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Abstract— Indoor plants provide many benefits but 

maintaining a healthy indoor plant can be difficult for some people 

as they may forget to water the plant regularly.  In this research, 

we present design of a initial prototype smart flowerpot as an 

Internet of Things (IoT) device for automatic plant care.  The 

device can retrieve weather data over the Internet and record 

sensor readings.  Three control modes: manual, automated, and 

smart care with machine learning, were tested.  Plants were kept 

alive in all modes, but the smart care mode achieved the same 

results with much less water usage.  In all modes, maintaining 

steady soil moisture level proved to be challenging. 

Keywords—IoT Devices, Machine Learning, Automated Plant 

Care 

I. INTRODUCTION 

Potted plants and herbs are very common in indoor spaces 
and provide many benefits such as improved aesthetics, air 
purification, food source, and positive effects on people’s 
mental health [1]. However, maintaining the health of the plant 
can be difficult for some people as they may forget to water the 
plant regularly, or they may need to leave the plant unattended 
for extended periods of time due to travel, potentially exposing 
the plant to drought conditions that affect its health or even result 
in the death of the plant. 

There is a great deal of research addressing the many 
applications of IoT and machine learning in agriculture. 
However, little research is available applying these technologies 
to the care of indoor container plants. 

Researchers have explored how these technologies can be 
used to determine watering needs, monitor crop state, distribute 
water to crops, and more [2]. In 2022, a virtual soil moisture 
sensor was presented that used deep learning (Long Short-Term 
Memory) to predict the soil moisture from other parameters 
(ambient temperature, soil temperature, relative humidity of the 
air, light radiation, and rainfall) [3].  

In 2020, an IoT system was developed that used machine 
learning (Gradient Boosting Regression Trees) to learn the 
irrigation habit of a plant without previous data [4]. The system 
used data from sensors (air temperature, humidity, and soil 
moisture) and requires a small set of manual irrigation instances 
to learn the irrigation schedule and can continue that schedule 
autonomously with accuracy. In 2022, a solar-thermophysical 
irrigation (STI) instrument for potted plants was designed [5] . 

The system effectively provided the plants with micro-irrigation 
over the course of an eight-hour period driven by the naturally 
occurring isobaric thermal expansion and contraction processes 
occurring in the STI instrument as a result of irradiation by 
sunlight. Their results showed that plants watered by the STI 
system showed increased growth compared to periodically 
watered plants. The primary advantage of this system was the 
passive delivery of water over time However, the volume of 
water delivered is affected by the capacity of the instrument. 

In this paper, we present an initial prototype flowerpot that 
was developed to evaluate sensor data, develop the capability to 
retrieve weather data and to test three control approaches.  The 
prototype design includes sensors to monitor the ambient light, 
ambient temperature, relative humidity, and soil moisture of the 
plant environment.  The data is made available over the Internet 
in a Google Sheet for a remote user. Additionally, the device can 
collect local weather information which is also added to the 
Google Sheet.  The device performance was evaluated in three 
operation modes: (1) Manual care with operator pressing button 
to water, (2) Automated care according to a schedule and target 
soil moisture level, and (3) Smart care using machine learning. 

II. DESIGN OF THE PROTOTYPE FLOWERPOT 

A. Device Design 

The device consists of two nested pots (Figure 1).  The white 
top pot contains drainage and holds the soil and plant.  The clear 
pot has a reservoir at the bottom with a submersible pump and 
water. 

  

Fig. 1. Photographs of  the smart flowerpot. 

The submersible pump (HiLetGo, JT-DC3-6V) is secured to 
the bottom of the water reservoir and a silicone tubing is 
connected to the pump outlet to deliver water to the top pot.  
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The nested pots are placed on a rotating base (black round 
piece in Fig. 1).  The base can rotate the flowerpot to any 
position within +/- 180 degrees so that different parts of the plant 
can be exposed to sunlight for even lighting and growth.  The 
gray cover under the rotating base is where all the electronics 
and a Raspberry Pi 4 are located.  An analog-to-digital converter 
(Adafruit, PCF8591) for the light and soil moisture sensors was 
used. Sensors for ambient light (dfRobot, DFR0026), and 
temperature and humidity (Adafruit, AHT20) were secured to 
the platform which also features a push-button, to initiate 
manual watering, and a kill-switch to allow immediate 
shutdown of the system without damaging the controller. A 
capacitive soil moisture sensor is inserted into the soil 
penetrating to a depth of 3 inches and located approximately 
half-way between the plant (located at the center of the nursery 
pot) and the edge of the nursery pot. 

B. Control Algorithms 

The smart flowerpot control algorithms were written in 
Python programming language. Three operation modes were 
designed and are described below. 

Automated Care: All sensor data are collected every 30 
minutes and recorded to a cloud document (Google Sheets). 
Watering need is evaluated every 2 days. If the soil moisture 
sensor indicates that the soil is drier than a desired target soil 
moisture level, the pump is activated for 2 seconds; otherwise, 
no action is taken, and the need for watering is re-evaluated after 
the next 2 days. 

Manual Care: All sensor data are collected every 30 
minutes and recorded to a cloud document. Watering occurs 
only by activation of the pump by human intervention (button 
press). Every 2 days, a researcher checks the soil moisture by 
inserting a finger in the soil and uses the flowchart in Figure 2 
to make a watering decision based on observed plant state and 
local weather forecast.  

 

Fig. 2. Flowchart for manual care. 

Smart Care: When water is added to a pot of soil, it takes a 
while for it to infiltrate into the soil.  At the same time, some 
evaporation occurs, especially if the plant is located near a 
window with sunlight.  In this approach, two machine learning 
(ML) algorithms are used: (1) Evaporation ML, and (2) 
Infiltration ML.  Both models use Random Forest Regression.  
Every 30 minutes, all sensor and weather data are collected, and 
the evaporation ML model is used to output a predicted soil 
moisture (PSM) value.  The model inputs were: previous soil 

moisture (PSM-1), time since the plant was last watered, if the 
sun has set, current date and time as well as the timestamp, 
temperature, dewpoint, visibility, relative humidity, and 
cloudiness from the most recent NOAA hourly observation.  
When the smart flowerpot is first turned on, no PSM-1 exists, 
therefore, the first PSM value is generated using a real soil 
moisture sensor value as PSM-1. After that, every 2 days, the 
algorithm determines if watering is needed. If the PSM value 
predicts that the soil is drier than a desired soil moisture target, 
the pump is activated for 2 seconds. After each watering 
instance, the infiltration ML model is used to output a new PSM 
from a set of inputs (time since watered = 15 minutes, previous 
soil moisture, date and time). 

Data were collected to train the two ML models: 

1. Evaporation model data collection and training: We 
first collected data for how soil moisture decreases over 
time as water evaporates from the soil. Two pots of soil 
were completely saturated with water, and each was 
placed inside smart flowerpots next to a window. The 
sensor readings on the smart flowerpot as well as the 
most recent hourly weather data a local airport near the 
university were retrieved by the flowerpots from the 
National Oceanic and Atmospheric Administration 
(NOAA) server every 30 minutes.  Data were collected 
for 11 days from August 17-28. 

The data were then processed by parsing the date string 
into separate numerical values, and by assigning 
numerical values (0-6) to the cloud cover data, such as 
cloudy (0), sunny, partly cloudy, clear skies (6), etc. 

2. Infiltration model data collection and training: We set 
a fresh pot of soil next to a window and watered it once.  
Then, every half hour the moisture sensor was checked 
to see if the reading reached a certain level.  If so, 
another watering was done and the reading was 
repeated.  The data collected was then processed to be 
used in training the ML model. 

III. EXPERIMENTS AND RESULTS 

As mentioned earlier, three control strategies were tested.  

The performance of the flowerpot was evaluated using the 

following metrics: ability to (1) maintain a soil moisture target 

level, (2) keep the plant alive, and (3) support continued growth 

of the plant measured as increase in number of spinach leaves 

and greatest height increase of the lentil seedlings during the 

experiment. 

A. Plant preparation 

First, six nursery pots were prepared with All Purpose 
Potting Mix, then we planted two lentil sprouts (Lens culinaris) 
and one spinach plant (Spinacia oleracea) into each nursery pot. 
The spinach plant was placed in the center of the pot while the 
lentil sprouts were placed half-way between the center and the 
edge of the nursery pot on opposite sides of the spinach. The 
plants were then watered with 100mL of water, observations 
were recorded, and the plants were allowed to drain overnight. 
On the next day, each nursery pot was placed into a smart 
flowerpot and the irrigation tube and soil moisture sensor were 
added.  



B. Observation categories 

Every 2 days throughout the experiment, photos were taken 
to monitor the height of the spinach plants and lentil seedlings.  
In all experiments, the goal was to main a target moisture level 
reading of 23.  The value read from the sensor goes up as the soil 
gets drier.  Additionally, the following observation categories 
were recorded for each plant: 

 Soil feel – in order of decreasing moisture 

perception: wet, moist, damp, slightly damp, dry, dry 
& hard. 

 Leaf & stem position – upright, slight droop, drooping 

 Leaf color – green, green-yellow, yellow-green, yellow 

 Mature leaf texture – smooth, sticky, floppy 

 Whether or not the 24hr forecast predicts outdoor 
temperatures to exceed 90°F. 

 Number of mature leaves 

 Number of immature/new growth leaves 

 Number of dead leaves  

 Number of leaves with pest damage 

 Number of leaves with other damage 
 

C. Treatment groups 

Six smart flowerpots were divided into 3 treatment groups 
with two smart flowerpots assigned to each group (Figure 3). 
The three treatment groups correspond to the three control 
algorithms discussed earlier in Section II. Smart flowerpots F-
10 and F-13 were assigned to the manual care treatment group. 
Smart flowerpots F-5 and F-12 were assigned to the automated 
care treatment group. Smart flowerpots F-1 and F-4 were in the 
smart care treatment group. 

Smart flowerpots were placed indoors in front of windows 
and the experiment began by initiating the appropriate control 
algorithm for each smart flowerpot. For a total of 19 days, data 
were collected every 30 minutes and researcher observations 
were recorded every 2 days. 

D. Manual care results 

As shown in Figure 4, the manual care operation mode 

failed to achieve and maintain the target soil moisture level. 

Soil moisture readings at the beginning of the experiment were 

27.84 for F-10 and 26.67 for F-13. Watering of F-10 was 

initiated on 80% of observation days, while F-13 was watered 

on 90% of observation days.  

Both F-10 and F-13 kept the spinach plant and lentil 

seedlings alive for the duration of the experiment. F-10 
developed 5 new leaves, while F-13 developed 4 new leaves. 
The greatest lentil seedling height increase for F-10 was 
15.24cm, and it was 20.96cm for F-13. 

 

 

Fig. 4. Soil moisture over time for manual care flowerpots. 

 The circles highlight each time the plant was watered while 
the dashed line shows the target soil moisture value that was 
chosen as the ideal humidity for the spinach plants.  

 

 

Fig. 3.  Photos of spinach plants and lentil seedlings in nursery pots one day before beginning the experiment. (top) Photos of smart flowerpots on day 19 of 

the experiment. (bottom) 



 

Fig. 5. Mature and new leaf count over time for manual care flowerpots. 

Both flowerpots F-10 and F-13 started at very close soil 
moisture levels and initially decreased at a similar rate until 
September 24.  F- 10 soil moisture then began to increase 
gradually through the rest of the experiment. F-13 however 
continued to lose moisture. Throughout the experiment, both 
flowerpots stayed relatively dry below the desired moisture 
level. 

 In Figure 5, the dashed lines represent the rate in which 
leaves matured for both flowerpots. The dotted lines are the 
count of new growth leaves. The green lines show the average 
leaf count between both flowerpots for each leaf category. Both 
flowerpots F-10 and F-13 had a very similar count of mature and 
new leaves throughout the experiment. The mature leaf count 
had steadily grown while the new leaf count stayed about the 
same with a small yet sudden increase after September 26. 

E. Automated care results 

As shown in Figure 6, the automated care operation mode 

achieved the soil moisture target for F-12 on day 3, but on day 

4, the soil became slightly drier than the target soil moisture 
level. F-5 steadily approached the target soil moisture and got 

close to it although eventually remained below it.  Soil moisture 

readings at the beginning of the experiment were 27.06 for F-5 

and 26.27 for F-12. Watering occurred on 100% of watering 

decision days for both F-5 and F-12. 

 

 

Fig. 6. Soil moisture over time for automated care flowerpots. 

 Both flowerpots maintained consistent and similar soil 
moisture with the automated care approach.  Both increased at 
the start and began to steadily lose moisture from September 20th 
until the 23rd. 

 

Fig. 7. Mature and new leaf count over time automated care flowerpots. 

As seen in Figure 7, both F-5 and F-12 kept the spinach plant 
and lentil seedlings alive for the duration of the experiment. F-5 
and F-12 both developed 6 new leaves during the experiment. 
The greatest lentil seedling height increase for F-5 was 17.78cm, 
and 18.42cm height increase was measured for F-12. 

F. Smart care results 

The performance of the smart care mode was similar the 
automated care case. 

 
 

Fig. 8. Actual soil moisture over time for smart care flowerpots. 

Figure 8 shows the actual soil moisture readings from the 

sensor in the soil because of the watering decisions made by the 

ML algorithms.  However, these real sensor readings were not 

used by the ML algorithms in making watering decisions.  

Instead, the predicted soil moisture from the ML algorithms 

shown in Figure 9 were used to make the watering decisions. 

 

Fig. 9. Soil moisture predicted  by ML over time for smart care flowerpots. 

As shown in Figure 8, F-4 steadily approached the target 

soil moisture and got to 23.53 on days 3 and 5 although 



eventually remained below it.  Soil moisture readings at the 

beginning of the experiment were 39.61 for F-1, and 26.27 for 

F-4. Watering of F-1 occurred on 40% of observation days, 

while F-4 was watered on 45.45% of observation days. 

Both F-1 and F-4 kept the spinach plant and lentil seedlings 
alive for the duration of the experiment (Figure 10). F-1 
developed 6 new leaves, while F-4 developed 7 new leaves 
during the experiment. The greatest lentil seedling height 
increase for F-1 was 15.87cm, and it was 15.88cm for F-4. 

 

Fig. 10. Mature and new leaf count over time for smart care flowerpots. 

IV. CONCLUSIONS 

In this research, we have presented the design of a first 
prototype smart flowerpot as an IoT device for automatic plant 
care. The smart flowerpot performance was evaluated in three 
operating modes: manual care, automated care, and smart care. 
The device was evaluated for its ability to maintain target soil 
moisture levels, keep a plant alive, and support continued 
growth of a plant measured as increase in number of leaves and 
height increase for the tallest lentil seedling.  

The results showed that all flowerpots were able to keep a 
spinach plant and two lentil seedlings alive for 19 days. Overall, 
it is hard to maintain a consistent soil moisture as seen in the 
manual experiment, even if you remember to water your plants.  
Same challenge was true for the smart care with ML and 
automated care modes.  But in these modes, the moisture levels 
got near the desired target and remained near it for a period 
although ultimately the moisture in the soil was less than desired 
like the manual case.  The leaf growth and count increased 
slower in the manual case than the automatic cases.  The smart 
care with ML had a similar performance in soil moisture levels 

to the automated care but with much less frequent watering and 
hence water usage.  It used significantly less water (40-45%) 
than the manual case (80-90%) to achieve the same plant health 
as in the manual case.  It may be possible to further improve the 
performance of the ML model using more training data for 
closer predictions to the real moisture sensor readings. 

The device as a first prototype provided valuable insights 
into the relations between various sensor data and enabled 
testing automatic algorithms.  The future versions of the 
flowerpot will have less expensive processor and simpler design 
to reduce overall cost.  In addition, experiments will be 
conducted for a longer period of time with increased watering 
amounts, which would likely improve the ability of the smart 
flowerpot to reach and better maintain target soil moisture. 
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