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Abstract —As the implementation of robotics systems in modern
industries becomes more commonplace, the desire to streamline
and simplify humans’ interaction with them is highly needed.
Human-robot collaboration frameworks have made strides towards
the goal to facilitate shared tasks in human-robot teams. Such
methods as Learning from Demonstration (LfD) show great
potential in well performing collaborative tasks. To boost LfD’s
capacity, our previous study has developed a novel Teaching-
Learning-Prediction-Collaboration (TLPC) framework for robots
to learn from human demonstrations, customize their task strategies
according to humans’ personalized working preferences, predict
human intentions, and assist humans in collaborative tasks. In
this work, we conduct a multifaceted user study to evaluate it in
real-world human-robot collaborative tasks. Participants of this
user study are from diverse age groups with varying educational
backgrounds and genders. Seven assessment metrics are developed
to comprehensively evaluate the performance of TLPC through
t-tests. A controlled human-robot collaborative experiment
without TLPC is also conducted. This study seeks to observe and
analyze the subjective feelings and feedback of the participants
using TLPC when they perform collaborative tasks with a robot
via periodic surveys given throughout the experiment. Our
research outcomes help us gather insights into and create
catalysts for the construction and optimization of human-robot
interactive systems in advanced manufacturing contexts. They
can be leveraged to improve human-robot collaboration quality,
manufacturing productivity, human safety, and ergonomics.

I. INTRODUCTION

Manufacturing industries have experienced a substantial
increase in the utilization of robotics in recent years as
markets continue to grow [1, 2]. Human-robot collaboration
techniques can effectively help manufacturing sectors
remain flexible and productive to anticipate and handle
frequent market changes [3]. Both parties function as a team
in which each member makes the most efficient use of their
abilities. The robot’s strength, precision, and repeatability
are combined with the human’s ability to make plans,
decisions, and reactions, such that the goal is accomplished
faster and safer. The partnership has been shown to be both
productive as well as cost-effective in studies [4, 5].

Recent studies have sought to observe the effectiveness
of a concept that is relatively new to the fields of robotics
and automation, specifically in the area of robot learning
from human demonstrations [6, 7]. Implementing such
collaborative methods is a process to ensure a robot’s
efficacy, human capacity, and collaborative performance.
Elements of consideration include ease of use, convenience,
safety, and overall human comfort with the machine. These are
further described and embodied by factors such as the speed
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of a robot, for instance, which has a direct impact on humans’
perception of safety [8]. It is important to consider that a

user who is dissatisfied and uncomfortable with a teammate —
whether a human or robot — would see that overall productivity

suffers as a result. Motivated by these needs, our work [9]

proposes a Teaching-Learning-Prediction-Collaboration (TLPC)
framework for the robot to learn from human demonstrations

to cooperatively accomplish a task in line with each human’s

personalized working preference. Through it, the robot can

learn different strategies to complete a task, understand

ongoing human actions, predict human intentions, and

automatically adjust its motions to collaborate with its

human partner in the shared tasks.

Building on the developed TLPC framework, we
conducted a multifaceted user study in this work to evaluate
the performance of TLPC in real-world human-robot
collaborative tasks. Participants engaged with the robot for a
collaborative assembly task with multiple parts using or not
using TLPC. After each human-robot collaborative experiment,
a survey is completed where users answer questions related
to the sociability of the robot, as well as the trust, comfort,
and fluency felt during the experiment. Using this data, we
can draw conclusions related to the effectiveness of human-
robot collaboration and humans’ overall satisfaction with the
process, which can then be used to further tailor this form of
collaboration and the developed TLPC framework to
improve the efficiency of human-robot teams.

Users’ perception and opinion of their robot teammate
are crucial to the success of human-robot collaboration.
Studies such as those mentioned provide desired insights
into different methods of teaching, demonstrations, processes,
and their strengths. Additionally, some of these efforts [10,
11] have evaluated their participants’ subjective responses to
their robot partners. What remains to be comprehensively
analyzed, however, are the numerous factors that have direct
effects on a human’s collaborative partnership with a robot.
These factors include the sociability of a robot, its movement
speed, the fluency of the collaboration, etc. While these
particular elements may have been observed in other studies,
they are often isolated or generalized. Our use of multifaceted
assessment metrics (task efficiency, collaboration safety,
coding efforts reduction, collaboration fluency, sociability,
robot response speed, and overall comfort) to be examined
together through #-tests allows a comprehensive evaluation
of TLPC and its impact on the collaboration process between
a human and robot. Our study ultimately seeks to present
insights into human-robot collaborative processes and
catalyze the optimization of human-robot interactive system
implementation in advanced manufacturing contexts.

II.  RECAP OF THE TLPC FRAMEWORK

Effective collaboration between two parties involves
having an understanding of each other’s intentions. A
fruitful partnership is built on the foundational idea of



achieving a common goal, and knowledge of how each
member seeks to achieve that goal is required. This mutual
understanding offers a greater degree of fluency in executing
the task at hand and accomplishing the desired outcome when
compared to alternative scenarios in which this understanding is
not present. In human-robot interaction, the user should
know what to expect from their robot teammate. Likewise,
permitting the robot to predict the user’s intentions has
immense potential in improving the speed, accuracy, and
general efficiency of the process. In this context, we have
proposed a TLPC framework that demonstrates how a robot
may learn from human demonstrations to perform a given
task [9]. As it operates, the robot becomes more accurate and
customizable with its user’s working preferences. The
approach uses a finite-state machine model that permits the
robot to learn alternative pathways to a common goal. This,
combined with the long short-term memory (LSTM)
algorithm [12], enables the robot to act dynamically as it
predicts the user’s next actions.

In TLPC, the teaching segment consists of three stages in
which the robot observes the actions taken by the user and
utilizes an LSTM network to process the data in order to locate
the objects in it. The second segment involves the stages related
to the robot’s ability to learn the task. From the previous
stage, the operation information of the objects is determined
and used in an algorithm to create a finite-state machine with
the purpose of building the robot’s task knowledge. The
states within this finite-state machine represent the various
positions of the objects and their configurations, while the
transitions indicate the movements of the objects from one
state to another state. Lastly, the final stage of TLPC is the
prediction-collaboration segment. In this process, the robot
predicts the next state the user will transition to by using the
state machine developed from the learned experience and
assists the user in reaching it by executing the next most
suitable action (e.g., passing the needed part to the user). This
design provides the robot with some autonomy to “think” by
itself to help its human partner accomplish the task well.

Questionnaire

ollaborative Robot

Fig. 1. Experimental setup for the user study.
III. USER STUDY DESIGN FOR TLPC FRAMEWORK

A. Experimental Platform

In this work, we create a high-precision experimental setup
to evaluate our proposed model with human participants, as
shown in Fig. 1. The setup includes a collaborative robot, five
parts with a letter on each part spelling the word “ROBOT”
acting as a collaborative assembly product, an intel RealSense
depth camera used as the robot’s vision system, a TV screen
for participants to answer our questionnaire, a workspace
designed for collaboration, and two workstations; one to
execute the TLPC model and another to collect participants’
answers. The experiment involves tasking a human participant
with assembling the word “robot” in different sequences to

teach the robot how to complete the assembly process in future
human-robot collaborative tasks. The robot we are using is a
Franka-Emika Panda. The data processing and model execution
are handled by a ThinkStation P520 workstation. We used the
Robot Operating System (ROS) for effective management of
the robot system and human-robot collaboration process [9].

B. Task Design

For our task, we ask participants to assemble the word
“robot” by using five wooden parts in different assembly
sequences. Despite being a basic task, we believe that this
serves as a proof of concept, as a five-part assembly task has
120 potential patterns to choose from. In addition, the
verification of this task can be scaled to more complex tasks.
The collaboration can be split into two separate subtasks.
The first subtask implements TLPC in which a participant
teaches the robot two different assembly patterns that he/she
prefers, and the robot learns the assembly strategies from
human demonstrations. Participants then test if the robot can
predict their assembly preference and collaborate properly
with them. The second subtask that we implement is a
controlled experiment involving a hard-coded approach in
which a participant does not teach and the robot cannot learn,
but has the most common patterns pre-programmed into it.
This allows the robot to collaborate if it recognizes the
pattern that participants create; and if it fails to recognize it,
the robot stops operating.

TABLE I. ASSESSMENT METRICS FOR THE TLPC MODEL

Metric Description
Task Efficiency How efficiently the robot performs the task.
Collaboration Safety The safety level during the collaboration.
Coding Efforts The degree to which the approach reduces the
Reduction need for programming.

How smoothly the robot interacts with the
participant.
The perceived social aspect of interacting with
the robot.
The speed at which the robot responds to the
participant's actions.
The general comfort level of the participant
while interacting with the robot.

The primary goal of the task design is to test TLPC
against current hard-coded approaches and allow participants
to answer questions that may demonstrate if TLPC provides
any improvement to the process of human-robot collaboration.
To assess the efficacy of the TLPC and hard-coded approach,
participants are asked to complete a detailed survey post-
interaction for each subtask. This survey consists of fourteen
questions, each with a nine-point Likert scale ranging from
'Extremely Poor' to 'Excellent’. The first seven questions are
for the first sub-task (with TLPC), and the remaining seven
are for the second sub-task (with the hard-coded approach).
The assessment metrics are described in Table 1. Participants
answer these questions for both approaches, allowing for a
comparative evaluation and analysis of TLPC.

Collaboration Fluency

Collaboration Sociability|

Robot Response Speed

Overall Comfort

C. Data Collection

With the nine-point Likert scale, participants have a wide
range of options to rate these evaluation metrics because we
hope to capture exactly how they feel and quantify the smallest
changes for more accurate results. The data is collected by
using an HTML webpage that is developed through Flask, a
microweb framework. The data is saved in a local database



that has two tables named Users and QuestResponse. The
collected data is split into three sections. The first one includes
the participants' demographic information. The second one
contains the answers to the seven questions regarding the
first sub-task. The third section includes the answers to the
last seven questions regarding the second sub-task. We have
successfully collected data from 86 participants including 36
male participants (41.86%), 48 female participants (55.81%),
and 2 other participants (2.33%).

IV. DATA ANALYSIS APPROACHES

To analyze the data collected from the participants, we
have conducted a multifaceted and comparative evaluation
through three forms of the #-test approach [13, 14], which is
a statistical tool crucial for understanding differences in
group behaviors and outcomes in user studies. The three
forms used are Student’s #-test, Welch's #-test, and paired #-
test. Welch’s t-test does not require the standard deviations
of the two groups being compared to be the same, whereas
Student’s #-test assumes that they are, which may not
necessarily be the case in practice. This allows it to be a
more robust analysis method when comparing data. We
utilize both Welch’s and Student’s #-tests to examine the
differences between them and observe the paired f-test as
well. Paired #-test is particularly useful in scenarios such as
ours in which one subject is measured at two different points
in time, or under two different conditions.

To compute the Student’s #-test, three main data values
are essential, including Mean Difference (the difference
between the means of both datasets), Standard Deviations
(the standard deviations of each dataset), and Number of
Values (the number of data samples in each dataset). In our
study, when analyzing samples from distinct subtasks, we
calculate this #-test value as follows:
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where m, and mpg are the means of groups A and B,
separately, n, and ny denote their sizes, respectively, and S?
is an estimator of the pooled variance of the two groups:

n n
22y (imma)?+3; 5, (xj-mp)?

natng—2

5= 2

The degrees of freedom (d) is d = ny + ng — 2, where
x; and x; represent the ix and ji, sample values of groups A
and B, respectively. While applying the #-test, we adhere to
four critical assumptions including Measurement Scale (the
data should be on an ordinal/continuous scale), Sample
Representativeness (the sample must accurately represent the
groups from which it is drawn), Normal Distribution (the
data should exhibit a normal, bell-shaped distribution curve),
and Homogeneous Variance (this assumption holds if the
standard deviations of both datasets are approximately equal,
indicating similar variability) [24, 25].

The second #-test that we employ in our analysis is
Welch’s #-test. This test is preferred over Student’s t-test
because it permits the standard deviations of the subsets to
be different from each other [26]. For our data, this is
particularly useful considering our standard deviations vary

between the two concerned approaches. Welch’s #-test is
expressed as:

X1-X
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where X; and X, represent the sample means of groups 1
and 2, and s; and s, are the differing standard deviations of
groups 1 and 2, respectively. The degrees of freedom of
Welch’s t-test, v, is defined as:
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where N; and N; denote the data sizes of groups 1 and 2.

The paired #-test is used when data exists in matched
pairs. In our data, we may use this approach because
subjects evaluated both approaches during the experiment,
permitting us to compare their subjective thoughts on them.
We calculate its ¢ statistic as follows:

Xp

t= 7 )

where X}, represents the average difference between paired
values, and sp indicates the standard deviation of the
differences. This test is slightly simpler than the previous
two tests, and its degrees of freedom is calculated as n — 1,
where #n is the number of matched pairs.

Gathering #-values permits the determination of p-values,
which indicates the probability of observing results as
extreme as or more extreme than the ones seen. Small values
suggest that there is evidence against the null hypothesis,
which implies that there is no significant difference between
the groups being compared. Our hypotheses are defined as
Null Hypothesis (no significant difference between the two
groups being compared) and Alternative Hypothesis (there
does exist a significant difference between the two groups).

It should be noted that p-values can be determined by
using #-values and ¢ table [15]. This table permits an estimation
of the p-value by lookup with the calculated #-value and v-
value. However, more specific calculations must be done to
establish a more precise p-value. These calculations often
make use of the Cumulative Distribution Function, which
describes the probability that a random variable X will take a
value less than or equal to a value x. This has direct
applications in our f-tests and subsequent calculation of p-
values [16]. To establish these hypotheses within a given
context, a statistical significance level of 0.05 (5%) has been
chosen. In other words, p-values less than 0.05 place the data
in favor of rejection of the null hypothesis.

V. RESULTS AND ANALYSIS

A. Human-Robot Collaborative Process Analysis

The results of our real-world human-robot collaboration
are related to the categories detailed in Table 1. The process
by which one of the female participants develops her
subjective positions on the interactions that she takes part in
is detailed in Fig. 2. In Fig. 2(a), she teaches the robot to
execute the collaborative task in her preferred assembly
order as the robot observes her task strategy using the TLPC



model through its vision system. This assembly strategy is
learned, and when the learning process is completed as
shown in Fig. 2(b), the robot is prepared to work and assist
her. Having learned her preferred assembly order, the robot
proceeds to help its human teammate complete the task
collaboratively by grabbing and handing the predicted parts
to her. In Figs. 2(c-d), this prediction takes place as the robot
examines the current state of the collaborative task using the
task knowledge that it has built during the learning phase.
Once a decision is made regarding which part should be
operated given the current context in addition to the
constructed task knowledge, the robot moves to grab and
hand that part to her. Figs. 2(e-f) show the collaboration
process as it occurs, with the participant taking a part,
allowing the robot to take the next and hand it to her, and
continuing the process until the task is completed.

Fig. 2. Human-robot collaboration using the TLPC framework.

To contrast the human-robot collaboration efforts of task
completion utilizing TLPC and that without it, Fig. 3
presents how it differs from the process detailed in Fig. 2. In
Figs. 3(a-c), the robot acts similarly to how it operates during
the collaborative approach using TLPC. The difference, however,
is that it does not observe and learn the user’s preferred
assembly sequence, but rather has been pre-programmed to
function with predefined orders. It observes the first part
taken and attempts to determine the order that the user is
attempting to assemble the parts based upon that input and
which predefined sequence it could potentially be. Once it
makes a decision, it begins the collaborative process by
providing the next part based upon its assumption. This
works well when the user’s sequence coincides with one of
the predetermined ones. However, that is not always the
case. As mentioned before, with five parts to choose from in
any order, there exist one hundred and twenty possible
combinations. In a scenario where the robot fails to recognize
the sequence in which the participant begins to take the parts
in, it ceases the collaborative process. This instance is shown
in Figs. 3(d-f) where the robot is unable to collaboratively
complete the task with the user, ending the interaction.

Fig. 3. Human-robot collaboration without using the TLPC model.

B. Evaluation of Task Efficiency

Three types of t-tests are performed on the data to gather
insight into the relationship between the subsets collected.
Fig. 4 presents a comparative analysis of participants’
perceived efficiency of the task during each of the

interactions using TLPC and the hard-coded approach. Using
three types of 7-tests — Welch’s, Student’s, and paired — we
gain the #-values, v-values, and p-values shown in Table II. It
should be noted as well that a mean difference of 1.6 exists
between the data of the two different approaches. From these
results, it is reasonably concluded that there exists a
statistically significant difference between the responses for
these data from the two methods. This is due to all p-values
being far lower than the chosen significance level threshold
of 0.05. When observing Fig. 4, this difference becomes
apparent, as it shows that an overwhelming majority of
participants have selected “excellent” and “very good” for
the approach utilizing TLPC, whereas the non-TLPC approach
has received primarily “good” responses and lower ones.

TABLE Il T-VALUES, V-VALUES, AND P-VALUES OF T-TESTS ON THE
EVALUATION OF TASK EFFICIENCY
t-tests t v P
Student’s #-test 6.76 163 2.29¢-10
Welch’s t-test 6.71 138.85 4.4e-10
Paired t-test 7.72 80 2.82e-11

49%12%

13.6%

10.8%.

123%

27.2%

Fig. 4. Participants’ ratings for the task efficiency question with (left) and
without (right) the TLPC model.

TABLE IIL. T-VALUES, V-VALUES, AND P-VALUES OF T-TESTS ON THE
EVALUATION OF COLLABORATION SAFETY
t-tests t v P
Student’s #-test 3.38 170 9.13¢-4
Welch’s t-test 3.38 140 9.5¢e-4
Paired #-test 4.27 85 4.98e-5

Somewhat Good
Good

- Very Good
- ccelent

26.7%

Fig. 5. Participants’ ratings for the collaboration safety question with (left)
and without (right) the TLPC model.

C. Evaluation of Collaboration Safety

Fig. 5 provides a visual representation of the responses to
the metric regarding perceived collaboration safety
throughout each interaction. Performing Student’s, Welch’s,
and paired #-tests produces the #-, v-, and p-values in Table
II1. Regardless of which test is, the values are indicative of a
statistically ~ significant difference between the two
approaches when comparing them to the chosen significance
level of 0.05. The mean difference between the approaches
is about 0.81, which is slightly lower than that for task
efficiency. This, along with comparatively higher p-values,
is due to a somewhat closer relationship between the two
groups in this data than those in the previous section. While
the majority of responses for both sections fell into the
“excellent” category, the approach using TLPC contained,



on average, much higher ratings. In other words, participants
seem to feel that safety was higher when the robot has
watched and learned how to perform the task, rather than
having its instructions hardcoded in.

D. Evaluation of Coding Efforts Reduction

Fig. 6 demonstrates the responses for a perceived
reduction in coding efforts for a given approach. All three #-
tests, including Welch’s, Student’s, and paired, produce a p-
value far below our designated significance level value of
0.05. The ¢ and v-values are also obtained, as shown in
Table IV. Thus, these values serve as strong evidence
against the null hypothesis, which states that there is not a
statistically significant difference between the two human-
robot collaboration approaches. In other words, it is highly
unlikely that the evaluation results would have taken this
form if the null hypothesis were true. Evidently, most
participants selected “excellent” for the TLPC approach
(left), but only “very good” or lower for the non-TLPC
approach (right). With means of ~6.83 and ~5.36, a mean
difference of 1.47 is produced, also showing a notable
difference between the two approaches. From this data, we
can conclude that participants generally feel that permitting
the robot to learn and collaborate offers a significant
reduction in coding efforts.

one without, with far more “excellent” responses. The #-test
results for this metric are very much the same as those for
previously discussed survey questions. Our three methods in
Table V, Welch’s, Student’s, and paired #-tests, produce p-
values much lower than the 5% significance level value.
With these values, it is highly likely that, on average, there
exists a statistically significant difference between
participant’s perspectives from one approach to the other.
Additionally, a mean difference of 1.49 exists between them,
suggesting that many participants feel that TLPC offers a
more fluent experience.

F. Evaluation of Collaboration Sociability

Fig. 8 presents the responses to the perceived sociability
of the robot throughout the human-robot collaboration
experience. As presented in Table VI, Welch’s, Student’s,
and paired f-tests are utilized to examine the relation
between the responses. From the evaluation results, it is
clear that the observed p-values are indicative that the two
dataset’s differences are likely statistically significant when
held against the 5% significance level. Additionally, there
exists a mean difference of about 1.2, allowing us to
reasonably conclude that participants feel that the approach
using TLPC provides the robot with a more social demeanor
when compared to the non-TLPC approach.

TABLE IV. T-VALUES, V-VALUES, AND P-VALUES OF T-TESTS ON THE TABLE VL T-VALUES, V-VALUES, AND P-VALUES OF T-TESTS ON THE
EVALUATION OF CODING EFFORTS REDUCTION EVALUATION OF COLLABORATION SOCIABILITY
t-tests t v P t-tests t v P
Student’s #-test 5.99 170 1.18¢-8 Student’s ¢-test 4.88 170 2.37e-6
Welch’s t-test 5.99 144.09 1.56¢-8 Welch’s t-test 4.89 153.61 2.57e-6
Paired #-test 7.72 85 2.06e-11 Paired #-test 6.43 85 6.99¢-9

17.4%
18.6%

26.7% 17.4%

Fig. 6. Participants’ ratings for the coding efforts reduction question with
(left) and without (right) the TLPC model.

5% 12%

10.5%

15.1%
14.0%,

202% 2a.4%

Fig. 8. Participants’ ratings for the collaboration sociability question with
(left) and without (right) the TLPC model.

TABLE V. T-VALUES, V-VALUES, AND P-VALUES OF T-TESTS ON THE TABLE VIL T-VALUES, V-VALUES, AND P-VALUES OF T-TESTS ON THE
EVALUATION OF COLLABORATION FLUENCY EVALUATION OF ROBOT RESPONSE SPEED
t-tests t v P t-tests t v P
Student’s #-test 6.43 167 1.28e-9 Student’s #-test 3.46 170 6.7¢e-4
Welch’s t-test 6.42 147.14 1.79¢-9 Welch’s t-test 3.46 168.12 6.7e-4
Paired t-test 7.72 83 2.33e-11 Paired t-test 4.76 85 7.7¢-6
4.8%1.2% 1.29%85% 2.3%3%  81%

10.7%

19.0%.
17.9%.

22.6%

28.6%

Fig. 7. Participants’ ratings for the collaboration fluency question with (left)
and without (right) the TLPC model.

E. Evaluation of Collaboration Fluency

Fig. 7 compares the responses to the fluency of human-
robot collaboration for each approach. It is evident from the
resulting data that participants feel that the approach
utilizing TLPC provides a more fluent experience than the

12.6% 1n.6%

Poor
81% Somewhat Poor

Fair 15.1%.
Somewhat Good

= Very Good
- Excellent

= eccellent

24.4%
18.6% 1.8%

Fig. 9. Participants’ ratings for the robot response speed question with (left)
and without (right) the TLPC model.

G. Evaluation of Robot Response Speed

Fig. 9 shows the responses from participants for each
approach regarding the response speed of the robot during
the human-robot collaboration. The #-, v-, and p-values of
the three #-tests for this metric are presented in Table VII.



Despite being low and suggesting a statistical difference
between the two approaches, the comparatively higher p-
values indicate that participants feel that there is less of a
difference between the approaches regarding response speed
than they do for some of the other metrics, such as fluency.
The mean difference for this data is approximately 0.86,
suggesting that, on average, subjects typically drop less than
a point on the scale when rating the non-TLPC approach.
These results, however, indicate that the participants prefer
the TLPC framework.

H. Evaluation of Overall Comfort

Fig. 10, shows the comparison of the participants’
overall comfort during each of the collaborative interactions.
It is easy to immediately see a large difference between the
approaches from the results, but this difference becomes
more apparent when examining the ¢-, v-, and p-values, as
shown in Table VIII. These p-values, similar to those seen in
other metrics, exist far below the designated significance
level of 0.05. This provides a strong indication that there exists
a statistically significant difference between the two methods
used in this experiment in the context of overall comfort during
human-robot interaction. Notably, the mean difference
between these data is 0.94, suggesting that, on average,
subjects rate each interaction nearly one point differently
than the other. We can conclude that subjects typically feel
more comfortable interacting with the robot when it learns
and collaborates with them dynamically, rather than simply
being hardcoded to perform its designated task.

TABLE VIII.  T-VALUES, V-VALUES, AND P-VALUES OF T-TESTS ON THE
EVALUATION OF OVERALL COMFORT
t-tests t v P
Student’s ¢-test 4.23 169 3.76¢-5
Welch’s t-test 422 141.65 4.29¢-5
Paired t-test 5.5 84 3.93¢-7

i 105%
Somewhat Good
Good

= very Good
- Excellent

21.2%

Fig. 10. Participants’ ratings for the overall comfort question with (left) and
without (right) the TLPC model.

VI. CONCLUSIONS AND FUTURE WORK

We have conducted a multifaceted user study to evaluate
the TLPC framework in real-world human-robot collaborative
tasks. Participants of this user study are diverse in their age,
educational background, and gender. We have designed seven
assessment metrics to comprehensively evaluate the performance
of the TLPC framework. Through a controlled experiment,
we have compared the performance of human-robot collaboration
with and without it. The evaluation results suggest the
competitive strengths of the developed TLPC framework to
ensure fruitful human-robot collaboration. In addition, we
hope that the findings from this user study can serve as
catalysts for the construction and optimization of human-
robot interactive systems to improve the productivity of
human-robot partnerships in advanced manufacturing and
remanufacturing [17, 18]. Our next work is to gather more

data and perform their deep analysis in various aspects to
gain new findings to help advance TLPC.
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