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Abstract— Indoor plants provide many benefits but
maintaining a healthy indoor plant can be difficult for some people
as they may forget to water the plant regularly. In this research,
we present design of a initial prototype smart flowerpot as an
Internet of Things (IoT) device for automatic plant care. The
device can retrieve weather data over the Internet and record
sensor readings. Three control modes: manual, automated, and
smart care with machine learning, were tested. Plants were kept
alive in all modes, but the smart care mode achieved the same
results with much less water usage. In all modes, maintaining
steady soil moisture level proved to be challenging.
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I. INTRODUCTION

Potted plants and herbs are very common in indoor spaces
and provide many benefits such as improved aesthetics, air
purification, food source, and positive effects on people’s
mental health [1]. However, maintaining the health of the plant
can be difficult for some people as they may forget to water the
plant regularly, or they may need to leave the plant unattended
for extended periods of time due to travel, potentially exposing
the plant to drought conditions that affect its health or even result
in the death of the plant.

There is a great deal of research addressing the many
applications of IoT and machine learning in agriculture.
However, little research is available applying these technologies
to the care of indoor container plants.

Researchers have explored how these technologies can be
used to determine watering needs, monitor crop state, distribute
water to crops, and more [2]. In 2022, a virtual soil moisture
sensor was presented that used deep learning (Long Short-Term
Memory) to predict the soil moisture from other parameters
(ambient temperature, soil temperature, relative humidity of the
air, light radiation, and rainfall) [3].

In 2020, an IoT system was developed that used machine
learning (Gradient Boosting Regression Trees) to learn the
irrigation habit of a plant without previous data [4]. The system
used data from sensors (air temperature, humidity, and soil
moisture) and requires a small set of manual irrigation instances
to learn the irrigation schedule and can continue that schedule
autonomously with accuracy. In 2022, a solar-thermophysical
irrigation (STI) instrument for potted plants was designed [5] .
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The system effectively provided the plants with micro-irrigation
over the course of an eight-hour period driven by the naturally
occurring isobaric thermal expansion and contraction processes
occurring in the STI instrument as a result of irradiation by
sunlight. Their results showed that plants watered by the STI
system showed increased growth compared to periodically
watered plants. The primary advantage of this system was the
passive delivery of water over time However, the volume of
water delivered is affected by the capacity of the instrument.

In this paper, we present an initial prototype flowerpot that
was developed to evaluate sensor data, develop the capability to
retrieve weather data and to test three control approaches. The
prototype design includes sensors to monitor the ambient light,
ambient temperature, relative humidity, and soil moisture of the
plant environment. The data is made available over the Internet
in a Google Sheet for a remote user. Additionally, the device can
collect local weather information which is also added to the
Google Sheet. The device performance was evaluated in three
operation modes: (1) Manual care with operator pressing button
to water, (2) Automated care according to a schedule and target
soil moisture level, and (3) Smart care using machine learning.

II. DESIGN OF THE PROTOTYPE FLOWERPOT

A. Device Design

The device consists of two nested pots (Figure 1). The white
top pot contains drainage and holds the soil and plant. The clear
pot has a reservoir at the bottom with a submersible pump and
water.

Fig. 1. Photographs of the smart flowerpot.

The submersible pump (HiLetGo, JT-DC3-6V) is secured to
the bottom of the water reservoir and a silicone tubing is
connected to the pump outlet to deliver water to the top pot.



The nested pots are placed on a rotating base (black round
piece in Fig. 1). The base can rotate the flowerpot to any
position within +/- 180 degrees so that different parts of the plant
can be exposed to sunlight for even lighting and growth. The
gray cover under the rotating base is where all the electronics
and a Raspberry Pi 4 are located. An analog-to-digital converter
(Adafruit, PCF8591) for the light and soil moisture sensors was
used. Sensors for ambient light (dfRobot, DFR0026), and
temperature and humidity (Adafruit, AHT20) were secured to
the platform which also features a push-button, to initiate
manual watering, and a kill-switch to allow immediate
shutdown of the system without damaging the controller. A
capacitive soil moisture sensor is inserted into the soil
penetrating to a depth of 3 inches and located approximately
half-way between the plant (located at the center of the nursery
pot) and the edge of the nursery pot.

B. Control Algorithms

The smart flowerpot control algorithms were written in
Python programming language. Three operation modes were
designed and are described below.

Automated Care: All sensor data are collected every 30
minutes and recorded to a cloud document (Google Sheets).
Watering need is evaluated every 2 days. If the soil moisture
sensor indicates that the soil is drier than a desired target soil
moisture level, the pump is activated for 2 seconds; otherwise,
no action is taken, and the need for watering is re-evaluated after
the next 2 days.

Manual Care: All sensor data are collected every 30
minutes and recorded to a cloud document. Watering occurs
only by activation of the pump by human intervention (button
press). Every 2 days, a researcher checks the soil moisture by
inserting a finger in the soil and uses the flowchart in Figure 2
to make a watering decision based on observed plant state and
local weather forecast.
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Fig. 2. Flowchart for manual care.

Smart Care: When water is added to a pot of soil, it takes a
while for it to infiltrate into the soil. At the same time, some
evaporation occurs, especially if the plant is located near a
window with sunlight. In this approach, two machine learning
(ML) algorithms are used: (1) Evaporation ML, and (2)
Infiltration ML. Both models use Random Forest Regression.
Every 30 minutes, all sensor and weather data are collected, and
the evaporation ML model is used to output a predicted soil
moisture (PSM) value. The model inputs were: previous soil

moisture (PSM-1), time since the plant was last watered, if the
sun has set, current date and time as well as the timestamp,
temperature, dewpoint, visibility, relative humidity, and
cloudiness from the most recent NOAA hourly observation.
When the smart flowerpot is first turned on, no PSM-1 exists,
therefore, the first PSM value is generated using a real soil
moisture sensor value as PSM-1. After that, every 2 days, the
algorithm determines if watering is needed. If the PSM value
predicts that the soil is drier than a desired soil moisture target,
the pump is activated for 2 seconds. After each watering
instance, the infiltration ML model is used to output a new PSM
from a set of inputs (time since watered = 15 minutes, previous
soil moisture, date and time).

Data were collected to train the two ML models:

1. Evaporation model data collection and training: We
first collected data for how soil moisture decreases over
time as water evaporates from the soil. Two pots of soil
were completely saturated with water, and each was
placed inside smart flowerpots next to a window. The
sensor readings on the smart flowerpot as well as the
most recent hourly weather data a local airport near the
university were retrieved by the flowerpots from the
National Oceanic and Atmospheric Administration
(NOAA) server every 30 minutes. Data were collected
for 11 days from August 17-28.

The data were then processed by parsing the date string
into separate numerical values, and by assigning
numerical values (0-6) to the cloud cover data, such as
cloudy (0), sunny, partly cloudy, clear skies (6), etc.

2. Infiltration model data collection and training: We set
a fresh pot of soil next to a window and watered it once.
Then, every half hour the moisture sensor was checked
to see if the reading reached a certain level. If so,
another watering was done and the reading was
repeated. The data collected was then processed to be
used in training the ML model.

III. EXPERIMENTS AND RESULTS

As mentioned earlier, three control strategies were tested.
The performance of the flowerpot was evaluated using the
following metrics: ability to (1) maintain a soil moisture target
level, (2) keep the plant alive, and (3) support continued growth
of the plant measured as increase in number of spinach leaves
and greatest height increase of the lentil seedlings during the
experiment.

A. Plant preparation

First, six nursery pots were prepared with All Purpose
Potting Mix, then we planted two lentil sprouts (Lens culinaris)
and one spinach plant (Spinacia oleracea) into each nursery pot.
The spinach plant was placed in the center of the pot while the
lentil sprouts were placed half-way between the center and the
edge of the nursery pot on opposite sides of the spinach. The
plants were then watered with 100mL of water, observations
were recorded, and the plants were allowed to drain overnight.
On the next day, each nursery pot was placed into a smart
flowerpot and the irrigation tube and soil moisture sensor were
added.



B. Observation categories

Every 2 days throughout the experiment, photos were taken
to monitor the height of the spinach plants and lentil seedlings.
In all experiments, the goal was to main a target moisture level
reading of 23. The value read from the sensor goes up as the soil
gets drier. Additionally, the following observation categories
were recorded for each plant:

e Soil feel — in order of decreasing moisture

D. Manual care results

As shown in Figure 4, the manual care operation mode
failed to achieve and maintain the target soil moisture level.
Soil moisture readings at the beginning of the experiment were
27.84 for F-10 and 26.67 for F-13. Watering of F-10 was
initiated on 80% of observation days, while F-13 was watered
on 90% of observation days.

Both F-10 and F-13 kept the spinach plant and lentil

Fig. 3. Photos of spinach plants and lentil seedlings in nursery pots one day before beginning the experiment. (fop) Photos of smart flowerpots on day 19 of

the experiment. (bottom)

perception: wet, moist, damp, slightly damp, dry, dry
& hard.
Leaf & stem position — upright, slight droop, drooping
Leaf color — green, green-yellow, yellow-green, yellow
Mature leaf texture — smooth, sticky, floppy
Whether or not the 24hr forecast predicts outdoor
temperatures to exceed 90°F.
Number of mature leaves
Number of immature/new growth leaves
Number of dead leaves
Number of leaves with pest damage
Number of leaves with other damage

C. Treatment groups

Six smart flowerpots were divided into 3 treatment groups
with two smart flowerpots assigned to each group (Figure 3).
The three treatment groups correspond to the three control
algorithms discussed earlier in Section II. Smart flowerpots F-
10 and F-13 were assigned to the manual care treatment group.
Smart flowerpots F-5 and F-12 were assigned to the automated
care treatment group. Smart flowerpots F-1 and F-4 were in the
smart care treatment group.

Smart flowerpots were placed indoors in front of windows
and the experiment began by initiating the appropriate control
algorithm for each smart flowerpot. For a total of 19 days, data
were collected every 30 minutes and researcher observations
were recorded every 2 days.

seedlings alive for the duration of the experiment. F-10
developed 5 new leaves, while F-13 developed 4 new leaves.
The greatest lentil seedling height increase for F-10 was
15.24cm, and it was 20.96¢cm for F-13.
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Fig. 4. Soil moisture over time for manual care flowerpots.

The circles highlight each time the plant was watered while
the dashed line shows the target soil moisture value that was
chosen as the ideal humidity for the spinach plants.
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Fig. 5. Mature and new leaf count over time for manual care flowerpots.

Both flowerpots F-10 and F-13 started at very close soil
moisture levels and initially decreased at a similar rate until
September 24. F- 10 soil moisture then began to increase
gradually through the rest of the experiment. F-13 however
continued to lose moisture. Throughout the experiment, both
flowerpots stayed relatively dry below the desired moisture
level.

In Figure 5, the dashed lines represent the rate in which
leaves matured for both flowerpots. The dotted lines are the
count of new growth leaves. The green lines show the average
leaf count between both flowerpots for each leaf category. Both
flowerpots F-10 and F-13 had a very similar count of mature and
new leaves throughout the experiment. The mature leaf count
had steadily grown while the new leaf count stayed about the
same with a small yet sudden increase after September 26.

E. Automated care results

As shown in Figure 6, the automated care operation mode
achieved the soil moisture target for F-12 on day 3, but on day
4, the soil became slightly drier than the target soil moisture
level. F-5 steadily approached the target soil moisture and got
close to it although eventually remained below it. Soil moisture
readings at the beginning of the experiment were 27.06 for F-5
and 26.27 for F-12. Watering occurred on 100% of watering
decision days for both F-5 and F-12.
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Fig. 6. Soil moisture over time for automated care flowerpots.
Both flowerpots maintained consistent and similar soil
moisture with the automated care approach. Both increased at

the start and began to steadily lose moisture from September 20™
until the 23%,
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Fig. 7. Mature and new leaf count over time automated care flowerpots.

As seen in Figure 7, both F-5 and F-12 kept the spinach plant
and lentil seedlings alive for the duration of the experiment. F-5
and F-12 both developed 6 new leaves during the experiment.
The greatest lentil seedling height increase for F-5 was 17.78cm,
and 18.42cm height increase was measured for F-12.

F. Smart care results

The performance of the smart care mode was similar the
automated care case.
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Fig. 8. Actual soil moisture over time for smart care flowerpots.

Figure 8 shows the actual soil moisture readings from the
sensor in the soil because of the watering decisions made by the
ML algorithms. However, these real sensor readings were not
used by the ML algorithms in making watering decisions.
Instead, the predicted soil moisture from the ML algorithms
shown in Figure 9 were used to make the watering decisions.
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Fig. 9. Soil moisture predicted by ML over time for smart care flowerpots.

As shown in Figure 8, F-4 steadily approached the target
soil moisture and got to 23.53 on days 3 and 5 although



eventually remained below it. Soil moisture readings at the
beginning of the experiment were 39.61 for F-1, and 26.27 for
F-4. Watering of F-1 occurred on 40% of observation days,
while F-4 was watered on 45.45% of observation days.

Both F-1 and F-4 kept the spinach plant and lentil seedlings
alive for the duration of the experiment (Figure 10). F-1
developed 6 new leaves, while F-4 developed 7 new leaves
during the experiment. The greatest lentil seedling height
increase for F-1 was 15.87cm, and it was 15.88cm for F-4.
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Fig. 10. Mature and new leaf count over time for smart care flowerpots.

IV. CONCLUSIONS

In this research, we have presented the design of a first
prototype smart flowerpot as an IoT device for automatic plant
care. The smart flowerpot performance was evaluated in three
operating modes: manual care, automated care, and smart care.
The device was evaluated for its ability to maintain target soil
moisture levels, keep a plant alive, and support continued
growth of a plant measured as increase in number of leaves and
height increase for the tallest lentil seedling.

The results showed that all flowerpots were able to keep a
spinach plant and two lentil seedlings alive for 19 days. Overall,
it is hard to maintain a consistent soil moisture as seen in the
manual experiment, even if you remember to water your plants.
Same challenge was true for the smart care with ML and
automated care modes. But in these modes, the moisture levels
got near the desired target and remained near it for a period
although ultimately the moisture in the soil was less than desired
like the manual case. The leaf growth and count increased
slower in the manual case than the automatic cases. The smart
care with ML had a similar performance in soil moisture levels

to the automated care but with much less frequent watering and
hence water usage. It used significantly less water (40-45%)
than the manual case (80-90%) to achieve the same plant health
as in the manual case. It may be possible to further improve the
performance of the ML model using more training data for
closer predictions to the real moisture sensor readings.

The device as a first prototype provided valuable insights
into the relations between various sensor data and enabled
testing automatic algorithms. The future versions of the
flowerpot will have less expensive processor and simpler design
to reduce overall cost. In addition, experiments will be
conducted for a longer period of time with increased watering
amounts, which would likely improve the ability of the smart
flowerpot to reach and better maintain target soil moisture.
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