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Abstract1—As the implementation of robotics systems in modern 
industries becomes more commonplace, the desire to streamline 
and simplify humans’ interaction with them is highly needed. 
Human-robot collaboration frameworks have made strides towards 
the goal to facilitate shared tasks in human-robot teams. Such 
methods as Learning from Demonstration (LfD) show great 
potential in well performing collaborative tasks. To boost LfD’s 
capacity, our previous study has developed a novel Teaching-
Learning-Prediction-Collaboration (TLPC) framework for robots 
to learn from human demonstrations, customize their task strategies 
according to humans’ personalized working preferences, predict 
human intentions, and assist humans in collaborative tasks. In 
this work, we conduct a multifaceted user study to evaluate it in 
real-world human-robot collaborative tasks. Participants of this 
user study are from diverse age groups with varying educational 
backgrounds and genders. Seven assessment metrics are developed 
to comprehensively evaluate the performance of TLPC through 
t-tests. A controlled human-robot collaborative experiment 
without TLPC is also conducted. This study seeks to observe and 
analyze the subjective feelings and feedback of the participants 
using TLPC when they perform collaborative tasks with a robot 
via periodic surveys given throughout the experiment. Our 
research outcomes help us gather insights into and create 
catalysts for the construction and optimization of human-robot 
interactive systems in advanced manufacturing contexts. They 
can be leveraged to improve human-robot collaboration quality, 
manufacturing productivity, human safety, and ergonomics. 

I.  INTRODUCTION 

Manufacturing industries have experienced a substantial 
increase in the utilization of robotics in recent years as 
markets continue to grow [1, 2]. Human-robot collaboration 
techniques can effectively help manufacturing sectors 
remain flexible and productive to anticipate and handle 
frequent market changes [3]. Both parties function as a team 
in which each member makes the most efficient use of their 
abilities. The robot’s strength, precision, and repeatability 
are combined with the human’s ability to make plans, 
decisions, and reactions, such that the goal is accomplished 
faster and safer. The partnership has been shown to be both 
productive as well as cost-effective in studies [4, 5].  

Recent studies have sought to observe the effectiveness 
of a concept that is relatively new to the fields of robotics 
and automation, specifically in the area of robot learning 
from human demonstrations [6, 7]. Implementing such 
collaborative methods is a process to ensure a robot’s 
efficacy, human capacity, and collaborative performance. 
Elements of consideration include ease of use, convenience, 
safety, and overall human comfort with the machine. These are 
further described and embodied by factors such as the speed 
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of a robot, for instance, which has a direct impact on humans’ 
perception of safety [8]. It is important to consider that a 
user who is dissatisfied and uncomfortable with a teammate – 
whether a human or robot – would see that overall productivity 
suffers as a result. Motivated by these needs, our work [9] 
proposes a Teaching-Learning-Prediction-Collaboration (TLPC) 
framework for the robot to learn from human demonstrations 
to cooperatively accomplish a task in line with each human’s 
personalized working preference. Through it, the robot can 
learn different strategies to complete a task, understand 
ongoing human actions, predict human intentions, and 
automatically adjust its motions to collaborate with its 
human partner in the shared tasks. 

Building on the developed TLPC framework, we 
conducted a multifaceted user study in this work to evaluate 
the performance of TLPC in real-world human-robot 
collaborative tasks. Participants engaged with the robot for a 
collaborative assembly task with multiple parts using or not 
using TLPC. After each human-robot collaborative experiment, 
a survey is completed where users answer questions related 
to the sociability of the robot, as well as the trust, comfort, 
and fluency felt during the experiment. Using this data, we 
can draw conclusions related to the effectiveness of human-
robot collaboration and humans’ overall satisfaction with the 
process, which can then be used to further tailor this form of 
collaboration and the developed TLPC framework to 
improve the efficiency of human-robot teams.  

Users’ perception and opinion of their robot teammate 
are crucial to the success of human-robot collaboration. 
Studies such as those mentioned provide desired insights 
into different methods of teaching, demonstrations, processes, 
and their strengths. Additionally, some of these efforts [10, 
11] have evaluated their participants’ subjective responses to 
their robot partners. What remains to be comprehensively 
analyzed, however, are the numerous factors that have direct 
effects on a human’s collaborative partnership with a robot. 
These factors include the sociability of a robot, its movement 
speed, the fluency of the collaboration, etc. While these 
particular elements may have been observed in other studies, 
they are often isolated or generalized. Our use of multifaceted 
assessment metrics (task efficiency, collaboration safety, 
coding efforts reduction, collaboration fluency, sociability, 
robot response speed, and overall comfort) to be examined 
together through t-tests allows a comprehensive evaluation 
of TLPC and its impact on the collaboration process between 
a human and robot. Our study ultimately seeks to present 
insights into human-robot collaborative processes and 
catalyze the optimization of human-robot interactive system 
implementation in advanced manufacturing contexts. 

II.  RECAP OF THE TLPC FRAMEWORK 

Effective collaboration between two parties involves 
having an understanding of each other’s intentions. A 
fruitful partnership is built on the foundational idea of 



 
 

achieving a common goal, and knowledge of how each 
member seeks to achieve that goal is required. This mutual 
understanding offers a greater degree of fluency in executing 
the task at hand and accomplishing the desired outcome when 
compared to alternative scenarios in which this understanding is 
not present. In human-robot interaction, the user should 
know what to expect from their robot teammate. Likewise, 
permitting the robot to predict the user’s intentions has 
immense potential in improving the speed, accuracy, and 
general efficiency of the process. In this context, we have 
proposed a TLPC framework that demonstrates how a robot 
may learn from human demonstrations to perform a given 
task [9]. As it operates, the robot becomes more accurate and 
customizable with its user’s working preferences. The 
approach uses a finite-state machine model that permits the 
robot to learn alternative pathways to a common goal. This, 
combined with the long short-term memory (LSTM) 
algorithm [12], enables the robot to act dynamically as it 
predicts the user’s next actions. 

In TLPC, the teaching segment consists of three stages in 
which the robot observes the actions taken by the user and 
utilizes an LSTM network to process the data in order to locate 
the objects in it. The second segment involves the stages related 
to the robot’s ability to learn the task. From the previous 
stage, the operation information of the objects is determined 
and used in an algorithm to create a finite-state machine with 
the purpose of building the robot’s task knowledge. The 
states within this finite-state machine represent the various 
positions of the objects and their configurations, while the 
transitions indicate the movements of the objects from one 
state to another state. Lastly, the final stage of TLPC is the 
prediction-collaboration segment. In this process, the robot 
predicts the next state the user will transition to by using the 
state machine developed from the learned experience and 
assists the user in reaching it by executing the next most 
suitable action (e.g., passing the needed part to the user). This 
design provides the robot with some autonomy to “think” by 
itself to help its human partner accomplish the task well. 

 
Fig. 1. Experimental setup for the user study. 

III. USER STUDY DESIGN FOR TLPC FRAMEWORK 

A. Experimental Platform 
In this work, we create a high-precision experimental setup 

to evaluate our proposed model with human participants, as 
shown in Fig. 1. The setup includes a collaborative robot, five 
parts with a letter on each part spelling the word “ROBOT” 
acting as a collaborative assembly product, an intel RealSense 
depth camera used as the robot’s vision system, a TV screen 
for participants to answer our questionnaire, a workspace 
designed for collaboration, and two workstations; one to 
execute the TLPC model and another to collect participants’ 
answers. The experiment involves tasking a human participant 
with assembling the word “robot” in different sequences to 

teach the robot how to complete the assembly process in future 
human-robot collaborative tasks. The robot we are using is a 
Franka-Emika Panda. The data processing and model execution 
are handled by a ThinkStation P520 workstation. We used the 
Robot Operating System (ROS) for effective management of 
the robot system and human-robot collaboration process [9]. 

B. Task Design 
For our task, we ask participants to assemble the word 

“robot” by using five wooden parts in different assembly 
sequences. Despite being a basic task, we believe that this 
serves as a proof of concept, as a five-part assembly task has 
120 potential patterns to choose from. In addition, the 
verification of this task can be scaled to more complex tasks. 
The collaboration can be split into two separate subtasks. 
The first subtask implements TLPC in which a participant 
teaches the robot two different assembly patterns that he/she 
prefers, and the robot learns the assembly strategies from 
human demonstrations. Participants then test if the robot can 
predict their assembly preference and collaborate properly 
with them. The second subtask that we implement is a 
controlled experiment involving a hard-coded approach in 
which a participant does not teach and the robot cannot learn, 
but has the most common patterns pre-programmed into it. 
This allows the robot to collaborate if it recognizes the 
pattern that participants create; and if it fails to recognize it, 
the robot stops operating.  

TABLE I.  ASSESSMENT METRICS FOR THE TLPC MODEL 

Metric Description 
Task Efficiency How efficiently the robot performs the task. 

Collaboration Safety The safety level during the collaboration. 
Coding Efforts 

Reduction 
The degree to which the approach reduces the 

need for programming. 

Collaboration Fluency How smoothly the robot interacts with the 
participant. 

Collaboration Sociability The perceived social aspect of interacting with 
the robot. 

Robot Response Speed The speed at which the robot responds to the 
participant's actions. 

Overall Comfort The general comfort level of the participant 
while interacting with the robot. 

The primary goal of the task design is to test TLPC 
against current hard-coded approaches and allow participants 
to answer questions that may demonstrate if TLPC provides 
any improvement to the process of human-robot collaboration. 
To assess the efficacy of the TLPC and hard-coded approach, 
participants are asked to complete a detailed survey post-
interaction for each subtask. This survey consists of fourteen 
questions, each with a nine-point Likert scale ranging from 
'Extremely Poor' to 'Excellent'. The first seven questions are 
for the first sub-task (with TLPC), and the remaining seven 
are for the second sub-task (with the hard-coded approach). 
The assessment metrics are described in Table I. Participants 
answer these questions for both approaches, allowing for a 
comparative evaluation and analysis of TLPC. 

C. Data Collection 
With the nine-point Likert scale, participants have a wide 

range of options to rate these evaluation metrics because we 
hope to capture exactly how they feel and quantify the smallest 
changes for more accurate results. The data is collected by 
using an HTML webpage that is developed through Flask, a 
microweb framework. The data is saved in a local database 



 
 

that has two tables named Users and QuestResponse. The 
collected data is split into three sections. The first one includes 
the participants' demographic information. The second one 
contains the answers to the seven questions regarding the 
first sub-task. The third section includes the answers to the 
last seven questions regarding the second sub-task. We have 
successfully collected data from 86 participants including 36 
male participants (41.86%), 48 female participants (55.81%), 
and 2 other participants (2.33%). 

IV.  DATA ANALYSIS APPROACHES 

To analyze the data collected from the participants, we 
have conducted a multifaceted and comparative evaluation 
through three forms of the t-test approach [13, 14], which is 
a statistical tool crucial for understanding differences in 
group behaviors and outcomes in user studies. The three 
forms used are Student’s t-test, Welch's t-test, and paired t-
test. Welch’s t-test does not require the standard deviations 
of the two groups being compared to be the same, whereas 
Student’s t-test assumes that they are, which may not 
necessarily be the case in practice. This allows it to be a 
more robust analysis method when comparing data. We 
utilize both Welch’s and Student’s t-tests to examine the 
differences between them and observe the paired t-test as 
well. Paired t-test is particularly useful in scenarios such as 
ours in which one subject is measured at two different points 
in time, or under two different conditions. 

To compute the Student’s t-test, three main data values 
are essential, including Mean Difference (the difference 
between the means of both datasets), Standard Deviations 
(the standard deviations of each dataset), and Number of 
Values (the number of data samples in each dataset). In our 
study, when analyzing samples from distinct subtasks, we 
calculate this t-test value as follows: 

𝑡𝑡 = (𝑚𝑚𝐴𝐴 −𝑚𝑚𝐵𝐵)/�𝑆𝑆2

𝑛𝑛𝐴𝐴
+ 𝑆𝑆2

𝑛𝑛𝐵𝐵
 ,                     (1) 

where  𝑚𝑚𝐴𝐴  and 𝑚𝑚𝐵𝐵  are the means of groups A and B, 
separately, 𝑛𝑛𝐴𝐴 and 𝑛𝑛𝐵𝐵 denote their sizes, respectively, and 𝑆𝑆2 
is an estimator of the pooled variance of the two groups: 

𝑆𝑆2 =
∑ (𝑥𝑥𝑖𝑖−𝑚𝑚𝐴𝐴)2𝑛𝑛𝐴𝐴
𝑖𝑖=1 +∑ (𝑥𝑥𝑗𝑗−𝑚𝑚𝐵𝐵)2𝑛𝑛𝐵𝐵

𝑗𝑗=1
𝑛𝑛𝐴𝐴+𝑛𝑛𝐵𝐵−2

 .                 (2) 

The degrees of freedom (d) is 𝑑𝑑 = 𝑛𝑛𝐴𝐴 + 𝑛𝑛𝐵𝐵 − 2, where 
𝑥𝑥𝑖𝑖 and 𝑥𝑥𝑗𝑗 represent the ith and jth sample values of groups A 
and B, respectively. While applying the t-test, we adhere to 
four critical assumptions including Measurement Scale (the 
data should be on an ordinal/continuous scale), Sample 
Representativeness (the sample must accurately represent the 
groups from which it is drawn), Normal Distribution (the 
data should exhibit a normal, bell-shaped distribution curve), 
and Homogeneous Variance (this assumption holds if the 
standard deviations of both datasets are approximately equal, 
indicating similar variability) [24, 25]. 

The second t-test that we employ in our analysis is 
Welch’s t-test. This test is preferred over Student’s t-test 
because it permits the standard deviations of the subsets to 
be different from each other [26]. For our data, this is 
particularly useful considering our standard deviations vary 

between the two concerned approaches. Welch’s t-test is 
expressed as: 

𝑡𝑡 = 𝑋𝑋�1−𝑋𝑋�2

�𝑠𝑠1
2+𝑠𝑠2

2
 ,                                   (3) 

where 𝑋𝑋�1  and 𝑋𝑋�2  represent the sample means of groups 1 
and 2, and s1 and s2 are the differing standard deviations of 
groups 1 and 2, respectively. The degrees of freedom of 
Welch’s t-test, v, is defined as: 

𝑣𝑣 ≈
( 𝑠𝑠1
2

𝑁𝑁1
+𝑠𝑠2

2

𝑁𝑁2
)2

𝑠𝑠1
4

𝑁𝑁1
2𝑣𝑣1

+
𝑠𝑠2
4

𝑁𝑁2
2𝑣𝑣2

 ,                                 (4) 

where N1 and N2 denote the data sizes of groups 1 and 2.  

The paired t-test is used when data exists in matched 
pairs. In our data, we may use this approach because 
subjects evaluated both approaches during the experiment, 
permitting us to compare their subjective thoughts on them. 
We calculate its t statistic as follows: 

𝑡𝑡 = 𝑋𝑋�𝐷𝐷
𝑠𝑠𝐷𝐷/√𝑛𝑛

 ,                                   (5) 

where 𝑋𝑋�𝐷𝐷 represents the average difference between paired 
values, and 𝑠𝑠𝐷𝐷  indicates the standard deviation of the 
differences. This test is slightly simpler than the previous 
two tests, and its degrees of freedom is calculated as n – 1, 
where n is the number of matched pairs. 

Gathering t-values permits the determination of p-values, 
which indicates the probability of observing results as 
extreme as or more extreme than the ones seen. Small values 
suggest that there is evidence against the null hypothesis, 
which implies that there is no significant difference between 
the groups being compared. Our hypotheses are defined as 
Null Hypothesis (no significant difference between the two 
groups being compared) and Alternative Hypothesis (there 
does exist a significant difference between the two groups). 

It should be noted that p-values can be determined by 
using t-values and t table [15]. This table permits an estimation 
of the p-value by lookup with the calculated t-value and v-
value. However, more specific calculations must be done to 
establish a more precise p-value. These calculations often 
make use of the Cumulative Distribution Function, which 
describes the probability that a random variable X will take a 
value less than or equal to a value x. This has direct 
applications in our t-tests and subsequent calculation of p-
values [16]. To establish these hypotheses within a given 
context, a statistical significance level of 0.05 (5%) has been 
chosen. In other words, p-values less than 0.05 place the data 
in favor of rejection of the null hypothesis. 

V. RESULTS AND ANALYSIS 

A. Human-Robot Collaborative Process Analysis 
The results of our real-world human-robot collaboration 

are related to the categories detailed in Table I. The process 
by which one of the female participants develops her 
subjective positions on the interactions that she takes part in 
is detailed in Fig. 2. In Fig. 2(a), she teaches the robot to 
execute the collaborative task in her preferred assembly 
order as the robot observes her task strategy using the TLPC 



 
 

model through its vision system. This assembly strategy is 
learned, and when the learning process is completed as 
shown in Fig. 2(b), the robot is prepared to work and assist 
her. Having learned her preferred assembly order, the robot 
proceeds to help its human teammate complete the task 
collaboratively by grabbing and handing the predicted parts 
to her. In Figs. 2(c-d), this prediction takes place as the robot 
examines the current state of the collaborative task using the 
task knowledge that it has built during the learning phase. 
Once a decision is made regarding which part should be 
operated given the current context in addition to the 
constructed task knowledge, the robot moves to grab and 
hand that part to her. Figs. 2(e-f) show the collaboration 
process as it occurs, with the participant taking a part, 
allowing the robot to take the next and hand it to her, and 
continuing the process until the task is completed. 

 
Fig. 2. Human-robot collaboration using the TLPC framework. 

To contrast the human-robot collaboration efforts of task 
completion utilizing TLPC and that without it, Fig. 3 
presents how it differs from the process detailed in Fig. 2. In 
Figs. 3(a-c), the robot acts similarly to how it operates during 
the collaborative approach using TLPC. The difference, however, 
is that it does not observe and learn the user’s preferred 
assembly sequence, but rather has been pre-programmed to 
function with predefined orders. It observes the first part 
taken and attempts to determine the order that the user is 
attempting to assemble the parts based upon that input and 
which predefined sequence it could potentially be. Once it 
makes a decision, it begins the collaborative process by 
providing the next part based upon its assumption. This 
works well when the user’s sequence coincides with one of 
the predetermined ones. However, that is not always the 
case. As mentioned before, with five parts to choose from in 
any order, there exist one hundred and twenty possible 
combinations. In a scenario where the robot fails to recognize 
the sequence in which the participant begins to take the parts 
in, it ceases the collaborative process. This instance is shown 
in Figs. 3(d-f) where the robot is unable to collaboratively 
complete the task with the user, ending the interaction. 

 
Fig. 3. Human-robot collaboration without using the TLPC model. 

B. Evaluation of Task Efficiency 
Three types of t-tests are performed on the data to gather 

insight into the relationship between the subsets collected. 
Fig. 4 presents a comparative analysis of participants’ 
perceived efficiency of the task during each of the 

interactions using TLPC and the hard-coded approach. Using 
three types of t-tests – Welch’s, Student’s, and paired – we 
gain the t-values, v-values, and p-values shown in Table II. It 
should be noted as well that a mean difference of 1.6 exists 
between the data of the two different approaches. From these 
results, it is reasonably concluded that there exists a 
statistically significant difference between the responses for 
these data from the two methods. This is due to all p-values 
being far lower than the chosen significance level threshold 
of 0.05. When observing Fig. 4, this difference becomes 
apparent, as it shows that an overwhelming majority of 
participants have selected “excellent” and “very good” for 
the approach utilizing TLPC, whereas the non-TLPC approach 
has received primarily “good” responses and lower ones. 

TABLE II.  T-VALUES, V-VALUES, AND P-VALUES OF T-TESTS ON THE 
EVALUATION OF TASK EFFICIENCY  

t-tests t v P 
Student’s t-test 6.76 163 2.29e-10 
Welch’s t-test 6.71 138.85 4.4e-10 
Paired t-test 7.72 80 2.82e-11 

 
Fig. 4. Participants’ ratings for the task efficiency question with (left) and 

without (right) the TLPC model. 

TABLE III.  T-VALUES, V-VALUES, AND P-VALUES OF T-TESTS ON THE 
EVALUATION OF COLLABORATION SAFETY 

t-tests t v P 
Student’s t-test 3.38 170 9.13e-4 
Welch’s t-test 3.38 140 9.5e-4 
Paired t-test 4.27 85 4.98e-5 

 
Fig. 5. Participants’ ratings for the collaboration safety question with (left) 

and without (right) the TLPC model. 

C. Evaluation of Collaboration Safety 
Fig. 5 provides a visual representation of the responses to 

the metric regarding perceived collaboration safety 
throughout each interaction. Performing Student’s, Welch’s, 
and paired t-tests produces the t-, v-, and p-values in Table 
III. Regardless of which test is, the values are indicative of a 
statistically significant difference between the two 
approaches when comparing them to the chosen significance 
level of 0.05. The mean difference between the approaches 
is about 0.81, which is slightly lower than that for task 
efficiency. This, along with comparatively higher p-values, 
is due to a somewhat closer relationship between the two 
groups in this data than those in the previous section. While 
the majority of responses for both sections fell into the 
“excellent” category, the approach using TLPC contained, 



 
 

on average, much higher ratings. In other words, participants 
seem to feel that safety was higher when the robot has 
watched and learned how to perform the task, rather than 
having its instructions hardcoded in. 

D. Evaluation of Coding Efforts Reduction 
Fig. 6 demonstrates the responses for a perceived 

reduction in coding efforts for a given approach. All three t-
tests, including Welch’s, Student’s, and paired, produce a p-
value far below our designated significance level value of 
0.05. The t- and v-values are also obtained, as shown in 
Table IV. Thus, these values serve as strong evidence 
against the null hypothesis, which states that there is not a 
statistically significant difference between the two human-
robot collaboration approaches. In other words, it is highly 
unlikely that the evaluation results would have taken this 
form if the null hypothesis were true. Evidently, most 
participants selected “excellent” for the TLPC approach 
(left), but only “very good” or lower for the non-TLPC 
approach (right). With means of ~6.83 and ~5.36, a mean 
difference of 1.47 is produced, also showing a notable 
difference between the two approaches. From this data, we 
can conclude that participants generally feel that permitting 
the robot to learn and collaborate offers a significant 
reduction in coding efforts. 
TABLE IV.  T-VALUES, V-VALUES, AND P-VALUES OF T-TESTS ON THE 

EVALUATION OF CODING EFFORTS REDUCTION 

t-tests t v P 
Student’s t-test 5.99 170 1.18e-8 
Welch’s t-test 5.99 144.09 1.56e-8 
Paired t-test 7.72 85 2.06e-11 

 
Fig. 6. Participants’ ratings for the coding efforts reduction question with 

(left) and without (right) the TLPC model. 

TABLE V.  T-VALUES, V-VALUES, AND P-VALUES OF T-TESTS ON THE 
EVALUATION OF COLLABORATION FLUENCY 

t-tests t v P 
Student’s t-test 6.43 167 1.28e-9 
Welch’s t-test 6.42 147.14 1.79e-9 
Paired t-test 7.72 83 2.33e-11 

 
Fig. 7. Participants’ ratings for the collaboration fluency question with (left) 

and without (right) the TLPC model. 

E. Evaluation of Collaboration Fluency 
Fig. 7 compares the responses to the fluency of human-

robot collaboration for each approach. It is evident from the 
resulting data that participants feel that the approach 
utilizing TLPC provides a more fluent experience than the 

one without, with far more “excellent” responses. The t-test 
results for this metric are very much the same as those for 
previously discussed survey questions. Our three methods in 
Table V, Welch’s, Student’s, and paired t-tests, produce p-
values much lower than the 5% significance level value. 
With these values, it is highly likely that, on average, there 
exists a statistically significant difference between 
participant’s perspectives from one approach to the other. 
Additionally, a mean difference of 1.49 exists between them, 
suggesting that many participants feel that TLPC offers a 
more fluent experience. 

F. Evaluation of Collaboration Sociability 
Fig. 8 presents the responses to the perceived sociability 

of the robot throughout the human-robot collaboration 
experience. As presented in Table VI, Welch’s, Student’s, 
and paired t-tests are utilized to examine the relation 
between the responses. From the evaluation results, it is 
clear that the observed p-values are indicative that the two 
dataset’s differences are likely statistically significant when 
held against the 5% significance level. Additionally, there 
exists a mean difference of about 1.2, allowing us to 
reasonably conclude that participants feel that the approach 
using TLPC provides the robot with a more social demeanor 
when compared to the non-TLPC approach. 
TABLE VI.  T-VALUES, V-VALUES, AND P-VALUES OF T-TESTS ON THE 

EVALUATION OF COLLABORATION SOCIABILITY 

t-tests t v P 
Student’s t-test 4.88 170 2.37e-6 
Welch’s t-test 4.89 153.61 2.57e-6 
Paired t-test 6.43 85 6.99e-9 

 
Fig. 8. Participants’ ratings for the collaboration sociability question with 

(left) and without (right) the TLPC model. 

TABLE VII.  T-VALUES, V-VALUES, AND P-VALUES OF T-TESTS ON THE 
EVALUATION OF ROBOT RESPONSE SPEED 

t-tests t v P 
Student’s t-test 3.46 170 6.7e-4 
Welch’s t-test 3.46 168.12 6.7e-4 
Paired t-test 4.76 85 7.7e-6 

 
Fig. 9. Participants’ ratings for the robot response speed question with (left) 

and without (right) the TLPC model. 

G. Evaluation of Robot Response Speed 
Fig. 9 shows the responses from participants for each 

approach regarding the response speed of the robot during 
the human-robot collaboration. The t-, v-, and p-values of 
the three t-tests for this metric are presented in Table VII. 



 
 

Despite being low and suggesting a statistical difference 
between the two approaches, the comparatively higher p-
values indicate that participants feel that there is less of a 
difference between the approaches regarding response speed 
than they do for some of the other metrics, such as fluency. 
The mean difference for this data is approximately 0.86, 
suggesting that, on average, subjects typically drop less than 
a point on the scale when rating the non-TLPC approach. 
These results, however, indicate that the participants prefer 
the TLPC framework. 

H. Evaluation of Overall Comfort 
Fig. 10, shows the comparison of the participants’ 

overall comfort during each of the collaborative interactions. 
It is easy to immediately see a large difference between the 
approaches from the results, but this difference becomes 
more apparent when examining the t-, v-, and p-values, as 
shown in Table VIII. These p-values, similar to those seen in 
other metrics, exist far below the designated significance 
level of 0.05. This provides a strong indication that there exists 
a statistically significant difference between the two methods 
used in this experiment in the context of overall comfort during 
human-robot interaction. Notably, the mean difference 
between these data is 0.94, suggesting that, on average, 
subjects rate each interaction nearly one point differently 
than the other. We can conclude that subjects typically feel 
more comfortable interacting with the robot when it learns 
and collaborates with them dynamically, rather than simply 
being hardcoded to perform its designated task. 

TABLE VIII.  T-VALUES, V-VALUES, AND P-VALUES OF T-TESTS ON THE 
EVALUATION OF OVERALL COMFORT 

t-tests t v P 
Student’s t-test 4.23 169 3.76e-5 
Welch’s t-test 4.22 141.65 4.29e-5 
Paired t-test 5.5 84 3.93e-7 

 
Fig. 10. Participants’ ratings for the overall comfort question with (left) and 

without (right) the TLPC model. 

VI. CONCLUSIONS AND FUTURE WORK 

We have conducted a multifaceted user study to evaluate 
the TLPC framework in real-world human-robot collaborative 
tasks. Participants of this user study are diverse in their age, 
educational background, and gender. We have designed seven 
assessment metrics to comprehensively evaluate the performance 
of the TLPC framework. Through a controlled experiment, 
we have compared the performance of human-robot collaboration 
with and without it. The evaluation results suggest the 
competitive strengths of the developed TLPC framework to 
ensure fruitful human-robot collaboration. In addition, we 
hope that the findings from this user study can serve as 
catalysts for the construction and optimization of human-
robot interactive systems to improve the productivity of 
human-robot partnerships in advanced manufacturing and 
remanufacturing [17, 18]. Our next work is to gather more 

data and perform their deep analysis in various aspects to 
gain new findings to help advance TLPC. 
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