.08 48.48 45.72 45.73 44.79

F1 (↑) 0.441 0.456 0.414 0.399 0.391

DDPP
(Proposed)

Accuracy (↑) 49.68 49.02 47.22 47.78 46.29
F1 (↑) 0.471 0.459 0.442 0.452 0.421

as the test set. We set the number of sources N = 10, and each

source contains 70 images. We select kT = 120 samples from

this dataset by using different selection strategies. Then, use

the selected samples to train a state-of-the-art object detector

YOLOv8 [64] from scratch. The performance of detection

is evaluated by mean Average Precision (mAP) at different

Intersection over Union (IoU) thresholds (0.5 and 0.5-0.95)

and F1 score. The results are obtained by averaging over 10

runs. As shown in Table 10, increasing the diversity generally

can enhance the detection performance. For example, with

a 0.05 RDE decrease compared with Random selection, our

method can obtain around 0.05 mAP improvement and 0.04

F1 score improvement, respectively. Fig. 10 demonstrates the

selected images inference by the model trained on different

Table 9. Comparison of classification results on Tiny-ImageNet by different

strategies.

Method # of Sources 5 10 12 15 20

Random Accuracy (↑) 27.66 28.01 28.06 27.37 28.01

F1 (↑) 0.248 0.251 0.251 0.248 0.252

Stratified
Sampling

Accuracy (↑) 28.14 27.88 28.40 28.45 27.78

F1 (↑) 0.254 0.248 0.254 0.255 0.250

K-center Accuracy (↑) 30.15 28.80 28.86 28.06 27.55

F1 (↑) 0.292 0.285 0.280 0.273 0.267

MIV2 Accuracy (↑) 29.91 28.43 28.55 28.28 28.30

F1 (↑) 0.268 0.255 0.257 0.255 0.254

DACS Accuracy (↑) 33.77 32.32 32.51 31.59 31.77

F1 (↑) 0.285 0.270 0.269 0.262 0.270

CCS Accuracy (↑) 33.15 32.60 32.66 31.57 31.44

F1 (↑) 0.282 0.273 0.271 0.265 0.263

GreeDi Accuracy (↑) 32.36 32.66 32.52 31.82 31.86

F1 (↑) 0.280 0.274 0.271 0.266 0.266

DDPP
(Proposed)

Accuracy (↑) 34.66 34.61 33.66 33.40 32.92
F1 (↑) 0.305 0.302 0.295 0.292 0.287

Table 10. Comparison of performance on object detection of different

selection strategies.

Sampling
Method Random Stratified

Sampling GreeMi DDPP
(Proposed)

RDE (↓) 0.1077 0.0986 0.0795 0.0535

mAP@50 (↑) 0.5920 0.5923 0.6364 0.6488
mAP@50-95 (↑) 0.4427 0.4553 0.4734 0.4961Detection
F1 score (↑) 0.5724 0.5811 0.6016 0.6120

selected data, which brings considerable improvement in both

accuracy and confidence of the detection.

C. Car Crash Detection via Multiple-Instance Learning
To show the utility of our method in the more complex

problem of video analysis, we develop an experiment for

video-based crash detection. In real surveillance videos,

the task of classifying whether a crash has occurred is of

paramount importance, but what is even more critical is the

rapid detection of the precise moment when a crash occurs.

However, this presents a significant challenge as annotating

each individual frame in the video is a time-consuming
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Figure 10. The application of our method in traffic sign interpretation. The selected results of detection by training a YOLOv8 detector from scratch using
data selected by Top: Stratified Sampling and Bottom: Our proposed method. Our method demonstrates higher confidence and higher accuracy in the
detection.

Figure 11. Video-based crash detection. Training videos are selected based on their frame diversity with respect to other videos using different methods.
The confidence of the crash occurs provided by the attention map in sequential frames by two selection methods.
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Table 11. The learning quality of multiple-instance learning by different data

selection strategies.

Sampling
Method Random Stratified

Sampling GreeMi DDPP
(Proposed)

RDE (↓) 0.1495 0.1467 0.0960 0.0939

MIL
Accuracy (↑) 0.8251 0.8247 0.8359 0.8548
F1 score (↑) 0.8295 0.8321 0.8385 0.8549

AUC (↑) 0.9066 0.9038 0.9094 0.9228

and labor-intensive task, made even more complex by the

varying lengths of different videos. To address this issue, a

practical solution is to leverage video-level annotation and

employ Multiple-Instance Learning (MIL) [65], which is

a weakly-supervised method and widely used in Anomaly

Detection [66]–[68].

In this problem, each frame in a surveillance video is

treated as an instance within a bag and is assigned a binary

label, either 0 (for negative) or 1 (for positive), based on the

presence or absence of a crash event. The video, on the other

hand, serves as a bag containing multiple instances, which

are the frames. A key characteristic is that a bag is considered

negative (labeled as 0) only if all its instances, meaning all

the frames within the video, are negative. Otherwise, if any

frame within the video is positive, the entire bag is labeled

as positive (1), indicating the presence of a crash event. In

this work, an attention-based MIL method [65] is utilized.

This method likely involves the use of attention mechanisms

to weigh the importance of different instances (frames)

within a bag (video) when making the final classification

decision, effectively allowing the model to focus on the most

informative frames for crash detection.

We use the Car Crash Dataset (CCD) [69], which contains

traffic accident videos captured by dashcams mounted on

driving vehicles. We choose N = 10 and each source contains

100 videos. We select kT = 80 videos using tT = 2 intervals,

using various selection methods. The diversity and learning

quality of selected samples are shown in Table 11, which

demonstrates an improved accuracy, F1 score, and AUC for

our selection method. The frame-level prediction confidence

of the crash obtained by the attention map from the trained

model is shown in Fig. 11, which demonstrates in both

exemplary frame sequences, the model trained by samples

selected by our method has the more accurate localization

of the crash occurs.

IX. Conclusion
DPP is a formal method to enhance data diversity for learning-

based systems. However, it requires access to the entire dataset

in one place, which limits its applicability to diverse sources

in real-world applications. To address this key challenge, we

implemented a DPP MAP inference for distributed data from

multiple sources as a universal diversity-maximizing data-

sharing strategy for distributed sources that only requires a

lightweight feedback channel from the center to the sources

with no cross-source communication requirement. To this end,

a novel scheduling policy, inspired by MIMO systems, is

proposed. Specifically, we demonstrated that the lower bound

of the original diversity maximization problem that maximizes

global diversity can be decomposed into a sum of factors that

enables distributed selection. Additionally, approximating

the lower bound to the original problem can be treated

as receiving CSI and pre-coding. Under communication

bandwidth constraints, we derive a sparse CSI representation

to preserve the determinant via the Cauchy–Binet formula.

Our experiments demonstrate that our scalable approach can

compete with all alternative methods in various datasets.

Moreover, as a proof-of-concept, we show that with proper

distance measures, pursuing diversity can translate into

improving learning quality in multiple applications, including

multi-level classification, object detection, and multiple-

instance learning. We expect our approach can substantially

influence the design of future AI-based networking platforms,

which require efficient handling of massive datasets split

across distributed sources.
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