Feature Matching Comparison with Limited Computing
Power Device for Autonomous Driving

Xu Du
School of Computing
Montclair State University
Montclair, USA
dux3@montclair.edu

Abstract—This research-to-practice full paper describes a
study on the performance of feature-matching algorithms in
constrained computational environments, focusing on
autonomous driving using low-end hardware like the
Raspberry Pi 4B. We evaluate algorithms such as ORB,
AKAZE, BRISK, and SIFT, examining their efficiency,
accuracy, and robustness under various conditions. While
ORB offers speed, AKAZE and BRISK demonstrate more
consistent performance. To mitigate the gap between
theoretical analysis and practical application, we integrate
these findings into a robotics course through a project-based
learning (PBL) approach. The comparison analysis provides
the instructor with the necessary insights to guide students, as
the research setting closely mirrors the course project. This
hands-on project not only deepens students' understanding of
computer vision but also hones critical problem-solving skills
essential for modern engineering challenges. Future work will
extend this study to other single-board computers and explore
advanced computational techniques like parallel computing
and GPU acceleration.

Keywords—Autonomous driving, feature matching, project-
based learning, engineering education, computing education

I. INTRODUCTION

Feature matching stands as a fundamental and essential
element in the realm of computer vision. It equips computers
with the capability to interpret and analyze visual
information extracted from images or videos. This process is
not merely about recognizing images; it is about
understanding and pinpointing corresponding points across
multiple images that depict the same portion of an object or
scene. Such a capability is crucial in many applications,
ranging from simple image recognition to complex real-
world scenario analyses [1].

Project-based learning (PBL) is an educational approach
in which students actively learn from real-world problems
and challenges [9]. This method aligns with constructivist
theories of education, which assert that learners construct
knowledge via experiences and reflection. PBL encourages
students to engage in hands-on projects that require them to
apply what they have learned in practical, meaningful ways.

At Montclair State University, a robotics course designed
for undergraduate and graduate students integrates PBL
principles with advanced topics in robotics, including feature
matching. The course provides students with a comprehensive
learning experience in robotics, focusing on sensors, actuators,
vision systems, and robotics programming. Through this
course, students work on practical projects that deepen their
understanding of computer vision and develop essential
skills such as problem-solving, collaboration, and project
management. One of the critical components of the course is
a comprehensive project in which students work in teams to

Weitian Wang*
School of Computing
Montclair State University
Montclair, USA
wangw(@montclair.edu

develop an autonomous mobile robot (AMR) using race cars
(RC), Raspberry Pi 4, USB cameras, and Arduino
MEGAZ2560 boards. This project is a capstone experience,
challenging students to implement feature-matching
algorithms on resource-constrained hardware to develop an
autonomous vehicle capable of object recognition and
human-following tasks. This hands-on experience simulates
real-world autonomous driving scenarios, allowing students
to apply theoretical knowledge to practical problems.

In feature matching, a "feature" refers to an image's
specific, distinctive part that remains easily recognizable
across various conditions, such as changes in viewpoint,
scale, or lighting. These features play a critical role in
numerous computer vision tasks, providing a means to
effectively understand and compare different images.

A. Types of Features

Corners: Corners are points in an image where two
edges meet, characterized by a change in intensity in two
directions. These highly distinctive points maintain
consistency across image transformations like rotation or
scaling. The stability and distinctiveness of corners make
them reliable anchor points in feature-matching [2].

Edges: Edges are defined by a sharp change in brightness
and typically indicate the boundaries of objects within an
image. They represent significant structural properties of
objects, making them integral to feature matching. The
primary goal of edge detection algorithms is to identify these
vital points accurately [3].

Blobs: Blobs are regions in an image with unique
properties, such as color or texture, distinct from surrounding
areas. They are often used to represent and identify objects
within an image. Blob detection methods are focused on
effectively identifying these unique regions [4].

The selection of features is based on their distinctiveness
and invariance to common transformations, such as scale,
rotation, and perspective changes. This invariance is crucial
in feature matching as it ensures that a feature remains
recognizable under various conditions. The feature-matching
process involves detecting these features in different images
and establishing correspondences between them, where the
effectiveness and accuracy are significantly influenced by
the choice of features and the detection and description methods.

B. Feature Detection and Feature Description

Feature matching in computer vision has two core stages,
including feature detection and feature description [5].
Feature detection concerns identifying distinctive points or
'features' within an image. These features are specific parts
ofthe image that stand out due to their unique attributes, such
as texture, color, edges, or corners. The primary goal of

feature detection is to locate these points consistently and
reliably across different images. Various algorithms are
designed to detect these salient features efficiently. The
choice of features is critical and largely depends on their
robustness to lighting, orientation, and scale changes.
Following the detection stage, each feature undergoes a
description process. This involves creating a 'descriptor’,
essentially a unique fingerprint for each feature. This
descriptor encapsulates the key attributes of the feature in a
compact format, typically represented as a vector of
numbers. The process of feature description is crucial as it
ensures that the same feature can be recognized across
different images, despite variations in angle, scale, or
illumination. The essence of feature matching lies in utilizing
these descriptors to establish correspondence between
features in different images. By comparing these descriptors,
the algorithm identifies which features in one image
correspond to features in another, thereby recognizing
similar objects or scenes across various images.

C. Common Applications of Feature Matching

Feature matching is a pivotal technique in computer
vision with a wide array of applications across diverse fields.
Object recognition plays a crucial role in identifying specific
objects within images or videos, finding uses in security for
facial recognition systems, retail for product identification,
and manufacturing for quality control. In the domain of 3D
reconstruction, feature matching enables the creation of
three-dimensional models of scenes or objects from multiple
images taken at different angles, a technique extensively
used in fields like archaeology, architecture, and computer-
aided design (CAD) [6]. In the context of robotics and
autonomous driving, it facilitates navigation and interaction
with the environment by recognizing objects, obstacles, and
pathways. In medical imaging, feature matching is
instrumental in comparing and analyzing medical images
over time, thus aiding in detecting and monitoring diseases
[7]. Additionally, feature matching for geospatial analysis
and remote sensing is crucial in aligning and comparing
satellite imagery and aerial photography for environmental
monitoring, urban planning, and disaster response [8]. These
applications highlight the versatility of feature matching and
underscore its critical role in advancing a broad spectrum of
industries and research domains.

D. Project-Based Learning Theories and Practices

This work also implements PBL by integrating feature-
matching techniques and autonomous driving simulations
into the curriculum. Students develop a profound understanding
of computer vision principles and their applications in
autonomous systems via real-world projects. The emphasis
on collaboration and iterative problem-solving in PBL helps
students develop essential skills for their future careers. The
key aspects of PBL integrated into this study include (1)
Hands-On Learning: students work on practical projects that
encourage them to implement theoretical knowledge to real-
world problems, enhancing their understanding and retention
of complex concepts [9], [10]; (2) Collaborative Learning:
PBL promotes teamwork and collaboration, allowing students
to develop learning skills such as communication, problem-
solving, and project management [11]; (3) Reflective Practice:
Students are encouraged to reflect on their experiences and
identify areas for improvement, ensuring a deeper
understanding of the subject matter [12]; and (4)
Constructivist Theories of Education: PBL is grounded in
constructivist theories which assert that learners construct
knowledge via experiences and reflection. This educational
approach aligns well with the principles of constructivism [13].

This work presents a comparative study of well-
established feature-matching techniques, specifically
emphasizing their performance in environments constrained
by limited computational resources for autonomous driving.
We delve into an extensive background on the evolution of
these methodologies, highlighting their increasing
sophistication and efficiency. At its inception, feature
matching in computer vision was relatively rudimentary. The
focus was primarily on identifying and aligning elementary
features such as edges, corners, and blobs in different
images. This simplicity, however, laid the groundwork for
more complex and refined methodologies. As the discipline
advanced, it introduced more sophisticated techniques that
have since become cornerstones in the field. Notable among
these advancements are the Oriented FAST and Rotated
BRIEF (ORB) [14], Scale-Invariant Feature Transform
(SIFT) [1], Accelerated-KAZE (AKAZE) [15], and Binary
Robust Invariant Scalable Keypoints (BRISK) [16]. They
offer increased accuracy and efficiency, making them
invaluable in various applications that range from simple
tasks to complex, real-world problem-solving scenarios.
Furthermore, this study incorporates project-based learning
(PBL) principles to enhance educational outcomes.
Integrating these advanced feature-matching techniques into
a hands-on curriculum provides students with practical, real-
world experience in applying theoretical knowledge. This
approach not only deepens their understanding of computer
vision but also equips them with essential problem-solving
and collaborative skills needed in autonomous driving.

While several comparative studies of feature-matching
algorithms exist[5], [17], [18], they often lack a focus on
performance under limited computing power conditions,
such as those found on the Raspberry Pi 4B. Our comparison
analysis addresses this gap, providing valuable insights into
how these algorithms perform in resource-constrained
environments. This analysis is particularly relevant for our
course project, where students work in similar settings. The
results of this comparison allow the instructor to offer
informed advice on each method's strengths and limitations,
helping students navigate the complexities of real-time
image processing and make informed decisions when
selecting and tuning algorithms for their projects.

II. PROBLEM STATEMENT

The increasing relevance of feature matching within
constrained computing environments, particularly with low-
cost single-board computers (SBCs), is becoming a crucial
area of focus in computer vision research, especially in the
context of the burgeoning Internet of Things (IoT) and Edge
Devices. This paper addresses the critical need to test the
efficiency and performance of existing feature-matching
methods in such environments.

A. Efficiency

Efficiency is paramount in low-end hardware devices,
which operate with limited power sources like batteries or
solar panels. Feature-matching methods that demand excessive
computational resources can increase energy consumption,
which is a significant concern. The cooling requirements of
these devices, typically equipped with passive cooling
systems or minimal cooling fans, become a critical factor.
Extended computing processes can lead to thermal throttling,
and the power consumption of any cooling mechanism
further contributes to overall energy usage. Therefore, it's
essential to evaluate feature-matching algorithms for high
efficiency with low energy consumption and minimal heat

generation, ensuring their effective deployment in energy-
constrained and thermally sensitive environments.

B. Rotation, Perspective, and Scale Changes

Another aspect of paramount importance is testing
feature-matching methods on low-end hardware against
challenges like rotation, perspective, and scale changes.
These changes are fundamental challenges in object
recognition, as real-world scenarios often present objects in
various orientations and distances, altering their appearance
in images. Robustness to these variations is essential to
ensure consistent and accurate object recognition across
different viewpoints. Evaluating the performance of feature-
matching methods under these conditions, particularly in
resource-limited hardware environments, is a matter of
scientific rigor and crucial for the practical advancement of
computer vision technology.

C. Overview of Existing Feature Matching Methods

This study aims to balance multiple parameters,
including efficiency and performance, particularly in
handling image transformations such as skew, rotation, and
scale changes. We have selected a suite of algorithms that are
well-regarded in the field of computer vision and readily
available in OpenCV, a prominent library for image
processing and computer vision tasks. These algorithms,
namely ORB, AKAZE, BRISK, FAST+ORB, and SIFT, are
chosen for their unique characteristics and suitability for
operations with low hardware requirements. Here's a brief
overview of each approach:

1) ORB (Oriented FAST and Rotated BRIEF)

ORB, a fusion of the FAST keypoint detector and the
BRIEF descriptor with additional enhancements, is known
for its rotation invariance and partial scale invariance. It
stands out for its speed and efficiency, making it apt for real-
time applications. A notable application was in 2018, where
researchers used ORB in a low-cost machine vision system
for object shift determination in PCB board assembly [19].

2) AKAZE (Accelerated-KAZE)

An advanced version of the original KAZE algorithm,
AKAZE offers accelerated performance while maintaining
quality feature detection. It is robust against scale and
rotation changes. Although more computationally intensive
than ORB, AKAZE is known for its high-quality feature
detection, with some studies achieving 98 fps at a resolution
of 1024x768 on low-end hardware [20].

3) BRISK (Binary Robust Invariant Scalable Keypoints)

BRISK is designed as a robust method for keypoint
detection, description, and matching. It performs well against
rotation and scale variations and is relatively efficient,
making it suitable for scenarios where computational
efficiency is crucial. Studies have shown high-efficiency
results with BRISK on low-end hardware [21].

4) FAST+ORB

This method combines the FAST keypoint detector's
speed with the ORB descriptor's rotational invariance. This
combination is highly efficient computationally, rendering it
suitable for real-time applications.

5) SIFT (Scale-Invariant Feature Transform)

SIFT is a foundational algorithm in feature detection and
matching, known for its robustness to scale and rotation
changes, though it is partially invariant to perspective

changes. While SIFT is more computationally intensive than
the other methods, it offers high-quality features and
robustness, making it a valuable control group in this study.
Acceptable feature-matching speeds with SIFT have been
achieved even with its computational intensity [22].

These methods were selected to balance computational
efficiency and robustness to various image transformations.
The choice of algorithm is guided by the objective of
maintaining high efficiency and robustness in the face of
skew, rotation, and scale changes with low-end hardware.

D. The Low-End Hardware

This study chose the Raspberry Pi 4B for its
compatibility with OpenCV and its suitability for real-time
image processing tasks in educational settings. Its
connectivity and efficiency make it a practical choice for
testing feature-matching algorithms in resource-limited
environments[23], [24]. Despite its enhanced performance
capabilities, the Raspberry Pi 4B is energy-efficient,
requiring only a 5V/3 A power supply, making it suitable for
power-sensitive applications like embedded systems and
remote monitoring. Furthermore, the Raspberry Pi
community offers robust support and resources, which are
invaluable for development and troubleshooting. The cost-
effectiveness of the Raspberry Pi 4B, with its high
performance-to-cost ratio, presents an accessible option for a
wide range of purposes with budget constraints. However,
we need to acknowledge that while capable of running the
selected algorithms, the Pi4B's performance may not parallel
that of more powerful computing systems, particularly for
highly demanding tasks or high-resolution image processing,
which aligns perfectly with the objectives of our study.

III. METHODOLOGY AND EXPERIMENTAL APPROACHES

In this study, we undertake a detailed evaluation of
various feature matching methods, focusing specifically on
ORB, AKAZE, BRISK, a combination of FAST with ORB,
and SIFT. These methods have been chosen due to their
significance in computer vision and distinct characteristics,
making them ideal candidates for comparative performance
and efficiency analysis. We conducted two types of
experiments. The main hardware components used in the
experiments include (1) Raspberry Pi 4B: Selected for its
cost-effectiveness and compatibility with OpenCV, it is ideal
for representing real-time image processing in resource-
constrained environments; (2) USB Camera: Used for
capturing video, with resolution set to 640x480 (student can
adjust) to match the processing capabilities of the Raspberry
Pi; (3) Arduino MEGA2560: Controls the RC car’s motors,
receiving commands from the Raspberry Pi based on image
processing results; and (4) Powerbank: Provides portable
power to the system, enabling mobile applications.

The main software components used in the experiments
include (1) OpenCV Library: Utilized to implement feature-
matching algorithms like ORB, AKAZE, and BRISK,
chosen for their efficiency on low-end hardware; and (2)
Custom Python Scripts: Integrate OpenCV with motor
control logic to enable the RC car to follow a target image by
processing real-time video feeds.

All our experiments are carried out on the SBC-
Raspberry Pi4B, chosen for its status as a cost-effective and
low-end computing hardware that is widely used in
embedded systems and edge computing applications. The
OpenCV (Open Source Computer Vision Library) is this
project's primary software library for image processing and
feature matching. OpenCV provides a range of computer

vision tools compatible with the Raspberry Pi’s ARM
architecture, allowing for efficient real-time processing. This
specific setup is integral to our study as it provides a realistic
assessment of the performance and efficiency of the feature-
matching methods on hardware that is commonly employed
in embedded and real-time vision systems. The choice of
Raspberry Pi4B ensures that our findings are applicable and
relevant to the typical environments where these feature-
matching methods would be deployed, e.g., in our course
project, thereby enhancing the practical value of our research.

Template Matching Experiment: This experiment
begins with template-matching exercises. Here, we compare
the original template image with its varied versions to assess
each method's response to scale, rotation, and perspective
changes. This initial phase is critical in understanding how
each feature-matching method performs under different
image transformation conditions, setting the stage for more
complex application-based testing. We measured the time
and reprojection error for each combination.

Real-Time Video Testing and Autonomous Driving
Experiment: In our comprehensive study, we conduct a
two-step experiment starting with real-time video streaming
tests to evaluate the proficiency of various feature-matching
methods in accurately detecting features in live video
footage, an essential aspect in real-world scenarios often
characterized by background noise and dynamic conditions.
Each frame in the streaming video presents a unique
challenge, requiring the algorithms to identify and match
features against variable and noisy backgrounds consistently.
Methods that excel in these conditions are advanced to the
second phase: autonomous driving simulation experiments.
In this phase, we employ 1:10 scale remote control cars to
simulate practical application scenarios, focusing on the
methods that showed promising performance in the initial
template-matching experiments. This simulation is designed
to assess the selected feature-matching methods'
applicability and robustness in a dynamic, real-world-like
environment, mirroring the challenges inherent in
autonomous vehicle navigation. The primary objective of
these tests is to gauge the algorithms' ability to accurately and
reliably identify and respond to environmental features in
real-time, a critical requirement for the effective functioning
of autonomous driving systems.

A. Data Collection and Analysis Methodology
1) Data Collection

We meticulously record several key metrics for each
feature-matching method and image transformation. These
metrics include reprojection error, time taken, memory
usage, and estimated distance. This comprehensive data
collection is crucial for evaluating the performance of each
method under various conditions. The data gathered from the
experiments are systematically compiled into a CSV file
format. This structured approach allows for an organized and
thorough analysis, enabling us to directly compare the
performance and efficiency of the different feature-matching
methods across a spectrum of image transformations.

2) BFMatcher

We use the Brute Force Matcher (BFMatcher) across all
feature-matching methods for consistency and practicality in
our comparisons. BFMatcher is known for its
straightforward approach to finding the best matches
between feature descriptors. It operates by exhaustively
comparing each descriptor in one set against every descriptor
in the other, ensuring no potential match is overlooked. For

methods using binary descriptors, such as ORB, AKAZE,
and BRISK, the BFMatcher is configured with the
NORM HAMMING norm type. This norm type is
particularly suitable for binary descriptors and aids in finding
the most accurate matches. Conversely, for the SIFT
algorithm, which utilizes floating-point descriptors, the
Euclidean (L2) norm is employed. The L2 norm is a
mathematical way to measure the distance between two
points in space, calculated as the square root of the sum of
the squared differences between corresponding coordinates.
This differentiation in the configuration of BFMatcher for
different descriptor types is critical for obtaining reliable and
accurate matching results.

The selection of BFMatcher aligns with our research
objective to evaluate these feature-matching methods'
inherent effectiveness and efficiency. By employing
BFMatcher, we aim to minimize the influence of complex
matching algorithms on our results, focusing instead on the
intrinsic capabilities of each feature-matching method. This
approach ensures that our findings reflect the actual
performance of the methods rather than the matching
algorithms' efficiency.

3) Evaluation of Timing Efficiency

We evaluate the efficiency of various feature-matching
methods by measuring the time taken to identify a sufficient
number of high-quality matches, from the initiation of the
feature detection process to the point where the algorithm
successfully meets the criteria set by Lowe's ratio test[1].
This test is crucial in our assessment, acting as a robustness
filter to ensure only the most reliable matches are selected
based on the proximity of the best match compared to the
second-best for each keypoint. This approach allows us to
gauge the speed of the matching process and the quality of
the matches, which is particularly vital in practical applications
where both speed and reliability are essential. We also establish
a specific criterion for an 'adequate number of matches,'
aligning with the requirements for subsequent homography
calculations. This setting ensures a balanced evaluation of
the quantity and quality of matches, reflective of real-world
feature-matching scenarios and practical application needs.

4) Evaluation Metrics for Feature Matching Methods

Reprojection Error: This metric evaluates feature
matching accuracy by calculating the average distance
between corresponding points in the template image and
their locations in the transformed image, following the
application of the estimated homography. A lower
reprojection error signifies greater precision in the feature
matching, indicating a more accurate alignment between the
original and transformed images.

Number of Good Matches: Utilizing Lowe's ratio test,
this metric quantifies the number of reliable match pairs. It
involves counting the pairs where the distance between the
closest and second-closest matches falls below a set
threshold, commonly 0.75. This test is instrumental in
identifying and retaining the most robust matches,
effectively filtering out less reliable or ambiguous ones.

Computation Time: This metric measures the time
required to complete the feature-matching process between
images. It directly indicates the algorithm's speed and
operational efficiency, which is particularly vital in
applications where time is a critical factor. The computation
time helps assess the practicality of the feature-matching
methods for real-time or time-constrained environments.

Maximum Detection Range: This metric gauges the
ability of feature-matching methods to detect features over
distances in real-time video streaming. It serves as a
preliminary test for the autonomous driving simulation
experiments. A feature-matching method with a limited
detection range may necessitate a faster response time, which
is crucial for real-time decision-making in scenarios such as
autonomous driving. This metric reflects the method's
suitability for applications requiring long-range perception.

Fig. 2. Four Rotated Angles.

B. Experiment I: Template Matching

In Fig.1, our chosen base image for experimentation is
Montclair State University's Red Hawk mascot, a
particularly complex subject for testing the efficacy of
feature-matching algorithms. This image was selected due to
its unique attributes that pose significant challenges for
feature matching. Notably, the mascot's distinctive fur coat
adds complexity with its textured surface, presenting an
array of similar features densely packed together. This
characteristic of the fur coat heightens the likelihood of
incorrect matches or false positives and demands that the
algorithms be more adept at discerning unique features
amidst a visually dense pattern. The fur texture notably
increases the difficulty of the feature-matching process as the
algorithms need to differentiate between subtle variations in
the pattern, simulating the challenges found in natural and
cluttered environments. In our experiment, we subject the
base image to a series of transformations designed to replicate
real-world scenarios, thus thoroughly assessing the robustness
of each feature-matching method under various conditions.
These transformations emulate typical variations encountered
in practical applications and are categorized as follows:

Perspective Changes: The perspective transformations
are applied to the base image to simulate different viewing
angles and depth variations. This aspect of the test evaluates
the algorithms' ability to adapt to changes in viewpoint and
scale. The experiment incorporates four levels of yaw
perspective transformations, set at parameters of 0.1, 0.2, 0.3,
and 0.4, offering a graded scale of perspective alteration.

Rotations: The image is rotated at various angles to test
rotational invariance. We use angles from 0° to 180° to
provide a spectrum of rotational changes ranging from
moderate to significant, as shown in Fig. 2. This step is

crucial for determining how well the algorithms can maintain
feature recognition despite the orientation of the image.

Scaling: The image undergoes resizing to different scales
to evaluate scale invariance. The chosen scaling percentages
for the experiment are 25%, 50%, 125%, and 150%,
incorporating both downscaling and upscaling. This
variation in image size tests the algorithms' capability to
handle features in images of different dimensions.

These transformation tests are integral to our method, as
they challenge the feature-matching algorithms with conditions
that closely resemble those they would encounter in real-
world applications. The outcome of these tests provides
valuable insights into each method's adaptability and
reliability across a range of common image transformations.

C. Experiment II-A: Real-time Video Streaming Test

In our experiment's real-time video streaming phase, we
optimize the camera setup for the constraints of the SBC-
Raspberry Pi4B. To manage the computing load, we set the
camera resolution to 640x480. This resolution reduction is a
strategic choice to decrease the overall computational
intensity, making it more suitable for the capabilities of a
single-board computer (SBC) like the Raspberry Pi4B,
particularly in the context of autonomous driving applications.

We control the frame rate for this test at 2 frames per
second. This rate is intentionally chosen to afford each
feature-matching method ample time to process the frames
and perform the necessary feature-matching tasks. It is a
crucial adjustment to ensure that the limitations of the SBC
do not unduly impact the effectiveness of the feature-
matching methods being tested.

This setup compares the maximum detection range for a
letter-sized printed base image. This approach allows us to
assess each method's capability to detect and match features
over various distances, an essential factor in real-world
applications like autonomous driving.

The experimental code is designed to record critical data
for each frame, including the time taken for feature matching,
the number of suitable matches determined by Lowe's ratio
test, and the estimated detection range. Additionally, we set
the template size in this experiment to 50% of the resolution.
This scale is a calculated decision to balance accuracy and
computational time, ensuring that the feature matching is
efficient and effective under the specified test conditions.

D. Experiment II-B: Autonomous Driving

We utilize a 1:10 scale race car for the autonomous driving
test component, integrating a real-world application scenario
into our study[9], [10]. The test setup involves placing a
letter-sized printed picture in front of the RC car, which is
the target for the feature-matching methods. As Fig. 3 shows,
a camera is mounted on the front of the RC car, designed to
capture the image of the printed picture as the car maneuvers.

The initial positioning of the RC car is determined by the
maximum detection range identified for each feature-
matching method from the previous real-time video
streaming tests. This strategic placement ensures that each
method is tested within its optimal operational range. The
frame rate for this test is also adjusted based on the outcomes
from the video streaming experiments, allowing us to
maintain consistency in the testing conditions.

The primary objective of this phase is to assess each
feature-matching method's practical application in an
autonomous driving scenario. Upon starting the RC car, the

system should detect the printed picture using the selected
feature-matching method. The car is then programmed to
move forward towards the target. A critical aspect of the test
is to evaluate the algorithm's capability to accurately detect
the distance to the target and instruct the RC car to stop upon
reaching a pre-set range from the printed picture.

Fig. 3. The RC with SBC and Camera.

This test is crucial in determining the real-world
applicability of the feature-matching methods in scenarios
that require precise object detection and distance estimation,
such as in autonomous vehicle navigation. The ability of the
system to detect the target and accurately respond by
stopping at the correct range is a crucial indicator of the
method's effectiveness and reliability in real-time applications.

IV. FEATURE MATCHING RESULT ANALYSIS

A. Results of Experiment I: Template Matching

In Table I, detailing the baseline conditions for each
feature matching method, it was observed that ORB
exhibited the lowest memory usage, making it the most
memory-efficient option. On the opposite end, SIFT
recorded the highest memory consumption, indicating a
relatively higher demand for system resources. In terms of
processing speed, ORB also stood out as the fastest, while
the FAST+ORB combination was the slowest. SIFT, despite
its high memory usage, was the second slowest. AKAZE and
BRISK displayed moderate performance, ranking them in
terms of efficiency between the extremes of ORB and SIFT.

TABLE L. BASELINE

FAST+ORB 150 238.79 22.33 281.17
ORB 25 3.68 0.13 157.82
ORB 50 12.80 0.16 170.54
ORB 125 1.38 0.24 170.54
ORB 150 1.88 0.31 170.54
SIFT 25 18.14 2.09 438.88
SIFT 50 6.25 3.23 470.75
SIFT 125 1.33 16.07 558.09
SIFT 150 1.20 20.37 537.70

As presented in Fig. 4, our experiments with rotated
images observed that rotations at 0, 90, and 180 degrees
resulted in similar processing times for all methods,
indicating rotational invariance, except for the FAST+ORB
combination. However, this invariance faced significant
challenges with rotations at 45 and 135 degrees (odd
multiples of 45 degrees). BRISK demonstrated the most
robust scale invariance among the tested methods, indicated
by the minor percentage change in processing time under
these conditions. AKAZE maintained a stable error rate
while showing a near 100% change in processing time for
these odd-angle rotations. While AKAZE may take longer to
process these rotations, its accuracy remains consistent. On
the other hand, FAST+ORB struggled significantly, failing
to calculate the error for almost 80% of the rotations, which
points to a lack of comprehensive rotational invariance
compared to the other methods. This limitation of the
FAST+ORB method highlights its potential inadequacies in
scenarios involving varied rotational transformations.

As shown in Table III, ORB emerged as the fastest
method in our tests, but it struggled with significant
perspective changes, a challenge that was also evident in
other methods to varying degrees. BRISK displayed the most
consistent performance when dealing with these types of
transformations. Across all tests, ORB consistently used less
memory than the established baseline, suggesting that
converting color images to grayscale could be advantageous,
as it may reduce memory consumption. This finding is
particularly relevant for edge devices, indicating that using

Method Skew [Rotate| Scale | Error | Time(s) | Memory(MB) graly Scalf dlma%.e y t(.)r videos could lower memory costs m

ORB 0 0o [100 [o [020 185.781 real-world applications.

AKAZE 0 0 100 0 2.57 420.57
TABLE IIIL. PERSPECTIVE RESULT
BRISK 0 0 100 0 3.04 400.48
FAST+ORB 0 0 100 0 12.57 406.77 Method Skew Rate Error Time (s) Memory(MB)
SIFT 0 0 100 0 11.58 499.75 ORB 0.1 1.10 0.19 161.61
ORB 0.2 15.93 0.18 161.61
Table II showed that the FAST+ORB method showed
. . . ORB 0.3 95.63 0.20 159.77
poor performance with scale changes in our experiments,

. : . ORB 04 358.21 0.18 161.61
while SIFT struggled with upscaling and took longer AKAZE 01 .09 266 396,70
processing times. Conversely, BRISK and AKAZE maintained AKAZE 02 13.03 264 396.95
stable performance across various scales. Notably, ORB AKAZE 03 33.70 247 238.04
e}rlnerge(i1 as thﬁ fastest me‘;hod1 amfong ‘;hqse tqsted. Most }(])f AKAZE 04 165.75 YT 256.69
the methods have some level of scale-invariant, and the BRISK o1 237 258 265.76
changes can also be explained with the image size. BRISK 02 6.62 254 265.76

BRISK 0.3 14.45 1.93 265.76
TABLE II. SCALE CHANGE RESULTS BRISK 04 6006 149 26576

Method Scale(Percentage) | Error | Time(s) | Memory(mb) FAST+ORB 0.1 1.94 8.84 271.30

AKAZE 25 25.27 1.42 247.17 FAST+ORB 0.2 13.20 7.46 271.29

AKAZE 50 13.47 1.55 291.45 FAST+ORB 0.3 117.63 5.67 270.92

AKAZE 125 5.56 3.56 285.16 FAST+ORB 0.4 483.77 3.14 270.71

AKAZE 150 5.16 4.72 263.70 SIFT 0.1 2.08 10.35 488.91

BRISK 25 25.30 0.81 267.55 SIFT 0.2 3.88 8.61 452.46

BRISK 50 4.18 131 275.09 SIFT 0.3 12.75 6.56 460.77

BRISK 125 2.71 2.89 275.09 SIFT 0.4 88.14 3.82 450.42

BRISK 150 2.97 3.55 281.99 . . .

By analyzing all the results of feature-matching against
FAST+ORB 25 11492 | 1.10 279.47 o .
FAST+ORB 50 10L.05 | 3.65 27954 common variations, we determined that ORB, AKAZE,
FASTIORB 125 1252 | 15.15 280,61 BRISK, and SIFT are potentially suitable methods for SBC

real-time streaming video tests. However, the FAST+ORB
combination underperformed due to its inability to maintain
rotational invariance, particularly with odd multiples of 45
degrees, which are common in real-world orientations.
Additionally, its failure to calculate error rates for a significant
portion of rotation tests indicates a lack of comprehensive
scale and rotational invariance. It is crucial for real-time
processing where rapid and accurate feature detection is
required for decision-making in dynamic environments.

AKAZE

FAST+ORB

8 -
0.098 1 o . P

0.096 o 2, -‘ .
- ° ' Ko

0.094 ;—--‘5.‘- o‘ﬁ.: \._. - ‘w

0.092 e "% ° o LI % e® o o

0.09 - - se®

0.088 =
°

opss @ .

0.084

o a5 s0 135 180

024 s . .
.?} ¥
.;r .

' v
02z @

Fig. 4. Rotation Results.

B. Results of Experiment II-A: Real-time Video Streaming
Test

We employed the same code used in the autonomous
driving test for the real video stream experiment, with the
speed parameter set to zero. We set up a threshold of 10 good
matches as a benchmark for successful feature detection and
adjusted the template resolution to approximately 50% of the
camera's resolution to balance accuracy and computational
demand. In this part of the experiment, reprojection error was
deprioritized in favor of the more critical metric of object
detection success. We gradually increased the distance of the
RC car from the printed paper, monitoring the feature-
matching process. The estimated distance at which the
method no longer produced enough good matches to detect
the object was then recorded. This distance effectively
represents the maximum operational range for each feature-
matching method in a real video streaming context.

Following the real video streaming test, it was
determined that AKAZE and BRISK possessed the
capabilities required to proceed to the autonomous driving
test phase. ORB, however, did not yield a sufficient number
of good matches to be considered adequate for this
application. Meanwhile, although accurate, SIFT required
approximately one second to complete its matching process
using the brute force matcher, which may be too slow for
real-time autonomous driving requirements where
immediate decision-making is critical.

The analysis of data points near the threshold of detection
loss revealed that, under the conditions of a 640x480 video
resolution and a template scaled to 50%, AKAZE achieved a
maximum detection range of 0.77 meters, while BRISK
extended slightly further to 1.01 meters. Regarding detection
speed, AKAZE managed an average detection time of 0.23
seconds, and BRISK was closely matched with an average of
0.25 seconds, demonstrating promptness suitable for real-
time applications.

C. Results of Experiment II-B: Autonomous Driving

In the autonomous driving test, the printed picture was
positioned at a slight angle to the RC car to simulate
perspective change, adding another layer of complexity to
the detection challenge. The car started approximately 0.7
meters from the target and was programmed to drive
autonomously towards the printed picture. The system was
designed to detect the range continuously, and once the
calculated distance to the target was less than 0.3 meters, the
RC car was instructed to stop automatically. This setup aimed
to emulate real-world conditions where perspective changes
are expected, testing the feature-matching method's ability to
adapt and accurately gauge distances for safe navigation.

The outcomes of the autonomous driving test indicated
that both AKAZE and BRISK, while capable at lower
speeds(97 out of 180), failed to perfectly pass the test when
the speed of the RC car was increased(100 out of 180). At
reduced velocities, both methods successfully stopped the
RC car before reaching the printed picture. However, at
higher speeds, they were unable to stop in time. This failure
can likely be attributed to several factors beyond detection
speed alone, such as the camera's capture rate, video
buffering delays, and the RC car's response time. These
results underscore the necessity for quick response
capabilities and more advanced or efficient hardware to meet
the demands of autonomous driving, where timely and
accurate detection and actuation are crucial.

V. COURSE PROJECT CASE: AUTONOMOUS DRIVING

To illustrate the practical application of feature-matching
techniques in an educational setting, we present a
comprehensive project within a robotics course at Montclair
State University that challenges students to apply feature-
matching algorithms on the Raspberry Pi 4. By tackling real-
world autonomous driving scenarios, students gain practical
experience that reinforces crucial theoretical concepts
through project-based learning (PBL).

A. Project Overview

The objective of the project is to build and program an
RC car that can navigate autonomously using feature-
matching algorithms. The car has a Raspberry Pi 4B for
image processing and an Arduino microcontroller for motor
control. The Powerbank, Pi4, and camera are all integrated
into the RC car with a custom-designed laser-cut board. The
project involves some key components: (1) Image processing:

Students use OpenCV to implement feature-matching
algorithms such as ORB, AKAZE, and BRISK. These
algorithms enable the car to recognize and track objects or
landmarks in its environment; (2) Servo/motor control with
Arduino: The Arduino microcontroller is programmed to
control the car's motors based on the input received from the
Raspberry Pi. This involves writing code to interpret the
feature-matching results and translate them into movement
commands; and (3)Integration and testing: Students integrate
the image processing and motor control components, testing the
car's ability to navigate through a course with various obstacles
and landmarks. They evaluate the performance of different
feature-matching algorithms in real-time scenarios.

B. Implementation Steps

The implementation steps include (1) Hardware setup:
Students assemble the RC car with a camera mounted on the
front, connected to the Raspberry Pi, ensure the Raspberry Pi
communicates with the Arduino, which controls the car's
motors, and integrate the power bank, Pi4, and camera on the
RC car using a custom-designed laser-cut board; (2)
Software development: Students install OpenCV on the
Raspberry Pi and write scripts to capture and process video
frames, implement feature-matching algorithms and test
their performance in detecting and tracking objects, and
program the Arduino to control the car's movements based
on the input from the Raspberry Pi. Then they develop codes
for the RC car to follow the selected templated picture at a
proper distance, move when the picture moves, stop when
the picture stops, and turn when the picture turns. This
simulates adaptive cruise control, a Level 1 autonomous
driving feature; and (3) Testing and optimization: Students
conduct experiments to evaluate the car's performance under
different conditions, such as varying light levels and obstacle
configurations. They also optimize the code for efficiency
and accuracy, ensuring the car can navigate smoothly and
respond quickly to environmental changes.

C. Results and Learning Outcomes

By completing this project, students gain hands-on
experience with advanced computer vision techniques and
their applications in autonomous systems. They learn to
work collaboratively, solve complex problems, and apply
theoretical knowledge in a practical context. The project-
based approach enhances their understanding of feature
matching, image processing, and embedded systems,
preparing them for future challenges in the field of computer
vision and robotics. Students benefit from:

1) Hands-On Learning

Students apply theoretical knowledge to real-world
problems by assembling and programming the RC car,
enhancing their understanding and retention of complex
concepts. This hands-on experience solidifies their grasp of
computer vision and embedded systems.

2) Collaborative Learning

Working in teams, students design, implement, and test
their RC car, fostering a collaborative environment critical
for professional settings.

3) Reflective Practice

Students reflect on their experiences, analyze their
performance, and identify areas for improvement. Reflective
sessions during and after each project meeting help them
discuss successes and challenges, fostering a continuous
improvement mindset.

4) Constructivist Theories of Education

Students build their understanding through the iterative
process of designing, testing, and refining their Pi4-
controlled RC car, reinforcing the connection between
theoretical concepts and practical applications. Additionally,
a simple sample code will be provided to the students to help
them get started. Teachers will encourage students to
optimize the code with proper feature-matching methods,
functional programming, exception control, digital filtering,
and other techniques.

Feature matching serves as the core method in this
project, providing both a technical challenge and a valuable
educational tool within the PBL framework. Students are
encouraged to explore various feature-matching techniques,
each with its trade-offs—some methods offer high accuracy
but are slower. In contrast, others are faster but lack precision.
The challenge lies in selecting a balanced approach or
modifying the parameters of these methods to enhance the
efficiency of slower techniques or increase the accuracy of
quicker ones. The project's success is measured by the
performance of the RC car, with students allowed to fine-
tune their settings to find the optimal configuration for their
chosen feature-matching method. The instructor's prior
experiments with different feature-matching algorithms on
the Raspberry Pi 4B provide a solid foundation of knowledge,
ensuring that students understand how each method performs
under resource-constrained conditions.

While all feature-matching methods may be capable of
identifying a target image, detecting the image in real-time
video streams with an acceptable response time is a complex
task. This challenge is compounded by the need to design a
practical algorithm for the RC car to follow the target image
accurately. The final test, where another student or a teaching
assistant moves the target image, requires the RC car to
respond correctly in real-time. Optimizing the driving
algorithm to achieve this requires significant trial and error
and a deep understanding of the project's technical and
practical aspects. This complexity ensures that the project is
far from trivial, providing students with a rigorous, hands-on
learning experience that helps them with real-world
challenges in computer vision and robotics.

This project exemplifies how project-based learning can
be effectively implemented in engineering and computing
education, providing students with valuable skills and
experiences directly applicable to their future careers. By
engaging in this hands-on project, students deepen their
understanding of the subject matter and develop essential
soft skills such as teamwork, communication, and critical
thinking. This holistic approach to learning ensures that
students are well-equipped to tackle the challenges of the
modern engineering and technology landscape.

VI. CONCLUSION AND FUTURE WORK

This study establishes a framework for comparing feature-
matching methods, offering substantial potential for enhancement
through future research. This proposed framework not only
evaluates current methodologies but also sets the stage for
ongoing advancements in feature matching, particularly
within low-end hardware environments. Such future works
could extend the scope and depth of this research, leading to
more refined and efficient feature-matching solutions
adaptable to various real-world applications.

Enhancing the test environment to include a broader
range of single-board computers (SBCs) is essential for the

future progression of this research. While effective, the
current study's reliance on the Raspberry Pi 4 only represents
a fraction of the rapidly diversifying SBC market. With the
expected release of the Raspberry Pi 5 and the continuous
introduction of new SBC models, it is crucial to evaluate
feature-matching methods across different hardware platforms.
Future research will focus on testing various SBCs with
varying processing power, memory capacity, and graphical
capabilities. This approach would shed light on how these
differing hardware specifications impact the performance of
feature-matching algorithms. Moreover, conducting
comparative analyses between different generations of the
same SBC, such as between the Raspberry Pi 4 and the
forthcoming Raspberry Pi 5, could provide valuable insights
into the effects of hardware technological advancements on
the efficiency and accuracy of these algorithms.

This study also underscores the effectiveness of project-
based learning (PBL) in enhancing students' understanding
of complex concepts through hands-on projects, as
demonstrated by the RC car project. Overall, this project-
based approach ensures students are well-prepared for
modern engineering and technology, combining technical
knowledge with essential soft skills. Future work will
continue to explore the integration of advanced
computational techniques and a broader range of hardware
platforms, further enhancing this research's practical and
educational impacts.

ACKNOWLEDGMENT

This work is supported in part by the National Science
Foundation under Grants CNS-2117308 and CMMI-2138351.

REFERENCES

[11D. G. Lowe, “Distinctive Image Features from Scale-Invariant
Keypoints,” Int. J. Comput. Vis., vol. 60, no. 2, pp. 91-110, Nov. 2004,
doi: 10.1023/B:VISI.0000029664.99615.94.

[2] R. Scherer, “Concluding Remarks and Perspectives in Computer
Vision,” in Computer Vision Methods for Fast Image Classification and
Retrieval, vol. 821, in Studies in Computational Intelligence, vol. 821.,
Cham: Springer International Publishing, 2020, pp. 137-137. doi:
10.1007/978-3-030-12195-2_6.

[3] M. D. Ansari, A. R. Mishra, and F. T. Ansari, “New Divergence and
Entropy Measures for Intuitionistic Fuzzy Sets on Edge Detection,” Int.
J. Fuzzy Syst., vol. 20, no. 2, pp. 474487, Feb. 2018, doi:
10.1007/s40815-017-0348-4.

[4] K. T. M. Han and B. Uyyanonvara, “A Survey of Blob Detection
Algorithms for Biomedical Images,” in 2016 7th International
Conference of Information and Communication Technology for
Embedded Systems (IC-ICTES), Bangkok, Thailand: IEEE, Mar. 2016,
pp. 57-60. doi: 10.1109/ICTEmSys.2016.7467122.

[5]1 S. A. K. Tareen and Z. Saleem, “A comparative analysis of SIFT, SURF,
KAZE, AKAZE, ORB, and BRISK,” in 2018 International Conference
on Computing, Mathematics and Engineering Technologies (iCoMET),
Sukkur: IEEE, Mar. 2018, pp- 1-10. doi:
10.1109/ICOMET.2018.8346440.

[6] J. Ma, X. Jiang, A. Fan, J. Jiang, and J. Yan, “Image Matching from
Handcrafted to Deep Features: A Survey,” Int. J. Comput. Vis., vol. 129,
no. 1, pp. 23-79, Jan. 2021, doi: 10.1007/s11263-020-01359-2.

[7]1 Z. Wang, H. Zhu, Y. Ma, and A. Basu, “XAI Feature Detector for
Ultrasound Feature Matching,” in 2021 43rd Annual International
Conference of the IEEE Engineering in Medicine & Biology Society
(EMBC), Mexico: IEEE, Nov. 2021, pp. 2928-2931. doi:
10.1109/EMBC46164.2021.9629944.

[8] S. Karim, Y. Zhang, A. A. Brohi, and M. R. Asif, “Feature Matching
Improvement through Merging Features for Remote Sensing Imagery,”
3D Res., vol. 9,no. 4, p. 52, Dec. 2018, doi: 10.1007/s13319-018-0203-
X.

[9] W. Wang and L. Paulino, “Instill Autonomous Driving Technology into
Undergraduates via Project-Based Learning,” in 2021 [EEE Integrated
STEM Education Conference (ISEC), Princeton, NJ, USA: IEEE, Mar.
2021, pp. 284-287. doi: 10.1109/ISEC52395.2021.9763928.

[10] L. Paulino, M. Zhu, and W. Wang, “Learning Autonomous Driving in
Tangible Practice: Development and On-Road Applications of a 1/10-
Scale Autonomous Vehicle,” in 2021 IEEE Frontiers in Education
Conference (FIE), Lincoln, NE, USA: IEEE, Oct. 2021, pp. 1-4. doi:
10.1109/FIE49875.2021.9637402.

[11] D. Kokotsaki, V. Menzies, and A. Wiggins, “Project-based learning:
A review of the literature,” Improv. Sch., vol. 19, no. 3, pp. 267-277,
Nov. 2016, doi: 10.1177/1365480216659733.

[12] T. Morgan, “Enabling Meaningful Reflection Within Project-Based-
Learning in Engineering Design Education,” in Design Education
Today, D. Schaefer, G. Coates, and C. Eckert, Eds., Cham: Springer
International Publishing, 2019, pp. 61-90. doi: 10.1007/978-3-030-
17134-6_4.

[13] N. F. Jumaat, Z. Tasir, N. D. A. Halim, and Z. M. Ashari, “Project-
Based Learning from Constructivism Point of View,” 4dv. Sci. Lett.,
vol. 23, no. 8, pp. 7904-7906, Aug. 2017, doi: 10.1166/as1.2017.9605.

[14] E. Rublee, V. Rabaud, K. Konolige, and G. Bradski, “ORB: An
efficient alternative to SIFT or SURF,” in 2011 International
Conference on Computer Vision, Barcelona, Spain: IEEE, Nov. 2011,
pp- 2564-2571. doi: 10.1109/ICCV.2011.6126544.

[15] P. F. Alcantarilla, A. Bartoli, and A. J. Davison, “KAZE Features,” in
Computer Vision — ECCV 2012, vol. 7577, A. Fitzgibbon, S. Lazebnik,
P. Perona, Y. Sato, and C. Schmid, Eds., in Lecture Notes in Computer
Science, vol. 7577. , Berlin, Heidelberg: Springer Berlin Heidelberg,
2012, pp. 214-227. doi: 10.1007/978-3-642-33783-3_16.

[16] S. Leutenegger, M. Chli, and R. Y. Siegwart, “BRISK: Binary Robust
invariant scalable keypoints,” in 2011 International Conference on
Computer Vision, Barcelona, Spain: IEEE, Nov. 2011, pp. 2548-2555.
doi: 10.1109/ICCV.2011.6126542.

[17] O. Yakovleva and K. Nikolaieva, “RESEARCH OF DESCRIPTOR
BASED IMAGE NORMALIZATION AND COMPARATIVE
ANALYSIS OF SURF, SIFT, BRISK, ORB, KAZE, AKAZE
DESCRIPTORS,” Adv. Inf. Syst., vol. 4, no. 4, pp. 89-101, Dec. 2020,
doi: 10.20998/2522-9052.2020.4.13.

[18] M. Bansal, M. Kumar, and M. Kumar, “2D object recognition: a
comparative analysis of SIFT, SURF and ORB feature descriptors,”
Multimed. Tools Appl., vol. 80, no. 12, pp. 18839-18857, May 2021,
doi: 10.1007/s11042-021-10646-0.

[19] R. Pramudita and F. 1. Hariadi, “Development Of Techniques to
Determine Object Shifts for PCB Board Assembly Automatic Optical
Inspection (AOI),” in 2018 International Symposium on Electronics and
Smart Devices (ISESD), Bandung: IEEE, Oct. 2018, pp. 1-4. doi:
10.1109/ISESD.2018.8605458.

[20] L. Kalms, K. Mohamed, and D. Gohringer, “Accelerated Embedded
AKAZE Feature Detection Algorithm on FPGA,” in Proceedings of the
8th International Symposium on Highly Efficient Accelerators and
Reconfigurable Technologies, Bochum Germany: ACM, Jun. 2017, pp.
1-6. doi: 10.1145/3120895.3120898.

[211 E. Azimi, A. Behrad, M. B. Ghaznavi-Ghoushchi, and J.
Shanbehzadeh, “A fully pipelined and parallel hardware architecture for
real-time BRISK salient point extraction,” J. Real-Time Image Process.,
vol. 16, no. 5, pp. 1859-1879, Oct. 2019, doi: 10.1007/s11554-017-
0693-4.

[22] K. Moren and D. Goéhringer, “A framework for accelerating local
feature extraction with OpenCL on multi-core CPUs and co-
processors,” J. Real-Time Image Process., vol. 16, no. 4, pp. 901-918,
Aug. 2019, doi: 10.1007/s11554-016-0576-0.

[23] J. -, M. Husna, and A. R. Lubis, “OpenCV Using on a Single Board
Computer for Incorrect Facemask-Wearing Detection and Capturing,”
J. Inform. Telecommun. Eng., vol. 5, no. 2, pp. 315-323, Jan. 2022, doi:
10.31289/jite.v5i2.6118.

[24] S. Brahmbhatt, Practical OpenCV. Berkeley, CA: Apress, 2013. doi:
10.1007/978-1-4302-6080-6.

[25] Montclair State University, Redhawk Student Service. 2023. Accessed:
Jan. 04, 2024. [Png]. Available: https://images.app.goo.gl/pzcBxJj
HqwEowLGhS.

