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ABSTRACT

Determinantal Point Process (DPP) is a powerful technique to enhance data diversity by promoting the
repulsion of similar elements in the selected samples. Particularly, DPP-based Maximum A Posteriori (MAP)
inference is used to identify subsets with the highest diversity. However, a commonly adopted presumption
of all data samples being available at one point hinders its applicability to real-world scenarios where data
samples are distributed across distinct sources with intermittent and bandwidth-limited connections. This
paper proposes a distributed version of DPP inference to enhance multi-source data diversification under
limited communication budgets. First, we convert the lower bound of the diversity-maximized distributed
sample selection from matrix determinant optimization to a simpler form of the sum of individual terms.
Next, a determinant-preserved sparse representation of selected samples is formed by the sink as a surrogate
for collected samples and sent back to sources as lightweight messages to eliminate the need for raw data
exchange. Our approach is inspired by the channel orthogonalization process of Multiple-Input Multiple-
Output (MIMO) systems based on the Channel State Information (CSI). Extensive experiments verify the
superiority of our scalable method over the most commonly used data selection methods, including GreeDi,
Greedymax, random selection, and stratified sampling by a substantial gain of at least 12% reduction in
Relative Diversity Error (RDE). This enhanced diversity translates to a substantial improvement in the
performance of various downstream learning tasks, including multi-level classification (2%-4% gain in
accuracy), object detection (2% gain in mAP), and multiple-instance learning (1.3% gain in AUC).

INDEX TERMS Determinantal Point Process, Data Diversification, Distributed Learning, Distributed Sources.

I. Introduction

Many Al platforms in modern smart city applications, such as
Smart Transportation Systems (STS) [1], [2], Al-based Energy
Management Systems (EMS) [3], Smart Healthcare Systems
(SHS) [4], [5], Al-enabled Live Event Monitoring Systems
(LEMS) [6], and Smart Budget Allocation (SBA) [7] rely
on data-driven methodologies for service provisioning. The
essence of such platforms is exploiting learnable contextual
patterns from accumulated data from distinct and often
geographically distributed data sources. Nevertheless, these
systems are typically constrained in terms of communication
bandwidth and storage capacity. A significant source of
inefficiency is collecting raw data indiscriminately from

these sources. To reduce transmission resource overuse, one
may benefit from more refined and selective data pooling,
in addition to deploying efficient infrastructure, such as
intelligent reflecting surface [8], the ambient backscatter [9],
and wireless power transfer technologies [10].

Several solutions have been proposed to improve data
accumulation efficiency under constrained communication
and computation power, from different and somewhat com-
plementary perspectives. These methods include Data Com-
pression [11], Semantic Communication (SC) [12], and Edge
Computing (EC) [13]-[15], which aim to minimize or fully
eliminate raw data exchange in one form or another while
not compromising the ultimate quality of service for learning-
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based applications. Although these methods substantially
enhance the efficiency of network-based learning, determining
the most effective data collection strategy remains a legitimate
challenge.

Our key contribution is developing a formal way of
distributed diversity-maximizing data selection policy to
improve the learning quality of downstream learning tasks
without allowing full convention among sources. The col-
lected samples are utilized as a training dataset by the center
to train a library of Machine Learning (ML) models for
service provisioning via performing inference on incoming
and unseen data from users.

While adopting random selection strategies can be relieving,
it is often suboptimal in many cases. This is because
random selection does not consider the inherent relations
between data points, particularly the potential overlaps in
the feature space, which may result in the failure of a
subset in accurately representing the entire dataset, especially
when the collected samples are limited. Indeed, it has been
known for decades that the diversity of selected samples can
dramatically enhance the quality of learning applications [16]—
[19]. Therefore, selecting data samples that closely mimic
the geometrical distribution of the entire dataset (for FL-
based applications, this can be the distribution of gradient
information) by maximizing cross-sample distances in the
original or transformed domain can be advantageous. From
the statistical learning theory perspective, diverse data enables
the reduction of generalization errors through minimizing
the empirical risk during the training phase (i.e., training
error). In other words, diverse training data ensures that this
approximation is as close as possible to the true risk in the
underlying distribution. Additionally, diverse training data
can preserve a similar hypothesis space (i.e., a set of possible
models) with the entire dataset, leading to a higher probability
of obtaining a more generalizable model compared to models
trained on less diverse data with limited hypothesis space [20].

Due to its simple form, high interpretability, and high
efficiency, Determinantal Point Processes (DPP) is commonly
used for diversity maximization. DPP can also be used as
a probabilistic approach to generate diverse data points. In
contrast to other point processing methods, such as Poisson
point processing, DPP can be formed solely based on the
correlation among elements. It assigns a high probability to
the measurement of sets of data points with low similarity,
making it a valuable tool for tasks like dimensionality
reduction and representative sample selection from large
datasets [21], [22]. Additionally, by leveraging the properties
of linear algebra, DPP can be used to effectively select subsets
from a given dataset [23]-[25].

When data exchange, storage, and processing capacity
of learning systems are constrained, we often desire to
identify and select the most diverse subset. This goal can
be implemented through DPP-based Maximum A Posteriori
(MAP). Recent studies have implemented a centralized
version of this algorithm, where all samples are available

in the same location or sources are allowed to share their
information with no constraint [22], [26], [27]. However,
in most practical systems, data samples are generated by
sources located at different positions, where cross-source
communication is often infeasible, prohibited, or costly.
To mimic such limitations, we also presume band-limited
communication between data sources and the processing
center, which translates to strict limits on the number of
accumulated samples, as considered in the system model in
Section IV. Specifically, we assume neither the sources nor
the coordinator has global knowledge about the collected
samples. Therefore, a conventional DPP MAP inference [22]
by traversing all data samples is infeasible, and using some
sort of distributed implementation is unavoidable. Perhaps,
the most popular approach to distributed DDP inference is a
multi-stage method proposed in [28], which first implements
a local greedy search by each source to collect candidate
samples that are diverse within that source regardless of
other sources’ samples, and then performs another selection
on the accumulated candidates to obtain the final set of
samples. This method is suboptimal because the original
selection neglects global diversity, as will be presented in
our comparative results. Furthermore, this protocol involves
sending candidate samples to a central unit, some of which
are ultimately discarded in the second stage. In contrast, we
impose a zero-communication overhead policy by merely
sending the selected samples.

In this paper, drawing inspiration from specific techniques
in Multiple-Input Multiple-Output (MIMO) transmission [29]—
[31] — particularly those relating to power optimization and
pre-coding processes based on Channel State Information
(CSI) — we propose an effective and scalable scheduling
strategy. It is noteworthy that this strategy is not designed to
enhance existing MIMO techniques, rather it borrows ideas
from MIMO systems to implement similar techniques to
implement a distributed version of diversity-maximizing data
collection applicable to a wide range of applications with
arbitrary communication systems. The only requirement is
the presence of a feedback channel from the sink to data
sources that encompasses almost all modern communication
systems. The key idea is developing a lightweight feedback
mechanism to eliminate the need for sharing actual samples
among sources to facilitate global diversity assessment (as
shown in Fig. 1). For instance, the total MIMO capacity
expression is decomposed to the sum of disjoint individual
capacity terms to simplify power optimization (decomposing
log det() in Eq. 3). We use a similar methodology to break
down the global diversity measure into quantifiable terms,
each of which depends only on the samples of one source
(Theorem 1). An inherent assumption of our approach is
interval-by-interval transmission. This approach enables us
to design a feedback mechanism to send surrogate diversity
measures to each data source. With this feedback, each source
can adjust its local selection strategy to select diversity-
maximizing samples in a global sense without having access
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Compute representative global
diversity messages by sink
(similar to estimating CSI in MIMO)

Select candidate samples in
each source and send to sink

Send feedback to sources
(similar to sending CSI in MIMO)

Adjust local selection
(similar to Pre-coding in MIMO)

Figure 1. The workflow of the proposed MIMO-like distributed diverse data selection framework.

to the samples collected by other sources. These two steps
are analogous to Channel State Information (CSI) estimation
and Pre-coding, respectively.

Contributions. We propose a MIMO-inspired strategy for
performing the MAP inference on distributed data under
communication constraints with the following steps. First,
we reformulate the lower bound of the global diversity,
which allows us to decompose it into a sum of factors,
where each of them can be quantified locally from its
source. Afterward, we show that the feedback mechanism can
improve the lower bound of diversity (we name it conditional
lower bound). This tighter lower bound further enhances the
diversity of selected samples. Additionally, to address the
bandwidth-limited transmission, we propose a determinant-
preserving approximation of the feedback messages based
on Cauchy-Binet’s formula to achieve near-optimal global
diversity without sharing data samples. Finally, we investigate
the practical benefits of our distributed data selection by
evaluating the performance of downstream learning tasks
in multiple applications, including Classification, Object
Detection, and Multiple-Instance Learning (MIL).

Il. Related Work

In this section, we delve into the existing methods to improve
data accumulation efficiency from different perspectives,
including Data Compression, Semantic Communication, and
Distributed and Federated Learning.

Data Compression along with Individual and Distributed
Source Coding [32], [33], and Compressive Sampling meth-
ods [34] aim to reduce the accumulated data size by exploiting
temporal and spatial correlations and sparsity patterns to
design more efficient source encoders while retaining essential
information to minimize the storage and communication
overhead. Conventional compression methods led to the
design of efficient encoders for common data modalities (such
as MP3/AAC format for audio, JPEG/HEIF for images, and
H.264/H.265 for video). Compressive sensing on the other
hand intends to take samples far below the Nyquist rate when
the signal representation is sparse in a potentially unknown
domain (e.g., fMRI imaging [35]). Distributed compression
also aims to exploit spatial correlations for joint recovery
of data collected from distinct sources (e.g., multi-view
imaging [36], [37]). Beyond conventional methods, a recently
emerged trend is to harness the astonishing power of Deep
Learning (DL) architectures to implement learning-based data
encoder-decoder methods for image and video compression,
demonstrating enhanced compression ratios [38]-[41].

VOLUME

Another fundamental paradigm shift is departing from
content delivery, namely transmitting raw and compressed
data batches towards developing Semantic Communication, a
knowledge-based approach to convey the semantic content of
data to users, especially for learning-based applications. As
an illustration, in a traffic safety monitoring system, instead
of transmitting complete video frames captured by roadside
units, a set of representative features gauging the overall safety
of traffic on the road can be sent to the control station [1],
[42]. Likewise, Semantic Communication can be deployed by
wireless vehicular networks [43] to enable efficient service
provisioning for multiple users in vehicle-to-vehicle networks
without sharing high-throughput raw imagery. This method
involves constructing Knowledge Bases (KBs) that facilitate
the extraction and interpretation of semantic information by
the sender and receiver, respectively [12]. Such methods
well integrate with Edge Computing architectures, where the
bulk of the processing is pushed to the network edge in the
proximity of data origination sources [44].

Another avenue to solving this issue is using Distributed
and Federated Learning (DL/FL), an increasingly embraced
approach. FL substitutes data exchange with model-sharing
strategies, orchestrating locally constructed models to form
unified learning models without the need for sharing massive
information. While reducing communication costs, it also
mitigates data privacy concerns, especially when equipped
with privacy-preserving calculations [13], [45]-[47] and
encryption methods [48]. FL has found a particularly warm
reception in medical applications, where patient privacy is
of paramount concern. Similar to semantic communication,
FL can also hugely benefit from the expanding capabilities
of ever-growing EC platforms [49].

Our method is applicable to central processing methods
where data aggregation is an integral part. It is also applicable
to FL, which involves some sort of data delivery to local
processors. Further, the global learning quality metrics can
be enhanced by selecting the most diverse samples across
local models. Our method also well integrates with semantic
computation, if proper similarity kernels are designed to
characterize the semantic diversity of shared content. In short,
our discern data selection method, does not replace, but
complements the modern EC, FL, and SC approaches.

lll. Background Knowledge

A. Determinant Point Processing (DPP)

DPP is a probability measure defined over 2!S! subsets of S,
where |S| denotes the cardinality of the set S. Suppose a finite
dataset is represented by Z = [z1,22, - ,2,] € R™*™,
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Here, z; is a m x 1 column vector representing the i*" data
sample. Given a Gram Matrix L = ZZ", L-ensemble DPP
is presented by having an arbitrary subset A drawn from
the entire set S to satisfy, P(A) oc det (L), where P(A)
denotes the probability of selecting subset A from the entire
set S and L4 denotes the submatrix of L with rows and
columns indexed by set A. The MAP inference for K-DPP
is formulated as,

s.t. |A| = kT, (1)

where A denotes the index set of selected samples and
constant kp denotes the given fixed cardinality, and kp <
rank(L) is a necessary condition to ensure L4 is full-rank,
and accordingly, its determinant is greater than 0. This is
because the rank of a submatrix never exceeds that of the
original matrix, i.e., rank(L) < rank(L) [50]. If we have
kr > rank(L), the identity rank(La) < rank(L) implies
that rank(L) < kr meaning that L 4 is not full rank. Without
this constraint, k7 could be greater than rank(L 4), leading
L4 not to be full-rank.

From the geometric perspective, det(L 4) represents the
square of the volume formed by the feature vectors of selected
samples, which occurs for orthogonal vectors [21]. Hence, the
DPP MAP problem (Eq. 1) is equivalent to orthogonalizing
feature vectors, which leads to a better representation of the
feature space.

Since MAP inference is an NP-hard problem, one popular
solution is using greedy search and formulating the following
sub-modular function, j = arg max;e s\ 4 log det (L Au{i}) —
log det (L 4), which can give a (1—1/e)-approximation of the
optimal solution [28]. Here, j denotes the selected index in
each round. The current fastest greedy search proposed in [22]
is based on the Cholesky decomposition and requires O(n?)
complexity for initialization and O(k%n) to return kp items.
We denote selection by this method with given Gram matrix
L and the set cardinality k7 as A* = MAP-DPP(L, kr).

arg max det(L,),

B. Multiple-Input Multiple-Output (MIMO) systems

Before delving into the design of our distributed selection
strategy for transmission scheduling, let us briefly review
the fundamental principles of MIMO systems that inspired
us to develop the proposed method. In a MIMO system,
a signal vector s € C™ is transmitted by M antennas
TX;, ---,TX,,, ) to be received as a vector r € C™~
by N antennas (RXi,---,RX,,, ). The link between a
transmitting antenna 7'X; and a receiving antenna R.X;
is represented by an element G; ; of the channel matrix
G € Cm*™r The channels are influenced by factors
such as multi-path fading and interference, causing different
link conditions. Mathematically, a MIMO system can be
presented as r = Gs + n, where n € C™~ is often modeled
as an additive zero-mean Gaussian-distributed noise with
covariance oI, i.e. n ~ CN(0,0°I). Apparently, when
the channels are highly correlated and the rank of G is
low, the equations for recovering s from r become under-

determined. To mitigate the interference of different antennas
at the receiver, pre-coding is employed to orthogonalize data
between channels by utilizing channel state information (CSI).

We assume m; = m, and let Q = E[ss'] denote the
covariance matrix of s, where s’ denotes the conjugate
transpose of s. Inequality trace(Q) < p always holds for
preserving the overall power constraint. The capacity of the
system measures the maximum amount of information that
can be transferred with an arbitrary small error. According
to [51], the capacity is:

1
max C=logdet(I+ - GQG') s.t. trace(Q) < p. (2)
g

Let SVD of G be svd(G) = USVT, and \; represent the
i-th singular value of G, which corresponds to the diagonal
element of S. Then, the optimal solution of Q can be
expressed as VPVT, where P is a diagonal matrix with
elements {p; }1<;<n. Then, the problem in Eq. (2) can be
reformulated accordingly:

max
trace(P)<p

PiA
@ 1 1 J
m()Z s (1+25).

The equality (a) holds because (1 + p;—z) is the eigenvalue

of (I + %USQPUT), and the product of the all eigenvalues
of a square matri2x is equal to its determinant [52]. Note
that log (1 + pa—)z‘ is concave in p; and represents the
capacity of the Single-Input Single-Output (SISO) channel
with transmission power p;, channel gain J\;, and noise
variance o2. Therefore, using SVD-based pre-coding can
translate the original matrix optimization problem in Eq. (2)
to a much simpler form of Eq. (3), which can be solved by
standard convex optimization algorithms. To realize SVD-
based precoding, we use s = VP!/2s to orthogonalize
the transmitted signal. We will use a similar approach to
decompose the global diversity measurement into a sum of
individual terms that purely depend on the samples within
each source.

log det (I + EUSQPUT) 3)

IV. System Model

In this work, we will follow a system model presented in
Fig. 2, which consists of a processing center, distributed
sources, and several distinct data users. This model ensures
generalization to different data types, learning models, appli-
cation domains, and communication systems. Although we
considered one target application, one processing center, and
distinct data source and users, extension to more complex
setups where some nodes have both source and service
user functions or systems with multiple processing centers
is straightforward. The processing center pools data from
distributed sources in an interval-by-interval fashion to build a
learning-based data processing model (or a library of models).
In each interval, the processing center computes and sends
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the spare feedback to sources based on the received data.
These messages can be used as surrogate measures for the 104
accumulated data to compute and enforce global diversity. 104
Then, each source adjusts its selection strategy based on 0]
the received feedback and prepares data for the next round 2 o]
of transmission. The interval-by-interval transmission fully gm,_
aligns with the current trend of online deep learning methods o o o ) ‘\ %
where training is typically performed for a received data batch, ] poourte (0=10.m =20) W
because re-training for a single data sample is known to be YT A (o o, 2 280 *\\

107 4 == Approx. (n=100, m =200) *

inefficient. This continued process enables the processing
center to train and maintain a library of Machine Learning
(ML) and inference models for seamless service provisioning.
Our main objective is to develop optimal data selection
strategies by distributed sources with minimal data sharing
overhead. It is worth mentioning that the selected samples
in the center are used to train the models, and the inference
is performed on new, unseen data samples from users. The
workflow of our proposed method is presented in Fig. 1.
We evaluate the effectiveness of the selection methods from
two perspectives: i) the diversity of the selected samples
defined by DPP, and ii) more importantly, the learning quality
of the downstream tasks, which can be evaluated by task-
specific metrics (e.g., accuracy and F1 score for classification
and mean average precision (mAP) for object detection). A
summary of metrics used in our evaluation is provided in
Table 1. Please refer to Section VII and Section VIII for the
detailed evaluation.

€ Center
N

\ 4
D User

% Edge Server

Selected Data

§§ Data Source Sparse Feedback

€2 ML/DL model

Figure 2. A typical workflow of data-driven service provisioning systems.

In each round, data sources select data samples and transmit them to the
center. Data selection is rendered based on feedback messages provided

by the center. After data acquisition, the center can train a library of ML/DL
models for service provisioning.

V. Problem Formulation

First, we present the notations in Table 2. Suppose
there are N data sources with disjointed index sets
51,89, -+ ;8- ,Sy,and S = S1USUS;U---USy rep-
resenting the indices of the entire set, and S;N.S; = 0, Vi # j.
The total number of samples is n = Zfil n;, where n; = |9;|

VOLUME

107 10 10° 10° 10° 10°

Figure 3. lllustration of the approximation in computing diversity in
logarithmic scale. Here, the accurate diversity is computed by

det(1Z 4 Z;) (shown with solid line and A marker) and its approximation
is det(1Z 4 ZI\ + I) (shown with dashed line and + marker). We randomly
generate a data matrix Z 4, where (Z 4); ~ N (0, I,,,). Parameters n and m
denote the number of samples and dimensions of Z 4, respectively. For
sufficiently small ¢, the approximation is accurate.

denotes the cardinality of the set .S;. Also, let Z € R™*" be
the data matrix of the entire set, where z; is a m x 1 data
vector. Recall that to maximize diversity, we need to optimize
the following problem under communication constraints to
select a subset .A:

“)

where, again, L 4 denotes the columns and rows of L indexed
by A, and kr is the total number of samples we afford to
transmit. Likewise, X 4 g denotes a submatrix of X with rows
and columns indexed by A and B, respectively. If A = B and
X is a square, it can be denoted as X 4, otherwise X 4 only
denotes the rows of a non-squared matrix X indexed by A.
Conventional MAP methods require transmitting all samples
to the center to solve this optimization problem, which is
impractical or costly when data is distributed across different
sources. In these cases, the construction of L is not feasible.
However, Lg,, -+ ,Lg, can be easily obtained at different
sources, where Lg, = Zsl.Z:gri, and the subproblems of the
global MAP inference include

arg max log det ((Lsi)Ai), sit. Al =ki, (5)

arg max logdet(Ly), s.t. [|A|=kp,

where (Lg,),. denotes the matrix Lg, indexed by A;.
Although these sub-problems can be solved locally to maxi-
mize within-source diversity, their resulting samples do not
necessarily maximize the global diversity, for not considering
the similarity of samples across different sources. On the other
hand, sharing full knowledge about samples across sources
is costly. To mitigate this issue, we propose a lightweight
feedback mechanism in our method as a surrogate measure for
the diversity of samples. The problem now is to collectively
select A; for source i, which can be achieved by maximizing
of det(L4) with A = A3 U A3 U A, U---U Ay subject
to the constraint Y |A;| = kr and A; N A4; = 0,Vi # j.
Following [28], we assume each source transmits the same
number of samples, which is denoted as, k; = kr/N.
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Table 1. The metrics used in our evaluation. T means higher is better, and | means lower is better. The range of all metrics is 0-1.

Tasks

Metrics Evaluation

Diversity-based Selection

Relative Diversity Error (RDE) (Eq. 24) (1)

Section VII

Classification
Downstream

Accuracy (1), F1 score (1)

Section VIILA

Object Detection

mean Average Precision (mAP) (1), F1 score ()

Section VIIL.B

Learning Tasks
Multiple-instance Learning

Accuracy (1), F1 score (1),
Area Under the Receiver Operating Characteristic Curve (AUC) (1)

Section VIII.C

Table 2. Some important notations used in Sections V and VI.

Notation Description

A; The index set of selected samples from source .

A The index set of selected samples from all sources.
A=A UAUA U---UApN.

B The index set of selected samples until this moment.

C The index set of selected columns and rows of Hj.

kr The total number of selected samples.

ki The number of selected samples from source .

(k) The set {1, ,k;}.

L The Gram matrix of the entire dataset. L = ZZ".

Lg, The Gram matrix of data in source i. Ls, = Zg,Z{ .

m The dimensions of the dataset.

[m] The set {1,---,m}.

The set of k;-combinations of [m]. i.e. {V |

eg. ( 8 ) — {{1,21,{2,3}, {1.3}).

VS ml, V| = k).

n The number of samples in the dataset.

n; The number of samples in source 7.

N The total number of sources.

o The cardinality of C,. |C| = ro.

T The number of transmitted singular vectors in Eq. 22.
R The total tolerable sparsity in transmission.

S The index set of entire dataset.

Si The index set of all samples from source .

Information in the center. The index set of selected samples

Y; at this moment that are not from source .S;.
ie. Y, =B\ A;.
Y Information in the center. Y = {Yy,---,Yn}.
Perfect feedback information (analogous to CSI in MIMO).
H; N
Please refer to Eq. 16.
H, The sparse approximation of H,.
Z The data matrix of the dataset. Z € R™*™.
Zs, The data matrix of the source i. Zg, € R™*™,
Zsl. Zg, after pre-coding (Eq. 23). Zsl e Rrixm,
A submatrix of X with rows and columns
Xa.B

indexed by A and B, respectively. A and B are some index sets.

If A= B and X is a square, X4 can be denoted as X (i.e. Ly,),
XA otherwise X 4 only denotes the rows of a non-squared matrix X
indexed by A (i.e. Z4,).

VI. Methodology

A. MIMO-like Decomposition

Similar to [53], since L4 is always a positive-definite
Hermitian matrix, we can use the approximation det(L 4) =
€Al det(1Ly) ~ elAl det(1L 4+1) for a very small . Some
examples shown in Fig. 3 demonstrate there is negligible
approximation error for a very small €. Therefore, we can

rewrite the optimization problem as,
arg max log det(%LA +1). (6)
This formula can then be presented as
L= 1ogdet(%LA+I) = logdet(%ZAZIl+I) (7)

a 1
@ logdet(=ZZ 4 +1)
€

N
1

= log det(— E Z),Z4, +1).
€<

The validity of (a) in Eq. 7 can be established through
SVD decomposition. When N < % holds, 1/(Ne) is still
a large number, and we can use approximation det(L 4) =
(Ne)Aldet(s-L4) =~ (Ne)M det(3-L4 + I), which en-
ables us to solve the following equation (adopted from Egs.
6 and 7) instead of directly maximizing det(L _4),

N
1
logdet(= Y "Z) Za, /N +1). 8
argAf,I.l-a,}iN Oge(ei Ai A’l/ +) ()

Here, we have A = A;UA,UA;U---UAy and A;NA; =
(), Vi # j. In summary, from now on, our goal is to maximize
the following approximate diversity expression

N
1
Ly :=logdet( > Z).Za, /N +1). 9)

Theorem 1. The lower bound of the approximated problem
Ly is given as,

N
1 1
Loy > [lower . v > :logdet(EZAiZL +1).  (10)

Proof:

First, we apply the concavity of f(X) = logdetX
for positive definite Hermitian matrices X [50], namely,
logdet(aX; + (1 — a)X2) > alogdetX; + (1 —
o) log det X5 for o € (0,1) and positive definite Hermitian
matrices X1, Xo. Therefore, we can easily obtain, £ >
clover = LS™Viogdet(1Z} Z 4, +1I). Then we apply the
equality presented in Eq. 7(a) to complete the proof. [ ]
Remark 2. theorem 1 allows us to decompose the global
diversity measurement into the sum of individual local
diversity measurements.
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Figure 4. The Venn Diagram of the set relations. Left: The largest ellipse
denotes A. The second largest ellipse denotes 5. Two inner ellipses denote
the index set A; and A, respectively. Right: The shadow area denotes Y.

B. MIMO-like CSI Estimation and Pre-coding

Similar to the MIMO systems, where the goal is selecting
samples from different sources with minimal interference
(through orthogonalization), here we aim to reduce the chance
of selecting samples in each source that are similar to the
samples of other sources. Ideally, we expect that regardless
of the selection by other sources, each source should perform
the selection process in parallel so that their collected samples
achieve the maximum global diversity, as close as possible.
Our approach is block-diagonalization of the similarity matrix
L, which is analogous to the orthogonalization process in
MIMO. For example, if we achieve full orthogonalization,
meaning that all samples of source 1 are orthogonal to all
samples of source 2 (ZiZjT =0 for Vi € S1,Vj € S,), then
each source can individually maximize the diversity because
their samples lie on orthogonal subspaces.

We can achieve this goal by pre-coding the samples in each
source Zg, to Zg, by Zs, = Zs, W;. However, learning W
by accessing extra data samples in all sources may not be
feasible due to the limited communication budget. Instead, we
propose a sparse diversity measurement of selected samples
that serves as the pre-coding matrix to tighten the lower
bound and guide the selection process.

Recall that A represents the collection of all selected sam-
ples after the completion of the entire selection process. We
then denote selected samples until a time point by B C A and
define Y; as the index set of selected samples at this time point
that are not from source S;, i.e., Y; = B\ (4,NB) = B\ A;.
Apparently, we have A; N'Y; = (. It is noteworthy that at
that time point, 4 is not fully known. Fig. 4 illustrates the
relationship of the index sets.

There are two considerations. First, the sources do not drop
selected samples because they are used in the next rounds
to calculate diversity, but never re-selected for transmission.
Second, the feedback message for each source is calculated
based on the collected samples from other sources, excluding
its own samples to avoid information loss.

To this end, we define ) = {Yi,---,Yy}, where we
have B = Y7 U --- U Yy. Therefore, we can rewrite the
approximation of the problem in Eq. 7 when conditioned by

VOLUME

Y as

N
1

=1 N7 74+ 1 11
L. ogdet(ezi: a,Za, +1) (11)
(a)
> L(-]Y)

® al

= log det (= Z(z;iz& +Zy.Zy,)/N +1)

N
log det(— Z(Z{AiuYi}Z{TAium})/NJFI)v
where equality (a) holds when A = A; UY; = B and (b)
defines the conditional problem. The conditional lower bound
L(- | Y) can be obtained as,

©

L(- Iy) ﬁ“’“’”( 1Y) (12)

1 1.1 1+
=% Xi:logdet(EZAiZAi + =2y, 2y +1)

N
b 1 1
= 5 Zlogdet(EZ{Alun}Z{TAiUn} +1),

where equality (a) holds when A = A;UY; = B. The equation
(b) holds is because of 4; NY; = 0.

Theorem 3. L°“¢"(. | V) is a tighter bound than L'"¢"
(presented in Theorem 1) to the problem L., which is
presented as L. > LoV (- | V) > Llower,

Proof:
First, £, > Elow”(~ | V) is proved in Eq. 11. Now, we need
to prove ﬁlower(. | y) > Elower,

N
1 1
2 logdet(“Ziaovy Ziayvy +D (3)

@ 1 &
> —Zlogdet zA Z) +1).

To this end, we observe LFS and RH S have the same form
of a submodular function. Since 4; C A; UY;, obviously,
the inequality is proved.

An example is shown in Fig. 5, which shows that the
conditional lower bound is a tighter bound than the bound
presented in Theorem 1.

|

Remark 4. We note that £!°v¢"(- | )) is still a form of the
sum of individual terms. Therefore, this theorem demonstrates
that, by taking the received information ) merely from the
center as feedback, we can adjust the future selection in each
source to enhance the overall diversity.

Remark 5. in fact, £!°%¢"(- | ))) can be updated sequentially
as[’lower(' ‘ y) . Elower(. | yO) N Elower(. | yl) —
if the selection is online. Here, )? is formed after receiving
data samples in the first ¢ intervals.
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Figure 5. Demonstration of the lower bound and conditional lower bound
of the diversity of a two-source scenario, developed in Theorem 3. We
generate Z 4, € R39%2%0 by (Z 4 ); ~ N(0, I200). Similarly, we generate
Za, € R8OX200 by (Z4,); ~ N (0, a’I200). Y1, Y2 are randomly selected
from A2, A1, respectively. The diversity increases with element variance
a2, as expected. The derived condition lower bound is consistently tighter
than the original lower bound.

Now, according to Remark 4, the target of each
source is switched to perform local selection ad-
justed by feedback, which is equivalent to maximize
log det(%Z{AiUYi}ZE—AiUYi} +1) individually in each source.
Fortunately, this problem rolls back to a MAP inference as

.
max et (Z{Aiuyi}z{mum), (14)
s.t. |A1‘:k,, AZQYZZQ

According to Schur’s complement, we can re-write it as,

det(Zya,ovyZia,or)) (15)
=det(Zy,Zy,) det (Za, (1- Zy,(Zy,Zy,) " 'Zy,) Z},,) .
Since det(Zy;, Z)T,i) is fixed, the only information depending

on Y; is

H, = (I-Zy.(Zv,Zy,) 'Zy,). (16)

Now, we only need to maximize det(ZAiHi/QH;/QZL),
where A; C S; and |A;| = k; still hold. Without loss of
information, we can send H; (which can be viewed as the
CSI) from the center to each source and adjust (which can
be viewed as the pre-coding) the data matrix Zg, to Zg, =
Zs HY/? where W, = H/?.

C. Sparse Representation of MIMO-like CSI

To further accommodate the band-limited communication
requirements, we seek sending a sparse representation of H;
than sending the entire information of H;. To this end, we
can obtain the upper bound of the problem,

Theorem 6. The upper bound of det(ZAngﬂH;/zZL) is
given as

det(Z 4, H*H}*Z] )
Sdet(ZAiZ—Ari) X Z

Jle( [Z} )

17)
det((H;) .y, )-

Proof:
First, we apply the Cauchy—Binet formula to re-write the
optimization problem as,

det(Z o, HY/?H?Z] ) (18)
= det((Za, HY/?)(Z4,HYH)T)
= Z (det ((ZA,L'H}/2)[]€7;],J1))2 )
Jl€< [;Z] )
where [m] denotes the set {1,...,m} and [Z:] > de-
notes the set of k;-combinations of [m], e.g., [g] =

{{1,2},{2,3},{1,3}}. As before, k; denotes the cardinality
of A;. Then, it is sufficient to prove
2
(det (Za,H )0, ) ) < det(Za, 25, det(HL, ).
19)

This is because,

(det (240 )) " = (det (Za,(B)p00))

(20)
2

2
[
]

det ((Za,)g,1.0.) det ((E}/) .0, )

v

Jo €
(a) 2
(det ((Za,) ki), 05))

<
< >
()

(det ((m1}/ 2>J27J1))2
(det ((Z,in)[m],Jz))2

x det <(H3/2)Jl,[m] ((HE/Z)Jl,[m])T)

(det ((ZAvi)[ki]Jz))Q det((Hi)Jl)

D det(Z4,Z],) det((H,) ),
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where (a) applies Cauchy—Schwarz inequality and (b)(c)(d)
apply Cauchy—Binet formula. Substituting Eq. 19 in Eq. 18
completes the proof. [ ]

Now we consider H; denotes the approximate H; by its
sparse representation. To preserve the determinant of the
upper bound, we should ensure

S det((f),) ¥ det((

Hi)J1)'

21

Computed Value

——=Ground Upper Bound
—— Approximation (ordered)
—— Approximation (random)

0 50 100 150 200
# of sub-matrices

Figure 6. An exemplary visualization of approximation in Eq. 21. We
generate Z 4, Zy, € R**19 H; is accordingly computed based on Zy,
by Eq. 16. The ground upper bound is computed by the left side of Eq. 21.
Now, J; is a 4-th combination of [10], resulting in a total of

10!/(4!(10 — 4)!) = 210 sub-matrices. The red line presents a case where
we select n; sub-matrices with largest det((I:Ii)Jl ) while the blue line
denotes we randomly select n ;; sub-matrices. It is observed that choosing
the first n;; largest sub-matrices can obtain a lower error than randomly
choosing these sub-matrices.

If a sub-matrix (H;)c is allowed to transmit with a
constraint |C| = rg, to minimize the difference between the
left term and right term of (a) in Eq. 21, it is not feasible to
traverse all possible sub-matrices when r and k; are a little
bit large (i.e. k;!/(ro!(k;i — ro)!) combinations); however,
we can immediately obtain a good sub-optimal solution
by DPP greedy search as C* = MAP-DPP(H,, (), since
it has to be selected at least the first 7o — k; + 1 largest
det((H;), ) in the greedy search. Here C* denotes the index
set of selected representative dimensions. Fig. 6 demonstrates
the approximation by choosing ny first largest sub-matrices
det((H;),) can obtain a lower error than random choose
these sub-matrices.

We define tolerable sparsity R x m for compression as the
number of elements that can be losslessly transmitted from
the center to each source. Transmitting the symmetric matrix
(H;)c- requires (13 + rg)/2 elements, which corresponds to
the number of elements in the lower triangular matrix of
(H;)c~. Furthermore, in cases where additional sparsity can
be utilized for compression purposes, we can compress the
residual matrix (H;)g. through singular value decomposition

VOLUME

(SVD). Here C* = [m] \ C*. By considering only the first r;
singular vectors and values, we only require a sparsity of r1m
for the compression. Hence, the constraint on the tolerable
sparsity R,, can be expressed as (r% +79)/2+rm < Rm.
Mathematically,
H, = (H))c- + V(:,1:m)diag(A, -, A )V (510 77)
(22)
st. (rg+rg)/2+rm < Rm,

Cr = MAP-DPP(H“ ’I“o),

Vdiag(A\1, -, Ap) VT = svd(H; — (H;)c-).
Therefore, the data samples in each source can be pre-coded
as Zs, = Zg, H 1/2 . In fact, since the CSI information
is not completely rehable, we precode the data samples
conservatively and use a momentum way, which is presented

as
Zs, = Zs,W,; = Zs,(1+ H}"?). (23)

A summary of our approach is shown in Algorithm 1.

Algorithm 1 DDPP: MAP Inference for MAP for Distributed

Data Source.

Input: Source data Zg, ,--- ,Zg, , Center information J =
{Y1,---,Yn}, the number of items selected in each
interval k; for each source. Sparsity parameters 7¢, 7.
The index set of selection .A.

Output: The updated index set of selection .A.
for iin 1: N do

#In each source 7. #All sources do these steps in parallel.
Computed CSI information H; based on Eq. 22.
Pre-code data in source i: Zs, = Zs, (I+ H1/2)

#Zs, and Z_g, are the original and pre-coded data
matrices, respectively.
Compute new Gram matrix LS LS =7 S, Zr 5i

A; + (. #Init. index set for selection.

while |A;| < E; do
#Selection based on DPP MAP. j is the index of the
selected sample.

Jj = arg maxX;es,\ 4, log det (LA U{z}) —
log det (INJAi)
if j ¢ Athen A; «+ A; Uj end if

end while

end for
A+~ AUAU---U

An.

D. Complexity Analysis
In this section, we evaluate the computational complexity of
the proposed method during one interval. We consider the
added computational load in both sources and the center. In
each source, the computation cost includes two terms for
i) pre-coding via matrix multiplication (i.e. Zg, = Zg, (I +
1/ ®)), which is O(n;m?), and ii) generating candidates in
each source by DPP, which is O(n?) + O(n;k?). Recalling
that n; and k; denote the number of total samples and the
number of selected samples in source i, we have k; < n;
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and the overall computation complexity in each source can
be approximated as follows O(n;m?) + O(n3) + O(n;k?) =
O(n; max(m? ,n?)). All sources perform the computations
independently and in parallel. If the total number of samples
n =n1 +ng + ---ny is fixed, when the number of sources
N increases, we have n; = n/N < m and the complexity
reduces to O(n;m?). In the center, the complexity comes
from the computation of CSI (Eq. 22), which requires
O(m3) + O(mr3) to generate C* and then a complexity
of O(m?) for SVD decomposition. Noting that m > ry,
the computational complexity in the center becomes O(m?).
In summary, the added computation load is O(n;m?) per
source and O(m?) for the center. Fortunately, the computation
load is polynomial in the dimension of the data samples m
and grows only linearly with the number of samples n;. In
most practical systems, the computational load of sources
is more important because the central processing servers
are typically equipped with higher computational resources.
It is noteworthy that the computational cost per source in
our method (O(n;m?)) is in the same order as the other
competitors, such as GreeDi [28]. with the additional benefit
of our method in replacing heavy transmission of raw samples
with lightweight diversity-representing messages.

VIl. Experiment

A. Comparison Method

In our experiments, we use the exact greedy search proposed
in [22] across all samples as the Ground Truth. We consider
multiple alternative methods for comparison, including

e GreeDi: A two-round method, the most known dis-
tributed solution, in which, in the first round, each source
greedily finds a set of size akr samples, and in the
second round, it performs another greedy search on
all candidates Nakp from the previous round [28]. To
meet a zero-communication overhead policy, we set
a =1/N. It is also equivalent to our method without
using the feedback mechanism.

e MaxDiv Source: It performs the exact greedy search
in one source with the largest Information-theoretical
diversity measured as log det(I + ﬁzgzs) [53].

e Random Selection: It involves random selection of
samples by each source. While the total number of
samples is the same as ours kp, the number of samples
selected by each source can be different.

e Stratified Sampling: Similar to random selection, but
with an equal number of samples selected by each source
(kr/N).

e Greedymax: A two-round method, in the first round,
each source greedily finds a set of size kr samples, and
in the second round, the set from the source with the
maximum diversity, is sent to the center [28].

B. Dataset and Experiment Setup

The first experiment involves diversity evaluation using two
datasets, CIFAR10 [54] and CIFAR100 [54]. Image datasets

were preferred due to the following reasons: i) they have
relatively high dimensions, which enables DPP to choose
a subset with a larger number of samples, ii) semantic
features can be easily obtained by pre-trained models, and iii)
images are the predominant data type used in many practical
applications, including our own projects of drone-based aerial
monitoring [55], [56] and Al-based traffic monitoring [1],
[42]. As a proof-of-concept experiment, we used a pre-
trained ResNet-18! to extract the latent features of images
and set the number of dimensions to m = 512. For the
sake of completeness, we consider different numbers of
sources N = 5,10,12,15,20. Each source includes a non-
overlapping set of 500 different samples. We executed all
of our experiments on a node of a cluster with an Intel(R)
Xeon(R) Gold 6148 CPU with 125 gigabytes of memory. Note
that the primary algorithm does not require a GPU to operate.
For simplicity, we consider selecting a total of kr = 120
samples in ¢ = 2 intervals. Therefore, a total of 60 samples
is selected in each interval. Note that the feedback mechanism
is utilized only once per interval. We set the tolerable sparsity,
defined in Section C, to R = 0.75 x kr/tr = 45. Note that
R = kr/tr leads to a trivial scenario where we can send all
the previously received samples back to each source.

C. Comparative Results

The original DPP-diversity for a selected subset A is defined
as det(Z ﬁz})’ where a higher value represents a higher level
of diversity. For comparison convenience, the performance
is presented as the Relative Diversity Error (RDE) with
respect to the ground truth. Specifically, if the ground truth
is A* and the inference subset by one approach is A. Then,
the RDE is defined as

1—logdet(Za-Z ).)/logdet(Z 5Z%), (24)

with a range of O to 1 (the lower is better). The results
from running 20 times are shown in Table 3 and Fig. 7(a-b).
The main observation is that our approach outperforms all
baselines and alternative methods, exhibiting a considerable
gain consistently for different numbers of sources on both
datasets. Our approach significantly improves upon the
random, stratified random and MaxDiv selection with a
considerable reduction of 75% in RDE. More importantly, we
found the feedback mechanism can decrease RDE varying
from 12% to 26% in CIFAR-10 and 19% to 21% in
CIFAR-100 compared to the method without feedback (i.e.
GreeDi). The diversity increases for all methods by collecting
samples from more sources as expected, but the performance
superority for our method does not diminish. We also
perform a two-sample ¢-Test for the selection performance
to demonstrate the reliability of our method. According to
the results shown in Table 4, the P-value is tiny and much
smaller than 0.05, which indicates our method indeed has a
statistical superiority over the second-best method, GreeDi.

IThis model can be found at https:/pytorch.org/vision/stable/models.html.
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Figure 8. Comparison of the performance (/) of different compression strategies (a)(c) and tolerable sparsity (b)(d) on CIFAR-10 and CIFAR-100 datasets.

D. Ablation Analysis

We conduct the following experiments to investigate the
benefits of sensing the compressed version of CSI messages,
H;, through the feedback channel. , we compare our method
against the following alternative method,

e SVD replaces the proposed way of compressing Hj
with an SVD-based compression (i.e. using the first R
singular vectors of Hj).

e Random Sketch generates set C by randomly sampling
from the set [m] in Eq. 22. As before, [m] = {1,--- ,m}
represents the index set of dimensions.

The results are shown in Table 5 and Fig. 8(a)(c), con-
firming that both SVD and the proposed method can be
used to improve the selection over Random Sketch method.
Nonetheless, our method outperforms both two alternative
compression strategies,SVD and Random Sketch. We found
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Random Sketch, at some time, is even worse than the selection
without any feedback (GreeDi), indicating that a naive way
of forming feedback messages can be misleading.
Additionally, we evaluate the impact of different tolerable
sparsity (R) in Table 6 and Fig. 8(b)(d). The results show
that our method can outperform SVD-based compression in
different tolerable sparsity. Even at 0.25 level, our methods
obtain improvement and achieve a reduction of 10% in RDE
compared to GreeMi and SVD in CIFAR-100 dataset.

VIIl. Potential Applications

In most practical data-driven Al-platforms, the ultimate goal
is not only escalating the sampling diversity, but also to
improve the users’ Quality of Experience (QoE), reflected in
the performance of the downstream learning-based tasks (e.g.,
classification, object detection, etc.). Translating diversity
gain to learning quality often needs to adopt a proper

11
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Table 3. The relative diversity error (RDE) of different selection methods.
({): Lower is better.

Dataset #ofCluster 5 10 12 15 20
Ground Truth 0.0000 0.0000 0.0000 0.0000 0.0000
MaxDiv Source 0.1004 0.1115 0.1130 0.1194 0.1281
Random Selection  0.1074 0.1186 0.1205 0.1259 0.1270

CIFAR10  Stratified Sampling 0.1083 0.1167 0.1194 0.1238 0.1277
Greedymax 0.0344 0.0450 0.0491 0.0528 0.0565
GreeDi 0.0158 0.0250 0.0278 0.0327 0.0392
DDPP (Proposed) 0.0139 0.0203 0.0216 0.0268 0.0209
Ground Truth 0.0000 0.0000 0.0000 0.0000 0.0000
MaxDiv Source 0.1126  0.1128 0.1271 0.1270 0.1337
Random Selection ~ 0.1090 0.1195 0.1295 0.1291 0.1322

CIFAR100 Stratified Sampling 0.1096 0.1195 0.1243  0.1236  0.1300
Greedymax 0.0357 0.0470 0.0501 0.0534 0.0574
GreeDi 0.0200 0.0359 0.0394 0.0432 0.0510
DDPP (Proposed) 0.0158 0.0283 0.0318 0.0349 0.0399

Table 4. The P-value () of two-sample t-Test between the proposed and
GreeDI methods.

Dataset #ofCluster 5 10 12 15 20
CIFAR10  GreeDI-DDPP (Proposed) 1.1E-04 1.1E-07 3.6E-09 6.3E-10 1.9E-16
CIFAR100 GreeDI-DDPP (Proposed) 1.6E-07 24E-11 14E-08 8.0E-08 9.1E-11

distance metric for DPP-based analysis. Designing a proper
measure is out of the focus of this paper; however, as
mentioned in Section B, we can simply use dot vectors
among feature vectors, extracted by a pre-trained ResNet-18
as a low-dimensional semantic representation of data samples
when calculating inter-sample correlations. This approach
benefits both efficient selection and the resulting learning
quality, while not requiring a custom-built similarity metric.
It means that even a higher learning quality is attainable for
each task if we use a tasks-specific distance metric and
compromise the generalizability. This idea is commonly
used to build knowledge base in the realm of semantic

Table 5. Comparison of the performance in RDE (| ) by different compression
strategies with different numbers of sources.

Dataset #ofCluster 5 10 12 15 20
GreeDi 0.0158 0.0250 0.0278 0.0327 0.0392
SVD 0.0289 0.0215 0.0254 0.0306 0.0336

CIFARI0 Random Sketch 0.0164 0.0251 0.0278 0.0306 0.0359
DDPP (Proposed) 0.0139 0.0203 0.0216 0.0268 0.0289
GreeDi 0.0200 0.0359 0.0394 0.0432 0.0510
SVD 0.0178 0.0307 0.0341 0.0358 0.0411

CIFAR100 Random Sketch 0.0207 0.0348 0.0374 0.0423 0.0471
DDPP (Proposed) 0.0158 0.0283 0.0318 0.0349 0.0399

Table 6. Comparison of the performance in RDE (| ) by different compression
strategies with different tolerable sparsity.

Dataset Sparsity (xkr/tr) 0.25 0.4 0.5 0.75
GreeDi 0.0250 0.0250 0.0250 0.0250

CIFAR10 SVD 0.0246  0.0238 0.0236 0.0215
DDPP (Proposed) 0.0231 0.0225 0.0221 0.0203
GreeDi 0.0359 0.0359 0.0359 0.0359

CIFAR100 SVD 0.0356  0.0335 0.0308 0.0301
DDPP (Proposed) 0.0317 0.0313 0.0298 0.0283

communication networks [44]. The following examples show
the boosted learning performance when using our sample
selection strategy.

A. Classification

This test involves conducting classification on CIFAR-10 and
CIFAR-100 datasets. We use the k-nearest neighbors (KNN),
a non-parametric method, to evaluate the representation of
selected samples. The classification results on both datasets
are shown in Tables 7 and 8, respectively. The results suggest
that training the classifier with data samples selected by our
method outperforms all other methods on both datasets. For
example, our method achieves at least 3% higher accuracy
on CIFAR-10. The F1 score improvement is at least 0.02.
Fig. 9 presents the selected samples by different methods
in CIFAR-10 visualized by Principal Component Analysis
(PCA). It can be observed that our method, overall, selects a
more diverse set of samples (shown by red circles), compared
to random selection. This is the ground for achieving higher
learning quality.

For the sake of completeness, we also investigate the
classification results on Tiny-ImageNet [57], a very chal-
lenging large-scale dataset. For example, training a ResNet
classifier on the entire dataset can only achieve about top-
1 classification accuracy of 55%. In this experiment, we
use pre-trained ResNet-50 to extract the latent feature and
select 1200 samples in total. We compare our methods
with the recent state-of-the-art data selection methods in
the distributed setting. These methods include K-Center
selection [58], submodular mutual information selection
(MIV2) [59], density-aware selection (DACS) [60], and
coverage-centric Selection (CCS) [61]. The results are shown
in Table 9. Our methods consistently demonstrate superiority
over other methods with an average improvement of 1.6% in
accuracy and 2.5% improvement in F1 score across different
numbers of sources. Additionally, our method obtains a
substantial gain over the random selection with a 4%-6%
improvement in accuracy. Another interesting observation is
that although the recent selection methods (i.e., DACS and
CCS) occasionally outperform GreeDi (our method without
utilizing the feedback mechanism), our method, by leveraging
the feedback mechanism, can easily compete with them. This
further underscores the crucial role of the proposed feedback
mechanism under distributed sources.

B. Traffic Sign Detection

In order to investigate a more practical scenario, we consider
traffic sign detection in the realm of smart transportation [62].
It involves the identification and localization of traffic signs
in images, an integral part of Autonomous Vehicles’ (AVs)
control stack, Advanced Driver Assistance Systems (ADAS),
or traffic management enterprise. As a proof-of-concept, we
use a small dataset [63] in our experiments. This dataset
contains 877 images of 4 distinct classes, including Traffic
Lights, Stops, Speed limit, and Crosswalk. We use 177 images
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Figure 9. Selected data points by our method in comparison with random selection. We use the first two principal components of data for visualization.

The selected samples are denoted by A markers. We draw the =—ball (i.e. Ball(zo,¢) = {z;

s |lz; — xoll2 < €} ) for each selected point as shown in the

red area to denote its coverage in the feature space. This concept is employed from Covering Number [20]. The proposed method presents better
coverage, reflected in the elevated accuracy of a classifier that uses our method to select training samples.

Table 7. Comparison of classification results on CIFAR-10 by different

Table 9. Comparison of classification results on Tiny-ImageNet by different

strategies. strategies.
Method #of Sources 5 10 12 15 20 Method # of Sources 5 10 12 15 20
Random  Accuracy (1) 5316 5279 52.66 5292 53.96 Random  Accuracy (1) 27.66 28.01 28.06 27.37 2801
F1 () 0.533 0483 0499 0500 0.519 F1 () 0248 0251 0251 0248 0.252
Stratified  Accuracy (1) 53.85 53.16 5343 5426 53.76 Stratified  Accuracy (1) 28.14 27.88 2840 28.45 27.78
Sampling  F1 (1) 0.517 0512 0509 0519 0514 Sampling  F1 (1) 0254 0248 0254 0255 0.250
Greepi  Accuracy (1) 5552 54.84 5462 5465 53.05 Kecenter  Accuracy (1) 30.15 2880 2886 28.06 27.55
F1 (1) 0.523 0512 0502 0514 0.500 F1 (1) 0292 0285 0280 0273 0267
DDPP Accuracy (1) 5851 57.27 5740 58.05 56.52 MIvz  Accuracy (1) 2991 2843 2855 2828 2830
(Proposed)  F1 (1) 0.560 0.540 0.543 0.554 0.538 F1 (1) 0268 0255 0257 0255 0.254
pAcs  Accuracy (1) 3377 3232 3251 3159 3177
F1 (1) 0285 0270 0269 0262 0270
Table 8. Comparison of classification results on CIFAR-100 by different P Accuracy (1) 33.15 32.60 32.66 31.57 3144
strategies. F1 (1) 0282 0273 0271 0265 0263
Greepi  Accuracy () 3236 3266 3252 31.82 31.86
Method #of Sources 5 10 12 15 20 F1 (1) 0.280 0.274 0.271 0266 0.266
Random  Accuracy (T) 4671 45.58 4426 4415 42.43 DDPP  Accuracy (1) 34.66 34.61 33.66 33.40 32.92
F1.(D 0439 0431 0420 0428 0392 (Proposed)  F1 (1) 0305 0302 0295 0292 0.287
Stratified  Accuracy (1) 4652 46.05 4336 4433 4455
Sampling  F1 (1) 0442 0432 0406 0410 0418 Table 10. Comparison of performance on object detection of different
Greepi  Accuracy (1) 4808 4848 4572 4573 44.79 selection strategies.
F1 () 0441 0456 0414 0399 0.391
DDPP Accuracy (1) 49.68 49.02 4722 4778 46.29 S;q‘“l:i';g Random g‘ra“ﬁed GreeMi PDDPPd
(Proposed) F1 (1) 0471 0459 0442 0452 0.421 etho amp7ing (Proposed)
RDE (}) 0.1077  0.0986 00795  0.0535
mAP@50 (1) 05920 05923 06364  0.6488
Detection mAP@50-95 (1) 04427 04553 04734  0.4961
F1 score (1) 05724 05811  0.6016  0.6120

as the test set. We set the number of sources N = 10, and each
source contains 70 images. We select k = 120 samples from
this dataset by using different selection strategies. Then, use
the selected samples to train a state-of-the-art object detector
YOLOVS [64] from scratch. The performance of detection
is evaluated by mean Average Precision (mAP) at different
Intersection over Union (IoU) thresholds (0.5 and 0.5-0.95)
and F1 score. The results are obtained by averaging over 10
runs. As shown in Table 10, increasing the diversity generally
can enhance the detection performance. For example, with
a 0.05 RDE decrease compared with Random selection, our
method can obtain around 0.05 mAP improvement and 0.04
F1 score improvement, respectively. Fig. 10 demonstrates the
selected images inference by the model trained on different
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selected data, which brings considerable improvement in both
accuracy and confidence of the detection.

C. Car Crash Detection via Multiple-Instance Learning

To show the utility of our method in the more complex
problem of video analysis, we develop an experiment for
video-based crash detection. In real surveillance videos,
the task of classifying whether a crash has occurred is of
paramount importance, but what is even more critical is the
rapid detection of the precise moment when a crash occurs.
However, this presents a significant challenge as annotating
each individual frame in the video is a time-consuming
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Figure 10. The application of our method in traffic sign interpretation. The selected results of detection by training a YOLOv8 detector from scratch using
data selected by Top: Stratified Sampling and Bottom: Our proposed method. Our method demonstrates higher confidence and higher accuracy in the
detection.
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Figure 11. Video-based crash detection. Training videos are selected based on their frame diversity with respect to other videos using different methods.
The confidence of the crash occurs provided by the attention map in sequential frames by two selection methods.
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Table 11. The learning quality of multiple-instance learning by different data
selection strategies.

Sampling Stratified . DDPP
Method Random Sampling GreeMi (Proposed)

RDE () 0.1495 0.1467 0.0960 0.0939

Accuracy (1)  0.8251 0.8247 0.8359 0.8548

MIL F1 score (1) 0.8295 0.8321 0.8385 0.8549

AUC (1) 0.9066 0.9038 0.9094 0.9228

and labor-intensive task, made even more complex by the
varying lengths of different videos. To address this issue, a
practical solution is to leverage video-level annotation and
employ Multiple-Instance Learning (MIL) [65], which is
a weakly-supervised method and widely used in Anomaly
Detection [66]—-[68].

In this problem, each frame in a surveillance video is
treated as an instance within a bag and is assigned a binary
label, either O (for negative) or 1 (for positive), based on the
presence or absence of a crash event. The video, on the other
hand, serves as a bag containing multiple instances, which
are the frames. A key characteristic is that a bag is considered
negative (labeled as 0) only if all its instances, meaning all
the frames within the video, are negative. Otherwise, if any
frame within the video is positive, the entire bag is labeled
as positive (1), indicating the presence of a crash event. In
this work, an attention-based MIL method [65] is utilized.
This method likely involves the use of attention mechanisms
to weigh the importance of different instances (frames)
within a bag (video) when making the final classification
decision, effectively allowing the model to focus on the most
informative frames for crash detection.

We use the Car Crash Dataset (CCD) [69], which contains
traffic accident videos captured by dashcams mounted on
driving vehicles. We choose N = 10 and each source contains
100 videos. We select k7 = 80 videos using ¢t = 2 intervals,
using various selection methods. The diversity and learning
quality of selected samples are shown in Table 11, which
demonstrates an improved accuracy, F1 score, and AUC for
our selection method. The frame-level prediction confidence
of the crash obtained by the attention map from the trained
model is shown in Fig. 11, which demonstrates in both
exemplary frame sequences, the model trained by samples
selected by our method has the more accurate localization
of the crash occurs.

IX. Conclusion

DPP is a formal method to enhance data diversity for learning-
based systems. However, it requires access to the entire dataset
in one place, which limits its applicability to diverse sources
in real-world applications. To address this key challenge, we
implemented a DPP MAP inference for distributed data from
multiple sources as a universal diversity-maximizing data-
sharing strategy for distributed sources that only requires a
lightweight feedback channel from the center to the sources
with no cross-source communication requirement. To this end,

VOLUME

a novel scheduling policy, inspired by MIMO systems, is
proposed. Specifically, we demonstrated that the lower bound
of the original diversity maximization problem that maximizes
global diversity can be decomposed into a sum of factors that
enables distributed selection. Additionally, approximating
the lower bound to the original problem can be treated
as receiving CSI and pre-coding. Under communication
bandwidth constraints, we derive a sparse CSI representation
to preserve the determinant via the Cauchy—Binet formula.
Our experiments demonstrate that our scalable approach can
compete with all alternative methods in various datasets.
Moreover, as a proof-of-concept, we show that with proper
distance measures, pursuing diversity can translate into
improving learning quality in multiple applications, including
multi-level classification, object detection, and multiple-
instance learning. We expect our approach can substantially
influence the design of future Al-based networking platforms,
which require efficient handling of massive datasets split
across distributed sources.
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