
  

  

Abstract— A robot’s ability to effectively recognize human 

emotions is critical in human-robot collaboration. However, 

most of the current collaborative robots were designed to 

improve productivity. Few of these robots consider human 

emotions. This situation would cause humans to be unwilling to 

work with robots for a long time. Motivated by this gap, this 

research developed a human emotion recognition system for 

enhancing the interaction abilities of collaborative robots. In this 

project, both speech and facial information were analyzed for 

robust human emotion recognition in complex working 

environments like manufacturing assembly environments. In the 

experiment, the developed system has been tested through three 

different human-robot co-assembly scenarios: (1) the robot 

effectively assists humans in finishing the task, (2) the robot is 

slow in response, leading to the task failing, (3) the robot 

frequently picks up wrong tools leading to task failure. 

Experimental results have demonstrated the effectiveness of the 

developed system in recognizing human co-worker’s emotions 

when the human and the robot were working in the above 

scenarios. It further shows the developed system has the 

potential to contribute to the development of an empathic 

collaborative robot companion in the manufacturing area. 

I. INTRODUCTION 

Collaborative robots have wide applications in smart 
manufacturing areas. Though collaborative robots are 
proposed to work closely with human workers, these robots do 
not consider human factors well. Human factors are important 
for human-robot collaboration as well as can be complex and 
involve multiple aspects. Among these aspects, human 
emotions are one of the very important factors that are usually 
overlooked and could potentially impact the collaboration 
process. However, integrating emotion recognition in practical 
human-robot co-assembly remains unresolved due to the 
current collaborative robots in manufacturing were mainly 
designed to be productivity-centered only. Moreover, the 
complexities of the manufacturing environment also led to 
difficulties in implementing emotion recognition in 
collaborative robots. These questions will further limit the 
application of collaborative robots in working closely with 
humans. 

To solve the questions, this paper develops a multimodal 
emotion recognition method that can be implemented on 
collaborative robots to better understand human status during 
co-assembly tasks. Such recognition results have the potential 
to be further used for guiding the robot behaviors for better 
human-robot collaboration in finishing assembly tasks. The 
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developed system was tested and evaluated in an experimental 
setup, designed to mimic realistic industrial scenarios, offers a 
safe and controlled platform to explore the abilities of 
collaborative robot’s in understanding human emotions. In the 
experiment, the collaborative robot was tasked with improving 
task efficiency and identifying human emotion changes during 
the progress of the tasks. 

The contribution of this paper can be described as: (1) 
developing a multimodal emotion recognition system that can 
be integrated into manufacturing collaborative robots. Using 
multimodal information (speech and facial) can help avoid the 
instability caused by complex environments and relying on a 
single modality. (2) designing three different real-world 
collaborative assembly scenarios for naturally eliciting human 
different emotions. (3) validating and analyzing the 
effectiveness and performance of the developed system 
through the designed real-world co-assembly tasks. The 
findings obtained from the validation and analysis can offer 
insight into the study of the dynamic interplay between human 
emotions and robot-assisted tasks. 

II. RELATED WORKS 

Emotion recognition has made significant strides in recent 
years, harnessing the power of multimodal information 
processing. For human emotion recognition, facial expression 
recognition (FER) and speech-emotion recognition (SER) 
have been widely used.  

Chowdary et al. [1] demonstrated a 96% accuracy in facial 
expression recognition (FER) using transfer learning with pre-
trained networks like ResNet50 and Inception V3 on the CK+ 
database. Ko et al. [2] reviewed the shift from conventional 
FER methodologies to deep-learning-based approaches, 
highlighting the effectiveness of convolutional neural 
networks (CNNs) and long short-term memory (LSTM) 
networks. Jain et al. [3] presented an advanced deep neural 
network (DNN) model that surpassed state-of-the-art FER 
approaches with deep residual blocks and convolution layers. 
Li et al. [4] surveyed deep learning techniques in FER, 
addressing challenges like overfitting and expression-
unrelated variations. Pramerdorfer et al. [5] and Mehendale [6] 
explored the use of CNNs for recognizing facial expressions, 
with Mehendale introducing the FERC technique for improved 
accuracy. Canal et al. [7] comprehensively analyzed FER 
strategies, distinguishing between classical and neural 
network-based approaches. Swain et al. [8] emphasized the 

           

 

 

 

A Speech and Facial Information based Emotion Recognition 

System of Collaborative Robot for Empathic Human-Robot 

Collaboration 

Jianna Loor, Jordan Murphy, and Rui Li*, Member, IEEE 



  

expressive capacity of speech and the development of various 
databases and classifiers. Issa et al. [9] introduced an 
architecture that significantly improves SER accuracy using 
mel-frequency cepstral coefficients and other acoustic 
features. Khalil et al. [10] highlighted the use of attention 
based DNNs for mining information from speech signals. 
Aouani et al. [11] proposed a two-stage emotion recognition 
approach using autoencoders for feature extraction and SVM 
for classification in SER. Jahangir et al. [12] contributed to 
advancing SER through various deep learning approaches, 
emphasizing automatic feature extraction, affective gap 
bridging, and the consideration of emotional and neutral 
speech parts, respectively. Bertero et al. [13] introduced a real-
time CNN model for emotion and sentiment recognition from 
raw speech, bypassing traditional feature engineering. Patel et 
al. [14] showed that dimensionality reduction via autoencoders 
can enhance emotion detection accuracy. Khan et al. [15] 
described a feature fusion approach using a deep stride CNN 
combined with bi-directional LSTM, significantly improving 
accuracy on the RAVDESS dataset. In addition, the synergy 
between facial expression and speech analysis has led to 
innovative multimodal approaches that enhance interaction 
experiences between humans and machines. Liu et al. [16] 
demonstrated the efficacy of transfer learning from FaceNet 
for speech emotion recognition. Cai et al. [17] proposed a 
method merging speech and facial expression features that 
significantly improved the IEMOCAP dataset. Guanghui et al. 
[18] emphasized the strength of combining speech and facial 
data, improving accuracy and robustness in emotion 
recognition. Lastly, Siddiqui et al. [19] presented a framework 
that fuses speech with visible and infrared images, achieving 
high accuracy across diverse environments. In the realm of 
collaborative robots, Heredia et al. [20] proposed an adaptive 
and flexible emotion recognition architecture utilizing 
EmbraceNet+ for social robots. Antonelli et al. [21] developed 
an emotion recognition system for collaborative robots, 
focusing on enhancing the safety and efficiency of human-
robot interactions by implementing emotional intelligence. 

Existing works for emotion recognition often do not fully 
address the complexities of real-world applications, especially 
in dynamic and noisy environments such as manufacturing. 
Our work aims to solve this with a multimodal emotion 
recognition system developed and tailored for collaborative 
robots in manufacturing. 

III. MATHEMATICAL MODEL 

A. Speech Recognition 

In the domain of emotion recognition from speech data, the 
approach begins with a process of augmenting the audio data 
to improve the model's robustness against variations in speech 
speed and pitch. Specifically, time-stretching is used to adjust 
the pace of the audio signal. It can be represented using: 

𝑦𝑓𝑎𝑠𝑡 = 𝑡𝑖𝑚𝑒_𝑠𝑡𝑟𝑒𝑡𝑐ℎ(𝑦, 𝐴),       (1) 

𝑦𝑠𝑙𝑜𝑤 = 𝑡𝑖𝑚𝑒_𝑠𝑡𝑟𝑒𝑡𝑐ℎ(𝑦, 𝐵),      (2)  

where A=1.25 for speeding up the audio and B=0.75 to slow 
down the audio. Additionally, pitch shifting modifies the pitch 
of the audio signal upwards and downwards by two semitones: 

𝑦𝑝𝑖𝑡𝑐ℎ_𝑢𝑝 = 𝑝𝑖𝑡𝑐ℎ_𝑠ℎ𝑖𝑓𝑡(𝑦, 𝑠𝑟, 2),     (3) 

𝑦𝑝𝑖𝑡𝑐ℎ_𝑑𝑜𝑤𝑛 = 𝑝𝑖𝑡𝑐ℎ_𝑠ℎ𝑖𝑓𝑡(𝑦, 𝑠𝑟, −2),      (4) 

The feature extraction process is critical for translating the 
raw audio data into a more analytically useful form. Mel-
frequency cepstral coefficients (MFCCs) are central to this 
process, capturing the timbral aspects of the speech. The 
calculation of MFCCs involves mapping the power spectrum 
of the audio signal onto the mel scale, closely approximating 
the human auditory system's response. The MFCCs: 

𝑀 = 𝐷𝐶𝑇(log⁡(𝜑( 𝑦))),        (5) 

where M signifies the MFCCs, DCT represents the discrete 
cosine transform, and 𝜑(y) represents the Mel Spectrogram 
function applied to the audio signal y. The Mel Spectrogram, 
another pivotal feature, is computed to provide a logarithmic 
amplitude representation of the sound, given as  

Smel = log(1 + 𝜙 ∙ 𝜑 (y)),                                  (6) 

where Smel represents the logarithmic amplitude representation 
of the sound after mapping onto the mel scale, and 𝜙  is a 
constant equal to 10000, improving the precision of the 
equation. Furthermore, spectral contrast and Tonnetz features 
offer additional insights into the emotional content of speech. 
Spectral contrast delineates the difference in amplitude 
between the spectrum's peaks and valleys, while Tonnetz 
features, capturing changes in harmonic content, can indicate 
different emotions conveyed through speech. 

The cornerstone of the emotion recognition model is the use 
of Long Short-Term Memory (LSTM) networks, which are 
adept at processing data sequences and capturing temporal 
dependencies within them. The model employs a Bidirectional 
LSTM layer to analyze the sequence of forward and backward 
speech features, enhancing its capacity to understand the 
context and nuances of emotional expressions. The hidden 
state updates in the LSTM layer are governed by: 

   Ht = σ(WihXt + bih + WhhHt-1 + bhh),                      (7) 

where Ht represents the hidden state at time t, σ represents the 
sigmoid function to ensure non-linearity, Wih  and Whh 
represent the weight matrices that transform inputs and relay 
information across time steps, respectively. Xt is the input at a 
time, and bih and bhh are the bias terms. 

The model includes Dense layers to classify emotions from 
the processed features, where the final classification is 
performed through a combination of linear and non-linear 
transformations. Each Dense layer's output is calculated by:  

Y = 𝛾(WX + b),                                   (8)  

where Y represents the output, W and b denote the weight 
matrix and bias term, respectively, and 𝛾  is the activation 
function, such as ReLU for intermediate layers and softmax 
for the output layer, ensuring probabilities for each emotion 
class are obtained. 

 The training of this model is suitable for multi-class 
classification scenarios and utilizes the categorical cross 
entropy loss function, defined as  

𝐿 = ⁡−∑ 𝑦𝑜,𝑐 log 𝑝𝑜,𝑐
𝑇
𝑒=1       (9) 

where T represents the total number of classes, yo,c a binary 
indicator of whether the class c is the correct classification for 



  

o, po,c represents the predicted probability that observation o 
belongs to class c, as output by the model. This function 
quantifies the difference between the predicted probabilities 
and the actual distribution of the labels, guiding the model 
towards minimizing this discrepancy over the training process. 

The LSTM model was trained on the RAVDESS dataset 
[22], which includes a diverse range of emotion expressions in 
speech. The training resulted in an accuracy of 89.6%, 
demonstrating the model’s effectiveness in recognizing a 
variety of emotions. The spectral contrast graph in Fig. 1(a) 
highlights the distinction between high-frequency peaks and 
low-frequency valleys, suggesting harmonic structures or 
noise indicative of robotic activity or interaction. The Tonnetz 
graph in Fig. 1(b) shows fluctuations in tonal centroids that 
may reflect changes in the participant's vocal pitch and 
harmony in response to the robot's behavior. In contrast, the 
MFCC graph in Fig. 1(c) indicates a stable vocal tract 
configuration, implying controlled emotional expression 
during the interaction. The Mel spectrogram in Fig. 1(d) 
outlines energy distribution across frequencies, with bright 
bands indicating speech or high-frequency noise and darker 
areas suggesting less activity.  

B. Facial Expression Recognition 

Considering the complexities of the working environment 

may impact the stability of speech signals, facial information 

is also considered for robust emotion recognition results. The 

DeepFace library based on facial expression data is integrated 

into the system. The choice of DeepFace is attributed to its 

high accuracy and efficiency in processing diverse facial 

expressions, making it ideal for real-time emotion recognition 

tasks. Based on a robust convolutional neural network (CNN) 

model, DeepFace excels in processing and interpreting 

diverse facial expressions with high accuracy and efficiency, 

making it well-suited for real-time emotion recognition tasks. 

The library's core functionality involves extracting and 

analyzing frames from continuous video capture, utilizing its 

analyze function to detect facial expressions within each 

frame, as shown in Fig. 2. This process leverages a pre-trained 

CNN to identify the dominant emotion presented based on a 

interpretation of facial features and expressions. 

The technical prowess of DeepFace lies in its ability to 

provide detailed insights into the emotional dynamics of 

individuals, offering a window into the range of emotional 

expressions exhibited over time. By accumulating and 

assessing the dominant emotions detected across fixed 

intervals, DeepFace employs a systematic aggregation 

method. This involves calculating the frequency of each 

detected emotion within the interval and identifying the most 

prevalent emotion as the period's dominant emotional state. 

Such an approach allows for understanding emotional trends 

and patterns. Under the framework of Deepface, the VGG-

Face model was further utilized due to its high performance 

in facial emotion recognition tasks, achieving an accuracy of 

95% upon testing, making it an ideal choice. It also works 

well for face recognition with complex backgrounds. 

C. Speech and Facial Information for Emotion Recognition 

This section will outline the method for combining both 

speech and facial information for emotion recognition. Given 

a video segment, the system generates a set of emotions, 

𝐸𝑣𝑖𝑑𝑒𝑜 , from facial analysis, and an 𝐸𝑎𝑢𝑑𝑖𝑜 , from audio 

analysis. The facial emotion recognition, powered by 

DeepFace, yields a set of emotions for each frame, which are 

then aggregated to identify the most frequent (dominant) 

facial emotion, 𝐸𝑣𝑑, within the segment, with vd representing 

the video dominant emotion. This process can be 

mathematically represented as: 

        𝐸𝑣𝑑 = 𝑚𝑜𝑑𝑒{𝐸𝑣𝑖𝑑𝑒𝑜}            (10) 

where the mode function identifies the most frequently 

occurring emotion in the set of emotions detected in the video 

frames. Simultaneously, the audio emotion recognition 

system processes the corresponding audio segment to produce 

an emotion prediction, 𝐸𝑎𝑢𝑑𝑖𝑜. This prediction is based on the 

features extracted from the audio signal and analyzed through 

an LSTM model. The emotion prediction from audio can be 

defined as: 

𝐸𝑎𝑢𝑑𝑖𝑜 = argmax⁡(𝑃𝑎𝑢𝑑𝑖𝑜)     (11) 

where 𝑃𝑎𝑢𝑑𝑖𝑜  represents the set of probability distributions 

over possible emotions obtained from the LSTM model, and 

arg max selects the emotion with the highest probability. 

Integrating of audio and video emotional cues into a unified 

dominant emotion for each segment involves a decision rule 

prioritizing the non-neutral emotion from the video analysis, 

resorting to the audio-derived emotion if the video emotion is 

deemed neutral. Mathematically, this decision rule can be 

expressed as: 

𝐸𝑑𝑜𝑚 = {
𝐸𝑣𝑖𝑑𝑒𝑜𝑑𝑜𝑚𝑖𝑛𝑎𝑛𝑡

⁡𝑖𝑓⁡𝐸𝑣𝑖𝑑𝑒𝑜𝑑𝑜𝑚𝑖𝑛𝑎𝑛𝑡
≠ "𝑛𝑒𝑢𝑡𝑟𝑎𝑙"⁡

𝐸𝑎𝑢𝑑𝑖𝑜 ⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
(12) 

 
Figure 2: Example of emotion recognition by using DeepFace library. 

 

 
Figure 1: Graphs of Voice Features: (a) Spectral Contrast, (b) Tonnetz, 

(c) Mel-frequency cepstral coefficients, (d) Mel Spectrogram. 



  

Implementing this combined approach requires careful 

synchronization between the video and audio processing 

pipelines to ensure that the emotions are aligned temporally. 

Each video segment's dominant emotion is then annotated 

onto the video to provide a comprehensive emotional 

narrative of the observed scene. This integrated model 

leverages the strengths of both audio and visual cues to 

overcome the instability caused by complex environments 

and relying on a single modality.  

IV. SYSTEM OVERVIEW 

The system overview in Fig. 3 describes the developed 

emotion recognition system for interpreting human emotional 

states by analyzing multimodal data (speech signals and facial 

information). The workflow initiates with simultaneous data 

collection from facial and voice inputs. Facial expressions are 

captured and recognized in real-time. Concurrently, voice 

input is meticulously preprocessed to highlight emotional 

indicators, then parsed into acoustic features like MFCCs and 

Mel spectrogram. These features are analyzed using an LSTM 

network, specifically tuned to decode the complex emotional 

cues embedded within speech dynamics. In addition, a rule-

based model is employed to determine the dominant emotion, 

favoring the output from facial analysis unless a 'neutral' 

emotion is detected, at this point, the speech analysis takes 

precedence. This stratified approach ensures the system's 

acute sensitivity to overt emotional expressions and adeptness 

at discerning subtler nuances from speech when facial cues 

are not definitive. Fig. 3 also demonstrates the output phase 

of the system, where the integrated emotion data is ready to 

be annotated onto the video feed or utilized in interactive 

applications. 

V. EXPERIMENTS AND ANALYSIS 

A. Experimental Setup 

The core of the experimental design revolves around co-
assembly tasks, where a human and a robotic assistant co-
assemble an object that necessitates the utilization of a 
screwdriver, an Allen wrench, and a piler fundamental to the 
assembly process. Fig. 4 shows an example of our 

experimental setup. The Franka Emika panda is implemented 
to collaborate with the human worker. A laptop's built-in 
webcam is utilized for video capture of humans during 
assembly tasks. Audio is captured using an Audio-Technica 
AT2020USB+ microphone connected to the laptop, ensuring 
high-quality audio recording for further analysis.  

Three task scenarios are carefully designed for observing 
the impact of various robotic actions—namely, the robot's 
response speed, its precision in selecting the correct tools, and 
the velocity at which it delivers these tools—on the emotions 
of the human. Specifically, in scenario (1), the robot promptly 
provides the appropriate tools. This scenario (1) is 
hypothesized to elicit the satisfaction or happiness emotion of 
the human. Conversely, two other scenarios characterized by 
the robot's delayed actions (2) or incorrect tool selection (3) 
are hypothesized to elicit negative emotions, including 
frustration or impatience. To ensure a comprehensive 
assessment, the experiment is structured around several vital 
phases, beginning with the initial setup, where the human 
participant and the robotic assistant are positioned at the 
assembly station, equipped with all necessary tools and the 
components to be assembled as shown in Fig. 4. Following the 
setup, the experiment proceeds with executing the predefined 
task scenarios. These scenarios encompass a spectrum of 
interaction dynamics, ranging from effective collaboration, 
characterized by the robot's accurate and timely assistance, to 
challenging situations where the robot's performance is 
intentionally compromised, such as by introducing delays in 
tool delivery or by selecting incorrect tools, to simulate 

 
Figure 4: Experimental setup. 

 
Figure 3: System Overview, illustrating the multimodal emotion recognition system's workflow. This includes (a) facial input that is analyzed using the 

DeepFace framework and (b) vocal input that is analyzed via an LSTM network, focusing on acoustic features. The overall dominant emotion 
prediction (c) combines the dominant face and speech emotion to determine the dominant emotion. 

 



  

potential real-world complications and observe their effect on 
the human worker's emotional state and task performance. 

B. Experimental Results and Analysis 

In the first scenario, where the robot provided tools in an 
accurate and timely manner, the observed emotional outcomes 
predominantly matched the expected happy or neutral states. 
Participants exhibited clear signs of satisfaction, such as brief 
smiles and positive verbal feedback, highlighting the 
efficiency and smoothness of the task completion process as 
shown in Fig. 5(a). The system’s accuracy in recognizing these 
emotions was 88%. Notably, despite its predictive interval of 
every 5 seconds, the emotion recognition system captured 
these positive responses consistently. For example, in Fig. 5(a-
1), the participant is seen requesting a tool with a satisfied 
demeanor. The prompt delivery of the tool is captured in Fig. 
5(a-2), where the participant's satisfaction continues. Fig. 5(a-
3) and 5(a-4) show the participant engaging in the assembly 
task with evident contentment, indicative of the smooth 
interaction with the robot. In Fig. 5(a-5), the participant is 
captured returning the tool to the robot, with his expression 
and body language consistently conveying a happy or neutral 
state. Fig. 5(a-6) depicts the participant receiving pliers from 
the robot. The emotion recognition system fluctuates between 
happy and neutral, reflecting the subject's contentment with 
the interaction. The set concludes with Fig. 5(a-7), where the 
participant is seen stowing away the tool, the emotion 
recognition system affirming a sustained happy or neutral 
demeanor throughout the task. During the second scenario, 
characterized by deliberate delays in robotic tool assistance, 
participants' responses were anticipated to be sad or neutral. 
The observed outcomes generally aligned with these 
expectations. The system’s accuracy in recognizing these 
emotions was 81%. The delays in assistance led to moments 
of visible impatience, such as shifts in posture or sighs, 
reflecting a slight dip in participant satisfaction as shown in 
Fig. 5(b). For example, Fig. 5(b-1) captures the participant's 
frustration due to the robot's slow pace. The anticipation of 
assistance is visually apparent in Fig. 5(b-2), with the 
participant showing impatience while waiting for the robot. 
Fig. 5(b-3) depicts the participant's dissatisfaction upon finally 
receiving the tool, and Fig. 5(b-4) shows the participant 
continuing the assembly with a sense of annoyance, 
underscored by the delay in assistance. Fig. 5(b-5) illustrates 

the participant using the screwdriver with visible signs of 
annoyance, indicating the emotional shift due to the robot's 
delayed assistance. In an instance of the system's limitations, 
Fig. 5(b-6) shows the participant agitated while requesting a 
tool, yet the predicted emotion is incongruently registered as 
happy/neutral. Fig. 5 (b-7) demonstrates the complexity of 
human emotion. The participant is laughing, a response to 
frustration, which the system misinterprets as a happy state due 
to the smile. However, these moments did not escalate to 
overtly negative emotional displays, indicating a resilience or 
understanding toward the experimental constraints. The 
emotion recognition system's intervallic predictions captured 
these subtler emotional shifts but were also susceptible to 
noise. At times, the system interpreted non-emotional cues 
(e.g., looking away in thought or adjusting seating position) as 
emotional responses, adding a layer of complexity to 
interpreting these neutral to mildly negative states as shown in 
Fig. 5(c-3). The third scenario introduces delays and 
inaccuracies in tool assistance, with an expected outcome of 
anger or fear. The system’s accuracy in recognizing these 
emotions was 90%. The observed emotional responses 
included visible frustration, such as frowning and negative 
verbalizations, which aligned with the anticipated angry or 
fearful states as shown in Fig. 5(c). For example, Fig. 5(c-1) 
shows the participant with a clear expression of anger while 
requesting a tool. In Fig. 5(c-2), the reception of an incorrect 
tool further exacerbates the participant's frustration. Fig. 5(c-
3) is notable as it depicts a seemingly happy emotion; 
however, this is identified as 'noise' within the data since the 
subject is notably frustrated. Lastly, Fig. 5(c-4) shows 
continued anger as the participant receives another incorrect 
tool, emphasizing the negative impact of compounded delays 
and inaccuracies in robotic assistance on the participant's 
emotional state. Figure 5(c-5) shows the participant as he 
angrily replaces the tool, a gesture that suggests dissatisfaction 
with the robot's performance. A moment of heightened tension 
is visible in Figure 5(c-6), where the participant vehemently 
expresses frustration at the robot for selecting the incorrect 
tool. Finally, Figure 5(c-7) portrays the participant in a state of 
exasperation, waiting for the robot to hand over the tool, 
underscoring the emotional toll of compounded delays and 
inaccuracies in robotic assistance. And the robot recognized 
the negative emotion effectively.  

 
Figure 5: Experimental Video Results. (a) depicts positive reactions to timely and accurate robotic assistance; (b) shows mild frustration from delays; 

and (c) captures pronounced dissatisfaction from incorrect tool delivery. 



  

C. Comparison Analysis 

Our work addresses the nuanced challenges highlighted by 
Kim et al. [24] and Cai et al. [26] in multimodal emotion 
recognition. By integrating facial and speech cues, we aim to 
understand emotional states during real-time human-robot 
interactions comprehensively. As we build upon the technical 
prowess of Fayek et al. [13], our study contributes to this 
growing field by showcasing the operational impact of 
emotion recognition on collaborative task performance and 
efficiency. By integrating these insights with our observations 
on robotic assistance's effect on worker satisfaction, our 
research underscores the need for robotic systems that are both 
technically efficient and emotionally intelligent. The 
challenges we've encountered, particularly the noise in 
emotional data recognition, shed light on the intricate balance 
required in system design—balancing accuracy in emotion 
detection with the unpredictability of human behavior. 
Addressing this balance is paramount for applying emotion 
recognition in robotics, a concern that parallels the technical 
considerations of SER methodologies reviewed by Ko et al. 
[2]. In conclusion, while applying emotion recognition 
systems in human-robot collaboration offers promising 
benefits in improving understanding, engagement, and task 
efficiency, it also presents significant challenges. Overcoming 
these hurdles involves enhancing the technical capabilities of 
such systems and ensuring they are developed and used 
ethically and responsibly, with a keen awareness of their 
impact on human emotional well-being. 

VI. CONCLUSION 

In conclusion, this paper has developed a multimodal 

emotion recognition system for manufacturing collaborative 

robots, leveraging both speech and facial information to 

enhance stability in complex environments. Three real-world 

collaborative assembly scenarios were designed to naturally 

elicit various human emotions and validate the system's 

effectiveness and performance through these tasks. The 

experimental results have demonstrated the effectiveness of 

the developed system. Future work will focus on improving 

the existing system for emotion recognition in more complex 

environments. 
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