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Abstract— A robot’s ability to effectively recognize human
emotions is critical in human-robot collaboration. However,
most of the current collaborative robots were designed to
improve productivity. Few of these robots consider human
emotions. This situation would cause humans to be unwilling to
work with robots for a long time. Motivated by this gap, this
research developed a human emotion recognition system for
enhancing the interaction abilities of collaborative robots. In this
project, both speech and facial information were analyzed for
robust human emotion recognition in complex working
environments like manufacturing assembly environments. In the
experiment, the developed system has been tested through three
different human-robot co-assembly scenarios: (1) the robot
effectively assists humans in finishing the task, (2) the robot is
slow in response, leading to the task failing, (3) the robot
frequently picks up wrong tools leading to task failure.
Experimental results have demonstrated the effectiveness of the
developed system in recognizing human co-worker’s emotions
when the human and the robot were working in the above
scenarios. It further shows the developed system has the
potential to contribute to the development of an empathic
collaborative robot companion in the manufacturing area.

I. INTRODUCTION

Collaborative robots have wide applications in smart
manufacturing areas. Though collaborative robots are
proposed to work closely with human workers, these robots do
not consider human factors well. Human factors are important
for human-robot collaboration as well as can be complex and
involve multiple aspects. Among these aspects, human
emotions are one of the very important factors that are usually
overlooked and could potentially impact the collaboration
process. However, integrating emotion recognition in practical
human-robot co-assembly remains unresolved due to the
current collaborative robots in manufacturing were mainly
designed to be productivity-centered only. Moreover, the
complexities of the manufacturing environment also led to
difficulties in implementing emotion recognition in
collaborative robots. These questions will further limit the
application of collaborative robots in working closely with
humans.

To solve the questions, this paper develops a multimodal
emotion recognition method that can be implemented on
collaborative robots to better understand human status during
co-assembly tasks. Such recognition results have the potential
to be further used for guiding the robot behaviors for better
human-robot collaboration in finishing assembly tasks. The
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developed system was tested and evaluated in an experimental
setup, designed to mimic realistic industrial scenarios, offers a
safe and controlled platform to explore the abilities of
collaborative robot’s in understanding human emotions. In the
experiment, the collaborative robot was tasked with improving
task efficiency and identifying human emotion changes during
the progress of the tasks.

The contribution of this paper can be described as: (1)
developing a multimodal emotion recognition system that can
be integrated into manufacturing collaborative robots. Using
multimodal information (speech and facial) can help avoid the
instability caused by complex environments and relying on a
single modality. (2) designing three different real-world
collaborative assembly scenarios for naturally eliciting human
different emotions. (3) wvalidating and analyzing the
effectiveness and performance of the developed system
through the designed real-world co-assembly tasks. The
findings obtained from the validation and analysis can offer
insight into the study of the dynamic interplay between human
emotions and robot-assisted tasks.

II. RELATED WORKS

Emotion recognition has made significant strides in recent
years, harnessing the power of multimodal information
processing. For human emotion recognition, facial expression
recognition (FER) and speech-emotion recognition (SER)
have been widely used.

Chowdary et al. [1] demonstrated a 96% accuracy in facial
expression recognition (FER) using transfer learning with pre-
trained networks like ResNet50 and Inception V3 on the CK+
database. Ko et al. [2] reviewed the shift from conventional
FER methodologies to deep-learning-based approaches,
highlighting the effectiveness of convolutional neural
networks (CNNs) and long short-term memory (LSTM)
networks. Jain et al. [3] presented an advanced deep neural
network (DNN) model that surpassed state-of-the-art FER
approaches with deep residual blocks and convolution layers.
Li et al. [4] surveyed deep learning techniques in FER,
addressing challenges like overfitting and expression-
unrelated variations. Pramerdorfer et al. [5] and Mehendale [6]
explored the use of CNNs for recognizing facial expressions,
with Mehendale introducing the FERC technique for improved
accuracy. Canal et al. [7] comprehensively analyzed FER
strategies, distinguishing between classical and neural
network-based approaches. Swain et al. [8] emphasized the



expressive capacity of speech and the development of various
databases and classifiers. Issa et al. [9] introduced an
architecture that significantly improves SER accuracy using
mel-frequency cepstral coefficients and other acoustic
features. Khalil et al. [10] highlighted the use of attention
based DNNs for mining information from speech signals.
Aouani et al. [11] proposed a two-stage emotion recognition
approach using autoencoders for feature extraction and SVM
for classification in SER. Jahangir et al. [12] contributed to
advancing SER through various deep learning approaches,
emphasizing automatic feature extraction, affective gap
bridging, and the consideration of emotional and neutral
speech parts, respectively. Bertero et al. [13] introduced a real-
time CNN model for emotion and sentiment recognition from
raw speech, bypassing traditional feature engineering. Patel et
al. [14] showed that dimensionality reduction via autoencoders
can enhance emotion detection accuracy. Khan et al. [15]
described a feature fusion approach using a deep stride CNN
combined with bi-directional LSTM, significantly improving
accuracy on the RAVDESS dataset. In addition, the synergy
between facial expression and speech analysis has led to
innovative multimodal approaches that enhance interaction
experiences between humans and machines. Liu et al. [16]
demonstrated the efficacy of transfer learning from FaceNet
for speech emotion recognition. Cai et al. [17] proposed a
method merging speech and facial expression features that
significantly improved the [IEMOCAP dataset. Guanghui et al.
[18] emphasized the strength of combining speech and facial
data, improving accuracy and robustness in emotion
recognition. Lastly, Siddiqui et al. [19] presented a framework
that fuses speech with visible and infrared images, achieving
high accuracy across diverse environments. In the realm of
collaborative robots, Heredia et al. [20] proposed an adaptive
and flexible emotion recognition architecture utilizing
EmbraceNet+ for social robots. Antonelli et al. [21] developed
an emotion recognition system for collaborative robots,
focusing on enhancing the safety and efficiency of human-
robot interactions by implementing emotional intelligence.

Existing works for emotion recognition often do not fully
address the complexities of real-world applications, especially
in dynamic and noisy environments such as manufacturing.
Our work aims to solve this with a multimodal emotion
recognition system developed and tailored for collaborative
robots in manufacturing.

III. MATHEMATICAL MODEL

A. Speech Recognition

In the domain of emotion recognition from speech data, the
approach begins with a process of augmenting the audio data
to improve the model's robustness against variations in speech
speed and pitch. Specifically, time-stretching is used to adjust
the pace of the audio signal. It can be represented using:

Vrast = time_stretch(y, A), (1
Ysiow = time_stretch(y, B), 2

where A=1.25 for speeding up the audio and B=0.75 to slow
down the audio. Additionally, pitch shifting modifies the pitch
of the audio signal upwards and downwards by two semitones:

Ypitch_up = PitCh_Shift()’. ST, 2), 3)

YVpitch_down = pitch_shift(y, sr,—2), (4)

The feature extraction process is critical for translating the
raw audio data into a more analytically useful form. Mel-
frequency cepstral coefficients (MFCCs) are central to this
process, capturing the timbral aspects of the speech. The
calculation of MFCCs involves mapping the power spectrum
of the audio signal onto the mel scale, closely approximating
the human auditory system's response. The MFCCs:

M = DCT(log (¢(¥))), (%)

where M signifies the MFCCs, DCT represents the discrete
cosine transform, and ¢(y) represents the Mel Spectrogram
function applied to the audio signal y. The Mel Spectrogram,
another pivotal feature, is computed to provide a logarithmic
amplitude representation of the sound, given as

Smel =log(1 +¢ - ¢ (y)), (©)

where Syelrepresents the logarithmic amplitude representation
of the sound after mapping onto the mel scale, and ¢ is a
constant equal to 10000, improving the precision of the
equation. Furthermore, spectral contrast and Tonnetz features
offer additional insights into the emotional content of speech.
Spectral contrast delineates the difference in amplitude
between the spectrum's peaks and valleys, while Tonnetz
features, capturing changes in harmonic content, can indicate
different emotions conveyed through speech.

The cornerstone of the emotion recognition model is the use
of Long Short-Term Memory (LSTM) networks, which are
adept at processing data sequences and capturing temporal
dependencies within them. The model employs a Bidirectional
LSTM layer to analyze the sequence of forward and backward
speech features, enhancing its capacity to understand the
context and nuances of emotional expressions. The hidden
state updates in the LSTM layer are governed by:

H;=o(WyXi+ bin+ WinHe.1 + buy), (7

where H, represents the hidden state at time ¢, o represents the
sigmoid function to ensure non-linearity, Wy and Wiy
represent the weight matrices that transform inputs and relay
information across time steps, respectively. X; is the input at a
time, and by, and by, are the bias terms.

The model includes Dense layers to classify emotions from
the processed features, where the final classification is
performed through a combination of linear and non-linear
transformations. Each Dense layer's output is calculated by:

Y=y(WX+Db), ®)

where Y represents the output, # and b denote the weight
matrix and bias term, respectively, and y is the activation
function, such as ReLU for intermediate layers and softmax
for the output layer, ensuring probabilities for each emotion
class are obtained.

The training of this model is suitable for multi-class
classification scenarios and utilizes the categorical cross
entropy loss function, defined as

L= - Z£=1 Yo,c lOg Po,c (9)

where T represents the total number of classes, v, a binary
indicator of whether the class c is the correct classification for



0, po.represents the predicted probability that observation o
belongs to class ¢, as output by the model. This function
quantifies the difference between the predicted probabilities
and the actual distribution of the labels, guiding the model
towards minimizing this discrepancy over the training process.

The LSTM model was trained on the RAVDESS dataset
[22], which includes a diverse range of emotion expressions in
speech. The training resulted in an accuracy of 89.6%,
demonstrating the model’s effectiveness in recognizing a
variety of emotions. The spectral contrast graph in Fig. 1(a)
highlights the distinction between high-frequency peaks and
low-frequency valleys, suggesting harmonic structures or
noise indicative of robotic activity or interaction. The Tonnetz
graph in Fig. 1(b) shows fluctuations in tonal centroids that
may reflect changes in the participant's vocal pitch and
harmony in response to the robot's behavior. In contrast, the
MFCC graph in Fig. 1(c) indicates a stable vocal tract
configuration, implying controlled emotional expression
during the interaction. The Mel spectrogram in Fig. 1(d)
outlines energy distribution across frequencies, with bright
bands indicating speech or high-frequency noise and darker
areas suggesting less activity.
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Figure 1: Graphs of Voice Features: (a) Spectral Contrast, (b) Tonnetz,
(c) Mel-frequency cepstral coefficients, (d) Mel Spectrogram.

B. Facial Expression Recognition

Considering the complexities of the working environment
may impact the stability of speech signals, facial information
is also considered for robust emotion recognition results. The
DeepFace library based on facial expression data is integrated
into the system. The choice of DeepFace is attributed to its
high accuracy and efficiency in processing diverse facial
expressions, making it ideal for real-time emotion recognition
tasks. Based on a robust convolutional neural network (CNN)
model, DeepFace excels in processing and interpreting
diverse facial expressions with high accuracy and efficiency,
making it well-suited for real-time emotion recognition tasks.
The library's core functionality involves extracting and
analyzing frames from continuous video capture, utilizing its
analyze function to detect facial expressions within each
frame, as shown in Fig. 2. This process leverages a pre-trained
CNN to identify the dominant emotion presented based on a
interpretation of facial features and expressions.

The technical prowess of DeepFace lies in its ability to
provide detailed insights into the emotional dynamics of
individuals, offering a window into the range of emotional
expressions exhibited over time. By accumulating and
assessing the dominant emotions detected across fixed

Figure 2: Example of emotion recognition by using DeepFace library.

intervals, DeepFace employs a systematic aggregation
method. This involves calculating the frequency of each
detected emotion within the interval and identifying the most
prevalent emotion as the period's dominant emotional state.
Such an approach allows for understanding emotional trends
and patterns. Under the framework of Deepface, the VGG-
Face model was further utilized due to its high performance
in facial emotion recognition tasks, achieving an accuracy of
95% upon testing, making it an ideal choice. It also works
well for face recognition with complex backgrounds.

C. Speech and Facial Information for Emotion Recognition

This section will outline the method for combining both
speech and facial information for emotion recognition. Given
a video segment, the system generates a set of emotions,
E,ideo » from facial analysis, and an Eg,,4,, from audio
analysis. The facial emotion recognition, powered by
DeepFace, yields a set of emotions for each frame, which are
then aggregated to identify the most frequent (dominant)
facial emotion, E,;, within the segment, with vd representing

the video dominant emotion. This process can be
mathematically represented as:
Eyq = mode{Ey,geo} (10)

where the mode function identifies the most frequently
occurring emotion in the set of emotions detected in the video
frames. Simultaneously, the audio emotion recognition
system processes the corresponding audio segment to produce
an emotion prediction, E,, 4, This prediction is based on the
features extracted from the audio signal and analyzed through
an LSTM model. The emotion prediction from audio can be
defined as:

Equaio = argmax (Payaio) (11)
where P,,4i, represents the set of probability distributions
over possible emotions obtained from the LSTM model, and
arg max selects the emotion with the highest probability.

Integrating of audio and video emotional cues into a unified
dominant emotion for each segment involves a decision rule
prioritizing the non-neutral emotion from the video analysis,
resorting to the audio-derived emotion if the video emotion is
deemed neutral. Mathematically, this decision rule can be
expressed as:

Edom — {EVideodominant lf EVideodominant :'t "neutral”
otherwise

(12)

Eaudio
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Figure 3: System Overview, illustrating the multimodal emotion recognition system's workflow. This includes (a) facial input that is analyzed using the
DeepFace framework and (b) vocal input that is analyzed via an LSTM network, focusing on acoustic features. The overall dominant emotion
prediction (c) combines the dominant face and speech emotion to determine the dominant emotion.

Implementing this combined approach requires careful
synchronization between the video and audio processing
pipelines to ensure that the emotions are aligned temporally.
Each video segment's dominant emotion is then annotated
onto the video to provide a comprehensive emotional
narrative of the observed scene. This integrated model
leverages the strengths of both audio and visual cues to
overcome the instability caused by complex environments
and relying on a single modality.

IV. SYSTEM OVERVIEW

The system overview in Fig. 3 describes the developed
emotion recognition system for interpreting human emotional
states by analyzing multimodal data (speech signals and facial
information). The workflow initiates with simultaneous data
collection from facial and voice inputs. Facial expressions are
captured and recognized in real-time. Concurrently, voice
input is meticulously preprocessed to highlight emotional
indicators, then parsed into acoustic features like MFCCs and
Mel spectrogram. These features are analyzed using an LSTM
network, specifically tuned to decode the complex emotional
cues embedded within speech dynamics. In addition, a rule-
based model is employed to determine the dominant emotion,
favoring the output from facial analysis unless a 'neutral'
emotion is detected, at this point, the speech analysis takes
precedence. This stratified approach ensures the system's
acute sensitivity to overt emotional expressions and adeptness
at discerning subtler nuances from speech when facial cues
are not definitive. Fig. 3 also demonstrates the output phase
of the system, where the integrated emotion data is ready to
be annotated onto the video feed or utilized in interactive
applications.

V. EXPERIMENTS AND ANALYSIS

A. Experimental Setup

The core of the experimental design revolves around co-
assembly tasks, where a human and a robotic assistant co-
assemble an object that necessitates the utilization of a
screwdriver, an Allen wrench, and a piler fundamental to the
assembly process. Fig. 4 shows an example of our

experimental setup. The Franka Emika panda is implemented
to collaborate with the human worker. A laptop's built-in
webcam is utilized for video capture of humans during
assembly tasks. Audio is captured using an Audio-Technica
AT2020USB+ microphone connected to the laptop, ensuring
high-quality audio recording for further analysis.

Three task scenarios are carefully designed for observing
the impact of various robotic actions—namely, the robot's
response speed, its precision in selecting the correct tools, and
the velocity at which it delivers these tools—on the emotions
of the human. Specifically, in scenario (1), the robot promptly
provides the appropriate tools. This scenario (1) is
hypothesized to elicit the satisfaction or happiness emotion of
the human. Conversely, two other scenarios characterized by
the robot's delayed actions (2) or incorrect tool selection (3)
are hypothesized to elicit negative emotions, including
frustration or impatience. To ensure a comprehensive
assessment, the experiment is structured around several vital
phases, beginning with the initial setup, where the human
participant and the robotic assistant are positioned at the
assembly station, equipped with all necessary tools and the
components to be assembled as shown in Fig. 4. Following the
setup, the experiment proceeds with executing the predefined
task scenarios. These scenarios encompass a spectrum of
interaction dynamics, ranging from effective collaboration,
characterized by the robot's accurate and timely assistance, to
challenging situations where the robot's performance is
intentionally compromised, such as by introducing delays in
tool delivery or by selecting incorrect tools, to simulate

Figure 4: Experimental setup.



potential real-world complications and observe their effect on
the human worker's emotional state and task performance.

B. Experimental Results and Analysis

In the first scenario, where the robot provided tools in an
accurate and timely manner, the observed emotional outcomes
predominantly matched the expected happy or neutral states.
Participants exhibited clear signs of satisfaction, such as brief
smiles and positive verbal feedback, highlighting the
efficiency and smoothness of the task completion process as
shown in Fig. 5(a). The system’s accuracy in recognizing these
emotions was 88%. Notably, despite its predictive interval of
every 5 seconds, the emotion recognition system captured
these positive responses consistently. For example, in Fig. 5(a-
1), the participant is seen requesting a tool with a satisfied
demeanor. The prompt delivery of the tool is captured in Fig.
5(a-2), where the participant's satisfaction continues. Fig. 5(a-
3) and 5(a-4) show the participant engaging in the assembly
task with evident contentment, indicative of the smooth
interaction with the robot. In Fig. 5(a-5), the participant is
captured returning the tool to the robot, with his expression
and body language consistently conveying a happy or neutral
state. Fig. 5(a-6) depicts the participant receiving pliers from
the robot. The emotion recognition system fluctuates between
happy and neutral, reflecting the subject's contentment with
the interaction. The set concludes with Fig. 5(a-7), where the
participant is seen stowing away the tool, the emotion
recognition system affirming a sustained happy or neutral
demeanor throughout the task. During the second scenario,
characterized by deliberate delays in robotic tool assistance,
participants' responses were anticipated to be sad or neutral.
The observed outcomes generally aligned with these
expectations. The system’s accuracy in recognizing these
emotions was 81%. The delays in assistance led to moments
of visible impatience, such as shifts in posture or sighs,
reflecting a slight dip in participant satisfaction as shown in
Fig. 5(b). For example, Fig. 5(b-1) captures the participant's
frustration due to the robot's slow pace. The anticipation of
assistance is visually apparent in Fig. 5(b-2), with the
participant showing impatience while waiting for the robot.
Fig. 5(b-3) depicts the participant's dissatisfaction upon finally
receiving the tool, and Fig. 5(b-4) shows the participant
continuing the assembly with a sense of annoyance,
underscored by the delay in assistance. Fig. 5(b-5) illustrates

(c-3)

(c1 CE
Figure 5: Experimental Video Results. (a) depicts positive reactions to timely and accurate robotic assistance; (b) shows mild frustration from delays;
and (c) captures pronounced dissatisfaction from incorrect tool delivery.

the participant using the screwdriver with visible signs of
annoyance, indicating the emotional shift due to the robot's
delayed assistance. In an instance of the system's limitations,
Fig. 5(b-6) shows the participant agitated while requesting a
tool, yet the predicted emotion is incongruently registered as
happy/neutral. Fig. 5 (b-7) demonstrates the complexity of
human emotion. The participant is laughing, a response to
frustration, which the system misinterprets as a happy state due
to the smile. However, these moments did not escalate to
overtly negative emotional displays, indicating a resilience or
understanding toward the experimental constraints. The
emotion recognition system's intervallic predictions captured
these subtler emotional shifts but were also susceptible to
noise. At times, the system interpreted non-emotional cues
(e.g., looking away in thought or adjusting seating position) as
emotional responses, adding a layer of complexity to
interpreting these neutral to mildly negative states as shown in
Fig. 5(c-3). The third scenario introduces delays and
inaccuracies in tool assistance, with an expected outcome of
anger or fear. The system’s accuracy in recognizing these
emotions was 90%. The observed emotional responses
included visible frustration, such as frowning and negative
verbalizations, which aligned with the anticipated angry or
fearful states as shown in Fig. 5(c). For example, Fig. 5(c-1)
shows the participant with a clear expression of anger while
requesting a tool. In Fig. 5(c-2), the reception of an incorrect
tool further exacerbates the participant's frustration. Fig. 5(c-
3) is notable as it depicts a seemingly happy emotion;
however, this is identified as 'noise' within the data since the
subject is notably frustrated. Lastly, Fig. 5(c-4) shows
continued anger as the participant receives another incorrect
tool, emphasizing the negative impact of compounded delays
and inaccuracies in robotic assistance on the participant's
emotional state. Figure 5(c-5) shows the participant as he
angrily replaces the tool, a gesture that suggests dissatisfaction
with the robot's performance. A moment of heightened tension
is visible in Figure 5(c-6), where the participant vehemently
expresses frustration at the robot for selecting the incorrect
tool. Finally, Figure 5(c-7) portrays the participant in a state of
exasperation, waiting for the robot to hand over the tool,
underscoring the emotional toll of compounded delays and
inaccuracies in robotic assistance. And the robot recognized
the negative emotion effectively.




C. Comparison Analysis

Our work addresses the nuanced challenges highlighted by
Kim et al. [24] and Cai et al. [26] in multimodal emotion
recognition. By integrating facial and speech cues, we aim to
understand emotional states during real-time human-robot
interactions comprehensively. As we build upon the technical
prowess of Fayek et al. [13], our study contributes to this
growing field by showcasing the operational impact of
emotion recognition on collaborative task performance and
efficiency. By integrating these insights with our observations
on robotic assistance's effect on worker satisfaction, our
research underscores the need for robotic systems that are both
technically efficient and emotionally intelligent. The
challenges we've encountered, particularly the noise in
emotional data recognition, shed light on the intricate balance
required in system design—balancing accuracy in emotion
detection with the unpredictability of human behavior.
Addressing this balance is paramount for applying emotion
recognition in robotics, a concern that parallels the technical
considerations of SER methodologies reviewed by Ko et al.
[2]. In conclusion, while applying emotion recognition
systems in human-robot collaboration offers promising
benefits in improving understanding, engagement, and task
efficiency, it also presents significant challenges. Overcoming
these hurdles involves enhancing the technical capabilities of
such systems and ensuring they are developed and used
ethically and responsibly, with a keen awareness of their
impact on human emotional well-being.

VI. CONCLUSION

In conclusion, this paper has developed a multimodal
emotion recognition system for manufacturing collaborative
robots, leveraging both speech and facial information to
enhance stability in complex environments. Three real-world
collaborative assembly scenarios were designed to naturally
elicit various human emotions and validate the system's
effectiveness and performance through these tasks. The
experimental results have demonstrated the effectiveness of
the developed system. Future work will focus on improving
the existing system for emotion recognition in more complex
environments.
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