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Abstract

Deep neural networks, including transformers

and convolutional neural networks, have signif-

icantly improved multivariate time series classi-

fication (MTSC). However, these methods often

rely on supervised learning, which does not fully

account for the sparsity and locality of patterns

in time series data (e.g., diseases-related anoma-

lous points in ECG). To address this challenge,

we formally reformulate MTSC as a weakly su-

pervised problem, introducing a novel multiple-

instance learning (MIL) framework for better lo-

calization of patterns of interest and modeling

time dependencies within time series. Our novel

approach, TimeMIL, formulates the temporal cor-

relation and ordering within a time-aware MIL

pooling, leveraging a tokenized transformer with

a specialized learnable wavelet positional token.

The proposed method surpassed 26 recent state-

of-the-art methods, underscoring the effectiveness

of the weakly supervised TimeMIL in MTSC. The

code is available at https://github.com/
xiwenc1/TimeMIL.

1. Introduction
Time series data mining has witnessed considerable growth

in the last decade with numerous applications in classi-

fication (Ismail Fawaz et al., 2019), forecasting (Lim &

Zohren, 2021), and anomaly detection (Malhotra et al.,

2015). Particularly, multivariate time series classification

(MTSC), which aims to assign labels to time sequences, is

challenging but crucial in most real scenarios, such as health-
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Figure 1. (a): The decision boundary of fully supervised meth-

ods is determined by assigning a label to each time series. (b):
TimeMIL makes decisions by discriminating positive and negative

instances in time series, where each time point is an instance, and

its label is typically not available in reality.

care (Vrba & Robinson, 2001; Tang et al., 2023), human

action recognition (Shokoohi-Yekta et al., 2017; Amaral

et al., 2022), audio signal processing (Ruiz et al., 2021),

Internet of Things (Bakirtzis et al., 2022), and semantic

communication (Zhao et al., 2023).

Recently, deep neural networks have achieved state-of-the-

art performance in various time series tasks compared to tra-

ditional methods (Seto et al., 2015; Schäfer & Leser, 2017;

Li et al., 2023a; Tang et al., 2022; donghao & wang xue,

2024; Li et al., 2024a). Their popularity and success in time

series modeling can be attributed to their automatic feature

extraction in conjunction with inductive biases. To this end,

the time series task is typically formulated as a fully super-

vised learning task by employing a wide variety of architec-

tures, such as recurrent neural networks (RNN) (Franceschi

et al., 2019; Lai et al., 2018b), long short-term memory

(LSTM), (Karim et al., 2019; Tang et al., 2022; Karim et al.,

2019), convolution neural networks (CNN) (Zhang et al.,

2020; Ismail Fawaz et al., 2020; Wu et al., 2023; Tang et al.,
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2022; donghao & wang xue, 2024), and transformers (Zhou

et al., 2022; Zhang & Yan, 2023; Nie et al., 2023; Li et al.,

2024b;c). Although these methods vary in their architec-

tural biases for modeling time series, they share a common

underlying strategy: dividing a time series into a set of time

points and then modeling the local and global dependencies

among them, such as changes over time and the presence of

multiple periodic patterns. Importantly, patterns of interest

in time series are typically sparse and localized (Lin et al.,

2012; Jiang et al., 2011; Fulcher, 2018; Cheng et al., 2009),

while the most discriminative time points within a time se-

ries are typically unknown due to their laborious annotation.

This poses a significant challenge for fully supervised learn-

ing in accurately determining the decision boundary (see

Fig. 1(a)). Instead, given the inherent properties of time se-

ries, we formulate the MTSC tasks as a weakly supervised

learning paradigm (see Fig. 1(b)).

Multiple instance learning (MIL) is a weakly supervised

learning method that assigns a label to a collection of in-

stances, known as a bag. This makes MIL a natural choice

for the MTSC task by collectively treating each time point as

an instance and an entire time series as a bag. Early attempts

of MIL in time series relied on hand-crafted features and

classic MIL models (Stikic et al., 2011; Guan et al., 2016).

In contrast, modern MILs which use deep neural networks

to extract the feature automatically and consistently exhibit

superior performance compared to the classic MILs with

handcrafted features (Wang et al., 2018; Ilse et al., 2018;

Early et al., 2024). However, standard MILs may fail to

capture correlations between instances, since standard MILs

assume the independence and identical distribution of in-

stances with a permutation-invariant property (Ilse et al.,

2018). In contrast, MTSC data typically exhibits temporal

correlations and ordering dependencies, posing significant

challenges for directly translating MIL into MTSC.

This paper introduces a generic MIL framework for time

series, termed TimeMIL. We address several limitations

when using standard MIL methods, such as their failure

to model the permutation information and temporal corre-

lation among instances. We explore their necessity from

an information-theoretic perspective, which suggests that

modeling the permutation information and temporal correla-

tion can lower the uncertainty of classification systems. To

this end, we propose a time-aware MIL pooling, leveraging

the self-attention mechanism and a novel learnable wavelet
positional encoding, where the former is used to capture

the temporal correlation between instances, and the latter is

used to characterize time ordering information.

Contributions: (i) To the best of our knowledge, we are

the first to formally formulate a generic MIL framework

for multivariate and multi-class time series classification

from an information-theoretic perspective. (ii) We propose

a Time-aware MIL pooling based on a tokenized transformer

and a novel learnable wavelet positional encoding (WPE) to

model complex patterns within time series. The proposed

method outperforms 26 recent state-of-the-art methods in

28 datasets and offers inherent interpretability.

2. Related Works
Multivariate Time Series Classification. The recent DL

methods specifically designed for MTSC can roughly be

divided into two categories: (i) CNN/LSTM Hybrid architec-

ture (Karim et al., 2019; Zhang et al., 2020), where LSTM

is often used to capture sequential dependencies and CNN

is used to capture the local features. (ii) Purely CNN archi-

tecture (Ismail Fawaz et al., 2020; Li et al., 2021b; Tang

et al., 2022), where long-term dependencies, short-term de-

pendencies, and cross-channel dependencies are claimed to

be captured by multiple kernels with varying kernel sizes.

Recently, General Time Series Analysis Framework (Wu

et al., 2023; donghao & wang xue, 2024) has been also

proposed for multiple mainstream tasks, including classifi-

cation, imputation, short-term forecasting, long-term fore-

casting, and anomaly detection, with simple modifications.

Transformer-based models (Zhou et al., 2022; Zhang & Yan,

2023; Nie et al., 2023) and MLP-based models (Zeng et al.,

2023; Zhang et al., 2022b; Li et al., 2023c;b) have also been

developed and improved over the last few years for this pur-

pose due to their excellent scaling behaviors. Nonetheless,

they did not yet fully replace CNN-based models, which

continue to exhibit impressive performance (Liu et al., 2022;

Wang et al., 2023; donghao & wang xue, 2024).

Although the aforementioned methods have witnessed ex-

tensive use in time series analysis applications, as discussed

in the introduction, these methods are rooted in supervised

learning and often focus on optimizing their architectural

designs (e.g., CNN and transformer), which still cannot

solve the essential issue that they are challenging to deter-

mine the accurate decision boundary. In contrast, our work

introduces TimeMIL, which provides a novel perspective to

describe the decision boundary of time series in a weakly

supervised view. In addition, the proposed TimeMIL is

inherently interpretable.

Multiple Instance Learning. MIL, a weakly supervised

method, is widely used for histological image classification

due to its advantage in localizing tumors within gigapixel

images (Ilse et al., 2018; Li et al., 2021a; Zhang et al.,

2022a). However, the application of MIL to time series data

has rarely been explored. An early exploration by (Stikic

et al., 2011) applied classic multi-instance SVM (Andrews

et al., 2002) to wearable sensor data. However, this method

fails to model sequential dependencies among time points

(instances). To address this limitation, (Guan et al., 2016)
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Figure 2. The proposed framework of TimeMIL for time series classification with enhanced interpretability: (i) a feature extractor to

obtain instance-level feature embeddings, (ii) a MIL pooling to aggregate instance embeddings to a bag-level feature, embedding, and

(iii) a bag-level classifier to map bag-level feature to a label prediction. Each time point is treated as an instance and the time series as a

bag. Time ordering information and instance correlation are captured by taking the mutual benefit of WPE and MHSA in our TimeMIL

pooling (highlighted in green).

proposes incorporating an autoregressive hidden Markov

model into the MIL framework to model the dependencies

between instances. However, both methods rely on FFT

and hand-crafted statistical features. Alternatively, mod-

ern MILs typically employ deep neural networks for au-

tomatic feature extraction and aggregation (Wang et al.,

2018), achieving superior performance over conventional

instance-based MIL, like the one used in (Zhu et al., 2021)

for MTSC. Most notably, the attention-based MIL (ABMIL)

is proposed by (Ilse et al., 2018), which makes MIL inher-

ently interpretable by weighting each instance according to

its importance. Since its invention, ABMIL has emerged

as the standard paradigm for modern MIL applications (Li

et al., 2021a; Zhu et al., 2024; Shao et al., 2021; Zhang et al.,

2022a; Qiu et al., 2023; Xiang & Zhang, 2023). Following

this line of work, a related but concurrent work (Early et al.,

2024) attempted to apply ABMIL and its variants to time se-

ries. However, ABMIL operates under the assumption that

instances are independent and identically distributed, which

inherently limits the modeling of the temporal dependencies

among instances in time series data.

While being related to methods presented in (Guan et al.,

2016; Early et al., 2024), our method differs from them in

the following ways. (i) Unlike the autoregressive hidden

Markov used in (Guan et al., 2016), which struggles with

long-range and complex dependencies, the proposed method

employs self-attention to model the instance dependencies

regardless of their distance, offering inherent interpretability.

(ii) Authors of (Early et al., 2024) directly applied MIL to

the time series classification problem to obtain interpretabil-

ity without providing a theoretical justification of how time

series classification can be framed as a MIL problem. Es-

pecially for the multi-class cases, they violated the MIL

assumption that a bag is positive as long as a positive in-

stance is present. Additionally, their proposed method also

falls into the category of ABMIL, which does not naturally

model the temporal correlation and ordering of time points

within a time series. In contrast, we re-frame the MIL for

more complex multi-class MTSC tasks. Specifically, we

show how to effectively tackle multi-class problems in the

context of the binary MIL paradigm (Section 3.2), clari-

fying and addressing the limitations of standard (AB)MIL

techniques used for time series analyses (Section 3.3).

3. Method
In this section, we introduce three key components for ap-

plying the proposed TimeMIL to MTSC. First, we formulate

the MTSC as a MIL problem in Sec. 3.1 and 3.2. Second, we

introduce a time-aware MIL pooling to capture the temporal

ordering in time series through a wavelet-augmented trans-

former (Sec. 3.3). Third, we introduce how to quantify the

importance of instances in Sec. 3.4. The entire framework

of the proposed TimeMIL is depicted in Fig. 2. A summary

of the proposed framework is presented in Algorithm 1.

3.1. Problem Formulation

Multivariate time series data is typically presented as

{X1, · · · ,Xn}, where Xi =
{
x1
i , · · · ,xT

i

}
is a time se-

ries contains T time points, with each time point xt
i ∈ R

d

being a d-dimensional vector. It is noteworthy that the time

points are shift-variant and ordered. The goal of MTSC

is to learn a direct mapping from feature space X to label

space Y using the training data {(X1, y1), · · · , (Xn, yn)},

where yi is the label for each time series.

3.2. MTSC as A MIL Problem

Binary MTSC. Without violating the MIL assumption, we

take binary MTSC as a starting point in the following deriva-
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tions, then extend it to the multi-class scheme. The goal

of a binary MIL is to assign a label to a bag of instances.

The MTSC can naturally be formulated as a MIL problem

by treating each time series as a bag, with each time slot

being an instance. Formally, the binary MTSC under the

MIL formulation is defined as

yi =

{
0, iff

∑T
t=1 y

t
i = 0, yti ∈ {0, 1}

1, otherwise,
(1)

where yti denotes the label for each time point indicating

if an event of interest has happened at time point xt
i. The

{y1i , · · · , yti} are also known as the instance-level labels in

the context of MIL, which are unknown in most scenarios.

Eq. 1 implies that a time series (bag) Xi is labeled as

positive if and only if any of its instance labels is positive,

negative otherwise.

The bag-level prediction ŷi of a MIL is given as a score

function S : X → R (Ilse et al., 2018):

ŷi = S(Xi), (2)

where the outcome of a score function is a probability.

Theorem 1. (Ilse et al., 2018; Shao et al., 2021) Suppose the
score function S is a (δε, ε)-continuous symmetric function
w.r.t Hausdorff distance dH(·, ·), i.e. ∀dH(Xi,Xj) < δε,
we have |S(Xi) − S(Xj)| < ε, for ∀ε > 0. For any
invertible map σ : X → R

d, S can be approximated by
certain continuous functions g and f :

|S(Xi)− g(σ{f(xt
i) : x

t
i ∈ Xi})| < ε. (3)

Theorem 1 defines the generic pipeline of a MIL, which con-

sists of three main parts: (i) The function f is a feature ex-

tractor that projects the input instances into L-dimensional

vector embeddings X̃i. (ii) σ is known as the MIL pooling

function that aggregates instance vector embeddings into

a single vector. It should be noted that the original MIL

pooling function σ should be permutation-invariant (Ilse

et al., 2018). (iii) g denotes the bag-level classifier (e.g., a

linear classifier) that maps the vector embedding after ap-

plying MIL pooling to a bag-level probability prediction

ŷi ∈ [0, 1].

Mutli-Class MTSC. A multi-class time series classification

with a total of C classes can be performed as several one-vs-
rest binary MIL without violating its assumption:

yi,c =

{
0, iff

∑T
t=1 y

t
i,c = 0, yti,c ∈ {0, 1}

1, otherwise,
(4)

where yti,c = 1 denotes a time point with significant contri-

bution to class c ∈ {1, · · · , C}. The final bag-level predic-

tion yi for a bag is computed as the class with the highest

probability:

ŷi = argmaxc ŷi,c, (5)

which is consistent with the one-vs-rest scheme.

Algorithm 1 Time-aware MIL (Forward Propagation)

Require: Input sequence Xi =
{
x1
i , · · · ,xT

i

}
. A neural

network contains: f : feature extractor, g: bag-level

classifier, WPE bases, and class token xcls.

Ensure: Predicted label ŷi.
1: Get embedding:

{
x1
i , · · · ,xT

i

}← f(
{
x1
i , · · · ,xT

i

}
)

#MIL pooling from here (Section 3.3)

2: Init class token for the bag: xcls
i ← xcls.

3: Add class token: Xcls
i = xcls

i ∪Xi.

4: for j=1:2 do
5: PE: Xi ← Xi + WPEj(Xi). # WPEj(Xi) is

from Eq. 10. Here, Xi is the part of Xcls
i .

6: Xcls
i ← Transformerj(X

cls
i ).

7: end for
#Bag-level classification from here

8: ŷi ← g(xcls
i ). #xcls

i is obtained from Xcls
i .

Remark 1. The MIL in Theorem 1 fails to model the tempo-

ral ordering among time points within a time series.

Remark 1 arises from the symmetric (permutation-invariant)

property of the MIL pooling function σ. The function σ
remains the same for every permutation of the instances

within a bag, thereby neglecting the temporal ordering be-

tween time points (instances) in time series modeling. This

hinders the direct translation of classic MIL into MTSC

tasks. To address this limitation, we propose a time-aware

MIL pooling in Sec. 3.3.

3.3. Time-Aware MIL Pooling for MTSC

From an entropy perspective, understanding permutation-

variant properties in time series can be quite insightful.

As discussed in Sec. 3.2, we assume that each time point

(instance) xj
i in a time series (bag) is a realization of a

random variable Θj conditioned by a time index tj . The

resulting bag can be represented as a random variable

X = {(Θ1|t1), · · · , (ΘT |tT )}, where tj �= tk, ∀j �= k.

Likewise, Y denotes a random variable for bag label. Here,

we use notation Θj for an instance to distinguish a random

variable (often as uppercase) and its realization (often as

lowercase). It is fair to construct a general assumption:

p(Θj |tj) �= p(Θj |tk), which indicates an instance varies

when it is presented in different locations.

Proposition 2. Shuffling the time points within a time series
potentially disrupts its predictability. This means, under the
general assumption, the entropy before and after shuffling
typically differs, i.e., the equality:

H(· · · , (Θj |tj), · · · ) = H(· · · , (Θj |tj̄), · · · ),
does not always hold. Here, t1̄, · · · , tT̄ are sampled from
the set {t1, · · · , tT } without replacement. The right term
denotes the time series after randomly shuffling.
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Figure 3. The block entropy in Shakespeare’s Sonnets with varying

shuffling rates, where the higher shuffling rates result in higher

block entropy.

Please refer to Appendix C for its proof. Proposition 2

implies that random permutation of time points within a reg-

ular time series potentially increases its uncertainty in terms

of entropy. Since it is challenging to directly compute the

entropy for high-dimensional continuous-valued variables

from the observation, we illustrate this fact by using a sup-

portive example in text sequence (Shakespeare’s Sonnets1).

The feasible domain of the text sequence is a discrete 1D

domain, and its uncertainty can be measured directly by the

Shannon block entropy (Shannon, 1951). Please refer to Ap-

pendix D for more detail about Shannon block entropy. As

shown in Fig. 3, the block entropy increases as the shuffling

rate increases. We will demonstrate the importance of not

just modeling the random permutation but also accounting

for the temporal correlation between instances.

Theorem 3. Modeling the temporal correlation between
instances lowers the complexity of developing a good classi-
fier, which is presented by class-conditioned entropy:

H(Xc|Y ) ≤ H(Xnc|Y ),

where H(Xc|Y ) = H((Θ1|t1), · · · , (ΘT |tT )|Y ) is de-
rived under modeling the correlation among instances
within a bag while H(Xnc|Y ) =

∑
i H((Θi|ti)|Y ) is de-

rived under the assumption that instances are independent
and identically distributed.

Proof. For convenience, we denote (Θj |tj) by Λj .

H(Λ1, · · · ,ΛT |Y ) = H(ΛT |ΛT−1, · · · ,Λ1,Y )

+H(ΛT−1|ΛT−2, · · · ,Λ1,Y )

+ · · ·
+H(Λ1|Y )

(6)

Since H(Λi|Λi−1, · · · ,Λ1,Y ) ≤ H(Λi|Y ), which indi-

1https://shakespeares-sonnets.com/
Archive/allsonn.htm.

cates knowing more information lowers the uncertainty:

H(Λ1, · · · ,ΛT |Y ) ≤
∑
i

H(Λi|Y ) (7)

Remark 2. The conditional entropy H(X|Y ) measures the

uncertainty of the bag feature X given that the bag-level

class label Y is known. In the context of classification, it

quantifies the spread of features within each class. A high

value of H(X|Y ) indicates that the features belonging to

the same class can vary significantly. This suggests that

the features are not clustered tightly but are spread out.

In contrast, a lower H(X|Y ) suggests that the features

from the same class are more homogeneous, exhibiting

less variability. This homogeneity can make it easier to

classify instances since the features within each class are

more consistent, potentially resulting in a simpler decision

boundary.

Theorem 3 immediately implies the benefit of modeling tem-

poral permutation and correlation between instances and pro-

vides a generic formulation of time-aware MIL pooling. The

realization of Theorem 3 can be achieved by a transformer

with the unique token mechanism. First, transformers help

tackle the conditional entropy H(Λt|Λt−1, · · · ,Λ1,Y ) in

Theorem 3 by employing a class token xcls
i . The yielded

tokenized bag of instances is Xcls
i = {xcls

i ,x1
i , · · · ,xT

i }.

Second, we propose a novel positional encoding in our

transformer-based pooling through the lens of wavelet the-

ory to further capture the multi-scale time-frequency order-

ing relationship among instances.

Temporal correlation as self-Attention. The self-attention

mechanism (Vaswani et al., 2017b) is proposed to capture

mutual information between time points. In the context of

MIL, we use multi-head self-attention (MHSA) to model

the sequential correlation between instances:

MHSA(Xcls
i ) = [head1, · · · , headH ]W 0 (8)

where:

headh = Attention(Xcls
i WQ

h ,X
cls
i WK

h ,Xcls
i W V

h )

Attention(Q,K,V ) = softmax(QKT/
√
dk)V , (9)

where W 0, WQ
h , WK

h , W V
h are trainable parameters. It

is noteworthy that after the transformer blocks, we only

pass the class token to the bag-level classifier g to make a

prediction. However, standard self-attention has quadratic

time and memory complexity O(T 2) w.r.t. the number of

instances in a bag (T ). Recent advances (Xiong et al., 2021;

Wang et al., 2020; Shen et al., 2021) in self-attention studies

have reduced the quadratic complexity to approximately lin-

ear. Specifically, we use the approximation of self-attention

proposed by (Xiong et al., 2021) in our implementation to

reduce the complexity of the proposed TimeMIL.
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Wavelet positional encoding. The classic transformers use

Sinusoidal positional encoding to capture the relative or-

dering in a time series, as self-attention does not take the

temporal ordering of time points into account. The dis-

advantage of Sinusoidal positional encoding is that it is

pre-defined and non-learnable. Importantly, the Sinusoidal
positional encoding is independently generated away from

the input context; hence, it cannot capture both the time and

frequency information of time series. To address this limita-

tion, we propose a learnable wavelet positional encoding in

a conditional positional encoding fashion (Chen et al., 2023;

Chu et al., 2023):

WPE(Xi) =

nW∑
j=1

Φ(Xi,Ψj), (10)

where nW denotes the number of wavelet ba-

sis, which is empirically set to 3 in this paper.

{Ψ1, · · · ,ΨnW
} are learnable wavelet kernels with

Ψj = {ψaj1,bj1(t), · · · , ψajL,bjL(t)} where ψ is mother
wavelet, which is chosen to be the Mexican hat in our

experiments.

The Gabor-Heisenberg limit (Gabor, 1946), which is the

uncertainty principle in the time-frequency version, states

that it is impossible to precisely determine both the time

and frequency of a signal, simultaneously. In the context of

the wavelet transform, this principle implies a trade-off: the

higher the resolution needed in time, the lower the resolution

becomes in frequency. This implies that the careful selec-

tion of time-frequency resolution is crucial for effectively

characterizing different signals. Hence, we learn the scaling

and translation parameters {(aj1, bj1), · · · , (ajL, bjL)} to

form the wavelet basis from mother wavelet. Φ(·) is the

channel-wise wavelet transform, which can be formulated

as convolving the input signal with the wavelet kernels:

Φ(X̃i,Ψj) =

⎡
⎢⎣

X̃i1 � ψaj1,bj1
...

X̃iL � ψajL,bjL

⎤
⎥⎦
�

∈ R
n×L. (11)

The resulting WPE is depicted in Fig. 4.

3.4. Interpretability

The proposed time-aware MIL is naturally interpretable due

to its ability to localize time points of interest within a time

series. One way to achieve this is to hack into the attention

map of the transformer layers in the proposed time-aware

MIL pooling. The attention map (refer to Eq. 9) measures

the importance of each instance xt
i in the series Xi in the

MIL pooling:

Ai = softmax

(
xcls
i WQ

h XiW
K
h√

dk

)
, (12)

Figure 4. The proposed learnable wavelet positional encoding:

First, wavelet transform is performed for the input signal (by ex-

cluding the class token) with each wavelet basis (Eq. 11). Second,

the signals are aggregated in the wavelet domain by a summation

(Eq. 10). In the case of nw = 3, we use 3 learnable wavelet bases

(Ψ1,Ψ2,Ψ3) to model changing frequency and time scales.

where softmax is performed over the time dimension. Ai ∈
R

T is the importance weights of all instances, with its t-th
element corresponding to the importance of the time point

xt
i. We only use the class token to calculate the importance

weight, as it determines the most relevant time points that

characterize a certain class label in MTSC tasks.

4. Experiments
4.1. Experimental setup and Baselines

We use the UEA benchmark datasets to validate the superi-

ority of the proposed TimeMIL. These datasets have various

lengths, dimensions, and training/test splits. Please refer to

Appendix A for the details of these datasets. We conduct

two groups of experiments as follows.

Group 1 experiments. Following (Liu et al., 2023; Li et al.,

2021b), this group of experiments is conducted on selected

26 equal-length datasets from UEA to compare with the re-

cent strong baseline methods of multivariate time series clas-

sification, including: TodyNet (Liu et al., 2023), OS-CNN
and MOS-CNN (Tang et al., 2022), ShapeNet (Li et al.,

2021b), TapNet (Zhang et al., 2020), WEASEL+MUSE
(Schäfer & Leser, 2017), WLSTM-FCN (Karim et al.,

2019). We also include several well-known traditional meth-

ods based on distance and the nearest neighbor classifier, in-

cluding ED-1NN, DTW-1NN-I, and DTW-1NN-D. Please

refer to (Liu et al., 2023) or Appendix F for the details of

these three baselines.

Group 2 experiments. Following (donghao & wang xue,

2024; Wu et al., 2023), this group of experiments is con-

ducted on selected 10 UEA datasets to compare with the

recent strong methods in the general time series analysis,

including: ModernTCN (donghao & wang xue, 2024),

PatchTST (Nie et al., 2023), Crossformer (Zhang & Yan,

2023), Flowformer (Wu et al., 2022), FEDformer (Zhou

et al., 2022), Rlinear and RMLP (Li et al., 2023b), MTS-
Mixer (Li et al., 2023c), LightTS (Zhang et al., 2022b),

Dlinear (Zeng et al., 2023), TimesNet (Wu et al., 2023),

MICN (Wang et al., 2023), SCINet (Liu et al., 2022),

6



TimeMIL: Advancing Multivariate Time Series Classification via a Time-aware Multiple Instance Learning

Table 1. Results of Group 1 Experiments. Comparison with the recent state-of-the-art MTSC methods on 26 datasets. The best results are

highlighted by bold and the second best are highlighted by underline. ’N/A’ in the table denotes the corresponding method was unable to

obtain results due to memory or computational limitations (Liu et al., 2023).

Datasets/Methods ED-1NN DTW-1NN-I DTW-1NN-D MLSTM-FCN
Neur. Net.’19

ShapeNet
AAAI’21

WEASEL+MUSE
arxiv’2017

TapNet
AAAI’20

OS-CNN
ICLR’22

MOS-CNN
ICLR’22

TodyNet
arxiv’23 Ours

ArticularyWordRecognition 0.970 0.980 0.987 0.973 0.987 0.990 0.987 0.988 0.991 0.987 0.990

AtrialFibrillation 0.267 0.267 0.200 0.267 0.400 0.333 0.333 0.233 0.183 0.467 0.733
BasicMotions 0.675 1.000 0.975 0.950 1.000 1.000 1.000 1.000 1.000 1.000 1.000
Cricket 0.944 0.986 1.000 0.917 0.986 1.000 0.958 0.993 0.990 1.000 1.000
DuckDuckGeese 0.275 0.550 0.600 0.675 0.725 0.575 0.575 0.540 0.615 0.580 0.780
EigenWorms 0.550 0.603 0.618 0.504 0.878 0.890 0.489 0.414 0.508 0.840 0.823

Epilepsy 0.667 0.978 0.964 0.761 0.987 1.000 0.971 0.980 0.996 0.971 1.000
EthanolConcentration 0.293 0.304 0.323 0.373 0.312 0.133 0.323 0.240 0.415 0.350 0.407

ERing 0.133 0.133 0.133 0.133 0.133 0.430 0.133 0.881 0.915 0.915 0.956
FaceDetection 0.519 0.513 0.529 0.545 0.602 0.545 0.556 0.575 0.597 0.627 0.698
FingerMovements 0.550 0.520 0.530 0.580 0.589 0.490 0.530 0.568 0.568 0.570 0.670
HandMovementDirection 0.279 0.306 0.231 0.365 0.338 0.365 0.378 0.443 0.361 0.649 0.487

Handwriting 0.371 0.509 0.607 0.286 0.451 0.605 0.357 0.668 0.677 0.436 0.482

Heartbeat 0.620 0.659 0.717 0.663 0.756 0.727 0.751 0.489 0.604 0.756 0.815
Libras 0.833 0.894 0.872 0.856 0.856 0.878 0.850 0.950 0.965 0.850 0.972
LSST 0.456 0.575 0.551 0.373 0.590 0.590 0.568 0.413 0.521 0.615 0.690
MotorImagery 0.510 0.390 0.500 0.510 0.610 0.500 0.590 0.535 0.515 0.640 0.720
NATOPS 0.860 0.850 0.883 0.889 0.883 0.870 0.939 0.968 0.951 0.972 0.994
PenDigits 0.973 0.939 0.977 0.978 0.977 0.948 0.980 0.985 0.983 0.987 0.600

PEMS-SF 0.705 0.734 0.711 0.699 0.751 N/A 0.751 0.760 0.764 0.780 0.931
PhonemeSpectra 0.104 0.151 0.151 0.110 0.298 0.190 0.175 0.299 0.295 0.309 0.311
RacketSports 0.868 0.842 0.803 0.803 0.882 0.934 0.868 0.877 0.929 0.803 0.908

SelfRegulationSCP1 0.771 0.765 0.775 0.874 0.782 0.710 0.652 0.835 0.829 0.898 0.898
SelfRegulationSCP2 0.483 0.533 0.539 0.472 0.578 0.460 0.550 0.532 0.510 0.550 0.639
StandWalkJump 0.200 0.333 0.200 0.067 0.533 0.333 0.400 0.383 0.383 0.467 0.733
UWaveGestureLibrary 0.881 0.869 0.903 0.891 0.906 0.916 0.894 0.927 0.926 0.850 0.900

Ours 1-to-1-Wins 25 23 22 25 22 16 24 22 19 20 -

Ours 1-to-1-Draws 0 1 1 0 1 4 1 1 1 3 -

Ours 1-to-1-Losses 1 2 3 1 3 5 1 3 6 3 -

Average accuracy (↑) 0.568 0.622 0.626 0.597 0.684 0.656 0.637 0.672 0.692 0.726 0.774
Total best accuracy (↑) 0 1 1 0 1 5 1 2 4 5 18
Average Rank (↓) 9.154 7.904 7.231 7.865 4.731 5.900 6.500 5.442 4.692 4.058 2.327

Table 2. Results of Group 2 Experiments. Comparison with the recent state-of-the-art general time analysis frameworks on 10 datasets.

Datasets/Methods LSTNet
SIGIR’18

LSSL
ICLR’22

Rocket
DMKD’18

SCINet
NeurIPS’22

MICN
ICLR’23

TimesNet
ICLR’23

Dlinear
AAAI’23

LightTS
arxiv’22

MTS-Mixer
arxiv’23

Rlinear
arxiv’23

RMLP
arxiv’23

FEDformer
ICML’22

Flowformer
ICML’22

Crossformer
ICLR’23

PatchTST
ICLR’23

ModernTCN
ICLR’24 Ours

EthanolConcentration 0.399 0.311 0.452 0.344 0.353 0.357 0.362 0.297 0.338 0.289 0.313 0.312 0.338 0.380 0.328 0.363 0.407

FaceDetection 0.657 0.667 0.647 0.689 0.652 0.686 0.680 0.675 0.702 0.656 0.673 0.660 0.676 0.687 0.683 0.708 0.698

Handwriting 0.258 0.246 0.588 0.236 0.255 0.321 0.270 0.261 0.260 0.281 0.300 0.280 0.338 0.288 0.296 0.306 0.487

Heartbeat 0.771 0.727 0.756 0.775 0.747 0.780 0.751 0.751 0.771 0.726 0.727 0.737 0.776 0.776 0.749 0.772 0.815
JapaneseVowels 0.981 0.984 0.962 0.960 0.946 0.984 0.962 0.962 0.943 0.959 0.959 0.984 0.989 0.991 0.975 0.988 0.995
PEMS-SF 0.867 0.861 0.751 0.838 0.855 0.896 0.751 0.884 0.809 0.827 0.839 0.809 0.860 0.859 0.893 0.891 0.931
SelfRegulationSCP1 0.840 0.908 0.908 0.925 0.860 0.918 0.873 0.898 0.917 0.911 0.921 0.887 0.925 0.921 0.907 0.934 0.898

SelfRegulationSCP2 0.528 0.522 0.533 0.572 0.536 0.572 0.505 0.511 0.550 0.561 0.510 0.544 0.561 0.583 0.578 0.603 0.639
SpokenArabicDigits 1.000 1.000 0.712 0.981 0.971 0.990 0.814 1.000 0.974 0.965 0.976 1.000 0.988 0.979 0.983 0.987 1.000
UWaveGestureLibrary 0.878 0.859 0.944 0.851 0.828 0.853 0.821 0.803 0.823 0.825 0.838 0.853 0.866 0.853 0.858 0.867 0.900

Ours 1-to-1-Wins 9 8 6 9 10 9 10 8 8 9 9 9 9 9 9 8 -

Ours 1-to-1-Draws 1 1 0 0 0 0 0 2 0 0 0 1 0 0 0 0 -

Ours 1-to-1-Losses 0 1 4 1 0 1 0 0 2 1 1 0 1 1 1 2 -

Average accuracy (↑) 0.718 0.709 0.725 0.717 0.700 0.736 0.679 0.704 0.709 0.700 0.706 0.707 0.732 0.732 0.725 0.742 0.777
Total best accuracy (↑) 1 1 3 0 0 0 0 1 0 0 0 1 0 0 0 2 5
Average Rank (↓) 8.85 10.4 9.5 8.9 13.2 5.35 12.7 11.2 10.85 13 11.55 10.75 5.9 5.9 8.1 4 2.85

Rocket (Dempster et al., 2020), LSSL (Gu et al., 2022), and

LSTNET (Lai et al., 2018a).

Implementation details. The previous benchmark results

of all baseline methods are taken from their papers, and the

same training setting is used. In the implementation of our

proposed model, we adopt the model in (Ismail Fawaz et al.,

2020) as our backbone, where the output dimension L is

fixed to 128. Refer to Appendix F for details.

Evaluation metrics. Following (Liu et al., 2023; Li et al.,

2021b), we evaluate the performance of our proposed

method and other methods by computing the accuracy, av-

erage accuracy, average rank, and the number of pair-wise

Wins/Draws/Losses.

4.2. Main Experimental Results

The proposed method demonstrates superiority over other

recently proposed competing methods in both Group 1 and

Group 2 experiments (refer to Table 1 and 2). Please refer

to Appendix G for additional results.

Group 1 results. We obtain a 77.4% average accuracy

on all 26 MTSC datasets, surpassing other methods on 18

datasets and achieving an average rank of 2.327 out of a

total of 11 methods. Specifically, the proposed method out-

performs the second-best methods on each dataset by an

average of 4.8% in accuracy and reduces the performance

rank by 1.73. This performance gain is even more substan-

tial in those challenging datasets. Specifically, compared to
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Figure 5. Exemplary attention maps learned in TimeMIL using different datasets (rows) including synthetic dataset, StandWalkJump

dataset, and AtrialFibrillation dataset, featuring distinct patterns of interest (columns). TimeMIL accurately localized patterns of interest.

Table 3. Comparison of different MIL pooling (Left) and posi-

tional encoding (Right) with Group 1 experiments.
MIL Pooling Accuracy

Mean 0.715

Max 0.719

Attention 0.739

Conjunctive 0.746

Time-aware (Ours) 0.774

Positional Encoding Accuracy
ABMIL TimeMIL

None 0.739 0.761

Sinusoidal 0.741 0.763

WPE (Ours) 0.745 0.774

the second-best performing methods, our method improves

the average accuracy by 26%, 20%, 15%, 8%, 8%, 7%, and

7% on AtrialFibrillation, StandWalkJump, PEMS-SF, Fin-

gerMovements, MotorImagery, FaceDetection, and LSST

datasets, respectively.

Group 2 results. The proposed method also achieved su-

perior performance on the Group 2 datasets compared to

other methods. Specifically, our method achieved a 77.7%

average accuracy, surpassing the other methods in 5 out of

10 datasets and achieving an average rank of 2.85 out of a

total of 17 methods. Remarkably, the proposed method out-

performs the recent state-of-the-art ModernTCN (donghao

& wang xue, 2024) by 3.5% in average accuracy and 1.15

in average rank.

4.3. Ablation on Model Design Variants

Effectiveness of TimeMIL pooling. We compare the per-

formance of the proposed TimeMIL with other commonly

used MIL pooling methods, including MeanMIL, MaxMIL,

ABMIL (Ilse et al., 2018) and the most recent Conjunc-

tiveMIL (Early et al., 2024). We observe that learnable

pooling methods (i.e., TimeMIL, ABMIL, and Conjunc-

tiveMIL) show superior performance over non-parametric

MIL pooling methods (i.e., MeanMIL and MaxMIL) (Ta-

ble 3 Left). Notably, the proposed TimeMIL outperforms

ABMIL and ConjunctiveMIL by 3% and 2.8% in terms of

average accuracy, respectively. This supports our initial

claim that modeling dependencies between time points is

beneficial for MTSC.

Effectiveness of wavelet positional encoding. We com-

pare the proposed WPE with commonly used Sinusoidal

PE (Vaswani et al., 2017a). We observe that adding PE

generally improves the performance of both ABMIL and

TimeMIL (see Table 3 Right), which aligns with our hy-

pothesis that incorporating PE into MIL can better model

the ordering within time points and hence lower the clas-

sification error. However, we do not observe a significant

performance gain (∼ 0.27%) by adding a sinusoidal PE

for both ABMIL and TimeMIL. On the contrary, the addi-

tion of the proposed WPE improves ABMIL and TimeMIL

by 0.6% and 1%, respectively. This may be attributed to

the fact that it is challenging for predefined sinusoidal PE

to capture the changing of frequencies over time within a

time series. While the proposed WPE better models these

time-frequency changes.

4.4. The Effectiveness of Weakly Supervised Learning

To validate the effectiveness of the proposed weakly super-

vised learning scheme, we provide an in-depth comparison

between the proposed TimeMIL and traditional fully super-

vised methods. The results are shown in Fig. 5 and 6.

Decision boundary. We visualize the decision boundary

learned in weakly supervised TimeMIL and those learned

in the fully supervised method using the synthetic dataset.
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Figure 6. Decision boundary learned in fully supervised method

(Left) versus TimeMIL (Right) using the synthetic dataset.

For the implementation of the supervised method, we main-

tain the same feature extractor but replace the TimeMIL

pooling with a supervised classifier (Ismail Fawaz et al.,

2020). For visualization of the decision boundary, we pro-

jected the time series data onto 2D space by performing

PCA on the latent space (i.e., the feature embeddings after

applying the feature extractor). More details of the synthetic

dataset and visualizing the decision boundary can be found

in Appendix H.

We observe that although the fully supervised method could

differentiate positive and negative time series, there is not

an apparent margin in the decision boundary between the

positive and negative time series (see Fig. 6 (Left)). This is

because the negative instances in positive bags (time series)

resemble those negative instances in negative bags. Mean-

while, the positive instances in positive bags are typically

less than negative instances. In contrast, the decision bound-

ary of the weakly supervised TimeMIL shows a distinct

decision boundary with large margins between the positive

and negative instances (Fig. 6 (Right)). This unique feature

of the proposed TimeMIL provides an instance differenti-

ation between positive and negative time series, offering a

precise localization of positive instances.

Inherent interpretability. The instance-level decision-

making mechanism makes the proposed TimeMIL inher-

ently interpretable. Leveraging this, we can obtain the im-

portance score. TimeMIL accurately localized patterns of

interest (i.e., positive instances) in the UEA dataset (Fig. 5;

2nd and 3rd row) and synthetic dataset (Fig. 5; 1st row).

This supports our initial hypothesis that time points of inter-

est in positive time series are typically sparse and localized,

making the weakly supervised TimeMIL a natural choice

for MTSC.

5. Conclusion
In this work, we introduce TimeMIL, a weakly supervised

MIL framework designed for multivariate time series clas-

sification. The proposed method, from the perspective of

weakly supervised learning, offers a better capability to

characterize the decision boundary for MTSC than com-

monly used fully supervised methods. As a result, TimeMIL

demonstrates superiority over 26 methods in 28 datasets and

illustrates impressive interpretability by accurately localiz-

ing patterns of interest.

Impact Statement
This paper presents a novel TimeMIL framework to model

the temporal correlation and ordering, leveraging a tok-

enized transformer with a specialized learnable wavelet

positional token. The potential societal consequences of

TimeMIL can be summarized three-fold:

(i) Theoretical View. Commencing with a viewpoint in

weakly supervised learning, we are the first to formally in-

troduce MIL into time series-related tasks. We rigorously

examine feasibility from an information-theoretic perspec-

tive. To address a variety of limitations in applying MIL in

MTSC, we propose a time-aware MIL pooling to preserve

the intrinsic temporal correlation and ordering properties

within time series. In summary, we draw theoretical connec-

tions between the MIL and MTSC.

(ii) Applicability. Our framework potentially expands the

applications of MTSC to financial forecasting, predictive

maintenance, anomaly detection, healthcare monitoring, fi-

nancial forecasting, environmental monitoring, and speech

and signal processing.

(iii) Interpretability. Compared with the previously ex-

isting methods, TimeMIL could provide the interpretable

interest of the pattern of the network. By visualizing the

points of time series that strongly influence predictions,

TimeMIL can assist in ensuring model robustness. This can

help identify vulnerabilities and reduce the risk of adversar-

ial attacks. Meanwhile, interpretability contributes to the

explainability of MTSC, making it easier for researchers,

practitioners, and stakeholders to comprehend/validate how

and why a model makes specific predictions.

Limitation. We have not yet extended the MIL to con-

sider the cross-channel information. We envision a major

difference in expanding the current framework to the multi-

channel version of TimeMIL, which could involve designing

cross-channel temporal attention and positional encoding.

This will be a topic of exploration in future work.
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A. UEA Datasets Detail
The detail of all 30 datasets is provided in Table 4. It should be noteworthy that the datasets JapaneseVowels and

SpokenArabicDigits used in the Group 2 Experiment originally have varied lengths of sequences. We pre-process it

following (Wu et al., 2023), where we pad them to 29 and 93, respectively.

Table 4. Dataset Summary

Dataset Train Size Test Size Dimensions Length Classes

ArticularyWordRecognition 275 300 9 144 25

AtrialFibrillation 15 15 2 640 3

BasicMotions 40 40 6 100 4

CharacterTrajectories 1422 1436 3 182 20

Cricket 108 72 6 1197 12

DuckDuckGeese 60 40 1345 270 5

EigenWorms 128 131 6 17984 5

Epilepsy 137 138 3 206 4

EthanolConcentration 261 263 3 1751 4

ERing 30 30 4 65 6

FaceDetection 5890 3524 144 62 2

FingerMovements 316 100 28 50 2

HandMovementDirection 320 147 10 400 4

Handwriting 150 850 3 152 26

Heartbeat 204 205 61 405 2

JapaneseVowels 270 370 12 29 (max) 9

Libras 180 180 2 45 15

LSST 2459 2466 6 36 14

InsectWingbeat 30000 20000 200 78 10

MotorImagery 278 100 64 3000 2

NATOPS 180 180 24 51 6

PenDigits 7494 3498 2 8 10

PEMS-SF 267 173 963 144 7

Phoneme 3315 3353 11 217 39

RacketSports 151 152 6 30 4

SelfRegulationSCP1 268 293 6 896 2

SelfRegulationSCP2 200 180 7 1152 2

SpokenArabicDigits 6599 2199 13 93 (max) 10

StandWalkJump 12 15 4 2500 3

UWaveGestureLibrary 120 320 3 315 8

B. More detail of Theorem 1
We provide an intuition behind this from the perspective of Hausdorff distance, which is defined to measure the difference

between two sets from the same feasible domain. Let (X , d) be a metric space, for each pair of non-empty sets (X,X ′) ⊂ X ,

their Hausdorff distance dH is computed as

dH(Xi,Xj) := max{ sup
xt

i∈Xi

inf
xt′

j ∈Xj

d(xt
i,x

t′
j ),

sup
xt

j∈Xj

inf
xt′

i ∈Xi

d(xt
j ,x

t′
i )}, (13)

where sup and inf denote the supremum operator and the infimum operator, respectively. Eq. 13 implies that Hausdorff

distance measures the furthest distance of traveling from a certain point in a set to its nearest point in the other set under the

worst-case scenario. Hence, Hausdorff distance can only measure the distance of time points across different sets and fails

to model the time ordering information.

C. Proof of Proposition 2
Proof. The existence of equality can be easily proved by assuming the time series is always a constant value, which,

regardless of permutation, the entropy is 0. The existence of inequality can be proved by contradiction. Suppose a sequence

with a length of 2, presenting two tests {(Θ1|t1), (Θ2|t2)} for a product. Suppose the probability of passing each test obeys
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(Θi) ∼ Bernoulli(p = e−3+i). Suppose the ordering information says the test with index t2 occurs if the product passes

the test with index t1. we have p(0, 0) = 1− e−2, p(0, 1) = 0, p(1, 0) = e−2(1− e−1), p(1, 1) = e−1e−2.

H({(Θ1|t1), (Θ2|t2)}) (14)

=− (1− e−2) log(1− e−2)− 0 log 0− e−2(1− e−1) log(e−2(1− e−1))− e−1e−2 log(e−1e−2)

=0.70 bit,

After permuting sequence, p(0, 0) = 1− e−1, p(0, 1) = 0, p(1, 0) = e−1(1− e−2), p(1, 1) = e−1e−2. The entropy of the

permuted sequence is presented as,

H({(Θ1|t2), (Θ2|t1)}) (15)

=− (1− e−1) log(1− e−1)− 0 log 0− e−1(1− e−2) log(e−1(1− e−2))− e−1e−2 log(e−1e−2)

=1.16 bit,

which are apparently different, and the existence of inequality is proved.

D. Block Entropy
Block entropy, also known as N-gram entropy, is used to measure the uncertainty of a sequence by (Shannon, 1951).

Suppose a list of overlapping blocks is generated via a sliding window with a size of n, where the j-th block is B
(n)
j =

(Xj , . . . , Xj+n−1). Suppose the set of all appearance of blocks denotes
{
b
(n)
1 , · · · , b(n),···i

}
. For example, in a sequence

AAABBCD, the set of all possible blocks is {AA,AB,BB,BC,CD}. Then, the block entropy is defined by

Hn = −
Ln∑
i=1

p
(
b
(n)
i

)
log
(
p
(
b
(n)
i

))
, (16)

where p
(
b
(n)
i

)
denotes the probability of appearance of the block sequence b

(n)
i . We set n = 2 in our experiment.

E. Background of Wavelet Transform
Mathematically, a wavelet basis ψa,b is a generated by scaling a and translations b of a single function named mother wavelet
ψ ∈ L2(R), where L2(R) denotes the Hilbert space of square integrable functions,

ψa,b(t) =
1√|a|ψ

(
x− b

a

)
. (17)

It is noteworthy that the basis ψa,b is a Hilbert basis, which implies every basis is orthogonal with each other,

〈ψa,b, ψa′,b′〉 ≡
∫ ∞

−∞
ψa,b(t)ψa′,b′(t)dt = 0. (18)

This also ensures that different wavelet basis are exploring diverse context of the signal. The Continuous Wavelet Transform
(CWT) of a 1D signal f(t) is defined by

f(a, b) =

∫ ∞

−∞
f(t)ψa,b(t)dt = f(t)� ψa,b(t), (19)

where � denotes the convolutional operation. We then present the uncertainty principles.
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Theorem 4. (Gabor, 1946) Uncertainty principles in the time-frequency version (also known as the Gabor-Heisenberg limit
):

σt · σf ≥ 1

4π
, (20)

where σt and σf denote the measured time and frequency standard deviations, respectively.

We show more diverse learned Wavelet kernel in Fig. 7.

Figure 7. The learned wavelet kernel from MTSC tasks.

F. Implementation Detail
F.1. Baselines

ED-1NN, DTW-1NN-I, and DTW-1NN-D are most popular baselines for MTSC: (i) ED-1NN: It applies the nearest

neighbor classifier based on Euclidean distance. (ii) DTW-1NN-I: It applies the nearest neighbor classifier based on dynamic

time warping (DTW) that processes each dimension independently. and (iii) DTW-1NN-D: It applies the nearest neighbor

classifier based on DTW that processes all dimensions simultaneously.

F.2. More detail about the Architecture

We use AdamW optimizer (Loshchilov & Hutter, 2017) with a fixed learning rate 1e-3 and a 1e-4 weight decay. We also use

Lookahead scheduler (Zhang et al., 2019). Batch sizes are tuned based on the datasets since there are large differences in the

dimension and length of each dataset.

As discussed in Section 3.3, we use Nyström Self-attention (Xiong et al., 2021) for accelerating the computation. Specifically,

we set the embedding dimension dmodel = 512, the number of MHSA heads to 8. For the Nystrom-based matrix

approximation, we set the number of landmark points to 256 and the number of moore-penrose iterations for approximating

pseudo-inverse to 6, which is recommended by its original paper. The final classifier consists of two fully connected layers:

R
L → R

L → R
C , where C denotes the number of classes. We only feed the class token to the classifier. To facilitate the

assumption of TimeMIL that treats MTSC as several one-vs-rest (OvR) binary classifications in the context of MIL, we

use the binary cross entropy with one-hot encoding for the sequence label. We also adopt window-based random masking

augmentation and a warm-up technique, as discussed below. The importance score can be conveniently approximated by

using Average-Pooling Based Attention (APBA) proposed by (Zhu et al., 2024).

F.3. Window-based Random Masking Augmentation

This augmentation is only applied to the raw data in the training phase and aims to lead the model to learn the occlusion-

invariant features. Recall the length of the input sequence is T . We first generate 10 non-overlapping windows with a size

of T/10 that can fully cover the entire sequence. Suppose their indices are [10] = {1, 2, · · · , 10}. For each iteration, we

sample a set of windows S with a cardinality |S| = 10p, p ∈ (0, 1) from [10] without replacement. Then, we set the time

points covered by the windows in S to a random noise N (0, 1). The example is shown in Fig. 8. We set p ∈ {0, 0.5} in our

experiment.

F.4. warm-up Training Strategy

Considering the Transformer-like architecture learns slowly at the beginning, to facilitate the easy gradient flow to the

backbone, we apply the following warm-up strategy. Recall the embedding of features is denoted as x̂i, and the class token

xcls
i after applying two transformer blocks. At the first few epochs (empirically set 10), we use αEt(x̂

t
i) + (1− α)xcls

i to

feed the final classifier, where α = 0.99. Afterwards, we still use xcls
i for the final classification.

15



TimeMIL: Advancing Multivariate Time Series Classification via a Time-aware Multiple Instance Learning

Figure 8. The illustration of the window-based random masking. Top: The raw data of the input time sequence. Bottom: An example of

the masking, where windows 1 and 10 is selected. The masked time points are marked in black.

G. Additional Experiments
The additional results on all 30 UEA datasets are presented in Table 5. It is observed that classification-specific methods

(TapNet, MOS-CNN, TodyNet, and Ours) often perform better. We also include Mamba (Gu & Dao, 2023), the recent

state-of-the-art Selective State Spaces model. We implement the vanilla version of mamba with different numbers of blocks

{1,2,4,8,10,14,22}, and the results are presented in Table 6.

Table 5. Comparison of different methods on 30 UEA datasets. (-) indicates the method is not able to obtain results due to memory

limitations (we use an A100 40Gb GPU) on the EigenWorms dataset (dimension of 6 and length of 17894) and MotorImagery dataset

(dimension of 64 and length of 3000).

Method Accuracy F1 Precision Recall AUC-ROC

Crossformer(-) 0.69 0.619 0.633 0.667 0.834

PatchTST 0.702 0.664 0.694 0.686 0.854

TimesNet 0.744 0.7 0.727 0.728 0.864

Dlinear 0.695 0.671 0.678 0.685 0.859

FEDformer 0.701 0.664 0.697 0.682 0.867

TapNet 0.759 0.745 0.764 0.751 0.832

MOS-CNN 0.78 0.764 0.788 0.765 0.863

TodyNet 0.762 0.744 0.759 0.751 0.869

Mamba-8 0.733 0.715 0.743 0.723 0.835

Ours 0.791 0.782 0.790 0.782 0.883

Table 6. Classification performance by Mamba with different number of blocks.

Method Accuracy F1 Precision Recall AUC-ROC

Mamba-1 0.725 0.704 0.729 0.713 0.827

Mamba-2 0.726 0.705 0.729 0.715 0.83

Mamba-4 0.729 0.711 0.73 0.718 0.832

Mamba-8 0.733 0.715 0.743 0.723 0.835

Mamba-10 0.727 0.705 0.727 0.714 0.833

Mamba-14 0.727 0.706 0.733 0.715 0.829

Mamba-22 0.726 0.708 0.727 0.716 0.829

Ours 0.791 0.782 0.790 0.782 0.883

H. Synthetic Dataset
H.1. Dataset Generation

We simulate a binary dataset similar to noisy pulse signals. Consider the length of a sequence is 120. Again, xt
i and yti

denote the tth time point of the sequence Xi and its instance-level label. A negative sequence is generated as,

xt
i ∼ N (0, 0.5) and yti = 0. (21)
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A positive sequence, which consists of a noisy pulse, is generated as,

xt
i ∼

{ N (5, 0.5) and yti = 1, for t ∈ [a, a+ 20]
N (0, 0.5) and yti = 0, otherwise

, (22)

where, a ∼ U(55, 65), is a random starting point for the pulse signal.

H.2. Decision Boundary

We randomly choose a positive sequence (i.e., a bag) and a negative one from the synthetic dataset. After applying feature

extractor, both the positive sequence and negative sequence are projected onto a fixed-length (i.e., L = 128) feature vectors

(a positive bag Xp ∈ R
T×128 and a negative one Xn ∈ R

T×128). In this case, we have a total of 240 time points/instances

(T = 240). Subsequently, we apply PCA for these 240 instances, which reduces their dimensions from 128 to 2 for

visualization, meaning we only use the first two principle components.
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