

Preparing Mechanical Engineering Students for Industry 4.0: an

Internet of Things Course

Abstract

Smart products can sense their environment, analyze lots of data (big data), and connect to the

Internet to allow exchanging data. These capabilities are known as the Internet of Things (IoT)

technologies. As they become ubiquitous, smart products provide enormous opportunities for

scientists and engineers to invent new products and influence interconnected systems of vast scale.

Mechanical engineers will play a significant role in innovating and designing smart products and

manufacturing systems of the Industry 4.0 revolution. However, the current mechanical

engineering curriculum has not kept pace. In this paper, we present details of a new IoT course for

mechanical engineering students. The course contains active learning and project-based learning

components. Specifically, a smart flower pot device was integrated into the lectures of the course

as an active learning platform. In addition, the course incorporates team projects involving design

of smart products. The agile method, often used in software development companies, is

introduced to the mechanical engineering students to manage their project development process.

The paper concludes with assessment details from the first offering of the new course.

1 Introduction

Today, there are many consumer smart products in our lives such as smart door locks, bike locks,

smart kitchen appliances, irrigation controllers, smart thermostats (e.g. Nest), and Amazon Echo,

just to name a few. Such physical objects (things) can connect to the Internet for data sharing and

control. The technology is known as the Internet of Things (IoT).

As smart products become more ubiquitous, the STEM workforce demands are shifting rapidly,

but the current mechanical engineering curriculum at Washington State University Vancouver and

elsewhere has not kept pace. Mechanical engineers will play a significant role in innovating and

designing smart products and manufacturing systems that are driving the Industry 4.0 revolution.

The mechanical engineer of the future still needs the same foundation of technical skills and

ability to solve problems. But additional skills are needed to participate in the IoT

revolution.

To meet this need, we developed a new modernized mechatronics course that focuses on the IoT

technologies, and incorporates project-based learning (PjBL). Our overarching goal was to

integrate skills from computer science and mechanical engineering, and bridge the gap in the

mechanical engineering curriculum to better prepare future students for the Industry 4.0

revolution.

We are building on prior work by others using active learning [1, 2], PjBL [3–6], agile software

development methods [7–9], as well as existing IoT course materials such as [10–13]. The

existing courses tend to target Electrical Engineering and Computer Science students and the

creation of the underlying IoT technologies, especially low-level software. Mechanical engineers

need to develop smart products and systems for Industry 4.0 through integration of the IoT

technologies not creation of them. Thus, we kept this important distinction front and center in our

curriculum. Another unique feature is the use of a formal software engineering methodology by

Mechanical Engineering students to develop high quality code.

In this paper, we present an overview of the curriculum developed for the new course. We provide

details of the instructional design elements and assessment results from the first offering of the

new course.

2 Overview of the new curriculum

The mechanical engineering program at WSU Vancouver has a senior-level elective course on

microcontrollers. This course is part of a 3-course sequence in the mechatronics option track. It is

a 3-credit semester course with two 75-minute lectures per week. In Spring 2023, the new

curriculum was offered in this course to introduce the IoT curriculum into the mechatronics track

and the program.

The curriculum contains 10 weeks of instructional material organized into five modules. The last

5 weeks constitute the class project phase where student teams develop smart products they

propose.

Module 1: Overview of Python - (3 weeks) This is an introductory review of Python programming

language. Data types, strings, lists, dictionaries, loops, conditionals and functions are

reviewed.

Module 2: Data Collection - (2 weeks) This module examines interfacing sensors and actuators to

the microcontroller (Raspberry Pi) to explain how a typical mechatronic system is designed.

Circuit diagrams are presented for each type of device and code segments are given for hands-on

demonstrations.

Module 3: Data Transmission and Processing - (2 weeks) This module starts with an overview of

of cloud computing. Then, programming details on how to retrieve weather forecast data from the

National Oceanic and Atmospheric Administration (NOAA) servers are presented.

Module 4: Data Transmission and User Interfaces - (2 weeks) This module starts with an

overview of the MQTT protocol for network communications. Then, programming details of how

to build a remote user interface with gauges, digital displays, and buttons are presented for

real-time display of data transmitted over the Internet from a smart device.

Module 5: Software Engineering - (1 week) This module starts with an overview of the software

process models. The Agile software development method is introduced and its pros and cons are

analyzed. To help students easily manage their projects, Trello software [14] is introduced as a

management tool for the class projects.

Class project - (5 weeks) Students work in small teams and propose a smart product to build as

their class project. The project requires using the agile software development method and

building a prototype device. At the end, student teams present their project to the class.

2.1 Design elements of the course

Active learning - Active learning increases student success in STEM [1, 2, 15]. In this course,

we used Jupyter notebooks [16] to implement active learning in Module 1. A Jupyter notebook is

a free, open-source, web application that allows students to create and share documents

containing live code, equations, visualizations and narrative text.

Module 1 - Lectures for the first module gave an overview of Python and were held in a computer

lab. In each lecture, students started from an initial Jupyter notebook that contained just text

explaining concepts as shown in Figure 1a. There were no code examples in this initial notebook.

Each student was sitting at a computer with the notebook open on the screen. The instructor

showed the same notebook on the projector screen. As the instructor explained concepts, code

examples were added to the notebook as shown in Figure 1b. Students were typing these

examples into their own notebooks along with the instructor and running them. If there were any

mistakes, they got immediate feedback from the Jupyter notebook. The active engagement in the

lecture generated many questions from the students.

Each notebook also contained several sections called “Your Turn” with questions for the students

to work on (Figure 1a). When the lecture reached a Your Turn section, the instructor paused the

lecture and allowed the students to work on the problems on their own. Students were typing

Python code directly into the notebook and testing it. Again, lots of interaction took place with

the instructor and among the students. Then, the instructor typed the solution to show the results

to the class and explained the details. The lecture resumed with the next topic in the notebook

following the same approach. At the end of each notebook was a section called “IoT Example.”

This section had a problem to show how the programming concepts they just learned are applied

to real-life IoT programming situations. Again, the students first worked on these problems for a

short while on their own, then the solutions were explained. After the lecture was over, the

instructor posted a complete notebook with text, sample code segments, and solutions for the

Your Turn and IoT Example sections as a complete set of lecture notes.

Modules 2-4 - Starting with module 2, the class moved to a classroom where 10 stations with the

smart flower pots were set up. During each lecture, two students shared one station. The same

active learning approach was continued in Modules 2-4 but this time PowerPoint slides were used

for the lectures. In the slides, there were “Your Turn” sections. Students started from a skeletal

Python code file provided to them and completed the code while trying to run it on the flower pot

at their stations. In these modules we used the Thonny Python editor [17] that comes with the

Raspberry Pi instead of the Jupyter notebooks. Once again, a very active lecture environment was

generated with this approach. After the lecture, the instructor posted complete PowerPoint slides

and files containing Python code.

Smart flower pot - The system consists of a flower pot on a motorized rotating base platform

(Figure 2). The clear plastic bottom section of the pot is a water reservoir with a submersed

pump. The white plastic top part is where a plant can be placed. The smart flower pot contains a

light sensor to measure the amount of light the plant receives. It also has sensors to measure the

soil moisture, water level in the reservoir and temperature, and humidity sensors for ambient air.

All of the electronic components, wiring, and a Raspberry Pi are housed inside the metal pan at

the base of the flower pot. Each flower pot is connected to a monitor, keyboard, and mouse to

construct a workstation in the computer lab. The smart flower pot was custom designed and built.

Excluding the Raspberry Pi , the rest of the hardware cost about $200 per pot.

The smart flower pot can connect to the National Oceanic and Atmospheric Administration

(NOAA) cloud service to retrieve 7-day weather forecast for the location of the pot, take

measurements using its sensors, and adjust its actions based on the forecast to periodically rotate

the plant and deliver just the right amount of water to keep it alive. Its functions can be monitored

over the Internet using a remote dashboard with gauges, digital displays and trend charts.

Figure 2: Student station with smart flower pot. It can connect to a cloud service to retrieve 7-day weather forecast for

the location of the pot, take measurement using its sensors and adjust its actions based on the forecast to periodically

rotate the plant and deliver just the right amount of water to keep it alive.

Project-based learning to frame the curriculum and instruction - In project-based learning

(PjBL), students learn the course material from completing a project, which contains and frames

the curriculum and instruction [18]. PjBL has been shown to be significantly more effective for

student learning in engineering education and in mechatronics courses [3–6].

At the end of the semester, student teams are assigned a class project. Each student team can

either choose to build a new smart product or use a flower pot and develop complete control

software and remote dashboard for it. Each team submits a proposal to the instructor for

feedback. Once a project is approved, parts are ordered by the department staff for the new smart

products to be built. Each team is required to use Trello to manage their project, track progress,

and collaborate with teammates. Instructor has access to each team’s Trello site to monitor their

progress. At the end, each team submits a report, gives project presentation and demo and returns

the prototype device to the department.

Agile software engineering methodology - Developing high quality code is challenging,

especially for non-Computer Science majors [8]. The mechanical engineering students tend to use

an ad hoc approach in code development. The Agile method is systematic and used often by the

rapidly growing and volatile Internet software industry for project management [9].

The Agile method was introduced in Module 5. We used Trello [14] as the software platform to

implement the Agile method. Fundamental concepts of the method were explained and hands-on

demonstrations of how to use Trello were provided to the student teams. Student teams

incorporated this method throughout the class project in the last 5 weeks of the course.

Practice problems - Each week practice problems were assigned, but were not graded. Instead,

students were provided with solution files as well as recommendations for how to use the

problems to enhance their learning and confidence in the material covered. At the end of each

course module, students completed a quiz containing exercises similar to the assigned practice

problems.

3 First offering of the course

We piloted these materials in an elective mechatronics course. In Spring 2023, the course

consisted of 19 students (16 seniors and 3 juniors), six were electrical engineering students and

the rest were from mechanical engineering. None of the students had prior experience with

Python, but all had some programming experience. After 10 weeks of instruction to cover

Modules 1 through 5, the lectures were converted into team meeting times in the same classroom.

In the last 5 weeks of the semester, during the regular lecture hours student teams met in the

classroom and worked on their team projects and the instructor walked around the classroom to

talk to the teams to help and to discuss ideas for their projects.

Five teams were formed by the students. Two teams chose to build new IoT devices while the

others chose to use the flower pots as their smart device. The project required each team to

develop a functioning IoT device with a remote dashboard for control and monitoring over the

Internet. They also had to use agile method in project management and give a presentation at the

end. This was the first time engineering students learned about it and used it to manage their team

projects.

One team chose to develop a smart soap dispenser (Figure 3a). Such a device can be used at

airports, hospitals, malls, etc. where multiple devices can be deployed throughout the facility and

their usage can be monitored remotely (Figure 3b) by one person. As the dispensers empty out,

staff can receive alerts over the Internet to refill them. Another team built a ’Connect-4’ game

board (Figure 3c). A person sitting by the board can play the game against an opponent located

anywhere in the world who is using the remote dashboard (Figure 3d). The dashboard is updated

in real-time showing the status of the actual board. The remote user can play a chip over the

Internet, which is delivered into the board via a motorized mechanism. Other teams selected to

use flower pots to develop remote monitoring and control software. They ran week-long

experiments to keep a plant alive automatically while monitoring various sensor readings

remotely (Figures 3e, 3f).

4 Assessment Results

To align our assessments with the IoT content and skills, first we developed a concept inventory

of all modules of the new curriculum. After completing each module, students were given a

module quiz and a survey to assess the concepts/skills addressed in that module. In each quiz,

students were given 1 hour to complete it. Each module required using a computer to demonstrate

programming skills. In addition, modules 2-4 required using the flower pots to demonstrate their

skills with the hardware and software. The fifth module “Software Engineering” was devoted to

introduction of the agile method for project management. Therefore, we observed and assessed

student accomplishments for it in the project assignment instead of using a quiz. We analyzed the

survey responses for each module and carefully considered student comments. In the following

paragraphs, we present a summary of the evaluations.

Module 1 quiz contained 12 programming questions that spanned skills from all major topics in

the module leading to a maximum score of 36. Students with the lowest three scores indicated

they ran out of time. As shown in Figure 4a, if we consider all scores, the students did well

overall (median = 33, st. dev. 4.8). If the lowest three scores are excluded, the median improves

even more as expected (median = 34.5, st. dev. 3.6).

Survey responses indicated that the in-class examples, active learning components and Jupyter

notebooks were very successful. Students noted enjoying the ability to learn at their own

pace.

Module 2 targeted data collection from the sensors of the flower pot using various programming

approaches such as looping and event-driven. It also involved interfacing sensors, motors and

controlling them with specific software routines.

As seen in Figure 4b, overall, students did well in this quiz but there was more spread in the

grades (median = 11, st. dev. = 1.61). The programming skills involved in this module are more

complex than the previous modules and required application of completely new knowledge to the

real device.

The survey results indicated that although students participated in more in-class active learning

exercises in this module than the previous modules, they wanted even more hands-on

practice.

Module 3 quiz contained three programming questions requiring demonstration of skills such as

constructing URL queries for the NOAA servers to retrieve weather forecast data, understanding

JSON data files, retrieving individual pieces of information from data files, etc. Students wrote

programs and ran them on the flower pots. As it can be seen in the Figure 4b, students did very

well (median = 8, st. dev. = 0.67).

Survey responses indicated similar results with great success in using the active learning

exercises, Jupyter notebooks and practice assignments. The microprocessor in the flower pots

uses Linux operating system. Even though the curriculum does not have anything to do with the

operating system, one student found it to be confusing to be using anything other than Windows

operating system.

Module 4 quiz contained three questions targeting skills such as building a remote dashboard with

real-time updates from the flower pot over the Internet, programming the dashboard and

microcontroller for remote procedure calls, etc.

As seen in Figure 4d, the majority of the students demonstrated strong grasp of the concepts

through developing working programs and demonstrating them to the instructor during the quiz

(median = 9, st. dev. = 0.7).

Once again, survey results showed that the practice assignments and in-class activities to be very

helpful. They also thought seeing things happen in the flower pot over the Internet made the

lectures more enjoyable. However, further improvements in some logistics, such as uploading the

files to the course website a few days before the lecture, could help students study the

programming details and come to the lecture more prepared.

Module 5 was about software engineering, specifically learning/applying the agile method for

project management. An initial rubric for the skills/outcomes expected from the project was

developed and used in the grading (Figure 5).

1 2 3 4 5 total points

smart basic 5 5 5 5 5 5

smart innovative 1 5 5 4 5 5

code design (CSV?) 6 10 10 5 10 10

working 5 5 5 5 5 5

total: 17 25 25 19 25 25

TB design 5 5 5 4 5 5

innovative 3 5 5 2 5 5

working 5 5 5 5 5 5

total: 13 15 15 11 15 15

contributed to team x x x x x

worked effectively with others x x x x x

Trello setup 10 10 10 10 10 10

Trello usage 15 15 15 15 15 15

total: 25 25 25 25 25 25

all headings there 2 2 2 2 2 2

clear writing 3 3 3 3 3 3

grammer/spelling 2 2 2 2 2 2

figures 3 2 3 3 3 3

total: 10 9 10 10 10 10

PowerPoint quality 4 5 5 5 5 5

delivery 3 5 5 5 5 5

demo 5 5 5 5 5 5

total: 12 15 15 15 15 15

Team

Figure 5: Project rubric for the skills/outcomes expected from the project that was used in grading.

All teams completed the projects successfully and demonstrated working IoT devices they built.

Most teams came up with innovative ideas and implemented them except for one team with a

more basic design. Some grade points were lost due to missing axis units or incomplete figure

captions in reports, and small things missing in the developed software. Overall, there was great

excitement in the classroom throughout the 5 weeks of project work and the final presentations

were very enjoyable.

5 Conclusions

In this paper, a new mechanical engineering course on Internet of Things (IoT) was presented.

The course was designed to bridge a gap in STEM education, specifically in mechanical

engineering, to better prepare future students for the Industry 4.0 revolution and for smart product

design. The new curriculum focuses on the IoT technologies and brings software engineering

methods from computer science into mechanical engineering.

A smart flower pot was custom designed as a platform to be used throughout the course so

students could gain hands-on experience with the IoT technologies. The smart flower pot can

connect to the NOAA cloud service to retrieve 7-day weather forecast for the location of the pot,

take measurements using its sensors, and adjust its actions based on the forecast to periodically

rotate the plant and deliver just the right amount of water to keep it alive. The flower pot functions

can be monitored over the Internet using a remote dashboard with gauges, digital displays and

trend charts.

Active learning in lectures were implemented using Jupyter notebooks. In each lecture, there are

multiple “Your Turn” sections where students can try the materials just shown in the lecture using

the Jupyter notebooks or a compiler on Raspberry Pi and a flower pot to test their understanding

and to try “what-if” scenarios.

The course also contains a project where student teams work on building smart products. The

popular agile method used by the tech companies in developing software was introduced to the

mechanical engineering students. Using the Trello software platform and the agile method, the

teams could manage their project over the 5-week project timeline.

Assessment results from the first offering of the course are encouraging. A majority of the

students could demonstrate their newly gained skills on module quizzes. Survey results indicate

overall satisfaction with the use of the Jupyter notebooks, the active learning environment during

the lectures, and the practice assignments that supplemented the in-class activities. Project

presentations and demos at the end of the course created a great excitement for the entire class.

We will be offering the course again with slight changes in the curriculum and will be reporting

the results in the future.

Many universities have mechatronics courses, which can be replaced by the new course. Coupled

with the inexpensive hardware (≈$200 per station) and the free open-source software, the

products of this work can be transferred to other institutions increasing the potential for high

impact in STEM education. At institutions with large class sizes, scalability can be achieved by

holding the lectures in a large computer lab but usually these labs are set up for open access. As a

result, the flowerpots may need to be set up before each lecture and taken away after. Another

possibility is to hold multiple sections of the course with smaller section sizes.

Acknowledgments

This material is based upon work supported by the National Science Foundation under Grant No.

DUE-IUSE-2116226. Any opinions, findings, and conclusions or recommendations expressed in

this material are those of the authors and do not necessarily reflect the views of the National

Science Foundation.

References

[1] P. Seeling, “Active learning moves programming students from novice to skilled,”

https://www.pearsoned.com/active-learning-programming-skilled/, 2016.

[2] O. Mironova, I. Amitan, J. Vilipõld, and M. Saar, “Active learning methods in programming

for non-IT students.” International Conference e-Learning, 2016.

[3] N. L. Toner and G. B. King, “Restructuring an undergraduate mechatronic systems

curriculum around the flipped classroom, projects, LabVIEW, and the myRIO.” Boston:

American Control Conference (ACC), July 6-8, 2016.

[4] S. Chandrasekaran and J. M. Long and M. A. Joordens, “Evaluation of student learning

outcomes in fourth year engineering mechatronics through design based learning

curriculum.” IEEE Frontiers in Education Conference (FIE), 2015.

[5] J. Mynderse and J. Shelton, “Assessment of an improved problem-based learning

implementation in a senior/graduate mechatronic design course.” ASEE Annual

Conference and Exposition, 2015.

[6] K. Meah, “First-time experience of teaching a project-based mechatronics course.” ASEE

Annual Conference and Exposition, 2016.

[7] R. C. Martin, Agile Software Development: Principles, Patterns, and Practices. Upper

Saddle River, NJ, USA: Prentice Hall PTR, 2003.

[8] M. Guzdial and A. Forte, “Design Process for a Non-majors Computing Course,” in

Proceedings of the 36th SIGCSE Technical Symposium on Computer Science Education, ser.

SIGCSE ’05, 2005, pp. 361–365.

[9] P. Abrahamsson, O. Salo, J. Ronkainen, and J. Warsta, “Agile Software Development

Methods: Review and Analysis,” CoRR, vol. abs/1709.08439, 2017.

[10] J. He, D. C.-T. Lo, Y. Xie, and J. Lartigue, “Integrating Internet of Things (IoT) into STEM

undergraduate education: Case study of a modern technology infused courseware for

embedded system course.” IEEE Frontiers in Education Conference (FIE), 2016.

[11] D. V. Gadre, R. S. Gaonkar, S. N. Ved, and N. Prasannakumar, “Embedded systems and

Internet of Things (IoTs) - challenges in teaching the ARM controller in the classroom.”

ASEE Annual Conference and Exposition, 2017.

[12] P. Bisták, R. Moezzi, F. Semeraro, and G. Nicassio, “Teaching IoT Using Raspberry Pi

Based RC-Car,” 2020, pp. 1–6.

[13] C. Rennick, C. Hulls, D. Wright, A. J. B. Milne, E. Li, and S. Bedi, “Engineering design

days: Engaging students with authentic problem-solving in an academic hackathon.”

ASEE Annual Conference and Exposition, 2018.

[14] Trello.org, “Trello Software for Agile Method,” https://trello.com, Jan 2024.

[15] C. Martı́nez and M. Muñoz, “ADPT: An active learning method for a programming lab

course.” Proceedings of the 10th International CDIO Conference, Universitat Politècnica

de Catalunya, Barcelona, Spain,, 2014.

[16] Jupyter.org, “Jupyter Notebook,” https://jupyter.org/index.html, June 2019.

[17] Thonny.org, “Thonny Python IDE,” https://thonny.org, Jan 2024.

[18] J. Larmer and J. Mergendoller, “The main course, not dessert,” Buck Institute

(www.bie.org), 2011.

