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Abstract—This research-to-practice full paper describes a 
study on the performance of feature-matching algorithms in 
constrained computational environments, focusing on 
autonomous driving using low-end hardware like the 
Raspberry Pi 4B. We evaluate algorithms such as ORB, 
AKAZE, BRISK, and SIFT, examining their efficiency, 
accuracy, and robustness under various conditions. While 
ORB offers speed, AKAZE and BRISK demonstrate more 
consistent performance. To mitigate the gap between 
theoretical analysis and practical application, we integrate 
these findings into a robotics course through a project-based 
learning (PBL) approach. The comparison analysis provides 
the instructor with the necessary insights to guide students, as 
the research setting closely mirrors the course project. This 
hands-on project not only deepens students' understanding of 
computer vision but also hones critical problem-solving skills 
essential for modern engineering challenges. Future work will 
extend this study to other single-board computers and explore 
advanced computational techniques like parallel computing 
and GPU acceleration. 

Keywords—Autonomous driving, feature matching, project-
based learning, engineering education, computing education 

I. INTRODUCTION 
Feature matching stands as a fundamental and essential 

element in the realm of computer vision. It equips computers 
with the capability to interpret and analyze visual 
information extracted from images or videos. This process is 
not merely about recognizing images; it is about 
understanding and pinpointing corresponding points across 
multiple images that depict the same portion of an object or 
scene. Such a capability is crucial in many applications, 
ranging from simple image recognition to complex real-
world scenario analyses [1].  

Project-based learning (PBL) is an educational approach 
in which students actively learn from real-world problems 
and challenges [9]. This method aligns with constructivist 
theories of education, which assert that learners construct 
knowledge via experiences and reflection. PBL encourages 
students to engage in hands-on projects that require them to 
apply what they have learned in practical, meaningful ways. 

At Montclair State University, a robotics course designed 
for undergraduate and graduate students integrates PBL 
principles with advanced topics in robotics, including feature 
matching. The course provides students with a comprehensive 
learning experience in robotics, focusing on sensors, actuators, 
vision systems, and robotics programming. Through this 
course, students work on practical projects that deepen their 
understanding of computer vision and develop essential 
skills such as problem-solving, collaboration, and project 
management. One of the critical components of the course is 
a comprehensive project in which students work in teams to 

develop an autonomous mobile robot (AMR) using race cars 
(RC), Raspberry Pi 4, USB cameras, and Arduino 
MEGA2560 boards. This project is a capstone experience, 
challenging students to implement feature-matching 
algorithms on resource-constrained hardware to develop an 
autonomous vehicle capable of object recognition and 
human-following tasks. This hands-on experience simulates 
real-world autonomous driving scenarios, allowing students 
to apply theoretical knowledge to practical problems. 

In feature matching, a "feature" refers to an image's 
specific, distinctive part that remains easily recognizable 
across various conditions, such as changes in viewpoint, 
scale, or lighting. These features play a critical role in 
numerous computer vision tasks, providing a means to 
effectively understand and compare different images. 

A. Types of Features 
Corners: Corners are points in an image where two 

edges meet, characterized by a change in intensity in two 
directions. These highly distinctive points maintain 
consistency across image transformations like rotation or 
scaling. The stability and distinctiveness of corners make 
them reliable anchor points in feature-matching [2]. 

Edges: Edges are defined by a sharp change in brightness 
and typically indicate the boundaries of objects within an 
image. They represent significant structural properties of 
objects, making them integral to feature matching. The 
primary goal of edge detection algorithms is to identify these 
vital points accurately [3]. 

Blobs: Blobs are regions in an image with unique 
properties, such as color or texture, distinct from surrounding 
areas. They are often used to represent and identify objects 
within an image. Blob detection methods are focused on 
effectively identifying these unique regions [4]. 

The selection of features is based on their distinctiveness 
and invariance to common transformations, such as scale, 
rotation, and perspective changes. This invariance is crucial 
in feature matching as it ensures that a feature remains 
recognizable under various conditions. The feature-matching 
process involves detecting these features in different images 
and establishing correspondences between them, where the 
effectiveness and accuracy are significantly influenced by 
the choice of features and the detection and description methods. 

B. Feature Detection and Feature Description 
Feature matching in computer vision has two core stages, 

including feature detection and feature description [5]. 
Feature detection concerns identifying distinctive points or 
'features' within an image. These features are specific parts 
of the image that stand out due to their unique attributes, such 
as texture, color, edges, or corners. The primary goal of 
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feature detection is to locate these points consistently and 
reliably across different images. Various algorithms are 
designed to detect these salient features efficiently. The 
choice of features is critical and largely depends on their 
robustness to lighting, orientation, and scale changes. 
Following the detection stage, each feature undergoes a 
description process. This involves creating a 'descriptor', 
essentially a unique fingerprint for each feature. This 
descriptor encapsulates the key attributes of the feature in a 
compact format, typically represented as a vector of 
numbers. The process of feature description is crucial as it 
ensures that the same feature can be recognized across 
different images, despite variations in angle, scale, or 
illumination. The essence of feature matching lies in utilizing 
these descriptors to establish correspondence between 
features in different images. By comparing these descriptors, 
the algorithm identifies which features in one image 
correspond to features in another, thereby recognizing 
similar objects or scenes across various images. 

C. Common Applications of Feature Matching 
Feature matching is a pivotal technique in computer 

vision with a wide array of applications across diverse fields. 
Object recognition plays a crucial role in identifying specific 
objects within images or videos, finding uses in security for 
facial recognition systems, retail for product identification, 
and manufacturing for quality control. In the domain of 3D 
reconstruction, feature matching enables the creation of 
three-dimensional models of scenes or objects from multiple 
images taken at different angles, a technique extensively 
used in fields like archaeology, architecture, and computer-
aided design (CAD) [6]. In the context of robotics and 
autonomous driving, it facilitates navigation and interaction 
with the environment by recognizing objects, obstacles, and 
pathways. In medical imaging, feature matching is 
instrumental in comparing and analyzing medical images 
over time, thus aiding in detecting and monitoring diseases 
[7]. Additionally, feature matching for geospatial analysis 
and remote sensing is crucial in aligning and comparing 
satellite imagery and aerial photography for environmental 
monitoring, urban planning, and disaster response [8]. These 
applications highlight the versatility of feature matching and 
underscore its critical role in advancing a broad spectrum of 
industries and research domains. 

D. Project-Based Learning Theories and Practices 
This work also implements PBL by integrating feature-

matching techniques and autonomous driving simulations 
into the curriculum. Students develop a profound understanding 
of computer vision principles and their applications in 
autonomous systems via real-world projects. The emphasis 
on collaboration and iterative problem-solving in PBL helps 
students develop essential skills for their future careers. The 
key aspects of PBL integrated into this study include (1) 
Hands-On Learning: students work on practical projects that 
encourage them to implement theoretical knowledge to real-
world problems, enhancing their understanding and retention 
of complex concepts [9], [10]; (2) Collaborative Learning: 
PBL promotes teamwork and collaboration, allowing students 
to develop learning skills such as communication, problem-
solving, and project management [11]; (3) Reflective Practice: 
Students are encouraged to reflect on their experiences and 
identify areas for improvement, ensuring a deeper 
understanding of the subject matter [12]; and (4) 
Constructivist Theories of Education: PBL is grounded in 
constructivist theories which assert that learners construct 
knowledge via experiences and reflection. This educational 
approach aligns well with the principles of constructivism [13]. 

This work presents a comparative study of well-
established feature-matching techniques, specifically 
emphasizing their performance in environments constrained 
by limited computational resources for autonomous driving. 
We delve into an extensive background on the evolution of 
these methodologies, highlighting their increasing 
sophistication and efficiency. At its inception, feature 
matching in computer vision was relatively rudimentary. The 
focus was primarily on identifying and aligning elementary 
features such as edges, corners, and blobs in different 
images. This simplicity, however, laid the groundwork for 
more complex and refined methodologies. As the discipline 
advanced, it introduced more sophisticated techniques that 
have since become cornerstones in the field. Notable among 
these advancements are the Oriented FAST and Rotated 
BRIEF (ORB) [14], Scale-Invariant Feature Transform 
(SIFT) [1], Accelerated-KAZE (AKAZE) [15], and Binary 
Robust Invariant Scalable Keypoints (BRISK) [16]. They 
offer increased accuracy and efficiency, making them 
invaluable in various applications that range from simple 
tasks to complex, real-world problem-solving scenarios. 
Furthermore, this study incorporates project-based learning 
(PBL) principles to enhance educational outcomes. 
Integrating these advanced feature-matching techniques into 
a hands-on curriculum provides students with practical, real-
world experience in applying theoretical knowledge. This 
approach not only deepens their understanding of computer 
vision but also equips them with essential problem-solving 
and collaborative skills needed in autonomous driving. 

While several comparative studies of feature-matching 
algorithms exist[5], [17], [18], they often lack a focus on 
performance under limited computing power conditions, 
such as those found on the Raspberry Pi 4B. Our comparison 
analysis addresses this gap, providing valuable insights into 
how these algorithms perform in resource-constrained 
environments. This analysis is particularly relevant for our 
course project, where students work in similar settings. The 
results of this comparison allow the instructor to offer 
informed advice on each method's strengths and limitations, 
helping students navigate the complexities of real-time 
image processing and make informed decisions when 
selecting and tuning algorithms for their projects. 

II. PROBLEM STATEMENT 
The increasing relevance of feature matching within 

constrained computing environments, particularly with low-
cost single-board computers (SBCs), is becoming a crucial 
area of focus in computer vision research, especially in the 
context of the burgeoning Internet of Things (IoT) and Edge 
Devices. This paper addresses the critical need to test the 
efficiency and performance of existing feature-matching 
methods in such environments. 

A. Efficiency 
Efficiency is paramount in low-end hardware devices, 

which operate with limited power sources like batteries or 
solar panels. Feature-matching methods that demand excessive 
computational resources can increase energy consumption, 
which is a significant concern. The cooling requirements of 
these devices, typically equipped with passive cooling 
systems or minimal cooling fans, become a critical factor. 
Extended computing processes can lead to thermal throttling, 
and the power consumption of any cooling mechanism 
further contributes to overall energy usage. Therefore, it's 
essential to evaluate feature-matching algorithms for high 
efficiency with low energy consumption and minimal heat 



generation, ensuring their effective deployment in energy-
constrained and thermally sensitive environments. 

B. Rotation, Perspective, and Scale Changes 
Another aspect of paramount importance is testing 

feature-matching methods on low-end hardware against 
challenges like rotation, perspective, and scale changes. 
These changes are fundamental challenges in object 
recognition, as real-world scenarios often present objects in 
various orientations and distances, altering their appearance 
in images. Robustness to these variations is essential to 
ensure consistent and accurate object recognition across 
different viewpoints. Evaluating the performance of feature-
matching methods under these conditions, particularly in 
resource-limited hardware environments, is a matter of 
scientific rigor and crucial for the practical advancement of 
computer vision technology. 

C. Overview of Existing Feature Matching Methods 
This study aims to balance multiple parameters, 

including efficiency and performance, particularly in 
handling image transformations such as skew, rotation, and 
scale changes. We have selected a suite of algorithms that are 
well-regarded in the field of computer vision and readily 
available in OpenCV, a prominent library for image 
processing and computer vision tasks. These algorithms, 
namely ORB, AKAZE, BRISK, FAST+ORB, and SIFT, are 
chosen for their unique characteristics and suitability for 
operations with low hardware requirements. Here's a brief 
overview of each approach: 

1) ORB (Oriented FAST and Rotated BRIEF) 

ORB, a fusion of the FAST keypoint detector and the 
BRIEF descriptor with additional enhancements, is known 
for its rotation invariance and partial scale invariance. It 
stands out for its speed and efficiency, making it apt for real-
time applications. A notable application was in 2018, where 
researchers used ORB in a low-cost machine vision system 
for object shift determination in PCB board assembly [19]. 

2) AKAZE (Accelerated-KAZE) 

An advanced version of the original KAZE algorithm, 
AKAZE offers accelerated performance while maintaining 
quality feature detection. It is robust against scale and 
rotation changes. Although more computationally intensive 
than ORB, AKAZE is known for its high-quality feature 
detection, with some studies achieving 98 fps at a resolution 
of 1024x768 on low-end hardware [20]. 

3) BRISK (Binary Robust Invariant Scalable Keypoints) 

BRISK is designed as a robust method for keypoint 
detection, description, and matching. It performs well against 
rotation and scale variations and is relatively efficient, 
making it suitable for scenarios where computational 
efficiency is crucial. Studies have shown high-efficiency 
results with BRISK on low-end hardware [21]. 

4) FAST+ORB 

This method combines the FAST keypoint detector's 
speed with the ORB descriptor's rotational invariance. This 
combination is highly efficient computationally, rendering it 
suitable for real-time applications. 

5) SIFT (Scale-Invariant Feature Transform) 

SIFT is a foundational algorithm in feature detection and 
matching, known for its robustness to scale and rotation 
changes, though it is partially invariant to perspective 

changes. While SIFT is more computationally intensive than 
the other methods, it offers high-quality features and 
robustness, making it a valuable control group in this study. 
Acceptable feature-matching speeds with SIFT have been 
achieved even with its computational intensity [22]. 

These methods were selected to balance computational 
efficiency and robustness to various image transformations. 
The choice of algorithm is guided by the objective of 
maintaining high efficiency and robustness in the face of 
skew, rotation, and scale changes with low-end hardware. 

D. The Low-End Hardware 
This study chose the Raspberry Pi 4B for its 

compatibility with OpenCV and its suitability for real-time 
image processing tasks in educational settings. Its 
connectivity and efficiency make it a practical choice for 
testing feature-matching algorithms in resource-limited 
environments[23], [24]. Despite its enhanced performance 
capabilities, the Raspberry Pi 4B is energy-efficient, 
requiring only a 5V/3A power supply, making it suitable for 
power-sensitive applications like embedded systems and 
remote monitoring. Furthermore, the Raspberry Pi 
community offers robust support and resources, which are 
invaluable for development and troubleshooting. The cost-
effectiveness of the Raspberry Pi 4B, with its high 
performance-to-cost ratio, presents an accessible option for a 
wide range of purposes with budget constraints. However, 
we need to acknowledge that while capable of running the 
selected algorithms, the Pi4B's performance may not parallel 
that of more powerful computing systems, particularly for 
highly demanding tasks or high-resolution image processing, 
which aligns perfectly with the objectives of our study. 

III. METHODOLOGY AND EXPERIMENTAL APPROACHES 
In this study, we undertake a detailed evaluation of 

various feature matching methods, focusing specifically on 
ORB, AKAZE, BRISK, a combination of FAST with ORB, 
and SIFT. These methods have been chosen due to their 
significance in computer vision and distinct characteristics, 
making them ideal candidates for comparative performance 
and efficiency analysis. We conducted two types of 
experiments. The main hardware components used in the 
experiments include (1) Raspberry Pi 4B: Selected for its 
cost-effectiveness and compatibility with OpenCV, it is ideal 
for representing real-time image processing in resource-
constrained environments; (2) USB Camera: Used for 
capturing video, with resolution set to 640x480 (student can 
adjust) to match the processing capabilities of the Raspberry 
Pi; (3) Arduino MEGA2560: Controls the RC car’s motors, 
receiving commands from the Raspberry Pi based on image 
processing results; and (4) Powerbank: Provides portable 
power to the system, enabling mobile applications. 

 The main software components used in the experiments 
include (1) OpenCV Library: Utilized to implement feature-
matching algorithms like ORB, AKAZE, and BRISK, 
chosen for their efficiency on low-end hardware; and (2) 
Custom Python Scripts: Integrate OpenCV with motor 
control logic to enable the RC car to follow a target image by 
processing real-time video feeds. 

All our experiments are carried out on the SBC-
Raspberry Pi4B, chosen for its status as a cost-effective and 
low-end computing hardware that is widely used in 
embedded systems and edge computing applications. The 
OpenCV (Open Source Computer Vision Library) is this 
project's primary software library for image processing and 
feature matching. OpenCV provides a range of computer 



vision tools compatible with the Raspberry Pi’s ARM 
architecture, allowing for efficient real-time processing. This 
specific setup is integral to our study as it provides a realistic 
assessment of the performance and efficiency of the feature-
matching methods on hardware that is commonly employed 
in embedded and real-time vision systems. The choice of 
Raspberry Pi4B ensures that our findings are applicable and 
relevant to the typical environments where these feature-
matching methods would be deployed, e.g., in our course 
project, thereby enhancing the practical value of our research. 

Template Matching Experiment: This experiment 
begins with template-matching exercises. Here, we compare 
the original template image with its varied versions to assess 
each method's response to scale, rotation, and perspective 
changes. This initial phase is critical in understanding how 
each feature-matching method performs under different 
image transformation conditions, setting the stage for more 
complex application-based testing. We measured the time 
and reprojection error for each combination. 

Real-Time Video Testing and Autonomous Driving 
Experiment: In our comprehensive study, we conduct a 
two-step experiment starting with real-time video streaming 
tests to evaluate the proficiency of various feature-matching 
methods in accurately detecting features in live video 
footage, an essential aspect in real-world scenarios often 
characterized by background noise and dynamic conditions. 
Each frame in the streaming video presents a unique 
challenge, requiring the algorithms to identify and match 
features against variable and noisy backgrounds consistently. 
Methods that excel in these conditions are advanced to the 
second phase: autonomous driving simulation experiments. 
In this phase, we employ 1:10 scale remote control cars to 
simulate practical application scenarios, focusing on the 
methods that showed promising performance in the initial 
template-matching experiments. This simulation is designed 
to assess the selected feature-matching methods' 
applicability and robustness in a dynamic, real-world-like 
environment, mirroring the challenges inherent in 
autonomous vehicle navigation. The primary objective of 
these tests is to gauge the algorithms' ability to accurately and 
reliably identify and respond to environmental features in 
real-time, a critical requirement for the effective functioning 
of autonomous driving systems. 

A. Data Collection and Analysis Methodology 
1) Data Collection 

We meticulously record several key metrics for each 
feature-matching method and image transformation. These 
metrics include reprojection error, time taken, memory 
usage, and estimated distance. This comprehensive data 
collection is crucial for evaluating the performance of each 
method under various conditions. The data gathered from the 
experiments are systematically compiled into a CSV file 
format. This structured approach allows for an organized and 
thorough analysis, enabling us to directly compare the 
performance and efficiency of the different feature-matching 
methods across a spectrum of image transformations. 

2) BFMatcher 

We use the Brute Force Matcher (BFMatcher) across all 
feature-matching methods for consistency and practicality in 
our comparisons. BFMatcher is known for its 
straightforward approach to finding the best matches 
between feature descriptors. It operates by exhaustively 
comparing each descriptor in one set against every descriptor 
in the other, ensuring no potential match is overlooked. For 

methods using binary descriptors, such as ORB, AKAZE, 
and BRISK, the BFMatcher is configured with the 
NORM_HAMMING norm type. This norm type is 
particularly suitable for binary descriptors and aids in finding 
the most accurate matches. Conversely, for the SIFT 
algorithm, which utilizes floating-point descriptors, the 
Euclidean (L2) norm is employed. The L2 norm is a 
mathematical way to measure the distance between two 
points in space, calculated as the square root of the sum of 
the squared differences between corresponding coordinates. 
This differentiation in the configuration of BFMatcher for 
different descriptor types is critical for obtaining reliable and 
accurate matching results. 

The selection of BFMatcher aligns with our research 
objective to evaluate these feature-matching methods' 
inherent effectiveness and efficiency. By employing 
BFMatcher, we aim to minimize the influence of complex 
matching algorithms on our results, focusing instead on the 
intrinsic capabilities of each feature-matching method. This 
approach ensures that our findings reflect the actual 
performance of the methods rather than the matching 
algorithms' efficiency. 

3) Evaluation of Timing Efficiency 

We evaluate the efficiency of various feature-matching 
methods by measuring the time taken to identify a sufficient 
number of high-quality matches, from the initiation of the 
feature detection process to the point where the algorithm 
successfully meets the criteria set by Lowe's ratio test[1]. 
This test is crucial in our assessment, acting as a robustness 
filter to ensure only the most reliable matches are selected 
based on the proximity of the best match compared to the 
second-best for each keypoint. This approach allows us to 
gauge the speed of the matching process and the quality of 
the matches, which is particularly vital in practical applications 
where both speed and reliability are essential. We also establish 
a specific criterion for an 'adequate number of matches,' 
aligning with the requirements for subsequent homography 
calculations. This setting ensures a balanced evaluation of 
the quantity and quality of matches, reflective of real-world 
feature-matching scenarios and practical application needs. 

4) Evaluation Metrics for Feature Matching Methods 

Reprojection Error: This metric evaluates feature 
matching accuracy by calculating the average distance 
between corresponding points in the template image and 
their locations in the transformed image, following the 
application of the estimated homography. A lower 
reprojection error signifies greater precision in the feature 
matching, indicating a more accurate alignment between the 
original and transformed images. 

Number of Good Matches: Utilizing Lowe's ratio test, 
this metric quantifies the number of reliable match pairs. It 
involves counting the pairs where the distance between the 
closest and second-closest matches falls below a set 
threshold, commonly 0.75. This test is instrumental in 
identifying and retaining the most robust matches, 
effectively filtering out less reliable or ambiguous ones. 

Computation Time: This metric measures the time 
required to complete the feature-matching process between 
images. It directly indicates the algorithm's speed and 
operational efficiency, which is particularly vital in 
applications where time is a critical factor. The computation 
time helps assess the practicality of the feature-matching 
methods for real-time or time-constrained environments. 



Maximum Detection Range: This metric gauges the 
ability of feature-matching methods to detect features over 
distances in real-time video streaming. It serves as a 
preliminary test for the autonomous driving simulation 
experiments. A feature-matching method with a limited 
detection range may necessitate a faster response time, which 
is crucial for real-time decision-making in scenarios such as 
autonomous driving. This metric reflects the method's 
suitability for applications requiring long-range perception. 

 
Fig. 1. Base Image [25]. 

 
Fig. 2. Four Rotated Angles. 

B. Experiment I: Template Matching 
In Fig.1, our chosen base image for experimentation is 

Montclair State University's Red Hawk mascot, a 
particularly complex subject for testing the efficacy of 
feature-matching algorithms. This image was selected due to 
its unique attributes that pose significant challenges for 
feature matching. Notably, the mascot's distinctive fur coat 
adds complexity with its textured surface, presenting an 
array of similar features densely packed together. This 
characteristic of the fur coat heightens the likelihood of 
incorrect matches or false positives and demands that the 
algorithms be more adept at discerning unique features 
amidst a visually dense pattern. The fur texture notably 
increases the difficulty of the feature-matching process as the 
algorithms need to differentiate between subtle variations in 
the pattern, simulating the challenges found in natural and 
cluttered environments. In our experiment, we subject the 
base image to a series of transformations designed to replicate 
real-world scenarios, thus thoroughly assessing the robustness 
of each feature-matching method under various conditions. 
These transformations emulate typical variations encountered 
in practical applications and are categorized as follows: 

Perspective Changes: The perspective transformations 
are applied to the base image to simulate different viewing 
angles and depth variations. This aspect of the test evaluates 
the algorithms' ability to adapt to changes in viewpoint and 
scale. The experiment incorporates four levels of yaw 
perspective transformations, set at parameters of 0.1, 0.2, 0.3, 
and 0.4, offering a graded scale of perspective alteration. 

Rotations: The image is rotated at various angles to test 
rotational invariance. We use angles from 0° to 180° to 
provide a spectrum of rotational changes ranging from 
moderate to significant, as shown in Fig. 2. This step is 

crucial for determining how well the algorithms can maintain 
feature recognition despite the orientation of the image. 

Scaling: The image undergoes resizing to different scales 
to evaluate scale invariance. The chosen scaling percentages 
for the experiment are 25%, 50%, 125%, and 150%, 
incorporating both downscaling and upscaling. This 
variation in image size tests the algorithms' capability to 
handle features in images of different dimensions. 

These transformation tests are integral to our method, as 
they challenge the feature-matching algorithms with conditions 
that closely resemble those they would encounter in real-
world applications. The outcome of these tests provides 
valuable insights into each method's adaptability and 
reliability across a range of common image transformations. 

C. Experiment II-A: Real-time Video Streaming Test 
In our experiment's real-time video streaming phase, we 

optimize the camera setup for the constraints of the SBC-
Raspberry Pi4B. To manage the computing load, we set the 
camera resolution to 640x480. This resolution reduction is a 
strategic choice to decrease the overall computational 
intensity, making it more suitable for the capabilities of a 
single-board computer (SBC) like the Raspberry Pi4B, 
particularly in the context of autonomous driving applications. 

We control the frame rate for this test at 2 frames per 
second. This rate is intentionally chosen to afford each 
feature-matching method ample time to process the frames 
and perform the necessary feature-matching tasks. It is a 
crucial adjustment to ensure that the limitations of the SBC 
do not unduly impact the effectiveness of the feature-
matching methods being tested. 

This setup compares the maximum detection range for a 
letter-sized printed base image. This approach allows us to 
assess each method's capability to detect and match features 
over various distances, an essential factor in real-world 
applications like autonomous driving. 

The experimental code is designed to record critical data 
for each frame, including the time taken for feature matching, 
the number of suitable matches determined by Lowe's ratio 
test, and the estimated detection range. Additionally, we set 
the template size in this experiment to 50% of the resolution. 
This scale is a calculated decision to balance accuracy and 
computational time, ensuring that the feature matching is 
efficient and effective under the specified test conditions. 

D. Experiment II-B: Autonomous Driving 
We utilize a 1:10 scale race car for the autonomous driving 

test component, integrating a real-world application scenario 
into our study[9], [10]. The test setup involves placing a 
letter-sized printed picture in front of the RC car, which is 
the target for the feature-matching methods. As Fig. 3 shows, 
a camera is mounted on the front of the RC car, designed to 
capture the image of the printed picture as the car maneuvers. 

The initial positioning of the RC car is determined by the 
maximum detection range identified for each feature-
matching method from the previous real-time video 
streaming tests. This strategic placement ensures that each 
method is tested within its optimal operational range. The 
frame rate for this test is also adjusted based on the outcomes 
from the video streaming experiments, allowing us to 
maintain consistency in the testing conditions. 

The primary objective of this phase is to assess each 
feature-matching method's practical application in an 
autonomous driving scenario. Upon starting the RC car, the 



system should detect the printed picture using the selected 
feature-matching method. The car is then programmed to 
move forward towards the target. A critical aspect of the test 
is to evaluate the algorithm's capability to accurately detect 
the distance to the target and instruct the RC car to stop upon 
reaching a pre-set range from the printed picture. 

 
Fig. 3. The RC with SBC and Camera. 

This test is crucial in determining the real-world 
applicability of the feature-matching methods in scenarios 
that require precise object detection and distance estimation, 
such as in autonomous vehicle navigation. The ability of the 
system to detect the target and accurately respond by 
stopping at the correct range is a crucial indicator of the 
method's effectiveness and reliability in real-time applications. 

IV. FEATURE MATCHING RESULT ANALYSIS 

A. Results of  Experiment I: Template Matching 
In Table I, detailing the baseline conditions for each 

feature matching method, it was observed that ORB 
exhibited the lowest memory usage, making it the most 
memory-efficient option. On the opposite end, SIFT 
recorded the highest memory consumption, indicating a 
relatively higher demand for system resources. In terms of 
processing speed, ORB also stood out as the fastest, while 
the FAST+ORB combination was the slowest. SIFT, despite 
its high memory usage, was the second slowest. AKAZE and 
BRISK displayed moderate performance, ranking them in 
terms of efficiency between the extremes of ORB and SIFT. 

TABLE I.  BASELINE 

Method Skew Rotate Scale Error Time(s) Memory(MB) 
ORB 0 0 100 0 0.20 185.781 

AKAZE 0 0 100 0 2.57 420.57 
BRISK 0 0 100 0 3.04 400.48 

FAST+ORB 0 0 100 0 12.57 406.77 
SIFT 0 0 100 0 11.58 499.75 

Table II showed that the FAST+ORB method showed 
poor performance with scale changes in our experiments, 
while SIFT struggled with upscaling and took longer 
processing times. Conversely, BRISK and AKAZE maintained 
stable performance across various scales. Notably, ORB 
emerged as the fastest method among those tested. Most of 
the methods have some level of scale-invariant, and the 
changes can also be explained with the image size. 

TABLE II.  SCALE CHANGE RESULTS 

Method Scale(Percentage) Error Time(s) Memory(mb) 
AKAZE 25 25.27 1.42 247.17 
AKAZE 50 13.47 1.55 291.45 
AKAZE 125 5.56 3.56 285.16 
AKAZE 150 5.16 4.72 263.70 
BRISK 25 25.30 0.81 267.55 
BRISK 50 4.18 1.31 275.09 
BRISK 125 2.71 2.89 275.09 
BRISK 150 2.97 3.55 281.99 

FAST+ORB 25 114.92 1.10 279.47 
FAST+ORB 50 101.05 3.65 279.54 
FAST+ORB 125 14.52 15.15 280.61 

FAST+ORB 150 238.79 22.33 281.17 
ORB 25 3.68 0.13 157.82 
ORB 50 12.80 0.16 170.54 
ORB 125 1.38 0.24 170.54 
ORB 150 1.88 0.31 170.54 
SIFT 25 18.14 2.09 438.88 
SIFT 50 6.25 3.23 470.75 
SIFT 125 1.33 16.07 558.09 
SIFT 150 1.20 20.37 537.70 

As presented in Fig. 4, our experiments with rotated 
images observed that rotations at 0, 90, and 180 degrees 
resulted in similar processing times for all methods, 
indicating rotational invariance, except for the FAST+ORB 
combination. However, this invariance faced significant 
challenges with rotations at 45 and 135 degrees (odd 
multiples of 45 degrees). BRISK demonstrated the most 
robust scale invariance among the tested methods, indicated 
by the minor percentage change in processing time under 
these conditions. AKAZE maintained a stable error rate 
while showing a near 100% change in processing time for 
these odd-angle rotations. While AKAZE may take longer to 
process these rotations, its accuracy remains consistent. On 
the other hand, FAST+ORB struggled significantly, failing 
to calculate the error for almost 80% of the rotations, which 
points to a lack of comprehensive rotational invariance 
compared to the other methods. This limitation of the 
FAST+ORB method highlights its potential inadequacies in 
scenarios involving varied rotational transformations. 

As shown in Table III, ORB emerged as the fastest 
method in our tests, but it struggled with significant 
perspective changes, a challenge that was also evident in 
other methods to varying degrees. BRISK displayed the most 
consistent performance when dealing with these types of 
transformations. Across all tests, ORB consistently used less 
memory than the established baseline, suggesting that 
converting color images to grayscale could be advantageous, 
as it may reduce memory consumption. This finding is 
particularly relevant for edge devices, indicating that using 
grayscale images or videos could lower memory costs in 
real-world applications. 

TABLE III.  PERSPECTIVE RESULT 

Method Skew Rate Error Time (s) Memory(MB) 
ORB 0.1 1.10 0.19 161.61 
ORB 0.2 15.93 0.18 161.61 
ORB 0.3 95.63 0.20 159.77 
ORB 0.4 358.21 0.18 161.61 

AKAZE 0.1 4.09 2.66 296.70 
AKAZE 0.2 13.03 2.64 296.95 
AKAZE 0.3 33.70 2.47 288.04 
AKAZE 0.4 165.75 2.43 256.69 
BRISK 0.1 2.37 2.58 265.76 
BRISK 0.2 6.62 2.54 265.76 
BRISK 0.3 14.45 1.93 265.76 
BRISK 0.4 60.06 1.49 265.76 

FAST+ORB 0.1 1.94 8.84 271.30 
FAST+ORB 0.2 13.20 7.46 271.29 
FAST+ORB 0.3 117.63 5.67 270.92 
FAST+ORB 0.4 483.77 3.14 270.71 

SIFT 0.1 2.08 10.35 488.91 
SIFT 0.2 3.88 8.61 452.46 
SIFT 0.3 12.75 6.56 460.77 
SIFT 0.4 88.14 3.82 450.42 

By analyzing all the results of feature-matching against 
common variations, we determined that ORB, AKAZE, 
BRISK, and SIFT are potentially suitable methods for SBC 



real-time streaming video tests. However, the FAST+ORB 
combination underperformed due to its inability to maintain 
rotational invariance, particularly with odd multiples of 45 
degrees, which are common in real-world orientations. 
Additionally, its failure to calculate error rates for a significant 
portion of rotation tests indicates a lack of comprehensive 
scale and rotational invariance. It is crucial for real-time 
processing where rapid and accurate feature detection is 
required for decision-making in dynamic environments. 

 
Fig. 4. Rotation Results. 

B. Results of  Experiment II-A: Real-time Video Streaming 
Test 
We employed the same code used in the autonomous 

driving test for the real video stream experiment, with the 
speed parameter set to zero. We set up a threshold of 10 good 
matches as a benchmark for successful feature detection and 
adjusted the template resolution to approximately 50% of the 
camera's resolution to balance accuracy and computational 
demand. In this part of the experiment, reprojection error was 
deprioritized in favor of the more critical metric of object 
detection success. We gradually increased the distance of the 
RC car from the printed paper, monitoring the feature-
matching process. The estimated distance at which the 
method no longer produced enough good matches to detect 
the object was then recorded. This distance effectively 
represents the maximum operational range for each feature-
matching method in a real video streaming context. 

Following the real video streaming test, it was 
determined that AKAZE and BRISK possessed the 
capabilities required to proceed to the autonomous driving 
test phase. ORB, however, did not yield a sufficient number 
of good matches to be considered adequate for this 
application. Meanwhile, although accurate, SIFT required 
approximately one second to complete its matching process 
using the brute force matcher, which may be too slow for 
real-time autonomous driving requirements where 
immediate decision-making is critical. 

The analysis of data points near the threshold of detection 
loss revealed that, under the conditions of a 640x480 video 
resolution and a template scaled to 50%, AKAZE achieved a 
maximum detection range of 0.77 meters, while BRISK 
extended slightly further to 1.01 meters. Regarding detection 
speed, AKAZE managed an average detection time of 0.23 
seconds, and BRISK was closely matched with an average of 
0.25 seconds, demonstrating promptness suitable for real-
time applications. 

C. Results of  Experiment II-B: Autonomous Driving 
In the autonomous driving test, the printed picture was 

positioned at a slight angle to the RC car to simulate 
perspective change, adding another layer of complexity to 
the detection challenge. The car started approximately 0.7 
meters from the target and was programmed to drive 
autonomously towards the printed picture. The system was 
designed to detect the range continuously, and once the 
calculated distance to the target was less than 0.3 meters, the 
RC car was instructed to stop automatically. This setup aimed 
to emulate real-world conditions where perspective changes 
are expected, testing the feature-matching method's ability to 
adapt and accurately gauge distances for safe navigation. 

The outcomes of the autonomous driving test indicated 
that both AKAZE and BRISK, while capable at lower 
speeds(97 out of 180), failed to perfectly pass the test when 
the speed of the RC car was increased(100 out of 180). At 
reduced velocities, both methods successfully stopped the 
RC car before reaching the printed picture. However, at 
higher speeds, they were unable to stop in time. This failure 
can likely be attributed to several factors beyond detection 
speed alone, such as the camera's capture rate, video 
buffering delays, and the RC car's response time. These 
results underscore the necessity for quick response 
capabilities and more advanced or efficient hardware to meet 
the demands of autonomous driving, where timely and 
accurate detection and actuation are crucial. 

V. COURSE PROJECT CASE: AUTONOMOUS DRIVING 
To illustrate the practical application of feature-matching 

techniques in an educational setting, we present a 
comprehensive project within a robotics course at Montclair 
State University that challenges students to apply feature-
matching algorithms on the Raspberry Pi 4. By tackling real-
world autonomous driving scenarios, students gain practical 
experience that reinforces crucial theoretical concepts 
through project-based learning (PBL). 

A. Project Overview 
The objective of the project is to build and program an 

RC car that can navigate autonomously using feature-
matching algorithms. The car has a Raspberry Pi 4B for 
image processing and an Arduino microcontroller for motor 
control. The Powerbank, Pi4, and camera are all integrated 
into the RC car with a custom-designed laser-cut board. The 
project involves some key components: (1) Image processing: 



Students use OpenCV to implement feature-matching 
algorithms such as ORB, AKAZE, and BRISK. These 
algorithms enable the car to recognize and track objects or 
landmarks in its environment; (2) Servo/motor control with 
Arduino: The Arduino microcontroller is programmed to 
control the car's motors based on the input received from the 
Raspberry Pi. This involves writing code to interpret the 
feature-matching results and translate them into movement 
commands; and (3)Integration and testing: Students integrate 
the image processing and motor control components, testing the 
car's ability to navigate through a course with various obstacles 
and landmarks. They evaluate the performance of different 
feature-matching algorithms in real-time scenarios. 

B. Implementation Steps 
The implementation steps include (1) Hardware setup: 

Students assemble the RC car with a camera mounted on the 
front, connected to the Raspberry Pi, ensure the Raspberry Pi 
communicates with the Arduino, which controls the car's 
motors, and integrate the power bank, Pi4, and camera on the 
RC car using a custom-designed laser-cut board; (2) 
Software development: Students install OpenCV on the 
Raspberry Pi and write scripts to capture and process video 
frames, implement feature-matching algorithms and test 
their performance in detecting and tracking objects, and 
program the Arduino to control the car's movements based 
on the input from the Raspberry Pi. Then they develop codes 
for the RC car to follow the selected templated picture at a 
proper distance, move when the picture moves, stop when 
the picture stops, and turn when the picture turns. This 
simulates adaptive cruise control, a Level 1 autonomous 
driving feature; and (3) Testing and optimization: Students 
conduct experiments to evaluate the car's performance under 
different conditions, such as varying light levels and obstacle 
configurations. They also optimize the code for efficiency 
and accuracy, ensuring the car can navigate smoothly and 
respond quickly to environmental changes. 

C. Results and Learning Outcomes 
By completing this project, students gain hands-on 

experience with advanced computer vision techniques and 
their applications in autonomous systems. They learn to 
work collaboratively, solve complex problems, and apply 
theoretical knowledge in a practical context. The project-
based approach enhances their understanding of feature 
matching, image processing, and embedded systems, 
preparing them for future challenges in the field of computer 
vision and robotics. Students benefit from: 

1) Hands-On Learning 

Students apply theoretical knowledge to real-world 
problems by assembling and programming the RC car, 
enhancing their understanding and retention of complex 
concepts. This hands-on experience solidifies their grasp of 
computer vision and embedded systems. 

2) Collaborative Learning 

Working in teams, students design, implement, and test 
their RC car, fostering a collaborative environment critical 
for professional settings. 

3) Reflective Practice 

Students reflect on their experiences, analyze their 
performance, and identify areas for improvement. Reflective 
sessions during and after each project meeting help them 
discuss successes and challenges, fostering a continuous 
improvement mindset. 

4) Constructivist Theories of Education 

 Students build their understanding through the iterative 
process of designing, testing, and refining their Pi4-
controlled RC car, reinforcing the connection between 
theoretical concepts and practical applications. Additionally, 
a simple sample code will be provided to the students to help 
them get started. Teachers will encourage students to 
optimize the code with proper feature-matching methods, 
functional programming, exception control, digital filtering, 
and other techniques. 

Feature matching serves as the core method in this 
project, providing both a technical challenge and a valuable 
educational tool within the PBL framework. Students are 
encouraged to explore various feature-matching techniques, 
each with its trade-offs—some methods offer high accuracy 
but are slower. In contrast, others are faster but lack precision. 
The challenge lies in selecting a balanced approach or 
modifying the parameters of these methods to enhance the 
efficiency of slower techniques or increase the accuracy of 
quicker ones. The project's success is measured by the 
performance of the RC car, with students allowed to fine-
tune their settings to find the optimal configuration for their 
chosen feature-matching method. The instructor's prior 
experiments with different feature-matching algorithms on 
the Raspberry Pi 4B provide a solid foundation of knowledge, 
ensuring that students understand how each method performs 
under resource-constrained conditions.  

While all feature-matching methods may be capable of 
identifying a target image, detecting the image in real-time 
video streams with an acceptable response time is a complex 
task. This challenge is compounded by the need to design a 
practical algorithm for the RC car to follow the target image 
accurately. The final test, where another student or a teaching 
assistant moves the target image, requires the RC car to 
respond correctly in real-time. Optimizing the driving 
algorithm to achieve this requires significant trial and error 
and a deep understanding of the project's technical and 
practical aspects. This complexity ensures that the project is 
far from trivial, providing students with a rigorous, hands-on 
learning experience that helps them with real-world 
challenges in computer vision and robotics. 

This project exemplifies how project-based learning can 
be effectively implemented in engineering and computing 
education, providing students with valuable skills and 
experiences directly applicable to their future careers. By 
engaging in this hands-on project, students deepen their 
understanding of the subject matter and develop essential 
soft skills such as teamwork, communication, and critical 
thinking. This holistic approach to learning ensures that 
students are well-equipped to tackle the challenges of the 
modern engineering and technology landscape. 

VI. CONCLUSION AND FUTURE WORK 
This study establishes a framework for comparing feature-

matching methods, offering substantial potential for enhancement 
through future research. This proposed framework not only 
evaluates current methodologies but also sets the stage for 
ongoing advancements in feature matching, particularly 
within low-end hardware environments. Such future works 
could extend the scope and depth of this research, leading to 
more refined and efficient feature-matching solutions 
adaptable to various real-world applications. 

Enhancing the test environment to include a broader 
range of single-board computers (SBCs) is essential for the 



future progression of this research. While effective, the 
current study's reliance on the Raspberry Pi 4 only represents 
a fraction of the rapidly diversifying SBC market. With the 
expected release of the Raspberry Pi 5 and the continuous 
introduction of new SBC models, it is crucial to evaluate 
feature-matching methods across different hardware platforms. 
Future research will focus on testing various SBCs with 
varying processing power, memory capacity, and graphical 
capabilities. This approach would shed light on how these 
differing hardware specifications impact the performance of 
feature-matching algorithms. Moreover, conducting 
comparative analyses between different generations of the 
same SBC, such as between the Raspberry Pi 4 and the 
forthcoming Raspberry Pi 5, could provide valuable insights 
into the effects of hardware technological advancements on 
the efficiency and accuracy of these algorithms. 

This study also underscores the effectiveness of project-
based learning (PBL) in enhancing students' understanding 
of complex concepts through hands-on projects, as 
demonstrated by the RC car project. Overall, this project-
based approach ensures students are well-prepared for 
modern engineering and technology, combining technical 
knowledge with essential soft skills. Future work will 
continue to explore the integration of advanced 
computational techniques and a broader range of hardware 
platforms, further enhancing this research's practical and 
educational impacts. 
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