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Abstract

Selecting representative samples plays an indispensable
role in many machine learning and computer vision appli-
cations under limited resources (e.g., limited communica-
tion bandwidth and computational power). Determinantal
Point Process (DPP) is a widely used method for selecting
the most diverse representative samples that can summa-
rize a dataset. However, its adaptability to different tasks
remains an open challenge, as it is challenging for DPP to
perform task-specific tuning. In contrast, Rate-Distortion
(RD) theory provides a way to measure task-specific diver-
sity. However, optimizing RD for a data selection prob-
lem remains challenging because the quantity that needs to
be optimized is the index set of the selected samples. To
tackle these challenges, we first draw an inherent relation-
ship between DPP and RD theory. Our theoretical deriva-
tion paves the way to take advantage of both RD and DPP
for a task-specific data selection. To this end, we propose
a novel method for task-specific data selection for multi-
level classification tasks, named RD-DPP. Empirical stud-
ies on seven different datasets using five benchmark mod-
els demonstrate the effectiveness of the proposed RD-DPP
method. Our method also outperforms recent strong com-
peting methods, while exhibiting high generalizability to a
variety of learning tasks '.

1. Introduction

Even in the big-data era, selecting data samples is still a
significant problem in resource-limited scenarios, where the
computational resources or the transmission bandwidth are
constrained. This matter is critical in a family of applica-
tions such as image processing and unmanned Aerial Sys-
tems (UAS), where data collection and transmitting capac-
ity is highly constrained by limited power and networking

IThe source code is available on https://anonymous.4open.
science/r/RD-DPP-83DB

resources. A higher data diversity, even in potentially un-
known representation space, is known to boost the predic-
tion power of Machine Learning (ML) algorithms. A pow-
erful tool to enhance diversity is the Determinantal Point
Process (DPP) [4,7,12,23], which offers a formal approach
to model diversity by quantifying dissimilarity among ele-
ments within a set, potentially in some latent feature space.
It is widely used by the machine learning community in
search engines, recommender systems [6], document sum-
marization [30], and more recently in learning-based image
processing [24] and regression models [13,36]. A related
concept is the Rate-Distortion (RD) theory commonly used
by the information theory community to design and evalu-
ate Source Codes (SC) for lossy data compression [9]. It
characterizes the minimum compression rate for a tolerable
distortion level based on the distribution geometry of data
samples.

In this paper, we first reveal the inherent relationship be-
tween DPP and RD theory. The relation between RD and
DPP comes from the fact that both methods are used to
evaluate data diversity but from different perspectives. DPP
evaluates the diversity by modeling the dissimilarity among
samples in a set, while RD quantifies the minimum repre-
sentation bits per sample (i.e. the compressibility of the
samples) required for a given distribution to satisfy a certain
distortion limit. Therefore, they are intrinsically related.
This relationship has yet to receive the deserved attention
from the research community. This study uses this relation-
ship to design a new data selection policy for classification
tasks.

Particularly, we realize that although there exists ef-
fective and approximately optimal DPP-based inference
[6,15,17,36], DPP is not task-oriented and considers merely
the inherent diversity of data samples. Hence, data selected
based on DPP may not necessarily yield the highest per-
formance for different learning tasks. In contrast, authors
in [37,40,41] find that RD-theory is a useful tool to mea-
sure the quality of representation for classification. How-
ever, maximizing RD-based measurement is challenging in
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Figure 1. The benefit of using diversity-based methods in low-budget conditions; Top: ground truth decision boundary is shown for the
current task (a) and new task (b). Bottom: (c-e): decision boundary learned using a kNN classifier for three scenarios using 10 initial
random samples, marked as "x’, in (c); 10 initial samples + 10 uncertainty-based samples (selected based on (c), marked as ’0’) in (d), and
10 initial samples + 10 diversity-based samples (selected based on (c), marked as ’0’) in (e). The diversity-based method (e) is superior
for mimicking distribution geometry than the uncertainty-based method. Right: compares the generalizability of different methods by
applying the selected samples for the current task to the new task. The diversity-based method (e—g) that captures the overall geometry
features is more generalizable than the uncertainty-based method (d—f), which excessively focuses on specific decision boundaries.

data selection since the variable in the optimization (i.e., the
indices of selected samples) is discrete and unable to be op-
timized via the gradient-based method. Fortunately, our ob-
served relationship provides the possibility to take mutual
benefits between RD and DPP, and accordingly, we develop
a novel algorithm called RD-DPP that facilitates sequen-
tial data selection. Specifically, we use class-conditional
RD to measure the task-oriented semantic diversity (e.g.,
for a classification task) and perform Maximum a Posteriori
(MAP) inference for DPP with RD-based quality-diversity
kernel. The quality score of the kernel quantifies the added
diversity of the sets with new samples with respect to the
previously selected samples. After the semantic diversity is
saturated, we use uncertainty methods to continually collect
samples around the decision boundary if the transmission
budget is available.

In summary, our contribution is two-fold: (i) It is the
first work to reveal a concrete yet non-trivial relationship
between Rate-Distortion theory and DPP under the mild
assumption of Gaussianity; and (ii) We propose a novel
data selection method for classification tasks by leverag-
ing the relations between RD and DPP. The results in sec-
tion 4 show that our method outperforms all alternative
methods, including random selection, DPP-based methods,

uncertainty-based methods, submodular mutual informa-
tion methods, and density-based methods by a significant
margin. Afterward, we demonstrate pursuing diversity is
also beneficial for potential future tasks. The corresponding
experiment is shown in Section 5. The comparison between
our method and uncertainty-based methods, the most intu-
itive classification-oriented method, is exhibited in shown
in Fig. 1.

2. Related Work

The data selection methods can be roughly divided into
diversity-based methods and uncertainty-based methods.
Along with DPP, there are several works that try to select
the data based on measuring the diversity from different
perspectives. For example, authors in [20, 32] based on
density measurement and aim to select the samples approx-
imately covering the entire distribution. Likewise, authors
in [2,19,21] employ different submodular mutual informa-
tion functions to measure the diversity. However, DPP and
these methods are not task-oriented and hence challenged
by the aforementioned issue that may not achieve optimal
performance for different learning tasks.

An alternative approach to data selection is using
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uncertainty-based methods by selecting data samples that
are less consistent with the trained model based on metrics
like cross-entropy and margin [8, 18,29,31]. An issue with
this approach is its sensitivity to initial samples, causing
poor early-stage performance until sufficient diverse sam-
ples are collected to establish reliable decision boundaries.
Therefore, uncertainty-based methods are more advanta-
geous when existing data is diverse enough.

A conceptual illustration of this phenomenon is pre-
sented in Fig. 1, which showcases a non-spherical dataset
under budget limitations when the model is built with a
few samples selected using the uncertainty-based method
(d) and diversity-based method (e). Prioritizing diversity
(Fig. 1 (e)) to approximate the population’s distribution can
lead to a more effective decision boundary compared to em-
phasizing the reduction of uncertainty of new samples in the
close proximity of the decision boundary, especially when
the initial model is not reliable. Additionally, Fig. 1 (f-g)
shows pursuing diversity is also more beneficial for poten-
tial future tasks. We discuss this matter in Section 5.

3. Method

At first glance, DPP is a probabilistic model developed
for various machine learning applications, which seems to
diverge from the information-theoretic lens of RD. How-
ever, our in-depth analysis reveals that these two methods
are inherently related and converge in the sample selection
problem. To this end, we propose an RD-based DPP method
for sample selection, termed RD-DPP. This section is orga-
nized as follows. To make this paper self-contained, we first
give a brief introduction to RD (Section 3.1) and DPP (Sec-
tion 3.2). Then, we introduce the derivation of the RD-DPP
for sample selection (Section 3.3).

3.1. Rate-distortion Theory

An arbitrary real number (e.g., samples of continuous-
valued signals) requires an infinite number of bits for loss-
less representation, which is impractical in most commu-
nication and storage systems. In practice, we usually set-
tle with lossy compression that allows some representation
errors. Specifically, given an arbitrary source X, we can
use n R bits to encode a sequence of n samples X" with
fn(X™) (using a codebook of size 2") and then decode
it with X» = g, (f,(X")). Here R denotes the coding
rate. The reconstruction error for a sample sequence =™ is
defined as d(z",2") := 1/nY ., d(x;,&;) for some dis-
tance measure d(-, -). A commonly used distortion metric is
Mean Squared Errors (MSE) €% := 1/n """ (z;—%;)* and
distortion D is defined as D := E[d(X", X™)] [9]. In these
notations, the uppercase letters are used for random vari-
ables, while lowercase letters denote their realizations. Rate
distortion theory is used to quantify the minimum number

CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

of representation bits per sample R for a sequence with in-
finite length (n — o0) and distortion D. In our work, we
use the estimated RD for a finite set of i.i.d. Gaussian dis-
tributed samples defined as follows.

Definition 1. Assume a finite dataset is represented by
Z = (21,22, ,2,] € R¥" (can be in some poten-
tially learnable feature space) presenting n i.i.d. data points,
each with d features, sampled from a zero-mean multivari-
ate Gaussian distribution with covariance 3. The theoreti-
cal coding rate R(Z, €) := 1 log det (% %) for a very small
tolerable distortion €2 in squared error (SE) sense, can be
approximately estimated as [27]

1
R(Z,e) := 2 log det (I + ;ZZT) ) (1)

where the unit of R(Z, ¢) is bit/dimension for log base 2.

Remark 1. We use the term approximate diversity instead
of rate when using metric R(Z,¢) to emphasize that it is
an approximate empirical measure computed for a finite set
without using the parameters of its distribution.

For labeled data, each class can be compressed/encoded
separately.

Definition 2. The coding rate of the sub-space for each
class RS(Z, e | C;) is given by,

1 d
RS(Z,e| Cy) := =logdet (I + ——ZcZS ), (2
z( 76‘ ) 20g € ( +|Cz‘|€2 Ci Ck) 2
where C; is the index set of class i, ¢y is the number of
classes, Z¢, is a matrix using columns of Z indexed by C;
(Z[:, C;]), and |C;] is the cardinality of C;.

3.2. Determinantal Point Processing (DPP)

Definition 3. DPP is a probability measure on all 21l sub-
sets of A, where |.A| denotes the cardinality of the set .A.
According to the definition of DPP [23], an arbitrary subset
A C A drawn from A must satisfy,

P(A) x det (La), 3)

where P(A) denotes the probability of selecting subset A
from the entire set A. L is a positive semi-definite (PSD)
Gram Matrix defined as L = ZTZ to measure pairwise
similarity among points, and L 4 is a submatrix of L with
rows and columns indexed by set A.

We need normalization factor det(L + I) when comput-
ing exact probabilities, because

> det (La) = det (L +1), “)
ACA
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where A denotes a subset drawn from the entire set A, for
any A C A. This identity has been proved in multiple ma-
terials, such as [23]. For data selection purposes, we often
expect to ensure k samples with the largest diversity. This
problem is known as Maximum a Posteriori (MAP) infer-
ence for DPP presented as,

R = < .
max det(La), s.t.|A| =k, k <rank(L) 5)

It is an NP-hard problem, and the common solution is us-
ing greedy search, which has been developed in [0, 17]. A
recent popular fast-known exact greedy approach was pro-
posed in [0], and we denote it as A* = DPP,,(L, k).

3.3. RD-DPP for Sample Selection

Here, we provide a theoretical relationship between RD

and DPP as well as derive the proposed RD-DPP for sam-
ple selection. A summary of our bi-modal algorithm is pre-
sented in Algorithm 1.
Relation Between Rate-Distortion Theory and DPP.
Rate-distortion Theory and DPP are inherently related.
Consider a := % > 01in Eq. (1). The value of the ap-
proximate diversity by RD theory (presented in Definition
1) can be described by the sum of the subset probabilities
measured by DPP (presented in Eq. (4)), as follows

—~
S
~

R(Z,€) log det (I+aZZ")

—~
o

)

N =N

log det (I + aZTZ)

c

—~
~

log Z det (Lx), (6)

XCz

where L = aZ " Z can be viewed as the L-ensemble kernel
matrix of DPP,and Z = {1,2,---  n} denotes the index set
of Z. This relation states that the R(Z, ¢) can be described
as the sum of point process measurements det (L x ), which
reveals a diverse set of samples should have high diversity
for all of its possible subsets. This numerical equivalent can
be proved by Sylvester’s determinant identity [34], and we
provide a simple proof in Appendix A.

DPP Approaches to Solve RD Problem. Based on the in-
herent relationship between the DPP and RP, we develop an
RD-based quality function to measure individual rate gain
as follows. Given a previously selected data set Z € R?*",
how to search a new sample set D = {z4,,%Z4,, - 2q, }
with indices D = {dy,ds, -+ ,dr} C B such that the
resulting diversity of ZPY = [Z,z4,,%4,, - 2a4,] €
R (k) (ie. the diversity measured by Definition 1) is
maximized, where A, Z C A, and B = A\ Z, respectively,
denote the index set of entire data, previously selected sam-
ples, and candidate samples. Based on our conclusion in

Eq. (6), we can compute the diversity after selecting the set
D as

1
R(ZP™ ¢) 5 log det (I + ZD+TZD+)

(n+k)e?
(N

1 ~
= ilog Z det (LX) ,
XCzP+
where L = WZTZ. L x 1s the submatrix of L indexed

by X, and ZP* = ZUD is the index set of ZP+. Our goal
here can be stated as

arg max R(ZP7¢), s.t.|D|=k. (8)

Since in Eq. (7), the logarithm base is 2, we can obtain
22R(ZPC) = S det (f,x), which is the sum of
DPP-based measure across the all subsets X C ZP+. We

can obtain the similar term 22%(Z" ") for each candidate
b' € Bas ) det (Lx). Here, X C zZbt . ZU{b;}, and
we have (n + k)Lx = (n + 1)Ly. Noting that R(Z" * ¢)
is the individual diversity gain for b’ that has the mem-
ory of the selected data set Z but has no knowledge about
other candidates, which cannot facilitate diversity among
candidates. By applying the set operation, we can trans-
late the problem to one that considers both the individual
rate gain of each candidate and the diversity among can-
didates. To this end, we develop the following approach
to solve the optimization problem in Eq. (8). The diver-
sity vector is the feature of each sample z;,7 € B, and the
quality score ®() evaluates the individual rate gain from the
perspective of RD theory. We can use MAP inference for
DPP with a quality-diversity kernel K to solve the problem
(i.e. argmaxp Kp, where Kp is K’s rows and columns
indexed by D.) as follows,

Ki;= ‘I’(ZbHv6)‘1’(ij+76)(148)¢,]‘, 9

where L = ZEZ B is the gram matrix across all m candi-
date samples with index B = {b%,b2,--- b} = A\ Z,
7V = [Z,zy:]. ®(Z"") is the RD-based quality func-
tion to quantify the individual gain obtained by adding this
sample to the known set.

Task-oriented RD-based Kernel. To enhance the quality
of training for a specific learning task, such as the classifi-
cation task, we develop a semantic diversity kernel instead
of the original class-independent DPP diversity. First, we
adopt the assumption by [37,41]: i) The distribution of any
high-dimensional data (Fig. 2(a)) is typically supported on
a low-dimensional manifold (Fig. 2(b)). ii) A good data
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Figure 2. Visualizing the concept of task-oriented diversity. Top:
Green, red, and yellow denote three different classes: (a) high-
dimensional data, (b) corresponding low-dimensional manifold,
and (c) sphere packing, where each sphere denotes a bit with €
distortion tolerance. Here, yellow spheres are orthogonal on the
plane. Bottom: Different scenarios for adding two new samples
(black points) to the previously selected set of nine samples (gray
points). (d) previously selected samples; (e-g) adding two sam-
ples based on the pure diversity of new samples (e), the individual
marginal gain of the RD-based diversity (f). and the highest se-
mantic diversity (g).

representation for a classification task should have within-
class diversity and between-class discrimination. This is
visualized by sphere packing in Fig. 2(c), where we ex-
pect the number of blue spheres to be large (maximize the
between-class discrimination), and so is the number of the
color spheres (except blue) to maximize the within-class di-
versity. Therefore, we can define semantic diversity for a
set of samples X by class-conditional RD as

sdiv(X) 1= R(X,e) = Y - R{(X,e| C;) > 0. (10)
=1

n

where, again, C; and ¢y denote the index set of data in class
1 and total number of classes, respectively. Likewise, sup-
pose a previously selected data set Z. Like the Egs. (8)-
(10), to maximize the semantic diversity (sdiv(ZP7, €)) by
selecting an additional set D (|D| = k), we can apply the
RD-DPP relations and develop the RD-based quality func-
tion to evaluate the semantic diversity gain caused by se-
lecting individual candidate x;,7 € B as,

(D(Xi+,€) = sdiv(XH), (11)

where X, = [Z, x;] € R¥("+1)_ Then, similar to Eq. (9),
the task-oriented DPP kernel K can be constructed based on
Egs. (9) and (11), as

K, =2(Xt, )X, €)(x;,%;), (12)
where (-, -) denotes the inner product operation. Fig. 2(d)-
(g) demonstrates different strategies to add two points to a

CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

known set of points for a labeled dataset, which indicates
that we should take into account both individual diversity
gain and the distance between the two candidates. A fast
DPP MAP inference proposed in [6] can be used to search
the k£ optimized candidates as arg maxp Kp.

Bi-Modal Scheduling. As the number of selected sam-
ples increases, the increase in diversity caused by fur-
ther sample selection will become increasingly gradual and
eventually reach its upper bound asymptotically. Hence, at
this time, selecting samples that are more uncertain to the
learned decision boundary would yield greater advantages
in refining the model further. Let us imagine people build-
ing a house. Typically, they first construct the framework
(analogous to diversity-based selection) and then proceed
to the interior finishing work (analogous to diversity-based
selection).

To accommodate Diversity Saturation in the selection,
we can set an empirical criterion to switch mode from RD-
DPP diversity to uncertainty-based selection. To this end,
we calculate the semantic diversity sdiv(Z') at the end of
each round (for t = k,2k,3k,---), and switch when we
first observe sdiv(Z!) — sdiv(Z'~") < ¢, meaning that the
diversity improvement is less than a pre-defined threshold,
¢o. An ablation analysis for this bi-modal scheduling is
presented in Section 4.

Algorithm 1 Bi-modal RD-DPP for Sample Selection
Input: Entire data with indices A, Initial data Z, with
index set Z, affordable transmission budget nr samples,
and the number of samples £ selected in each round.

Output: The index set of selection
SelSet.

1: Initialize: SelSet < Zy, B < A\ 2y, Z <+ Zg, and
t < 0, transitionFlag<— False.

2: while ¢t < np do

33 t<4t+k#Mode one. DPP-based.

4 if sdiv(Zt) — sdiv(Z'~%) > ¢, and Not transition-

Flag then

5 Calculate the DPP kernel K for 3 by Eq. (12).

6: SelSet_round < DPP,,(K, k).

7. else

8

9

transitionFlag<— True #To Mode two.

: SelSet_round < Uncertainty(x;,i € B, k)
10:  end if

11: B« B/SelSet_round

12:  SelSet + SelSet U SelSet_round

13:  for i in SelSet_round do

14: Z < [Z,x;]. #Add one column to Z.
15:  end for

16: end while
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Figure 3. Performance of the classifier (%) with different network architectures for different selection methods applied to CIFAR10 dataset.

4. Experiment

Setup. As a proof of concept, we evaluate the proposed and
alternative methods using seven datasets, including MNIST
[11], FMNIST [38], CIFAR10 [22], SVHN [28], and three
small datasets, Yeast [1], Cardiotocography [5], and Stat-
log (Landsat Satellite) [33]. It is worth mentioning that in
practical communication systems, the data is transmitted in
terms of packets that may contain more than one sample,
and samples with a packet are very similar. To accommo-
date this consideration, we regulate the selection of pack-
ets (instead of samples) in our experiments. All the above
derivations are valid with only one change that the sample’s
feature vectors x are replaced by the class-wise mean of
feature vectors of all samples within the packet. In our ex-
periment, we assume there exists a total of 100 packets for
MNIST and FMNIST, and each packet contains 64 sam-
ples. Likewise, we constructed 100 packets for CIFAR10,
and each packet had 200 samples. In each experiment, we
use 5 randomly selected packets for initialization and then
perform different strategies to select packets. Details of
three small datasets and additional experiment setups are
provided in Appendix C. The composition of some exem-
plary packets is shown in Appendix B.

To efficiently evaluate the effectiveness of our method
with different models, we apply a simple CNN network on
MNIST and FMNIST and use the feature from the layer
before the classifier as the lower-dimensional representa-
tion of data samples (each image is mapped to a 288 x 1
vector). Likewise, we apply three different state-of-the-art
architectures for CIFAR10: ResNet-18 [16], EfficientNet-
BO [35], and ResNeXt29 (2x64d) [39], respectively, repre-
senting each image as a vector of 320, 512, and 1024 ele-
ments. We apply a naive logistic regression for Yeast, Car-
diotocography, and Statlog (Landsat Satellite).

Baselines. To prove the effectiveness, the proposed
method should at least outperform the two most impor-
tant baselines: i) Random selection and ii) vanilla DPP,

which has been validated by [36] for this purpose. We also
compare our method against multiple alternative selection
policies. We include uncertainty-based methods [8, 18,29]
based on iii) Cross-Entropy and iv) Min Margin, respec-
tively. For the sake of completeness, we also compare it
against some diversity-based methods. These methods in-
clude v) K-Center selection [32], three submodular mutual
information methods [21], vi) FLQMI [2], vii) LogdetMI
and viii) ORIENT [19], viiii) and DACS [20], a density-
based method.

Results. The main results (average of 10 runs) on four
datasets are shown in Table 1, demonstrating our proposed
method outperforms all other methods in most scenarios.
The primary observation lies in the comparison with ran-
dom selection. Our method yields a substantial accuracy
improvement ranging a 3% — 5%, 2% — 12%, 2% — 4%, and
3% — 5% accuracy gain at all budgets from 10 to 50 on four
datasets, respectively, while random selection often beats
other methods at some budgets. Our method can also ob-
tain at least a 1% accuracy gain over other methods at trans-
mission budgets up to 50. Additionally, when the budget is
limited to 10 on the SVHN dataset, our approach achieves
an impressive at least 7% increase in accuracy compared to
all other methods. The results on CIFAR10 with different
architectures are shown in Fig. 3 and Tbale 2, which exhibit
a significant gain for our method over all other methods.
For example, ResNet and ResNeXt, when using our selec-
tion strategy, obtain a 2%-3% gain over the entropy-based
decision, min-margin decision, and random selection. Effi-
cientNet obtains even a higher gain of 5% over the other
methods at transmission budgets up to 50. We also ob-
serve that the diversity-based methods and ours outperform
the uncertainty-based method at the beginning. However,
when the transmission budget increases, these methods be-
come even worse than the uncertainty-based methods, but
our method consistently can outperform all of these meth-
ods. Please also refer to appendix C to see additional ex-
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periments on raw samples for Yeast, Cardiotocography, and

Statlog (Landsat Satellite).

Table 1. The comprehensive results on 4 datasets by different se-

lection methods.

Dataset Budget 10 20 30 40 50
RD-DPP 49.67+5.84 72.86+2.79 83.21+2.02 89.25+1.31 91.26+1.46
Cross-Entropy  22.4243.70 45434341 70.23+4.08 87.154£2.06 90.23+1.35
Min Margin 43.14+£7.06  63.314+6.13  74.144+3.83 81.98+1.93 82.40+2.73
K-CENTER 48.56+4.58  71.14+6.57 80.514+3.41 86.35+£2.79 88.00+2.45

MNIST vanilla DPP 49.47+3.58  69.2243.61 80.30+5.78  85.88+4.01 89.43+2.04
FLQMI 34.444755 48.65+6.76 61.89+7.91 67.84+4.38 77.614+2.37
LogdetMI 46.59+6.86  60.234+3.85 68.194+3.77 71.38+£2.85 79.47+2.45
ORIENT 21.8443.51 29.38+2.64 46.48+5.77 56.09+4.65 69.59+4.81
DACS 22.78+5.49 48.75£8.68 75.76+5.28 84.144+3.04  90.40+1.27
Rand 44.1245.61  64.504+3.37  78.58+4.59 84.29+3.23 87.91+1.89
RD-DPP 44.36+3.00 50.754+2.78 54.754+2.10 55.87+£1.61 59.35+1.08
Cross-Entropy  27.324+5.52  43.9946.32 51.64+4.32 55.65+3.47 57.43+2.45
Min Margin 30.394+7.70  39.97+3.65 45.14+6.48 47.07+£5.53  51.1242.62
K-CENTER 43.08+5.45 49.43+1.84 54.2043.54 55.054£3.51 58.35+1.88

FNMIST vanilla DPP 44.1243.33  49.2943.11  54.3442.77 55.7143.07 58.30+1.00
FLQMI 44.16+4.90  50.03+3.16  53.914+3.28 55.80+3.04 56.38+3.38
LogdetMI 44.38+3.93  50.204+3.89 53.684+4.39 55.62+4.02 57.88+3.50
ORIENT 45.04+6.76  50.53+£3.74 53.5243.77 56.98+3.63 57.65+1.52
DACS 44.204+2.24  49.034+5.10  51.66+3.39  55.78+4.28 56.45+2.36
Rand 32.104+4.30  45.29+6.22 52.46+4.98 53.85+3.11 56.304+3.41
RD-DPP 43.94+0.88 48.31+1.3  51.36+0.72 54.74+0.51 57.02+0.89
Cross-Entropy  40.86+0.86 44.984+0.78  48.0+1.08 50.6+0.85  53.36+0.81
Min Margin 41.83+£0.76  45.544+0.96  48.3+1.18 51.54+0.58 53.2840.6
K-CENTER 42.98+0.67 46.3240.63 49.524+0.52  51.54+0.82 54.24+0.31

CIFAR10 vanilla DPP 43294093 47.16+0.6 49.4+0.51  51.76+£0.74  53.79+0.38
FLQMI 42.874+0.53  46.16+0.47 49.2840.88 51.54+0.86 53.73+0.68
LogdetMI 42.1941.29  46.404+0.55 49.014+0.79  51.85+£0.60  54.00+0.83
ORIENT 42.10+1.01  46.024+0.87 49.204+1.20 51.57+£0.91 54.12+0.42
DACS 43.02+0.35  46.314+0.74  48.84+0.29 51.43+0.75 53.74+0.88
Rand 41.16+0.62  45.2440.61 47.88+0.43 50.26+0.12  53.24+0.96
RD-DPP 47.69+2.48 68.68+1.76 71.56+1.07 74.92+0.53 77.14+0.35
Cross-Entropy ~ 37.38+1.10  53.5942.54 67.58+2.10 72.25+1.89 74.80+1.01
Min Margin 37.3542.03 53.98+£1.30 66.10+£1.35 71.49+1.03  74.48+1.26
K-CENTER 37.5042.19 52974217 65.8942.15 71.28+1.63  73.96+1.12

SVHN vanilla DPP 37.4242.01 54214219 65.1241.04  71.59+1.74 75.124+1.01
FLQMI 37.164+1.77  53.67+£1.97 65.804+2.01 72.13+0.87 75.014+0.64
LogdetMI 40.1941.92  55.1242.12  67.904+2.21 71.88+0.81  75.02+0.98
ORIENT 38.19 £2.30 51.374+2.76  69.89 £1.98 70.45+2.91 76.02 +0.65
DACS 37.2842.30 53.19+£1.30 65.79+2.28 72.64+1.19 74.1240.94
Rand 38.204+1.66 54.49+2.69 65.96+1.33  70.85+1.61  74.6541.02

Table 2. Comparison of the classification accuracy by using dif-
ferent architecture on CIFAR10.

Network Method 10 20 30 40 50
RD-DPP 30.85+1.5 33.95+1.13 35.03+1.42 37.19+1.61 38.07+2.02
Cross-Entropy ~ 28.5+0.58  30.65+0.42 31.03+£0.65 32.65+1.35 32.67+0.68
Min Margin 28.6+0.67  30.1241.74 30.38+0.65 32.35+£1.01 32.79+1.61
K-CENTER 28.26+1.28 30.41+1.07 31.62+£0.98 32.24+0.99 33.68+0.95

Efficient vanilla DPP 28.05£1.19 30.53+£0.95 31.52+1.43 32.124+1.36  33.69+1.2
FLQMI 28.954+1.79 29.93+1.67 3243+1.24 31.83+0.96 33.03+0.96
LogdetMI 28.83+0.86  30.78+0.42 32.47+0.82 32.354+0.98 34.24+1.33
ORIENT 28.89+£1.40 29.91+£0.52 31.39£1.55 33.784£0.90 34.05+0.89
DACS 28.36+£1.67 31.154£0.78  31.1140.97 31.95+0.93  33.58+0.55
Rand 25.98+1.47  29.241.07 31.01+£0.89 31.58+1.23 32.47+1.34
RD-DPP 40.26+0.38  46.714+0.62  49.754+0.93 53.13+0.51 56.49+0.49
Cross-Entropy  38.63+0.28 42.994+0.76 46.55+0.74 50.67+0.56  53.38+0.82
Min Margin 37.89+0.66 43.91+0.22 47.24+0.55 50.03+0.4  53.08+0.42
K-CENTER 39.9240.95 45.33+£1.07 4826+1.22 51.874£0.46 54.19+0.66

ResNet vanilla DPP 40.36+0.8  44.8440.62 4825+0.6 51.53+0.41 54.6+0.52
FLQMI 40.01£0.92  45.20+0.89 48.22+0.50 51.2440.55 54.42+1.22
LogdetMI 38.124£1.27 41.2442.63 44.61£1.17 4899+1.71 51.05+1.89
ORIENT 39.95+0.86 45.254+0.93 48.91+0.46 51.63+1.01 54.46+0.88
DACS 40.15+0.38  45.32+0.56 48.11£1.10 51.814+0.92  53.83+0.68
Rand 37.64+0.75  43.5+£0.29  47.3240.39 50.13+£1.09 53.27+0.64
RD-DPP 43.94+0.88 48.31+1.3 51.36+0.72 54.74+0.51 57.02+0.89
Cross-Entropy  40.86+0.86 44.98+0.78 48.0+1.08  50.6+0.85  53.36+0.81
Min Margin 41.8340.76 45544096 48.3+1.18  51.5£0.58  53.28+0.6
K-CENTER 42.98+0.67 46.3240.63 49.524+0.52  51.540.82  54.240.31

ResNext vanilla DPP 43294093  47.16+£0.6  49.4+0.51 51.76+0.74 53.79+0.38
FLQMI 42.8740.53  46.16+0.47 49.2840.88 51.54+0.86 53.73+0.68
LogdetMI 42.19£1.29 46.404£0.55 49.014£0.79 51.85+0.60 54.0040.83
ORIENT 42.10+1.01  46.02+0.87 49.20£1.20 51.57+091 54.12+0.42
DACS 43.0240.35  46.31+0.74  48.84+0.29 51.434+0.75 53.74+0.88
Rand 41.164£0.62  452440.61 47.8840.43 50.26+0.12  53.240.96
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For further verifying the effectiveness of the pro-
posed method by evaluating the average performance rank,
we construct a critical difference diagram based on the
Wilcoxon signed-rank test to detect pairwise significance
with o = 0.05 [10]. As shown in Fig. 4, the result demon-
strates our method achieves a 1.15 average rank and con-
firms the statistical superiority over all other methods.

Accuracy
10 9 8 7 6 5 4 3 2 1
{ MY U Y TN N N ST ST
Min Margin 222 ”E RD-DPP
Entropy L2522 a100 Do
Rand 7.0500 " I 4.6000 LogdetMI
FLQM| === | 22 K-CENTER
DACS 220 29500 ORIENT

Figure 4. Critical difference diagram with o = 0.05. There is no
statistical difference between methods connected by a bolded line.

Ablation Analysis. We conduct an ablation study to
demonstrate the effectiveness of the bi-modal scheduling.
Two baselines are considered: i) RD-DPP (only diversity),
which focuses solely on diversity without transitioning to
uncertainty-based methods after diversity reaches the sat-
uration point, ii) Marginal Rate Gain, which selects the k
top candidate samples merely based on their individual se-
mantic gains (i.e. k largest (X, €) defined by Eq. (11))
ignoring the within-diversity of the candidate samples. The
result in Table 3 shows that before the transition point, our
bi-modal RD-DPP method outperforms the Marginal Rate
Gain with 8%-10% and 5%-16% accuracy improvement on
MNIST and FMNIST, respectively. Our method is equiva-
lent to RD-DPP (only diversity) before the transition point
as expected. After the phase transition point (i.e. the point
between 20-30 and 40-50 for MNIST and FMNIST, respec-
tively), RD-DPP (bi-modal) consistently achieves around
3% accuracy gain over the other two baseline methods.

Table 3. The ablation analysis on MNIST and FMNIST, respec-
tively. Here, X denotes there is no Phase Transition, while v de-
notes that Phase Transition has occurred in the RD-DPP (Bi-
modal).

Dataset Budget 10 20 30 40 50 60
Phase Trans? X X v v v v

MNIST RD-DPP (Bi-modal) 49.67 72.86 8321 89.25 9126 9236
RD-DPP (Only Diversity) - - 80.92 8472 8729 90.11
Marginal Rate Gain 4199 63.13 723 83.03 8471 86.74
Phase Trans? X X X X v v

FMNIST RD-DPP (Bi-modal) 4436 50.75 54.75 5587 59.35 6345
RD-DPP (Only Diversity) - - - - 5636  57.58
Marginal Rate Gain 28.12 4294 4864 5481 5786 60.56

Complexity Analysis. Our main overhead is to com-
pute the semantic quality score (Eq. (11)). For each
candidate 4, the complexity of the term R(X;i,e) =
logdet (I+aX;+ X/, ) is only O(tdmin(t,d)) (i.e. the
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complexity of the SVD decomposition of X;;). There-
fore, we need operations in the order of O(mtd min(t, d))
to compute the semantic quality score of all candidates.
Then, constructing the kernel presented in Eq. (12) requires
a O((der)m?) = O(dm?) complexity for a small num-
ber of cluster/class labels cr. The remaining complexity is
the same as the greedy search method [6], which requires
a O(k*>m) complexity to return k select samples. Thus,
the overall complexity in each round is O(mtd min(t, d) +
d*>m + k?m) ~ O(mtdmin(t,d)). In our work, we use
bootstrapping to accelerate the approximation.

5. Discussion: Learning for Future Tasks

In this section, we highlight the broader advantages of
diversity-based selection methods beyond their immediate
benefits for current tasks by effectively preserving repre-
sentative information. In contrast, uncertainty-based ap-
proaches, which are primarily designed to enhance the cur-
rent model, lack this capacity. Here, we consider two sce-
narios:

Robustness for Label-shift Generalization. In this sce-
nario, the same set of selected data samples are used for
different tasks. We perform our experiment on the Large-
scale CelebFaces Attributes (CelebA) Dataset [25], where
each attribute can be used as the target label to perform
a binary classification task. We select the samples for the
Smiling classification task, then train two new classifiers
for Blond_Hair and High_Cheekbones target labels
using the same selected samples. The results after running
20 times are reported in Table 4 for 20, 40, and 60 selected
packets out of 100 packets, where each packet contains 2
samples. The results show that our approach preserves di-
versity, confirming its potential to benefit various related
tasks, especially under low-budget conditions.

Table 4. Generalizability of our RD-DPP and Uncertainty-based
Decision (Cross-Entropy) methods are assessed by selecting
samples for the original classification task (Smiling) and us-
ing them for two new classification tasks (Blond_Hair and
High_Cheekbones). Methods are compared in F1 Score and
Classification Accuracy.

Task Budget 20 40 60
s Method FI _ACC __FI___ACC FI__ACC
RD-DPP 63.71 63.97 70.04 7024 7245 7279
Smiling Uncertainty Dec.  35.64  51.51 5429 60.38 6575 67.58
A +28.07 +12.46 +15.75 +9.86 +6.7 +5.21
RD-DPP 64.48 89.5 66.92  90.01 7041 90.63
Blond_Hair Uncertainty Dec.  48.26 88.69 56.45 89.58 68.83 90.87
A +16.22  +0.81 +1047 +0.43 +1.58 -0.24
RD-DPP 6145  62.68 674 6819 69.17 70.36

High_Cheekbones  Uncertainty Dec. ~ 40.47 54.32 5388 60.82 60.84 65.11
A +20.98  +8.36  +13.52 +7.37 +833 +5.25

Table 5. The ability (classification accuracy) to resist negative in-
terference on different tasks.

Task Budgets 10 30 50
RD-DPP 53.30 57.27 69.78
Rotated MNIST Uncertainty Dec.  43.09 48.01  66.25
A +10.21  49.26  +3.53
RD-DPP 3245 5545  60.88
MNIST Fellowship ~ Uncertainty Dec.  17.05 3829  56.27
A +154  +17.16  +4.61

Robustness for Domain-shift Interference. Real-world
applications often involve data from different sources aim-
ing at similar tasks (domain shift), such as classifying ve-
hicles in urban and rural areas. In such cases, training one
model for all tasks (i.e. multi-task learning) is not as effec-
tive as task-specific models due to the inherent variability
among tasks. To alleviate this issue, it is advantageous to
select samples that preserve task-specific information when
switching between different domains under resource con-
straints [3]. We claim that our RD-DPP provides such ca-
pability. To this end, we construct two popular synthesis
tasks, which are Rotated MNIST [26] and MNIST Fellow-
ship [14]. For more details about the setup, please refer to
Appendix B. The experimental results of the model train-
ing on the mixed data and inference on the original task are
summarized in Table 5. The results clearly indicate that
the proposed RD-DPP not only outperforms uncertainty-
based decisions in addressing the original problem but also
demonstrates the capability to reduce inter-domain interfer-
ence in multi-task learning.

6. Conclusion

Our study reveals an inherent relationship between the
RD and DPP when it comes to selecting diverse training
samples to boost the performance of machine learning al-
gorithms. This relationship is used to design a new measure
of diversity for data that facilitates sequential DPP infer-
ence. We also propose bi-modal scheduling that switches
between the DPP-based and uncertainty-based data selec-
tion modes to accommodate different transmission budget
constraints better than all alternative selection methods. We
showed that our approach can be applied to both raw data
and data representation in low-dimensional latent spaces.
The intensive experiment results using 7 different datasets
and five different ML/DL models consistently show that our
method outperforms pure uncertainty-based, pure diversity-
based (including pure DPP-based), and random selection
methods. Finally, we observed that the samples selected by
our method are more beneficial (compared to other selec-
tion methods) for potential future tasks, such as label-shift
tasks and domain-shift tasks.
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