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Abstract

Selecting representative samples plays an indispensable
role in many machine learning and computer vision appli-
cations under limited resources (e.g., limited communica-
tion bandwidth and computational power). Determinantal
Point Process (DPP) is a widely used method for selecting
the most diverse representative samples that can summa-
rize a dataset. However, its adaptability to different tasks
remains an open challenge, as it is challenging for DPP to
perform task-specific tuning. In contrast, Rate-Distortion
(RD) theory provides a way to measure task-specific diver-
sity. However, optimizing RD for a data selection prob-
lem remains challenging because the quantity that needs to
be optimized is the index set of the selected samples. To
tackle these challenges, we first draw an inherent relation-
ship between DPP and RD theory. Our theoretical deriva-
tion paves the way to take advantage of both RD and DPP
for a task-specific data selection. To this end, we propose
a novel method for task-specific data selection for multi-
level classification tasks, named RD-DPP. Empirical stud-
ies on seven different datasets using five benchmark mod-
els demonstrate the effectiveness of the proposed RD-DPP
method. Our method also outperforms recent strong com-
peting methods, while exhibiting high generalizability to a
variety of learning tasks 1.

1. Introduction

Even in the big-data era, selecting data samples is still a

significant problem in resource-limited scenarios, where the

computational resources or the transmission bandwidth are

constrained. This matter is critical in a family of applica-

tions such as image processing and unmanned Aerial Sys-

tems (UAS), where data collection and transmitting capac-

ity is highly constrained by limited power and networking

1The source code is available on https://anonymous.4open.
science/r/RD-DPP-83DB

resources. A higher data diversity, even in potentially un-

known representation space, is known to boost the predic-

tion power of Machine Learning (ML) algorithms. A pow-

erful tool to enhance diversity is the Determinantal Point

Process (DPP) [4,7,12,23], which offers a formal approach

to model diversity by quantifying dissimilarity among ele-

ments within a set, potentially in some latent feature space.

It is widely used by the machine learning community in

search engines, recommender systems [6], document sum-

marization [30], and more recently in learning-based image

processing [24] and regression models [13, 36]. A related

concept is the Rate-Distortion (RD) theory commonly used

by the information theory community to design and evalu-

ate Source Codes (SC) for lossy data compression [9]. It

characterizes the minimum compression rate for a tolerable

distortion level based on the distribution geometry of data

samples.

In this paper, we first reveal the inherent relationship be-

tween DPP and RD theory. The relation between RD and

DPP comes from the fact that both methods are used to

evaluate data diversity but from different perspectives. DPP

evaluates the diversity by modeling the dissimilarity among

samples in a set, while RD quantifies the minimum repre-

sentation bits per sample (i.e. the compressibility of the

samples) required for a given distribution to satisfy a certain

distortion limit. Therefore, they are intrinsically related.

This relationship has yet to receive the deserved attention

from the research community. This study uses this relation-

ship to design a new data selection policy for classification

tasks.

Particularly, we realize that although there exists ef-

fective and approximately optimal DPP-based inference

[6,15,17,36], DPP is not task-oriented and considers merely

the inherent diversity of data samples. Hence, data selected

based on DPP may not necessarily yield the highest per-

formance for different learning tasks. In contrast, authors

in [37, 40, 41] find that RD-theory is a useful tool to mea-

sure the quality of representation for classification. How-

ever, maximizing RD-based measurement is challenging in

1
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Figure 1. The benefit of using diversity-based methods in low-budget conditions; Top: ground truth decision boundary is shown for the

current task (a) and new task (b). Bottom: (c-e): decision boundary learned using a kNN classifier for three scenarios using 10 initial

random samples, marked as ’x’, in (c); 10 initial samples + 10 uncertainty-based samples (selected based on (c), marked as ’o’) in (d), and

10 initial samples + 10 diversity-based samples (selected based on (c), marked as ’o’) in (e). The diversity-based method (e) is superior

for mimicking distribution geometry than the uncertainty-based method. Right: compares the generalizability of different methods by

applying the selected samples for the current task to the new task. The diversity-based method (e→g) that captures the overall geometry

features is more generalizable than the uncertainty-based method (d→f), which excessively focuses on specific decision boundaries.

data selection since the variable in the optimization (i.e., the

indices of selected samples) is discrete and unable to be op-

timized via the gradient-based method. Fortunately, our ob-

served relationship provides the possibility to take mutual

benefits between RD and DPP, and accordingly, we develop

a novel algorithm called RD-DPP that facilitates sequen-

tial data selection. Specifically, we use class-conditional

RD to measure the task-oriented semantic diversity (e.g.,

for a classification task) and perform Maximum a Posteriori

(MAP) inference for DPP with RD-based quality-diversity

kernel. The quality score of the kernel quantifies the added

diversity of the sets with new samples with respect to the

previously selected samples. After the semantic diversity is

saturated, we use uncertainty methods to continually collect

samples around the decision boundary if the transmission

budget is available.

In summary, our contribution is two-fold: (i) It is the

first work to reveal a concrete yet non-trivial relationship

between Rate-Distortion theory and DPP under the mild

assumption of Gaussianity; and (ii) We propose a novel

data selection method for classification tasks by leverag-

ing the relations between RD and DPP. The results in sec-

tion 4 show that our method outperforms all alternative

methods, including random selection, DPP-based methods,

uncertainty-based methods, submodular mutual informa-

tion methods, and density-based methods by a significant

margin. Afterward, we demonstrate pursuing diversity is

also beneficial for potential future tasks. The corresponding

experiment is shown in Section 5. The comparison between

our method and uncertainty-based methods, the most intu-

itive classification-oriented method, is exhibited in shown

in Fig. 1.

2. Related Work

The data selection methods can be roughly divided into

diversity-based methods and uncertainty-based methods.

Along with DPP, there are several works that try to select

the data based on measuring the diversity from different

perspectives. For example, authors in [20, 32] based on

density measurement and aim to select the samples approx-

imately covering the entire distribution. Likewise, authors

in [2, 19, 21] employ different submodular mutual informa-

tion functions to measure the diversity. However, DPP and

these methods are not task-oriented and hence challenged

by the aforementioned issue that may not achieve optimal

performance for different learning tasks.

An alternative approach to data selection is using

2
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uncertainty-based methods by selecting data samples that

are less consistent with the trained model based on metrics

like cross-entropy and margin [8, 18, 29, 31]. An issue with

this approach is its sensitivity to initial samples, causing

poor early-stage performance until sufficient diverse sam-

ples are collected to establish reliable decision boundaries.

Therefore, uncertainty-based methods are more advanta-

geous when existing data is diverse enough.

A conceptual illustration of this phenomenon is pre-

sented in Fig. 1, which showcases a non-spherical dataset

under budget limitations when the model is built with a

few samples selected using the uncertainty-based method

(d) and diversity-based method (e). Prioritizing diversity

(Fig. 1 (e)) to approximate the population’s distribution can

lead to a more effective decision boundary compared to em-

phasizing the reduction of uncertainty of new samples in the

close proximity of the decision boundary, especially when

the initial model is not reliable. Additionally, Fig. 1 (f-g)

shows pursuing diversity is also more beneficial for poten-

tial future tasks. We discuss this matter in Section 5.

3. Method

At first glance, DPP is a probabilistic model developed

for various machine learning applications, which seems to

diverge from the information-theoretic lens of RD. How-

ever, our in-depth analysis reveals that these two methods

are inherently related and converge in the sample selection

problem. To this end, we propose an RD-based DPP method

for sample selection, termed RD-DPP. This section is orga-

nized as follows. To make this paper self-contained, we first

give a brief introduction to RD (Section 3.1) and DPP (Sec-

tion 3.2). Then, we introduce the derivation of the RD-DPP

for sample selection (Section 3.3).

3.1. Rate-distortion Theory

An arbitrary real number (e.g., samples of continuous-

valued signals) requires an infinite number of bits for loss-

less representation, which is impractical in most commu-

nication and storage systems. In practice, we usually set-

tle with lossy compression that allows some representation

errors. Specifically, given an arbitrary source X , we can

use nR bits to encode a sequence of n samples Xn with

fn(X
n) (using a codebook of size 2nR) and then decode

it with X̂n = gn(fn(X
n)). Here R denotes the coding

rate. The reconstruction error for a sample sequence xn is

defined as d(xn, x̂n) := 1/n
∑n

i=1 d(xi, x̂i) for some dis-

tance measure d(·, ·). A commonly used distortion metric is

Mean Squared Errors (MSE) ε2 := 1/n
∑n

i=1(xi−x̂i)
2 and

distortion D is defined as D := E[d(Xn, X̂n)] [9]. In these

notations, the uppercase letters are used for random vari-

ables, while lowercase letters denote their realizations. Rate

distortion theory is used to quantify the minimum number

of representation bits per sample R for a sequence with in-

finite length (n → ∞) and distortion D. In our work, we

use the estimated RD for a finite set of i.i.d. Gaussian dis-

tributed samples defined as follows.

Definition 1. Assume a finite dataset is represented by

Z = [z1, z2, · · · , zn] ∈ R
d×n (can be in some poten-

tially learnable feature space) presenting n i.i.d. data points,

each with d features, sampled from a zero-mean multivari-

ate Gaussian distribution with covariance Σ. The theoreti-

cal coding rate R(Z, ε) := 1
2 log det

(
d
ε2Σ

)
for a very small

tolerable distortion ε2 in squared error (SE) sense, can be

approximately estimated as [27]

R(Z, ε) :=
1

2
log det

(
I+

d

nε2
ZZ�

)
, (1)

where the unit of R(Z, ε) is bit/dimension for log base 2.

Remark 1. We use the term approximate diversity instead

of rate when using metric R(Z, ε) to emphasize that it is

an approximate empirical measure computed for a finite set

without using the parameters of its distribution.

For labeled data, each class can be compressed/encoded

separately.

Definition 2. The coding rate of the sub-space for each

class Rc
i (Z, ε | Ci) is given by,

Rc
i (Z, ε | Ci) :=

1

2
log det

(
I+

d

|Ci|ε2ZCi
Z�

Ci

)
, (2)

where Ci is the index set of class i, cT is the number of

classes, ZCi is a matrix using columns of Z indexed by Ci

(Z[:, Ci]), and |Ci| is the cardinality of Ci.

3.2. Determinantal Point Processing (DPP)

Definition 3. DPP is a probability measure on all 2|A| sub-

sets of A, where |A| denotes the cardinality of the set A.

According to the definition of DPP [23], an arbitrary subset

A ⊆ A drawn from A must satisfy,

P(A) ∝ det (LA) , (3)

where P(A) denotes the probability of selecting subset A
from the entire set A. L is a positive semi-definite (PSD)

Gram Matrix defined as L = Z�Z to measure pairwise

similarity among points, and LA is a submatrix of L with

rows and columns indexed by set A.

We need normalization factor det(L+ I) when comput-

ing exact probabilities, because∑
A⊆A

det (LA) = det (L+ I) , (4)

3
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where A denotes a subset drawn from the entire set A, for

any A ⊆ A. This identity has been proved in multiple ma-

terials, such as [23]. For data selection purposes, we often

expect to ensure k samples with the largest diversity. This

problem is known as Maximum a Posteriori (MAP) infer-

ence for DPP presented as,

max
A⊆Z

det(LA), s.t. |A| = k, k ≤ rank(L). (5)

It is an NP-hard problem, and the common solution is us-

ing greedy search, which has been developed in [6, 17]. A

recent popular fast-known exact greedy approach was pro-

posed in [6], and we denote it as A∗ = DPPm(L, k).

3.3. RD-DPP for Sample Selection

Here, we provide a theoretical relationship between RD

and DPP as well as derive the proposed RD-DPP for sam-

ple selection. A summary of our bi-modal algorithm is pre-

sented in Algorithm 1.

Relation Between Rate-Distortion Theory and DPP.
Rate-distortion Theory and DPP are inherently related.

Consider α := d
nε2 > 0 in Eq. (1). The value of the ap-

proximate diversity by RD theory (presented in Definition

1) can be described by the sum of the subset probabilities

measured by DPP (presented in Eq. (4)), as follows

R(Z, ε)
(a)
=

1

2
log det

(
I+ αZZ�)

(b)
=

1

2
log det

(
I+ αZ�Z

)
(c)
=

1

2
log

∑
X⊆Z

det (LX) , (6)

where L = αZ�Z can be viewed as the L-ensemble kernel

matrix of DPP, and Z = {1, 2, · · · , n} denotes the index set

of Z. This relation states that the R(Z, ε) can be described

as the sum of point process measurements det (LX), which

reveals a diverse set of samples should have high diversity

for all of its possible subsets. This numerical equivalent can

be proved by Sylvester’s determinant identity [34], and we

provide a simple proof in Appendix A.

DPP Approaches to Solve RD Problem. Based on the in-

herent relationship between the DPP and RP, we develop an

RD-based quality function to measure individual rate gain

as follows. Given a previously selected data set Z ∈ R
d×n,

how to search a new sample set D = {zd1
, zd2

, · · · zdk
}

with indices D = {d1, d2, · · · , dk} ⊆ B such that the

resulting diversity of ZD+ := [Z, zd1
, zd2

, · · · zdk
] ∈

R
d×(n+k) (i.e. the diversity measured by Definition 1) is

maximized, where A, Z ⊂ A, and B = A\Z , respectively,

denote the index set of entire data, previously selected sam-

ples, and candidate samples. Based on our conclusion in

Eq. (6), we can compute the diversity after selecting the set

D as

R(ZD+, ε) =
1

2
log det

(
I+

d

(n+ k)ε2
ZD+�

ZD+

)
(7)

=
1

2
log

∑
X⊆ZD+

det
(
L̃X

)
,

where L̃ = d
(n+k)ε2Z

�Z. L̃X is the submatrix of L̃ indexed

by X , and ZD+ = Z ∪D is the index set of ZD+. Our goal

here can be stated as

argmax
D

R(ZD+, ε), s.t. |D| = k. (8)

Since in Eq. (7), the logarithm base is 2, we can obtain

22R(ZD+,ε) =
∑

X⊆ZD+ det
(
L̃X

)
, which is the sum of

DPP-based measure across the all subsets X ⊆ ZD+. We

can obtain the similar term 22R(Zbi+,ε) for each candidate

bi ∈ B as
∑

X det (LX). Here, X ⊆ Zbi+ := Z∪{bi}, and

we have (n+ k)L̃X = (n+ 1)LX . Noting that R(Zbi+, ε)
is the individual diversity gain for bi that has the mem-

ory of the selected data set Z but has no knowledge about

other candidates, which cannot facilitate diversity among

candidates. By applying the set operation, we can trans-

late the problem to one that considers both the individual

rate gain of each candidate and the diversity among can-

didates. To this end, we develop the following approach

to solve the optimization problem in Eq. (8). The diver-

sity vector is the feature of each sample zi, i ∈ B, and the

quality score Φ() evaluates the individual rate gain from the

perspective of RD theory. We can use MAP inference for

DPP with a quality-diversity kernel K to solve the problem

(i.e. argmaxD KD, where KD is K’s rows and columns

indexed by D.) as follows,

Ki,j = Φ(Zbi+ , ε)Φ(Zbj+ , ε)(LB)i,j , (9)

where LB = Z�
BZB is the gram matrix across all m candi-

date samples with index B = {b1, b2, · · · , bm} = A \ Z ,

Zbi+ := [Z, zbi ]. Φ(Zbi+) is the RD-based quality func-

tion to quantify the individual gain obtained by adding this

sample to the known set.

Task-oriented RD-based Kernel. To enhance the quality

of training for a specific learning task, such as the classifi-

cation task, we develop a semantic diversity kernel instead

of the original class-independent DPP diversity. First, we

adopt the assumption by [37, 41]: i) The distribution of any

high-dimensional data (Fig. 2(a)) is typically supported on

a low-dimensional manifold (Fig. 2(b)). ii) A good data

4
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Figure 2. Visualizing the concept of task-oriented diversity. Top:

Green, red, and yellow denote three different classes: (a) high-

dimensional data, (b) corresponding low-dimensional manifold,

and (c) sphere packing, where each sphere denotes a bit with ε2

distortion tolerance. Here, yellow spheres are orthogonal on the

plane. Bottom: Different scenarios for adding two new samples

(black points) to the previously selected set of nine samples (gray

points). (d) previously selected samples; (e-g) adding two sam-

ples based on the pure diversity of new samples (e), the individual

marginal gain of the RD-based diversity (f). and the highest se-

mantic diversity (g).

representation for a classification task should have within-
class diversity and between-class discrimination. This is

visualized by sphere packing in Fig. 2(c), where we ex-

pect the number of blue spheres to be large (maximize the

between-class discrimination), and so is the number of the

color spheres (except blue) to maximize the within-class di-

versity. Therefore, we can define semantic diversity for a

set of samples X by class-conditional RD as

sdiv(X) := R(X, ε)−
cT∑
i=1

|Ci|
n

Rc
i (X, ε | Ci) ≥ 0. (10)

where, again, Ci and cT denote the index set of data in class

i and total number of classes, respectively. Likewise, sup-

pose a previously selected data set Z. Like the Eqs. (8)-

(10), to maximize the semantic diversity (sdiv(ZD+, ε)) by

selecting an additional set D (|D| = k), we can apply the

RD-DPP relations and develop the RD-based quality func-

tion to evaluate the semantic diversity gain caused by se-

lecting individual candidate xi, i ∈ B as,

Φ(Xi+, ε) = sdiv(Xi+), (11)

where Xi+ = [Z,xi] ∈ R
d×(n+1). Then, similar to Eq. (9),

the task-oriented DPP kernel K can be constructed based on

Eqs. (9) and (11), as

Ki,j = Φ(Xi+, ε)Φ(Xj+, ε)〈xi,xj〉, (12)

where 〈· , ·〉 denotes the inner product operation. Fig. 2(d)-

(g) demonstrates different strategies to add two points to a

known set of points for a labeled dataset, which indicates

that we should take into account both individual diversity

gain and the distance between the two candidates. A fast

DPP MAP inference proposed in [6] can be used to search

the k optimized candidates as argmaxD KD.

Bi-Modal Scheduling. As the number of selected sam-

ples increases, the increase in diversity caused by fur-

ther sample selection will become increasingly gradual and

eventually reach its upper bound asymptotically. Hence, at

this time, selecting samples that are more uncertain to the

learned decision boundary would yield greater advantages

in refining the model further. Let us imagine people build-

ing a house. Typically, they first construct the framework

(analogous to diversity-based selection) and then proceed

to the interior finishing work (analogous to diversity-based

selection).

To accommodate Diversity Saturation in the selection,

we can set an empirical criterion to switch mode from RD-

DPP diversity to uncertainty-based selection. To this end,

we calculate the semantic diversity sdiv(Zt) at the end of

each round (for t = k, 2k, 3k, · · · ), and switch when we

first observe sdiv(Zt)−sdiv(Zt−k) < φ0 meaning that the

diversity improvement is less than a pre-defined threshold,

φ0. An ablation analysis for this bi-modal scheduling is

presented in Section 4.

Algorithm 1 Bi-modal RD-DPP for Sample Selection

Input: Entire data with indices A, Initial data Z0 with

index set Z0, affordable transmission budget nT samples,

and the number of samples k selected in each round.

Output: The index set of selection

SelSet.

1: Initialize: SelSet ← Z0, B ← A \ Z0, Z ← Z0, and

t ← 0, transitionFlag← False.

2: while t ≤ nT do
3: t ← t+ k #Mode one. DPP-based.
4: if sdiv(Zt)− sdiv(Zt−k) > φ0 and Not transition-

Flag then
5: Calculate the DPP kernel K for B by Eq. (12).

6: SelSet round ← DPPm(K, k).
7: else
8: transitionFlag← True #To Mode two.

9: SelSet round ← Uncertainty(xi, i ∈ B, k)
10: end if
11: B ← B/SelSet round
12: SelSet ← SelSet ∪ SelSet round
13: for i in SelSet round do
14: Z ← [Z,xi]. #Add one column to Z.
15: end for
16: end while

5
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Figure 3. Performance of the classifier (%) with different network architectures for different selection methods applied to CIFAR10 dataset.

4. Experiment
Setup. As a proof of concept, we evaluate the proposed and

alternative methods using seven datasets, including MNIST

[11], FMNIST [38], CIFAR10 [22], SVHN [28], and three

small datasets, Yeast [1], Cardiotocography [5], and Stat-

log (Landsat Satellite) [33]. It is worth mentioning that in

practical communication systems, the data is transmitted in

terms of packets that may contain more than one sample,

and samples with a packet are very similar. To accommo-

date this consideration, we regulate the selection of pack-

ets (instead of samples) in our experiments. All the above

derivations are valid with only one change that the sample’s

feature vectors x are replaced by the class-wise mean of

feature vectors of all samples within the packet. In our ex-

periment, we assume there exists a total of 100 packets for

MNIST and FMNIST, and each packet contains 64 sam-

ples. Likewise, we constructed 100 packets for CIFAR10,

and each packet had 200 samples. In each experiment, we

use 5 randomly selected packets for initialization and then

perform different strategies to select packets. Details of

three small datasets and additional experiment setups are

provided in Appendix C. The composition of some exem-

plary packets is shown in Appendix B.

To efficiently evaluate the effectiveness of our method

with different models, we apply a simple CNN network on

MNIST and FMNIST and use the feature from the layer

before the classifier as the lower-dimensional representa-

tion of data samples (each image is mapped to a 288 × 1
vector). Likewise, we apply three different state-of-the-art

architectures for CIFAR10: ResNet-18 [16], EfficientNet-

B0 [35], and ResNeXt29 (2x64d) [39], respectively, repre-

senting each image as a vector of 320, 512, and 1024 ele-

ments. We apply a naive logistic regression for Yeast, Car-

diotocography, and Statlog (Landsat Satellite).

Baselines. To prove the effectiveness, the proposed

method should at least outperform the two most impor-

tant baselines: i) Random selection and ii) vanilla DPP,

which has been validated by [36] for this purpose. We also

compare our method against multiple alternative selection

policies. We include uncertainty-based methods [8, 18, 29]

based on iii) Cross-Entropy and iv) Min Margin, respec-

tively. For the sake of completeness, we also compare it

against some diversity-based methods. These methods in-

clude v) K-Center selection [32], three submodular mutual

information methods [21], vi) FLQMI [2], vii) LogdetMI
and viii) ORIENT [19], viiii) and DACS [20], a density-

based method.

Results. The main results (average of 10 runs) on four

datasets are shown in Table 1, demonstrating our proposed

method outperforms all other methods in most scenarios.

The primary observation lies in the comparison with ran-

dom selection. Our method yields a substantial accuracy

improvement ranging a 3%−5%, 2%−12%, 2%−4%, and

3%−5% accuracy gain at all budgets from 10 to 50 on four

datasets, respectively, while random selection often beats

other methods at some budgets. Our method can also ob-

tain at least a 1% accuracy gain over other methods at trans-

mission budgets up to 50. Additionally, when the budget is

limited to 10 on the SVHN dataset, our approach achieves

an impressive at least 7% increase in accuracy compared to

all other methods. The results on CIFAR10 with different

architectures are shown in Fig. 3 and Tbale 2, which exhibit

a significant gain for our method over all other methods.

For example, ResNet and ResNeXt, when using our selec-

tion strategy, obtain a 2%-3% gain over the entropy-based

decision, min-margin decision, and random selection. Effi-

cientNet obtains even a higher gain of 5% over the other

methods at transmission budgets up to 50. We also ob-

serve that the diversity-based methods and ours outperform

the uncertainty-based method at the beginning. However,

when the transmission budget increases, these methods be-

come even worse than the uncertainty-based methods, but

our method consistently can outperform all of these meth-

ods. Please also refer to appendix C to see additional ex-
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periments on raw samples for Yeast, Cardiotocography, and

Statlog (Landsat Satellite).

Table 1. The comprehensive results on 4 datasets by different se-

lection methods.

Dataset Budget 10 20 30 40 50

RD-DPP 49.67±5.84 72.86±2.79 83.21±2.02 89.25±1.31 91.26±1.46
Cross-Entropy 22.42±3.70 45.43±3.41 70.23±4.08 87.15±2.06 90.23±1.35

Min Margin 43.14±7.06 63.31±6.13 74.14±3.83 81.98±1.93 82.40±2.73

K-CENTER 48.56±4.58 71.14±6.57 80.51±3.41 86.35±2.79 88.00±2.45

vanilla DPP 49.47±3.58 69.22±3.61 80.30±5.78 85.88±4.01 89.43±2.04

FLQMI 34.44±7.55 48.65±6.76 61.89±7.91 67.84±4.38 77.61±2.37

LogdetMI 46.59±6.86 60.23±3.85 68.19±3.77 71.38±2.85 79.47±2.45

ORIENT 21.84±3.51 29.38±2.64 46.48±5.77 56.09±4.65 69.59±4.81

DACS 22.78±5.49 48.75±8.68 75.76±5.28 84.14±3.04 90.40±1.27

MNIST

Rand 44.12±5.61 64.50±3.37 78.58±4.59 84.29±3.23 87.91±1.89

RD-DPP 44.36±3.00 50.75±2.78 54.75±2.10 55.87±1.61 59.35±1.08
Cross-Entropy 27.32±5.52 43.99±6.32 51.64±4.32 55.65±3.47 57.43±2.45

Min Margin 30.39±7.70 39.97±3.65 45.14±6.48 47.07±5.53 51.12±2.62

K-CENTER 43.08±5.45 49.43±1.84 54.20±3.54 55.05±3.51 58.35±1.88

vanilla DPP 44.12±3.33 49.29±3.11 54.34±2.77 55.71±3.07 58.30±1.00

FLQMI 44.16±4.90 50.03±3.16 53.91±3.28 55.80±3.04 56.38±3.38

LogdetMI 44.38±3.93 50.20±3.89 53.68±4.39 55.62±4.02 57.88±3.50

ORIENT 45.04±6.76 50.53±3.74 53.52±3.77 56.98±3.63 57.65±1.52

DACS 44.20±2.24 49.03±5.10 51.66±3.39 55.78±4.28 56.45±2.36

FNMIST

Rand 32.10±4.30 45.29±6.22 52.46±4.98 53.85±3.11 56.30±3.41

RD-DPP 43.94±0.88 48.31±1.3 51.36±0.72 54.74±0.51 57.02±0.89
Cross-Entropy 40.86±0.86 44.98±0.78 48.0±1.08 50.6±0.85 53.36±0.81

Min Margin 41.83±0.76 45.54±0.96 48.3±1.18 51.5±0.58 53.28±0.6

K-CENTER 42.98±0.67 46.32±0.63 49.52±0.52 51.5±0.82 54.2±0.31

vanilla DPP 43.29±0.93 47.16±0.6 49.4±0.51 51.76±0.74 53.79±0.38

FLQMI 42.87±0.53 46.16±0.47 49.28±0.88 51.54±0.86 53.73±0.68

LogdetMI 42.19±1.29 46.40±0.55 49.01±0.79 51.85±0.60 54.00±0.83

ORIENT 42.10±1.01 46.02±0.87 49.20±1.20 51.57±0.91 54.12±0.42

DACS 43.02±0.35 46.31±0.74 48.84±0.29 51.43±0.75 53.74±0.88

CIFAR10

Rand 41.16±0.62 45.24±0.61 47.88±0.43 50.26±0.12 53.2±0.96

RD-DPP 47.69±2.48 68.68±1.76 71.56±1.07 74.92±0.53 77.14±0.35
Cross-Entropy 37.38±1.10 53.59±2.54 67.58±2.10 72.25±1.89 74.80±1.01

Min Margin 37.35±2.03 53.98±1.30 66.10±1.35 71.49±1.03 74.48±1.26

K-CENTER 37.50±2.19 52.97±2.17 65.89±2.15 71.28±1.63 73.96±1.12

vanilla DPP 37.42±2.01 54.21±2.19 65.12±1.04 71.59±1.74 75.12±1.01

FLQMI 37.16±1.77 53.67±1.97 65.80±2.01 72.13±0.87 75.01±0.64

LogdetMI 40.19±1.92 55.12±2.12 67.90±2.21 71.88±0.81 75.02±0.98

ORIENT 38.19 ±2.30 51.37±2.76 69.89 ±1.98 70.45±2.91 76.02 ±0.65

DACS 37.28±2.30 53.19±1.30 65.79±2.28 72.64±1.19 74.12±0.94

SVHN

Rand 38.20±1.66 54.49±2.69 65.96±1.33 70.85±1.61 74.65±1.02

Table 2. Comparison of the classification accuracy by using dif-

ferent architecture on CIFAR10.

Network Method 10 20 30 40 50

RD-DPP 30.85±1.5 33.95±1.13 35.03±1.42 37.19±1.61 38.07±2.02
Cross-Entropy 28.5±0.58 30.65±0.42 31.03±0.65 32.65±1.35 32.67±0.68

Min Margin 28.6±0.67 30.12±1.74 30.38±0.65 32.35±1.01 32.79±1.61

K-CENTER 28.26±1.28 30.41±1.07 31.62±0.98 32.24±0.99 33.68±0.95

vanilla DPP 28.05±1.19 30.53±0.95 31.52±1.43 32.12±1.36 33.69±1.2

FLQMI 28.95±1.79 29.93±1.67 32.43±1.24 31.83±0.96 33.03±0.96

LogdetMI 28.83±0.86 30.78±0.42 32.47±0.82 32.35±0.98 34.24±1.33

ORIENT 28.89±1.40 29.91±0.52 31.39±1.55 33.78±0.90 34.05±0.89

DACS 28.36±1.67 31.15±0.78 31.11±0.97 31.95±0.93 33.58±0.55

Efficient

Rand 25.98±1.47 29.2±1.07 31.01±0.89 31.58±1.23 32.47±1.34

RD-DPP 40.26±0.38 46.71±0.62 49.75±0.93 53.13±0.51 56.49±0.49
Cross-Entropy 38.63±0.28 42.99±0.76 46.55±0.74 50.67±0.56 53.38±0.82

Min Margin 37.89±0.66 43.91±0.22 47.24±0.55 50.03±0.4 53.08±0.42

K-CENTER 39.92±0.95 45.33±1.07 48.26±1.22 51.87±0.46 54.19±0.66

vanilla DPP 40.36±0.8 44.84±0.62 48.25±0.6 51.53±0.41 54.6±0.52

FLQMI 40.01±0.92 45.20±0.89 48.22±0.50 51.24±0.55 54.42±1.22

LogdetMI 38.12±1.27 41.24±2.63 44.61±1.17 48.99±1.71 51.05±1.89

ORIENT 39.95±0.86 45.25±0.93 48.91±0.46 51.63±1.01 54.46±0.88

DACS 40.15±0.38 45.32±0.56 48.11±1.10 51.81±0.92 53.83±0.68

ResNet

Rand 37.64±0.75 43.5±0.29 47.32±0.39 50.13±1.09 53.27±0.64

RD-DPP 43.94±0.88 48.31±1.3 51.36±0.72 54.74±0.51 57.02±0.89
Cross-Entropy 40.86±0.86 44.98±0.78 48.0±1.08 50.6±0.85 53.36±0.81

Min Margin 41.83±0.76 45.54±0.96 48.3±1.18 51.5±0.58 53.28±0.6

K-CENTER 42.98±0.67 46.32±0.63 49.52±0.52 51.5±0.82 54.2±0.31

vanilla DPP 43.29±0.93 47.16±0.6 49.4±0.51 51.76±0.74 53.79±0.38

FLQMI 42.87±0.53 46.16±0.47 49.28±0.88 51.54±0.86 53.73±0.68

LogdetMI 42.19±1.29 46.40±0.55 49.01±0.79 51.85±0.60 54.00±0.83

ORIENT 42.10±1.01 46.02±0.87 49.20±1.20 51.57±0.91 54.12±0.42

DACS 43.02±0.35 46.31±0.74 48.84±0.29 51.43±0.75 53.74±0.88

ResNext

Rand 41.16±0.62 45.24±0.61 47.88±0.43 50.26±0.12 53.2±0.96

For further verifying the effectiveness of the pro-

posed method by evaluating the average performance rank,

we construct a critical difference diagram based on the

Wilcoxon signed-rank test to detect pairwise significance

with α = 0.05 [10]. As shown in Fig. 4, the result demon-

strates our method achieves a 1.15 average rank and con-

firms the statistical superiority over all other methods.

Figure 4. Critical difference diagram with α = 0.05. There is no

statistical difference between methods connected by a bolded line.

Ablation Analysis. We conduct an ablation study to

demonstrate the effectiveness of the bi-modal scheduling.

Two baselines are considered: i) RD-DPP (only diversity),

which focuses solely on diversity without transitioning to

uncertainty-based methods after diversity reaches the sat-

uration point, ii) Marginal Rate Gain, which selects the k
top candidate samples merely based on their individual se-

mantic gains (i.e. k largest Φ(Xi+, ε) defined by Eq. (11))

ignoring the within-diversity of the candidate samples. The

result in Table 3 shows that before the transition point, our

bi-modal RD-DPP method outperforms the Marginal Rate
Gain with 8%-10% and 5%-16% accuracy improvement on

MNIST and FMNIST, respectively. Our method is equiva-

lent to RD-DPP (only diversity) before the transition point

as expected. After the phase transition point (i.e. the point

between 20-30 and 40-50 for MNIST and FMNIST, respec-

tively), RD-DPP (bi-modal) consistently achieves around

3% accuracy gain over the other two baseline methods.

Table 3. The ablation analysis on MNIST and FMNIST, respec-

tively. Here, � denotes there is no Phase Transition, while � de-

notes that Phase Transition has occurred in the RD-DPP (Bi-

modal).

Dataset Budget 10 20 30 40 50 60

MNIST

Phase Trans? � � � � � �
RD-DPP (Bi-modal) 49.67 72.86 83.21 89.25 91.26 92.36
RD-DPP (Only Diversity) - - 80.92 84.72 87.29 90.11

Marginal Rate Gain 41.99 63.13 72.3 83.03 84.71 86.74

FMNIST

Phase Trans? � � � � � �
RD-DPP (Bi-modal) 44.36 50.75 54.75 55.87 59.35 63.45
RD-DPP (Only Diversity) - - - - 56.36 57.58

Marginal Rate Gain 28.12 42.94 48.64 54.81 57.86 60.56

Complexity Analysis. Our main overhead is to com-

pute the semantic quality score (Eq. (11)). For each

candidate i, the complexity of the term R(Xi+, ε) =
log det

(
I+ αXi+X

�
i+

)
is only O(tdmin(t, d)) (i.e. the
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complexity of the SVD decomposition of Xi+). There-

fore, we need operations in the order of O(mtdmin(t, d))
to compute the semantic quality score of all candidates.

Then, constructing the kernel presented in Eq. (12) requires

a O(
(dcT )m

2
)
= O(

dm2
)

complexity for a small num-

ber of cluster/class labels cT . The remaining complexity is

the same as the greedy search method [6], which requires

a O(k2m) complexity to return k select samples. Thus,

the overall complexity in each round is O(mtdmin(t, d) +
d2m + k2m) ≈ O(mtdmin(t, d)). In our work, we use

bootstrapping to accelerate the approximation.

5. Discussion: Learning for Future Tasks

In this section, we highlight the broader advantages of

diversity-based selection methods beyond their immediate

benefits for current tasks by effectively preserving repre-

sentative information. In contrast, uncertainty-based ap-

proaches, which are primarily designed to enhance the cur-

rent model, lack this capacity. Here, we consider two sce-

narios:

Robustness for Label-shift Generalization. In this sce-

nario, the same set of selected data samples are used for

different tasks. We perform our experiment on the Large-

scale CelebFaces Attributes (CelebA) Dataset [25], where

each attribute can be used as the target label to perform

a binary classification task. We select the samples for the

Smiling classification task, then train two new classifiers

for Blond Hair and High Cheekbones target labels

using the same selected samples. The results after running

20 times are reported in Table 4 for 20, 40, and 60 selected

packets out of 100 packets, where each packet contains 2

samples. The results show that our approach preserves di-

versity, confirming its potential to benefit various related

tasks, especially under low-budget conditions.

Table 4. Generalizability of our RD-DPP and Uncertainty-based

Decision (Cross-Entropy) methods are assessed by selecting

samples for the original classification task (Smiling) and us-

ing them for two new classification tasks (Blond Hair and

High Cheekbones). Methods are compared in F1 Score and

Classification Accuracy.

Task Budget 20 40 60
Method F1 ACC F1 ACC F1 ACC

Smiling
RD-DPP 63.71 63.97 70.04 70.24 72.45 72.79
Uncertainty Dec. 35.64 51.51 54.29 60.38 65.75 67.58

Δ +28.07 +12.46 +15.75 +9.86 +6.7 +5.21

Blond Hair
RD-DPP 64.48 89.5 66.92 90.01 70.41 90.63

Uncertainty Dec. 48.26 88.69 56.45 89.58 68.83 90.87
Δ +16.22 +0.81 +10.47 +0.43 +1.58 -0.24

High Cheekbones
RD-DPP 61.45 62.68 67.4 68.19 69.17 70.36
Uncertainty Dec. 40.47 54.32 53.88 60.82 60.84 65.11

Δ +20.98 +8.36 +13.52 +7.37 +8.33 +5.25

Table 5. The ability (classification accuracy) to resist negative in-

terference on different tasks.

Task Budgets 10 30 50

Rotated MNIST
RD-DPP 53.30 57.27 69.78

Uncertainty Dec. 43.09 48.01 66.25

Δ +10.21 +9.26 +3.53

MNIST Fellowship
RD-DPP 32.45 55.45 60.88

Uncertainty Dec. 17.05 38.29 56.27

Δ +15.4 +17.16 +4.61

Robustness for Domain-shift Interference. Real-world

applications often involve data from different sources aim-

ing at similar tasks (domain shift), such as classifying ve-

hicles in urban and rural areas. In such cases, training one

model for all tasks (i.e. multi-task learning) is not as effec-

tive as task-specific models due to the inherent variability

among tasks. To alleviate this issue, it is advantageous to

select samples that preserve task-specific information when

switching between different domains under resource con-

straints [3]. We claim that our RD-DPP provides such ca-

pability. To this end, we construct two popular synthesis

tasks, which are Rotated MNIST [26] and MNIST Fellow-

ship [14]. For more details about the setup, please refer to

Appendix B. The experimental results of the model train-

ing on the mixed data and inference on the original task are

summarized in Table 5. The results clearly indicate that

the proposed RD-DPP not only outperforms uncertainty-

based decisions in addressing the original problem but also

demonstrates the capability to reduce inter-domain interfer-

ence in multi-task learning.

6. Conclusion

Our study reveals an inherent relationship between the

RD and DPP when it comes to selecting diverse training

samples to boost the performance of machine learning al-

gorithms. This relationship is used to design a new measure

of diversity for data that facilitates sequential DPP infer-

ence. We also propose bi-modal scheduling that switches

between the DPP-based and uncertainty-based data selec-

tion modes to accommodate different transmission budget

constraints better than all alternative selection methods. We

showed that our approach can be applied to both raw data

and data representation in low-dimensional latent spaces.

The intensive experiment results using 7 different datasets

and five different ML/DL models consistently show that our

method outperforms pure uncertainty-based, pure diversity-

based (including pure DPP-based), and random selection

methods. Finally, we observed that the samples selected by

our method are more beneficial (compared to other selec-

tion methods) for potential future tasks, such as label-shift

tasks and domain-shift tasks.
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