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Abstract

Recently, a new class of non-convex optimization problems motivated by the
statistical problem of learning an acyclic directed graphical model from data
has attracted significant interest. While existing work uses standard first-order
optimization schemes to solve this problem, proving the global optimality of such
approaches has proven elusive. The difficulty lies in the fact that unlike other
non-convex problems in the literature, this problem is not “benign”, and possesses
multiple spurious solutions that standard approaches can easily get trapped in. In
this paper, we prove that a simple path-following optimization scheme globally
converges to the global minimum of the population loss in the bivariate setting.

1 Introduction

Over the past decade, non-convex optimization has become a major topic of research within the
machine learning community, in part due to the successes of training large-scale models with simple
first-order methods such as gradient descent—along with their stochastic and accelerated variants—
in spite of the non-convexity of the loss function. A large part of this research has focused on
characterizing which problems have benign loss landscapes that are amenable to the use of gradient-
based methods, i.e., there are no spurious local minima, or they can be easily avoided. By now,
several theoretical results have shown this property for different non-convex problems such as:
learning a two hidden unit ReLU network [48], learning (deep) over-parameterized quadratic neural
networks [43, 27], low-rank matrix recovery [19, 13, 3], learning a two-layer ReLU network with
a single non-overlapping convolutional filter [6], semidefinite matrix completion [4, 20], learning
neural networks for binary classification with the addition of a single special neuron [30], and learning
deep networks with independent ReL.U activations [26, 11], to name a few.

Recently, a new class of non-convex optimization problems due to Zheng et al. [5S1] have emerged in
the context of learning the underlying structure of a structural equation model (SEM) or Bayesian
network. This underlying structure is typically represented by a directed acyclic graph (DAG), which
makes the learning task highly complex due to its combinatorial nature. In general, learning DAGs is
well-known to be NP-complete [8, 10]. The key innovation in Zheng et al. [51] was the introduction
of a differentiable function h, whose level set at zero exactly characterizes DAGs. Thus, replacing the
challenges of combinatorial optimization by those of non-convex optimization. Mathematically, this
class of non-convex problems take the following general form:

m@in f(©) subjectto h(W(©)) =0, (1)

where © € R! represents the model parameters, f : R — R is a (possibly non-convex) smooth loss
function (sometimes called a score function) that measures the fitness of ©, and h : R4*? — [0, 00)
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is a smooth non-convex function that takes the value of zero if and only if the induced weighted
adjacency matrix of d nodes, W (©), corresponds to a DAG.

Given the smoothness of f and h, problem (1) can be solved using off-the-shelf nonlinear solvers,
which has driven a series of remarkable developments in structure learning for DAGs. Multiple
empirical studies have demonstrated that global or near-global minimizers for (1) can often be found in
a variety of settings, such as linear models with Gaussian and non-Gaussian noises [e.g., 51, 34, 1], and
non-linear models, represented by neural networks, with additive Gaussian noises [e.g., 29, 52, 49, 1].
The empirical success for learning DAGs via (1), which started with the NOTEARS method of Zheng
et al. [51], bears a resemblance to the advancements in deep learning, where breakthroughs like
AlexNet significantly boosted the field’s recognition, even though there were notable successes before
it.

Importantly, the reader should note that the majority of applications in ML consist of solving a single
unconstrained non-convex problem. In contrast, the class of problems (1) contains a non-convex
constraint. Thus, researchers have considered some type of penalty method such as the augmented
Lagrangian [51, 52], quadratic penalty [35], and a log-barrier [1]. In all cases, the penalty approach
consists in solving a sequence of unconstrained non-convex problems, where the constraint is enforced
progressively [see e.g. 2, for background]. In this work, we will consider the following form of
penalty:

min g, (0) = i/ () + h(IW(8)). @

It was shown by Bello et al. [1] that due to the invexity property of h,> solutions to (2) will converge
to a DAG as i, — 0. However, no guarantees on local/global optimality were given.

With the above considerations in hand, one is inevitably led to ask the following questions:

(i) Are the loss landscapes g,,, (©) benign for different pu;,?
(ii) Is there a (tractable) solution path {Oy} that converges to a global minimum of (1)?

Due to the NP-completeness of learning DAGs, one would expect the answer to (i) to be negative in its
most general form. Moreover, it is known from the classical theory of constrained optimization [e.g.
2] that if we can exactly and globally optimize (1) for each p, then the answer to (ii) is affirmative.
This is not a practical algorithm, however, since the problem (1) is nonconvex. Thus we seek a
solution path that can be tractably computed in practice, e.g. by gradient descent.

In this work, we focus on perhaps the simplest setting where interesting phenomena take place. That
is, a linear SEM with two nodes (i.e., d = 2), f is the population least squared loss (i.e., f is convex),
and Oy, is defined via gradient flow with warm starts. More specifically, we consider the case where
O, is obtained by following the gradient flow of g,,, with initial condition ©_.

Under this setting, to answer (i), it is easy to see that for a large enough py, the convex function
f dominates and we can expect a benign landscape, i.e., a (almost) convex landscape. Similarly,
when ;. approaches zero, the invexity of h kicks in and we could expect that all stationary points
are (near) global minimizers.®> That is, at the extremes p;, — oo and u5, — 0, the landscapes seem
well-behaved, and the reader might wonder if it follows that for any u; € [0, c0) the landscape is
well-behaved. We answer the latter in the negative and show that there always exists a 7 > 0 where
the landscape of g,,, is non-benign for any y; < 7, namely, there exist three stationary points: 1)
A saddle point, ii) A spurious local minimum, and iii) The global minimum. In addition, each of
these stationary points have wide basins of attractions, thus making the initialization of the gradient
flow for g,,, crucial. Finally, we answer (ii) in the affirmative and provide an explicit scheduling for
1) that guarantees the asymptotic convergence of O, to the global minimum of (1). Moreover, we
show that this scheduling cannot be arbitrary as there exists a sequence of {, } that leads {O} to a
spurious local minimum.

Overall, we establish the first set of results that study the optimization landscape and global optimality
for the class of problems (1). We believe that this comprehensive analysis in the bivariate case
provides a valuable starting point for future research in more complex settings.

2An invex function is any function where all its stationary points are global minima. It is worth noting that
the composite objective in (2) is not necessarily invex, even when f is convex.

3This transition or path, from an optimizer of a simple function to an optimizer of a function that closely
resembles the original constrained formulation, is also known as a homotopy.
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Figure 1: Visualizing the nonconvex landscape. (a) A contour plot of g,, for a = 0.5 and p = 0.005
(see Section 2 for definitions). We only show a section of the landscape for better visualization.
The solid lines represent the contours, while the dashed lines represent the vector field —Vg,,. (b)
Stationary points of g,,, r(y; 1) = 0 and 7(x; ) = 0 (see Section 4 for definitions).

Remark 1. We emphasize that solving (1) in the bivariate case is not an inherently difficult problem.
Indeed, when there are only two nodes, there are only two DAGs to distinguish and one can simply
fit f under the only two possible DAGs, and select the model with the lowest value for f. However,
evaluating f for each possible DAG structure clearly cannot scale beyond 10 or 20 nodes, and is
not a standard algorithm for solving (1). Instead, here our focus is on studying how (1) is actually
being solved in practice, namely, by solving unconstrained non-convex problems in the form of (2).
Previous work suggests that such gradient-based approaches indeed scale well to hundreds and even
thousands of nodes [e.g. 51, 34, 1].

1.1 Our Contributions
More specifically, we make the following contributions:

1. We present a homotopy-based optimization scheme (Algorithm 2) to find global minimizers
of the program (1) by iteratively decreasing the penalty coefficient according to a given
schedule. Gradient flow is used to find the stationary points of (2) at each step, starting from
the previous solution.

2. We prove that Algorithm 2 converges globally (i.e. regardless of initialization for ) to the
global minimum (Theorem 1).

3. We show that the non-convex program (1) is indeed non-benign, and naive implementation
of black-box solvers are likely to get trapped in a bad local minimum. See Figure 1 (a).

4. Experimental results verify our theory, consistently recovering the global minimum of (1),
regardless of initialization or initial penalty value. We show that our algorithm converges to
the global minimum while naive approaches can get stuck.

The analysis consists of three main parts: First, we explicitly characterize the trajectory of the
stationary points of (2). Second, we classify the number and type of all stationary points (Lemma 1)
and use this to isolate the desired global minimum. Finally, we apply Lyapunov analysis to identify
the basin of attraction for each stationary point, which suggests a schedule for the penalty coefficient
that ensures that the gradient flow is initialized within that basin at the previous solution.

1.2 Related Work

The class of problems (1) falls under the umbrella of score-based methods, where given a score
function f, the goal is to identify the DAG structure with the lowest score possible [9, 22]. We shall
note that learning DAGs is a very popular structure model in a wide range of domains such as biology
[40], genetics [50], and causal inference [44, 39], to name a few.



Score-based methods that consider the combinatorial constraint. Given the ample set of score-
based methods in the literature, we briefly mention some classical works that attempt to optimize f
by considering the combinatorial DAG constraint. In particular, we have approximate algorithms
such as the greedy search method of Chickering et al. [10], order search methods [45, 41, 38], the
LP-relaxation method of Jaakkola et al. [24], and the dynamic programming approach of Loh and
Biithlmann [31]. There are also exact methods such as GOBNILP [12] and Bene [42], however, these
algorithms only scale up to ~ 30 nodes.

Score-based methods that consider the continuous non-convex constraint 2. The following
works are the closest to ours since they attempt to solve a problem in the form of (1). Most of
these developments either consider optimizing different score functions f such as ordinary least
squares [51, 52], the log-likelihood [29, 34], the evidence lower bound [49], a regret function [53];
or consider different differentiable characterizations of acyclicity h [49, 1]. However, none of the
aforementioned works provide any type of optimality guarantee. Few studies have examined the
optimization intricacies of problem (1). Wei et al. [47] investigated the optimality issues and provided
local optimality guarantees under the assumption of convexity in the score f and linear models. On
the other hand, Ng et al. [35] analyzed the convergence to (local) DAGs of generic methods for
solving nonlinear constrained problems, such as the augmented Lagrangian and quadratic penalty
methods. In contrast to both, our work is the first to study global optimality and the loss landscapes
of actual methods used in practice for solving (1).

Bivariate causal discovery. Even though in a two-node model the discrete DAG constraint does
not pose a major challenge, the bivariate setting has been subject to major research in the area of
causal discovery. See for instance [36, 16, 32, 25] and references therein.

Penalty and homotopy methods. There exist classical global optimality guarantees for the penalty
method if f and h were convex functions, see for instance [2, 5, 37]. However, to our knowledge,
there are no global optimality guarantees for general classes of non-convex constrained problems,
let alone for the specific type of non-convex functions h considered in this work. On the other
hand, homotopy methods (also referred to as continuation or embedding methods) are in many cases
capable of finding better solutions than standard first-order methods for non-convex problems, albeit
they typically do not come with global optimality guarantees either. When homotopy methods come
with global optimality guarantees, they are commonly computationally more intensive as it involves
discarding solutions, thus, closely resembling simulated annealing methods, see for instance [15].
Authors in [21] characterize a family of non-convex functions where a homotopy algorithm provably
converges to a global optimum. However, the conditions for such family of non-convex functions are
difficult to verify and are very restrictive; moreover, their homotopy algorithm involves Gaussian
smoothing, making it also computationally more intensive than the procedure we study here. Other
examples of homotopy methods in machine learning include [7, 18, 46, 17, 23], in all these cases, no
global optimality guarantees are given.

2 Preliminaries

The objective f we consider can be easily written down as follows:

1
FW) = SEx [|IX = W X[, 3)
where X € R? is a random vector and W € R2*2. Although not strictly necessary for the
developments that follow, we begin by introducing the necessary background on linear SEM that
leads to this objective and the resulting optimization problem of interest.

The bivariate model. Let X = (X, X5) € R? denote the random variables in the model, and let
N = (N1, N2) € R? denote a vector of independent errors. Then a linear SEM over X is defined as
X =W, X + N, where W, € R?*? is a weighted adjacency matrix encoding the coefficients in the
linear model. In order to represent a valid Bayesian network for X [see e.g. 39, 44, for details], the
matrix W, must be acyclic: More formally, the weighted graph induced by the adjacency matrix W,
must be a DAG. This (non-convex) acyclicity constraint represents the major computational hurdle
that must overcome in practice (cf. Remark 1).



The goal is to recover the matrix W, from the random vector X . Since W, is acyclic, we can assume
the diagonal of W, is zero (i.e. no self-loops). Thus, under the bivariate linear model, it then suffices
to consider two parameters x and ¥ that define the matrix of parameters*

W= W)=y ) @)

For notational simplicity, we will use f(W) and f(z,y) interchangeably, similarly for h(W') and
h(x,y). Without loss of generality, we write the underlying parameter as

0 a
W. = (0 0) 5)

which implies

X1 = Ny,

X 2 = aX 1+ N 2.

In general, we only require IV; to have finite mean and variance, hence we do not assume Gaussianity.

We assume that Var[N;] = Var[Ns], and for simplicity, we consider E[N] = 0 and Cov[N] = I,
where I denotes the identity matrix. Finally, in the sequel we assume w.l.o.g. that a > 0.

X=W/X+N = {

The population least squares. In this work, we consider the population squared loss defined by (3).
If we equivalently write f in terms of x and y, then we have: f(W) = ((1—ay)?+y*+(a—z)%+1) /2.
In fact, the population loss can be substituted with empirical loss. In such a case, our algorithm
can still attain the global minimum, W, of problem (6). However, the output W will serve as an
empirical estimation of W,.. An in-depth discussion on this topic can be found in Appendix B

The non-convex function . 'We use the continuous acyclicity characterization of Yu et al. [49], i.e.,
h(W) = Tr((I + LW o W)9) — d, where o denotes the Hadamard product. Then, for the bivariate
case, we have h(W) = 2%y?/2. We note that the analysis presented in this work is not tailored to
this version of h, that is, we can use the same techniques used throughout this work for other existing
formulations of h, such as the trace of the matrix exponential [51], and the log-det formulation [1].
Nonetheless, here we consider that the polynomial formulation of Yu et al. [49] is more amenable for
the analysis.

Remark 2. Our restriction to the bivariate case highlights the simplest setting in which this problem
exhibits nontrivial behaviour. Extending our analysis to higher dimensions remains a challenging
future direction, however, we emphasize that even in two-dimensions this problem is nontrivial. Our
approach is similar to that taken in other parts of the literature that started with simple cases (e.g.
single-neuron models in deep learning).

Remark 3. It is worth noting that our choice of the population least squares is not arbitrary. Indeed,
for linear models with identity error covariance, such as the model considered in this work, it is
known that the global minimizer of the population squared loss is unique and corresponds to the
underlying matrix W,. See Theorem 7 in [31].

Gluing all the pieces together, we arrive to the following version of (1) for the bivariate case:

1 2,2
min f(z,y) = 5((1 —ay)® +y*+ (a —2)* + 1) subjectto h(z,y) = x2y =0. (6)
.y
Moreover, for any 1 > 0, we have the corresponding version of (2) expressed as:
. 2202
min g, (2, y) = pf (@, y) + hiw,y) = g((l —ay)? +y° 4+ (a—x)* +1) + Ty @)

To conclude this section, we present a visualization of the landscape of g,,(x,y) in Figure 1 (a), for
a = 0.5 and p» = 0.005. We can clearly observe the non-benign landscape of g,,, i.e., there exists
a spurious local minimum, a saddle point, and the global minimum. In particular, we can see that
the basin of attraction of the spurious local minimum is comparable to that of the global minimum,
which is problematic for a local algorithm such as the gradient flow (or gradient descent) as it can
easily get trapped in a local minimum if initialized in the wrong basin.

*Following the notation in (1), for the bivariate model we simply have © = (z,y) and W (©) = (2 5)-

Although z is used to represent edge weights and not data as in (3), this distinction should not lead to confusion
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Algorithm 1: GradientFlow( f, zg)
1: set z(0) = 2
2 g2(t) = =V f(x(1)

3: return limy_, o 2(¢)

Algorithm 2: Homotopy algorithm for solving (1).

Input: Initial Wy = W (z0, o), tt0 € [
Output: {W,, }72,
Wy, < GradientFlow(g,,, Wo)

fork=1,2,...do
2/3 4/3
Let i, = (2/a)** %,

W, < GradientFlow(g,,, Wy, ,)
end

_ad®
@203 4

3 A Homotopy-Based Approach and Its Convergence to the Global Optimum

0 =z

To fix notation, let us write W, := W, = ( Yooy o). and let Wg denote the global minimizer of (6).

In this section, we present our main result, which provides conditions under which solving a series
of unconstrained problems (7) with first-order methods will converge to the global optimum W of
(6), in spite of facing non-benign landscapes. Recall that from Remark 3, we have that Wg = (§ ).
Since we use gradient flow path to connect W, and W, ., we specify this path in Procedure 1 for
clarity. Although the theory here assumes continuous-time gradient flow with £ — oo, see Section 5
for an iteration complexity analysis for (discrete-time) gradient descent, which is a straightforward

consequence of the continuous-time theory.

In Algorithm 2, we provide an explicit regime of initialization for the homotopy parameter 1o and
a specific scheduling for p such that the solution path found by Algorithm 2 will converge to the
global optimum of (6). This is formally stated in Theorem 1, whose proof is given in Section 5.

Theorem 1. For any initialization Wy and a € R, the solution path provided in Algorithm 2
converges to the global optimum of (6), i.e.,
kli}rréo W, = We.

A few observations regarding Algorithm 2: Observe that when the underlying model parameter
a > 0, the regime of initialization for pg is wider; on the other hand, if a is closer to zero then
the interval for pg is much narrower. As a concrete example, if a = 2 then it suffices to have
1o € [0.008,1); whereas if a = 0.1 then the regime is about pg € [0.0089,0.01). This matches
the intuition that for a “stronger” value of a it should be easier to detect the right direction of the
underlying model. Second, although in Line 3 we set yi; in a specific manner, it actually suffices to
have

€ [(F2)7e (@ = \Jah = (4n2) V)%, s ).

We simply chose a particular expression from this interval for clarity of presentation; see the proof in
Section 5 for details.

As presented, Algorithm 2 is of theoretical nature in the sense that the initialization for p( and the
decay rate for p in Line 3 depend on the underlying parameter a, which in practice is unknown.
In Algorithm 3, we present a modification that is independent of @ and W,.. By assuming instead a
lower bound on a, which is a standard assumption in the literature, we can prove that Algorithm 3
also converges to the global minimum:

Corollary 1. Initialize pop = % If a > \/5/27 then for any initialization Wy, Algorithm 3 outputs
the global optimal solution to (6), i.e.

kli_)ngo Wy, = We.

For more details on this modification, see Appendix A.
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Algorithm 3: Practical (i.e. independent of a and W,)) homotopy algorithm for solving (1).
Input: Initial Wy = W (zo, yo)
Output: {W,, 172,
Mo < 1/27
Wy, < GradientFlow(g,,, Wo)
fork=1,2,...do
2/3 4/3

Let i = (2//5m0) ™" 1)

W,, < GradientFlow(g,,,W,, ,)
end

ast, <t
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Figure 2: The behavior of r(y; ) for different u. Here, for > 7, there exists a single solution to
r(y; 1) = 0, which implies there is one stationary point in Equation (7). When p = 7, two solutions
are found for r(y; 1) = 0, suggesting that there are two stationary points in Equation (7). Conversely,
when p < 7, we observe three solutions for r(y; 1) = 0, indicating that there are three stationary
points in Equation (7)- a local optimum, a saddle point, and a global optimum.

4 A Detailed Analysis of the Evolution of the Stationary Points

The homotopy approach in Algorithm 2 relies heavily on how the stationary points of (7) behave with
respect to uy. In this section, we dive deep into the properties of these critical points.

By analyzing the first-order conditions for g,,, we first narrow our attention to the region A = {0 <
r<a,0<y< G%H} By solving the resulting equations, we obtain an equation that only involves
the variable y:

(i) = & - H
rly;p) = - — —————
Y =y T 2+ )

Likewise, we can find an equation only involving the variable z:

@+ 1). ®)

i) = - o

Tip) = — — —
= (n(a? +1) 4 x2)?
To understand the behavior of the stationary points of g, (W), we can examine the characteristics of
t(z; p) in the range = € [0, a] and the properties of 7(y; i) in the interval y € [0

©))

s a2l
In Figures 2 and 3, we show the behavior of r(y; 1) and ¢(x; u) for @ = 1. Theorems 5 and 6 in the
appendix establish the existence of a 7 > 0 with the following useful property:

Corollary 2. There exists . < T such that the equation V g, (W) = 0 has three different solutions,
denoted as W; , W; ) W; **. Then,

oo J0al . e 00l e [0 0O
i = [0 6] sz = [0 0] <[ 2]

Note that the interesting regime takes place when p < 7. Then, we characterize the stationary points
as either local minima or saddle points:
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Figure 3: The behavior of ¢(z; u) for different . Here, for > 7, there exists a single solution to
t(x; u) = 0, which implies there is one stationary point in Equation (7). When p = 7, two solutions
are found for ¢(x; 1) = 0, suggesting that there are two stationary points in Equation (7). Conversely,
when p < 7, we observe three solutions for ¢(x; 1) = 0, indicating that there are three stationary
points in Equation (7)- a local optimum, a saddle point, and a global optimum.

Lemma 1. Let 1 < 7, then g, (W) has two local minima at W, W™, and a saddle point at W ;™.

With the above results, it has been established that IV converges to the global minimum Wg as
1 — 0. In the following section for the proof of Theorem 1, we perform a thorough analysis on how
to track W7 and avoid the local minimum at W;* by carefully designing the scheduling for sy

5 Convergence Analysis: From continuous to discrete

We now discuss the iteration complexity of our method when gradient descent is used in place of
gradient flow. We begin with some preliminaries regarding the continuous-time analysis.

5.1 Continuous case: Gradient flow

The key to ensuring the convergence of gradient flow to W is to accurately identify the basin of
attraction of W 7. The following lemma provides a region that lies within such basin of attraction.

Lemma 2. Define B, = {(z,y) | 2} <z < a,0 <y < y;"}. Run Algorithm 1 with input f =
9u(z,9), 20 = (2(0),y(0)) where (x(0),y(0)) € B, then ¥t > 0, we have that (x(t),y(t)) € B,
and lim_, o0 ((t), y(t)) = (25, ;).

In Figure 1 (b), the lower-right rectangle corresponds to 5,,. Lemma 2 implies that the gradient flow
with any initialization inside B,,, ,, will converge to W _ atlast. Then, by utilizing the previous
solution W7 as the initial point, as long as it lies within region B, , , , the gradient flow can converge

to W, .., thereby achieving the goal of tracking W . Following the scheduling for 1, prescribed

in Algorithm 2 provides a sufficient condition to ensure that will happen.

The following lemma, with proof in the appendix, is used for the Proof of Theorem 1. It provides a
lower bound for y,;* and upper bound for y;.

Lemma 3. If u < 7, then y* > \/ji, and % (a1/3 —/a?/3 — (4u)1/3) >y

Proof of Theorem 1. Consider that we are at iteration k£ + 1 of Algorithm 2, then p5 1 < pg. If
pr > 7 and g1 > 7, then there is only one stationary point for g, (x,y) and g, ., (x,y), thus,
1 will converge to such stationary point. Hence, let us assume pix4+; < 7. From Theorem 6 in the

appendix, we know that z;;; < 7, . Then, the following relations hold:

e O i\ @ () ®
yuk+1>ﬁuk+lzz(4§) z% 0P —\Ja2/3 — ()13 ) Sy,

Here (1) and (3) are due to Lemma 3, and (2) follows from /1 —z > 1 — z for 0 < z < 1. Then it
implies that (z},, ,y};, ) is in the region {(z,y) [ 2}y | <2 <a,0 <y <y;* }. ByLemma 2, the

HE? Hr+1 Hk+1



M *
1 procedure will converge to (z M

then limy_, o x;k

1) y;k+1). Finally, from Theorems 5 and 6, if limy_, o pz, = 0,
=a,limg_, yzk = 0, thus, converging to the global optimum, i.e.,
lim W, = Ws.

k—o0

5.2 Discrete case: Gradient Descent

In Algorithms 2 and 4, gradient flow is employed to locate the next stationary points, which is not
practically feasible. A viable alternative is to execute Algorithm 2, replacing the gradient flow with
gradient descent. Now, at every iteration k, Algorithm 6 uses gradient descent to output W,,, ., , a
€), stationary point of g, , initialized at W,,, , ., ,,and a step size of n, = 1/(ux(a® + 1) + 3a?).
The tolerance parameter ¢ can significantly influence the behavior of the algorithm and must be
controlled for different iterations. A convergence guarantee is established via a simplified theorem
presented here. A more formal version of the theorem and a comprehensive description of the

algorithm (i.e., Algorithm 6) can be found in Appendix C.
Theorem 2 (Informal). For any eqist > 0, set pg satisfy a mild condition, and use updating rule ¢, =
. 3/2 . 2/38
min{Bauy, uk/ Yo pgr1r = (2@2)2/3%, and let K = K(uo,a,eqist) € O (111 = )
Then, for any initialization Wy, following the updated procedure above for k =0, ..., K, we have:
||W,U4k,’6k - WG||2 < Edist
thatis, W, c, 1s €qist-close in Frobenius norm to global optimum Wg. Moreover, the total number

of gradient descent steps is upper bounded by O ((,uoa2 +a®+ uo) ((%6 + 1 > )

Edist

6 Experiments

We conducted experiments to verify that Algorithms 2 and 4 both converge to the global minimum of
(7). Our purpose is to illustrate two main points: First, we compare our updating scheme as given in
Line 3 of Algorithm 2 against a faster-decreasing updating scheme for p. In Figure 4 we illustrate
how a naive faster decrease of  can lead to spurious a local minimum. Second, in Figure 5, we show
that regardless of the initialization, Algorithms 2 and 4 always return the global minimum. In the
supplementary material, we provide additional experiments where the gradient flow is replaced with
gradient descent. For more details, please refer to Appendix F.

Figure 4: Trajectory of the gradient flow path for two different update rules for p; with same
initialization and po. Here, “good scheduling” uses Line 3 of Algorithm 2, while “bad scheduling”
uses a faster decreasing scheme for u, which leads the path to a spurious local minimum.
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Figure 5: Trajectory of the gradient flow path with the different initializations. We observe that under
a proper scheduling for uy, they all converge to the global minimum.
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Algorithm 4: Find a path {W,,, } via a particular scheduling for y;, when a is unknown.

Input: pg € {ﬁ, %) e>0
OUtPUt: {Wuk}iozo

1G4 /4(po +¢) // ¥e>0s.t. a<a

-~

2 W, + GradientFlow(g,,,0)

fork=1,2,...do

Let s € [/ /%, )

Wy < GradientFlow(g,,.,, Wy,)

6 end

return {W,, }72,

A Practical Implementation of Algorithm 2

We present a practical implementation of our homotopy algorithm in Algorithm 4. The updating
scheme for p, is now independent of the parameter a, but as presented, the initialization for pg
still depends on a. This is for the following reason: It is possible to make the updating scheme
independent of a without imposing any additional assumptions on a, as evidenced by Lemma 4 below.
The initialization for pg, however, is trickier, and we must consider two separate cases:

1. No assumptions on a. In this case, if a is too small, then the problem becomes harder and
the initial choice of y( matters.

2. Lower bound on a. If we are willing to accept a lower bound on a, then there is an
initialization for y that does not depend on a.

In Corollary 1, we illustrate this last point with the additional condition that @ > +/5/27. This
essentially amounts to an assumption on the minimum signal, and is quite standard in the literature
on learning SEM.

Lemma 4. Under the assumption ﬁ < < “7‘2, the Algorithm 4 outputs the global optimal

solution to (6), i.e.
lim W,, = We.
k—o00

It turns out that the assumption in Lemma 4 is not overly restrictive, as there exist pre-determined
sequences of {1 }7° , that can ensure the effectiveness of Algorithm 4 for any values of a greater
than a certain threshold.

B From Population Loss to Empirical Loss

The transformation from population loss to empirical can be thought from two components. First,
with a given empirical loss, Algorithms 2 and 3 still achieve the global minimum, W, of problem
6, but now the output from the Algorithm is an empirical estimator @, rather than ground truth a,
Theorem 1 and Corollary 1 would continue to be valid. Second, the global optimum, W, of the
empirical loss possess the same DAG structure as the underlying W,.. The finite-sample findings
in Section 5 (specifically, Lemmas 18 and 19) of Loh and Biihlmann [31], which offer sufficient
conditions on the sample size to ensure that the DAG structures of W and W, are identical.

C From Continuous to Discrete: Gradient Descent

Previously, gradient flow was employed to address the intermediate problem (7), a method that
poses implementation challenges in a computational setting. In this section, we introduce Algorithm
6 that leverages gradient descent to solve (7) in each iteration. This adjustment serves practical
considerations. We start with the convergence results of Gradient Descent.

Definition 1. f is L-smooth, if f is differentiable and Nz,y € dom(f) such that |V f(x) —
Vil < Lijz = yll2.
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N oA W N =

Algorithm 5: Gradient Descent(f, n, Wy, €)

Input: function f, step size n, initial point Wy, tolerance €
Output: W,

t<0

while |V f(W;)|2 > e do
Wigr < We =V f(Wy)
t—t+1

end

Algorithm 6: Homotopy algorithm using gradient descent for solving (1).

a®> _(14B)" o2 (1-6)°(1-p)*
4(a?+1)% (1-B)27 4 (1+p)? ’
/2}

Input: Initial W_; = W(z_1,y_1), o €

1 1 3
M0 = o1 ¥8a7> 0 = min{Sauo, ko
Output: {W,, 172,

1 Wy .eo < Gradient Descent(g,,no, W-1,€p)
2 fork=1,2,...do

aQ W

2/3

ten—1/Hr—
Let py, = (240}, )/ ittty
_ 1
Letn, = x (a2 +1)+3a2
Let e, = min{Bauk,uz/Z}
Wy,.en < Gradient Descent(g,,, Mk Wy, €k)
end

Theorem 3 (Nesterov et al. 33). If function f is L-smooth, then Gradient Descent (Algorithm 5) with
step size 1 = 1/L, finds an e-first-order stationary point (i.e. |V f(z)||2 < €) in 2L(f(z%) — f*)/€?
iterations.

One of the pivotal factors influencing the convergence of gradient descent is the selection of the step

size. Theorem 3 select a step size n = % Therefore, our initial step is to determine the smoothness

of g, (W) within our region of interest, A = {0 < 2 < q,0 <y < a%ﬂ}

Lemma 5. Consider the function g,(W) as defined in Equation 7 within the region A = {0 < z <
a,0 <y < %5} It follows that for all p > 0, the function g, (W) is w(a® + 1) + 3a-smooth.

Since gradient descent is limited to identifying the € stationary point of the function. Thus, we study
the gradient of g,,(W) = pf(W) + h(W), i.e. Vg, (W) has the following form

z—a)+ vz
Vou(W) = (u(aygr Dy )f a/szr y:cz)

As gradient descent is limited to identifying the e stationary point of the function, we, therefore, focus
on ||g,(W)||2 < e. This can be expressed in the subsequent manner:

Vg (W)l < e = —e < plz —a) +y?r<e and —e < ,u(a2 + l)y—a,u—i—yx2 <e
As aresult,

pna + €

a— € a-+e a — €
{(@9) | IVgu(W)ls < €} € {(z,y) | Bt <2< & K <y<

pty? T T pty? a? +p(a® +1) x? + p(a® +1)
Here we denote such region as 4, .
na — € Hna + € na — € na + €
Aye={(z, <z< , <y< —— 10
e = y)|u+y2* = o+ y? x2+u(a2+1)*y*x2+u(a2+1)} (10)

Figure 6 and 7 illustrate the region A, ..
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Figure 6: An example of A, . is depicted for a = 0.6, i = 0.009, and € = 0.00055. The yellow
region signifies e stationary points, denoted as A,, . and defined by Equation (10). A, . is the disjoint
union of A}M and A2 _, which are defined by Equations (21) and (22), respectively.
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Figure 7: Here is a localized illustration of A, . that includes the point (z7;,y},). This region, referred

to as A;IL,E’ is defined in Equation (21).

Given that the gradient descent can only locate e stationary points within the region A, . during
each iteration, the boundary of A,, . becomes a critical component of our analysis. To facilitate clear
presentation, it is essential to establish some pertinent notations.
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ua
r=—7
pty?
ua
pla® +1) + 22

(11a)

y= (11b)

~—

If the system of equations yields only a single solution, we denote this solution as (z},, y;,

If it yields two solutions, these solutions are denoted as (z};,y};), ()", y;*), with 2" < 7.
In the event that there are three distinct solutions to the system of equations, these solutions
are denoted as (z7,, y;,), (23,5, 4,7 ), (7", y;, ™), where ™" <z < .
a—€
r=t (12a)
Bty
a+e€
y=—7 (12b)

pla® +1) + 22

If the system of equations yields only a single solution, we denote this solution as (z7}, ., y; .)-

*

If it yields two solutions, these solutions are denoted as (7}, ., y;; .), (¥)/%, y;;%), with 77, <

x} .. In the event that there are three distinct solutions to the system of equations, these

poet
. * * ok ok sokk ) kokok sookok ok *
solutions are denoted as (7}, ., y}; o), (T}, Yi'e), (178 yn's), where 2" < @y’ < a7, ..

ua + €
T =

= 13a
1+ y? (3
Ha — €
=— 13b
y M(a2+1) +$2 ( )
If the system of equations yields only a single solution, we denote this solu-
tion as (z}, .,y . ). If it yields two solutions, these solutions are denoted
as (z}, . ,y5c ), (@t sy ), with 23 < 2y . In the event that there are

three distinct solutions to the system of equations, these solutions are denoted as
(@ s Yhe )s @i sy ), (@i yinl ), where s < ap'. < .
Remark 4. There always exists at least one solution to the above system of equations. When (i is
sufficiently small, the above system of equations always yields three solutions, as demonstrated in

Theorem 5, and Theorem 9.

The parameter € can substantially influence the behavior of the systems of equations (12a),(12b) and
(13a),(13b). A crucial consideration is to ensure that e remains adequately small. To facilitate this,
we introduce a new parameter, 3, whose specific value will be determined later. At this stage, we
merely require that 3 should lie within the interval (0, 1). We further impose a constraint on € to
satisfy the following inequality:

€ < Bau (14)

Following the same procedure when we deal with e = 0. Let us substitute (12a) into (12b), then we
obtain an equation that only involves the variable y

a—+e/p pna — € 2 i
re(y; 1) _ateln (a®+1) - W (15)
Let us substitute (12b) into (12a), then we obtain an equation that only involves the variable x
a—e/p (ha+€)*/u
te(; = -1- 16
(wiu) == W+ 1) + 722 (1o
Proceed similarly for equations (13a) and (13b).
a—€/p pa+€)?/u
Te_(y;:u) = / - (Cl2 =+ 1) - ((yg ¥ /)14)/2 (17)
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a+e/p (na —€)?/p
te () = —1- 18
(1) (1(a? + 1) + 22)? (18)
Given the substantial role that the system of equations 12a and 12b play in our analysis, the existence
of € in these equations complicates the analysis, this can be avoided by considering the worst-case
scenario, i.e., when € = Sap. With this particular choice of ¢, we can reformulate (15) and (16) as
follows, denoting them as rg(y; €) and rg(z; €) respectively.

€ ) B ST i )
ra(ys p) = ” (a”+1) 2 + )2 (19)
cyal=p8) . pe?(1+pB)°

The functions 7¢(y; 1), 7 (y; 1), and r3(y; () possess similar properties to r(y; 1) as defined in
Equation (8), with more details available in Theorem 7 and 8. Additionally, the functions ¢.(z; i),
te (z;p), and tg(z; p1) share similar characteristics with ¢(x; ;1) as defined in Equation (9), with more
details provided in Theorem 9.

As illustrated in Figure 6, the e-stationary point region A,, . can be partitioned into two distinct areas,
of which only the lower right one contains (z};, ;) and it is of interest to our analysis. Moreover,
(z},.¢,9;, ) and (277, Y * ) are extremal point of two distinct regions. The upcoming corollary
substantiates this intuition.

2
Corollary 3. If u < 7 (7 is defined in Theorem 5(v)), assume € satisfies (14), 3 satisfies (M) <

1-p
a® + 1, systems of equations (12a),(12b) at least have two solutions. Moreover, A, . A}L U Ai .
Ape = Ape 0 {(@.9) | 2> 7 0y <y} 1)
AZ = A, N{(z, y)|x<x#6,y>y#6} (22)

Corollary 3 suggests that A, . can be partitioned into two distinct regions, namely A1 . and A2 .
Furthermore, for every (z,%) belonging to A’ 1, it follows that r>uw, andy <y . Slmllarly,

for every (z,y) that lies within Au ¢» the condition z < ", and y > y * holds. The region A
represents the “correct” region that gradient descent should 1dent1fy In thls context, identifying the
region equates to pinpomtmg the extremal points of the reglon As a result our focus should be on

the extremal points of A, . and A2 _, specifically at (7, ., y* .) and (27", y"*.). Furthermore, the
key to ensuring the convergence of the gradient descent to the A 1, 18 to accurately identify the “basin
of attraction” of the region A}lyé. The following lemma provides a region within which, regardless of

the initialization point of the gradient descent, it converges inside A,ﬁ,e
Lemma 6. Assume p < 7 (7 is defined in Theorem 5(v)), (H'ﬁ) < a®+1. Define B, = {(z,y) |
<r<a0<y< yuﬁ} Run Algorithm 5 with input f = g,(x,y),n = m,WO =

(5(0),5(0)), where (5(0)4(0)) € B then after at most 24050 Non oDy o v )
iterations, (xy,y:) € A,li,e‘

Lemma 6 can be considered the gradient descent analogue of Lemma 2. It plays a pivotal role in the
proof of Theorem 4. In Figure 6, the lower-right rectangle corresponds to B, .. Lemma 6 implies
that the gradient descent with any initialization inside By, ,, ., ,, Will converge to A} L sens Atlast.
Then, by utilizing the previous solution W,,, ., as the initial point, as long as it lies within region
By, .1 c1y1- the gradient descent can converge to Auk+1 e Which is € stationary points region that
N . .

contains WMH, thereby ach1ev1ng the go:fll of trackl.ng Wit Follow?ng the scheduling for pi,
prescribed in Algorithm 6 provides a sufficient condition to ensure that will happen.

We now proceed to present the theorem which guarantees the global convergence of Algorithm 6.
Theorem 4. If6 € (0,1), B € (0,1), (1+ﬁ) < (1—96)(a® + 1), and po satisfies

@ @ (1+p) @ (1-0P(1 - ) _
(a2 +17° = 4(a+1)3 (1 B)? 1 (1+p? ~—1

<o <
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Set the updating rule

ex =min{Bap, 1y}

+€k/uk)2/3
—(2,2)2/3 (a (
Hk+1 ( /’Lk) ((1*6[@//1]@)4/5

Then pp1 < (1 — 6)ug. Moreover, for any €qist > 0, running Algorithm 6 after K (1, a, 9, €qist )
outer iteration

||W;Lk,ek - WG||2 S Edist (23)
where
1 o 72410 3(4—&)po, 1, ,46656u3, 1,  46656u3
K 8, Edist) > ——r—— 1 1 1 =1 =1
) 2 g e { I g o s ). D, S

The total gradient descent steps are

K (p0,a,0,eqist)
HOZ dist Q(Hk(a2 + 1) + 3a2)(guk+1 (Wﬂk,qfk) ~ Gpp4 (Wuk+1,€k+1))
2
€k

k=0

3
1 3(4—68) 216 [ 216 \*? 1 72
< 2 2 €0
<2(uo(a® + 1) + 3a%) <56a6 + <max{ e g (%dist) VB (1= (1/2)1/4)a2} Iuo(Wig)

s 9 1 1 1 1 1
SO (woa” +a” + po) (56116 + Edist® + a3edist® + a’eqist? + a®

Proof. Upon substituting gradient flow with gradient descent, it becomes possible to only identify an
e-stationary point for g, (7). This modification necessitates specifying the stepsize 7 for gradient
descent, as well as an updating rule for p. The adjustment procedure used can substantially influence
the result of Algorithm 6. In this proof, we will impose limitations on the update scheme i, the
stepsize 7y, and the tolerance €, to ensure their effective operation within Algorithm 6. The approach
employed for this proof closely mirrors that of the proof for Theorem 1 albeit with more careful
scrutiny. In this proof, we will work out all the requirements for u, €, 7. Subsequently, we will verify
that our selection in Theorem 4 conforms to these requirements.

In the proof, we occasionally use u, € or ug, €. When we employ p, €, it signifies that the given
inequality or equality holds for any p,e. Conversely, when we use py, €, it indicates we are
examining how to set these parameters for distinct iterations.

Establish the Bound y*. > /11 First, let us consider r.(,/u; 1) < 0, i.e.

228

S _ate/u p(a — e/p)?
VB ) = A (a2 ) - O <0

This is always true when 1 > 4/a?, and we require
4
€ < 21%% + ap — 2/2ap5/? — p3a®  when p < —
a
Now we name it condition 1.

Condition 1.

4
€ < 21?2 +ap — 2/ 2ap5/? — p3a®  when p < —
a

Under the assumption that Condition 1 is satisfied. Since r(y; i) is increasing function with
interval ¥ € [Yib,e, Yub,e)» and we know yip e < /1t < Yub,e and based on Theorem 7(ii), we have

Yb,e < Ypte < Yubes Te(V/H5 1) < 1e(y)7; 1) = 0. Therefore, ;% > /1.
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Ensuring the Correct Solution Path via Gradient Descent Following the argument when we
prove Theorem 1, we strive to ensure that the gradient descent, when initiated at (2, ¢, , Yuy e5. )» Will
converge within the "correct" e 1-stationary point region (namely, ||V g, ., (W)|2 < €x41) which

. * * : : .
includes (z i Yroin ). For this to occur, we necessitate that:

) x (a+ ep/p)/? @ Q)
y#«k+1,€k+1 > y#k+1,€k+1 > VM’CJrl > ( )1/3 (a _ Ek/ﬂk‘)2/3 > yukﬁk > yuk&k (24)

Here (1), (5) are due to Corollary 3; (2) comes from the boundary we established earlier; (3) is
based on the constraints we have placed on py and pg1, which we will present as Condition 2
subsequently; (4) is from the Theorem 7(ii) and relationship v, ., < Yib,jy,e,- Also, from the
Lemma 9, max, <, x}. < min,>oz;, .. Hence, by invoking Lemma 6, we can affirm that our
gradient descent consistently traces the correct stationary point. Now we state condition to make it
happen,

Condition 2.
23 (a+ ex/ )
(a — ex/pr)?/3

In this context, our requirement extends beyond merely ensuring that p;, decreases. We further
stipulate that it should decrease by a factor of 1 — §. Next, we impose another important constraint

Condition 3.

(1= 0)pr > par > (2u7)

€r < ui/Q
Updating Rules Now we are ready to check our updating rules satisfy the conditions above

ex =min{Bap, 1y}

2/3
23 (@ + €/ k)
frr1 =(20%) (@ = en/pn)i?

Check for Conditions First, we check the condition 2. condition 2 requires

o3 (a4 ex/pr)*? (a+ex/pmr)® _ (1-0)°
R Py T R P R

(1= )k = (2043

Note that €, < Bapr < apk

Jata/m? _ (482 1
(@ —ex/pp)* =7 (1= )" a?
Therefore, once the following inequality is true, Condition 2 is satisfied.

1821 _ (10 @ (1-8)%(1 - )
’“(1—5)%2S T M ST dtae

3
Because g < po < %% from the condition we impose for 1y. Consequently, Condition

2 is satisfied under our choice of ¢,.

Now we focus on the Condition 1. Because €, < afuy, if we can ensure afBuy < 2u2/2 + apg —
24/ 2a,u2/ - uzaQ holds, then we can show Condition 1 is always satisfied.
aBux <2 + apx — 21/ 204" — pida?
24/ 2ap, 5/2 _ pia? <2py 3/2 + (1= B)aux
5/2
4(2ap)% — pfa®) <4pd + (1 - B)%a’pid + 41 — B)apy
0 <4(a® + 1)pj, + (1 = B)*a’pi — 4(1 + )auz/2
0 <d(a® + D — 401 + Bapy> + (1 — B)%a>  when 0 < py, < 4/a”
1+Ba 12, (1-p)%°

0 <pp —
=T @@t T @+ 1)
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‘We also notice that

1+522 1_522 1+52
((a2+)1)i _4(4(a2+)1) 0‘:}(1_5> a1

Because (}*g) < (1 —6)(a? + 1), the inequality above always holds and this inequality implies
that for any pux > 0

(1+B)a 12 (1—p)%a?
0< pp — — 2 ~
e PP D L T PR
Therefore, Condition 2 holds. Condition 3 also holds because of the choice of €.
Bound the Distance Let c = 72/a?, and assume that y satisfies the following
1
p<minf= (1= (1/2)"/4), #2?} (25)
c

Note that when p satisfies (25), then 13/2 < Bay, so € = p?/2.

pst(i-a) =8 (- < 4
o/n= Vi< (26)
Then
1 pla + €/p)?
te((a—e/m)(1 —cu)sp) =1— o 1= (n(a? + 1) + (a — /p)2(1 — cp)?)?
__c pla+e/p)?
L—cp (u(a®+ 1)+ (a—e/p)2(1 — cp)?)?
B (a+e/n)?
ZCN M(G_f/ﬂ)‘l(l_cu)‘l
B (a+a/2)?
= I a/2)4(1 —cp)’

! <C 1—cu) )

72 50
— Ca2(1—cep)t 1—cu)

Then we know (a — €/u)(1 — cp) <
important to note that

HW;Ufk;fk - WGH :\/(mﬂk;ﬂc - a)2 + (yﬂk,ék)2

<ma { /(@5 0, = 07 + W)\ @~ @7+ 0,007}

* *
We use the fact that 2}, . < @, e, < @ Tpy e, < @), o a0d Yy, o < y;, . Next, we can

ry, .. Now we can bound the distance ||[Wy, ., — W], itis

. " 2y1/3 (ater/mi)'
separately establish bounds for these two terms. Due to (24), yj;, ., < (2u%) (a—ex/p)?/3 =
Virg1 and (a — e /pp) (1 — cpy) <z,

V@ = 02+ U 0)? < Vit + (0 — (0 — /) (1 — cgap) )2

Given thatifz}, ., < a,then \/(x;k o — @)+ (U e )? > \/(x;j“k_ —a)? + (Y}, ¢ )?- There-

* €k ;
fore, if a:# e, = @, Wecan use the fact that Ty e <a+ e In this case,

\/(xﬁk,Ek, —a)? 4+ (5, )2 < Vi + (er/1k)? = i1 + ik < V(2 — )k
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As a result, we have

[Wieo = Wall < max{/pei1 + (@ — (@ — ex/p) (1 — cpr))?, /(2 — 6}

pe1 + (@ — (@ — e /pr) (1 — cpp))? (1 — 8)pr + (acpy, + ik — ey *)?
<(1 = 0)py + 3(a®P i, + pu + 1)

(4 — &) g + 3a*c? i + 3¢

1Wiroer — Well < mas{/mps + (a— (a— ex/pa) (L~ cn))2 v/ — )}
< mac{ /(4 — 8)x + 34223 + 32yt /(2 — Oy}

:\/(4 — 0) g + 3a*c?pi + 3¢

Just let

Edist > k> In(3(4 — 6)po/cdist>)

(4= 0 < (1= 6)(1 — 6o < S8 > OB 0l @)
2 In(4 2702, 2
3a2c2 2 < 3a2c3(1 — 6)% 2 < Edgt Lo 2?5?{‘ /0(/1(a ‘;“)“)St ) (28)
n _
ist2 In(4665613 /(acqist?))
2 3 < 2 1— 3k 3< Edist 0 ist o)
3¢ <3¢ (1=0)"wp < —5— =k > 3n(L/(1—0)) (29)
We use the fact that zz, < (1 — §)¥ . In order to satisfy (25).
a’ In =i
e < po(1=0)" < o (1= (/Y1) = b > —— === (30)
72 ln 1—s
1 2.2
MkSMO(l—fs)kSﬁQaQikZW 31)
13
Consequently, running Algorithm 6 after K (uq, a, d, £4ist) outer iteration
||V[/1Lk,6k - WG||2 S Edist
where
1 110 240 3(4— 0o, 1. 4665642, 1 4665673
K d ist) 2Ty 1 ) 1 ) 1 'y In(—5—— ) g In(———
(o, @,0, €aist) 2377753 max{ gz M sy T g ) g i)

By Lemma 6, k iteration of Algorithm 6 need the following step of gradient descent

2(:”16 (a2 + 1) + 3a2)(g#k+1 (Wuk,ek) - g#k+1 (W#k+1a5k+l ))
2
€k
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Let K (po, a, 0, £4ist) satisfy R (po.a.b.2ai) < B2a? < HR (10,08, caie) —1° Hence, the total number

of gradient steps required by Algorithm 6 can be expressed as follows:

Ko, @02dist) 2(pg (a2 + 1) +3a2) (91 Wiigrer) = 91 Wig g 10ep1))
2

k=0 €k
K(ng,a,8,eqise)—1 (9 w ) — w
n Ko € g, ( My € ))
<2(uo(a? + 1) + 302) ( Z k41 ko€k 2k+1 ktLkt17)
=0 €k

K 5, 1
(ro» aidmt) (g%_*_l(wmC ) — g#k_'_l(wuk_*_lﬁgk_*_l)) N

242,,2
B2a?pui

=2(uo(a® + 1) + 3a?)

K s,
(ro,a, Ed]bt) (guk+1(wﬂk Ek)—g“kJrl(WMLJrl 5k+1>> N

<2(po(a® + 1) + 3a%) 640

k 0

<2(uo(a® + 1) + 3a%) 606
k=0

=2(po(a® + 1) + 3a%)

“K(,LO a,8,e4ist)

£
Il
<)

‘Edist)

M%

<2(uo(a® + 1) + 3a%)

) ) ) (K(;Lo
64,6
e ”K(uo a,8,edist) ke

1

w

Il
<)

=2(po(a® + 1) + 3a%)

aaa
A #KQ‘O @,8,8qist)

1

<2(no(a® +1) + 3a%) (MG 7) 910 Wig.eq)
“K(,Lo,a,a,edist)

Note from (27) and (30), the following should holds

2 2

Edist”  OEdist (a€dist)2/3 8242 a
)
72

R ETVR ST T

Therefore,

K (p0,0,0,€aist) 2(

) ((Quo(Wuo,eo) LK (ng,a,s, sdlst)+l( Iz

K(pg,a,8,e4ist)

k=K (10,a,8,2qist)

K(pg,a,0,eqist)

k=K (n0,a,5,cqist)

K(png,a,6,eqist)

k=K (110,a,5,2dist)

(gﬂk+1 (Wuk,ek,) -

<g“‘k+1 (W“‘kvek)

2

Ipgs1 (W}Lk+1 €k+1 )
€k

- 9#k+1(Wﬂk+1v€k+1)))

i

Ggpr Wi e) = gy Wiy ey )
i

k=0

((gpp, (Wiik) = gum(wuﬁﬁ))))

3
K (no,a,6,241st)

a,s a,8,eq;

<K(uo 1Edist) G Wagrer) = Iy 1 Wigo 1 repn) . K(#O:iysdlst) gy Wiger) = Guppq (WukJrl,ekJrl)))
1 K (ng,a,8,eqist)

ﬁﬁag <g“k+1(w“k!5k) - 9#k,+1<W#k,+1,€k+1>>)

‘K (pg,a,s, Ednst)Jrl)
K(ng,a,8,eqige)+1

(1—(1/2)'/%)}

,Uk(GQ + 1) + 3a2)(guk+1 (Wﬂk7€k) — Gupi1 (Wuk+1,€k+1))

= i
3(4—6) 216 [ 216 \**
2 2
<2(po(a” 4+ 1) + 3a*) a6 + | max{ c?  aeae (aEdist>
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D Additional Theorems and Lemmas

Theorem 5 (Detailed Property of r(y; ). For r(y; p) in (8), then
(i) For pn> 0, limy o+ 7(y; ) = 00, 7( 2%, 1) <0
(i) Forp >0, r(\/m,p) <O0.

e 2
(iii) For p > %

d .
r(y; 1) <0
dy
a2
For0 < p < T
dr(y;
(dy“)>0 Yib < Y < Yub (32a)
Yy
d .
TG 0 Oherwise (32b)
dy
where
41)1/3 41)1/3
o =@ faars ) = @ farrs )
Moreover,

b < Vi < Yub

(iv) For0 < pu < %, let p(p) = r(yup, ), then g’(u) < 0 and there exist a unique solution to
p(p) = 0, denoted as T. Additionally, T < .

(V) There exists a 7 > 0 such that, Vu > 7, the equation r(y; u) = 0 has only one solution. At
W = T, the equation r(y; 1) = 0 has two solutions, and ¥ < 7, the equation r(y; u) = 0
2

has three solutions. Moreover, i < %.

Hokk
o

(Vi) Yu < 7, the equation r(y; i) = 0 has three solution, i.e. v, <y <y

E>O o >0 W<Oand&%yuf0,g%y# 70’;12%% ~ 2
Moreover,
Yo <ymw < VB <y, <yuw <y,
Theorem 6 (Detailed Property of t(x; u)). For t(x; ) in (9), then
(1) For p > 0, limg,_,g+ t(z; u) = oo, t(a,u) <0
.. a(va?2+1—a 2 a(va? a 2
(i) Ifu < (%) or > (%) , then t(y/p(a? + 1), p) < 0.
PN (12
>iii) For pu > 2117
dt(z; p)
<0
dx
2
For (0 < 1% S MTP
dt(x;
@) S0 < 2 < 2 (33a)
dx
dt(x;
(5’”) <0 Otherwise (33b)
T
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where

(4Iua)1/3(1_ 1— M) (4#&)1/3(1+ l_w)

a2/3 a2/3
T = Tub =
2 " 2

Moreover,
o < V(e +1) < zup
(iv) For0 < p < ﬁ and let q(p) = t(xm, ), then ¢’ (1) > 0 and there exist a unique
solution to q(p) = 0, denoted as T and T < ﬁ < .

(V) There exists a T > 0 such that, Vu > 7, the equation t(x; ) = 0 has only one solution. At

w = T, the equation t(x; u) = 0 has two solutions, and ¥ < 7, the equation t(z;u) =0
has three solutions. Moreover, T < Mw < %

(vi) Yu < 7, t(x; ) = O has three stationary points, i.e. T, < z\* < xj.

”w
dx::f dx;i** : * : * 3k : 3k sk
— <0 >0and lim 27 =a,limz7* =0, limz."* =0
d,LL du pn—0 w n—0 H pn—0 H
Besides,
e a(va2+1—a) a(vVa?+1+a) .
maxz,” < ——————+ and ———F———"> <minx,
p<r 2Va® + 1 2Va?+1 n>0

/a2 — .
It also implies that t(a(zaai\/%la); ) > 0 and max, <., ;" < min, oz},

Lemma 7. Algorithm I with input f = g, (z,y), z0 = (x(0),y(0)) where (x(0),y(0)) € C,3 in
(41), then ¥t > 0, (x(t),y(t)) € Cpz. Moreover, lim;_, o (z(t),y(t)) = (z},, y},)

Lemma 8. For any (z,y) € Cy3 in (41), and (v,y) # (z,,y};)
9u(z,y) > guly, yy)
Theorem 7 (Detailed Property of r.(y; ). For re(y; p) in (15), then

(i) For > 0,€ > 0, limy,_,o+ re(y; 1) = 00, y( 2%, 1) <0

4

(i) For p > 90 then 4relvit) () For 0 < p < {a=</)

(at+e/n)*’ dy = 4(ate/p)?
dre(y;
((i:ZM) >0 Ylb, e <y< Yub, e (343-)
d e\Y; .
% <0 Otherwise (34b)
Yy

where

Yib e :(4”2)1/3 ((“ - e/ﬂ)2)1/3 B \/(W_E/M)Zf/s — (dp)1/3

p—yp Py
1/ a—e/w)2\? a—e/u)2\ 3

Also,

1/3 (a + E/N)l/s

(@—e/u)2F
Yb,p,e S \//j S Yub, e

Theorem 8 (Detailed Property of rg(y; ). For rg(y; p) in (19), then

Yibe < (217)
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(i) Forpn > 0,e >0, lim,_,o+ 73(y; 1) = 00

(ii) For p > LU o M <0. For0 < p < @ (1-p)"

4(1+p)% 4(14B)?
% >0 Ub,u,8 < Y < Yub,u,B (35a)
d
% <0 Otherwise (35b)

where

Also,
(4p)*/% (1L + B)M/*
Yib,p,B S 2@1/3 (1 _ 6)2/3

Yibpuf < VIS Yub,pu,
Theorem 9 (Detailed Property of ¢g(z; 1)). Fortg(x; p) in (20), then

(i) For >0, lim, o+ tg(z; 1) = o0, tg(a;pu) <0

2 4
(ii) For p > 4(a2+1) Egﬂ;Z
dtg(x;
dx
2 4
ForO < pu < 74((12_’_1)3 EgJ“BQ
dtg(x;
# >0 Tb,p,3 < T < Tyub,u,B (36a)
dtg(x;
% <0 Otherwise (36b)

where

1 (dap(1+ B>\ (@B +1) [ 1-5 \*°
‘”“’62(1—5> VT e <<1+5>2)

1 (dap(1+ B8)2\"? ) /3@ +1) [ 1-8 \*?
Lub,p,3 :5 (Ml—/6’> 1+4/1— a2/3 ((1 + 5)2)

(i) If0 < B < \/Ea%i)-k T then there exists a Tg > 0 such that, Vi > 7g, the equation

rg(z; 1) = 0 has only one solution. At p = 7g, the equation rg(z;p) = 0 has two
solutions, and ¥y < 7, the equation rg(x; ) = 0 has three solutions. Moreover, i <
2 (p+n?
. \/(a +1)— . _ . . .
v) If0 < B8 < \/WH then Y < 7g, tg(x; ) = 0 has three stationary points, i.e.

***

g < xuﬁ < xl B Besides,

a((1 - B)Va? +1— /(1 - B)*(a® +1) — (B+1)?)

max z %, <

psr 8= 2v/a? + 1
(1= AV + 1+ VI-FP@+ D= (F+DH _ o
2WaZ + 1 p>0 " 1P
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It implies that

kk . £
max x < minzx
p<ts w8 >0 w,B

Lemma 9. Under the same setting as Corollary 3,

max x,’. < minzy, .
pr T o T

E Technical Proofs

E.1 Proof of Theorem 3

Proof. For the sake of completeness, we have included the proof here. Please note that this proof can
also be found in [33].

Proof. We use the fact that f is L-smooth function if and only if for any WY € dom(f)
L
FW) < f(V) +(VFY),Y = W) + SV = W3
Let W = Wtt! and Y = W, then using the updating rule Wit = Wt — Lv f (Wt
g p g L
L
FOWEED) <FW) +(VFW), WHE = W)+ ZW = W3
1 1
_ ty L N 12
=1V~ VAV + 52 IV F7)3
1
_ - )12
=W = 5= IV V)3
Therefore,

(fOVO) = fF(W™)) _ 2L(f(W°) — f(W™))

n n

0<t<n—

n—1
. 1 2L
min_[[VFWOI < = [VFWII3 <
t=0

2L(f(WO) = f(W™) _ » S 2L(FWVO) — f(W))

. 812 < <
oin [IVFWAIlz < ” <€ =>n> =

O
O

E.2 Proof of Theorem 5

Proof. (i) For any p > 0,

2
a a
li jp) = lim — — — —(a*+1) =
yggj(y,u) g = (a”+1) = o0
2
a na
r(——)=————-—<0.
TS U e R
(ii)
PR = )
’ /T
a’ 1
= —(— -2 -d’<0
4\ /u



(iv)

)

dr(y;p) _  a  da’uy
dy v P +p?
_da’py’ — a(y® + p)°
PP+’
_a((4ap)*Py? + (4aw) Py(y® + p) + (7 + 10)*) ((dap) Py — y* — )
v (v + )’
For p > %, ((4a,u)1/3 -y —pu)<0& dr(y;”) <0.
For p < 2 LU < Y < Yub, (Aap)YV3y — 9% —p) > 0 & dr(y 1 > 0. For p < “7‘2,
Y <y or yub < ¥, (dap)Py —y? — p) <0 2 <,
Note that
dr(y; )

L =06 ((4ap) Py =y — ) = 05 (dap) P =y + £
H )

The intersection between line (4ayu)'/?

Yib < /I < Yub-

and function y + IEI are exactly yjp, and yyp, and

Note that for 0 < p < %,

or s Y-
— = d < < Yu
T PRI V<
then g—; . < 0. Let p(11) = r(yup, p), because %'y:yub = 0, then
dp(p) _dr(yub,p) _ Or dyus | Or _or <0
d‘u d’u ay Y=Yub d’u a’u Y=Yub a’u Y=Yub

Also note that when p = % Yub = /s (1) = 7(Yub, 1) = (/1 1) < 0, and also if
@ < -, then

4p)1/3
yub<(ﬂ2) 941/3 — (4/Ml)1/3
Thus,
2
Aua)/ ) =— _ Ha —(a® 41
r(e)™ ) =y~ [y e~ @Y
2
a a 7(0,24»1)

T (@pa)'B () 3(4a)2/8 4 pl /52

1 a a?

>M1/3((4a)1/3 - (4a)4/3)

—(a®>+1)

a
Because @77 > (da

7 (Yaw, 1) > r((4pa)t/3, u) — oo as . — 0 because of the monotonicity of r(y; ) in
Theorem 5(iii). Combining all of these, i.e.
dp(u) a?

2P 1 bl
a0 <0, ug&p(u) o0, p(-)<0

)4/3, it is easy to see when 1 — 0, 7((4pa)'/?, ) — co. We know

There exists a 7 < %2 such that p(7) =0

From Theorem 5(iv), for 4 > 7, then p(u) = r(yup, ) > 0, and for 4 = 7, then
p(p) = r(yub, ) = 0. For p < 7, then p() = 7(Yub, 4) < 0, combining Theorem
5(1),5(iii), we get the conclusions.

27



(vi) By Theorem 5(v), Vi < 7, there exists three stationary points such that 0 < y;, < yn, <

VIE< Yt < yup <y, Because 7’17"%“') = 7drg‘g“) = 0, then
Y=UYib Y=Yub
dr(y; 1) 20 dr(y; 1) 20 dr(y; 1) 20
dy Y=Y, dy y=y;* dy Y=y

By implicit function theorem [14], for solution to equation r(y;u) = 0, there exists a
unique continuously differentiable function such that y = y(u) and satisfies 7(y(u), ) = 0.

Therefore,
or o Y -p O a | 4d’py  dy(p)  Or/ou
o Ty Gy @ WP wE dw ooy
Therefore by Theorem 5(iii),
d d d
y=y;, Y=y, Y=y

Because lim, o+ yib = lim,, 0+ yup = 0, then lim, o+ y;, = lim,, o+ y;;" = 0. Let us

consider (5% (1 — cpu), pr) where ¢ = 32(‘12%1)3 and p1 < 5

a

T(aQ +1

(1—cp),p)

2
a pa 5
e o a - (CL +1)
2l —cp) (m(l —cp)? + p)?

2

el wua
L) -
L —cp (ﬁ(l—cmuuﬁ

pa®

(e (1 — cp)?)?

>c(a® 4+ 1)p —

16(a® +1)*
=c(a* + 1)p — %u
16(a® + 1)*
a

By Theorem 5(iii), then 5%+ (1 — cp) < y,;**, then
a . a

——— = lim

a2+1 oot a?+1

o < I Rk - 7
(1 Cu),u),g&yﬂ < o

Consequently,
a
1' KKk —
im0 T @21
O
E.3 Proof of Theorem 6
Proof. (1) For px > 0,
2
a a
lim t(z;p) = lim — — ———=5 — 1=
S ) = I @) >
2
na
tla,pu) = — <0
(a, 1) (u(a? + 1) + a?)?
(ii)
a 1 a?
t(v/pla? + 1), p) = — 1



If t(y/u(a? + 1), 1) = 0, then

2
1 (a® 4+ 1)3/2 5 a(vVa?+1Fa)
f a 2(a®2 4+ 1)
1\ 2
so when p < ( z(a;ill)a)) or i > (%) ,then t(y/p(a? + 1), 1) <0
(iii)
dt(z, p)
dz
a 4pa’x

TEZ T W@ D) 2

_Apaa® —a(p(a® +1) +22)?
N z2(p(a® +1) +22)3
_a((u(@® +1) +2%)° + (u(a® +1) + 2%)(4pa)Px + (4pa)**a?)(4pa) Px — pa® +1) —

x2(u(a® +1) 4+ 22)3

dt(a:

For u > - )3,then(4ua)1/3w—,u(a2+1) 22 < 0« e <0 Forpy <

4(ag+1
and 1, < < b, then (4pa)/Pr—p(a®+1)—22 > 0 < dt(w’”) > 0, For pu <

(12
pYEEESYED

a2
FTCEESIER
T < T OF T > Typ, (4pa)BPr — pa®+1) —22 <0 & ( ’”) < 0.

We use the same argument as before to show that
T < V/ ,u(a2 + 1) < Zyb

(iv) Note that for 0 < p < ﬁ

ot 5 22— p(a®+1)
— =—a and b < Vp(aZ2+1) < 2y
ou (u(a® + 1) + 22)3 th m ) b

then 5% e 0. Let q(11) = t(z1, p), because L] =0, then
d dt ot d ot ot
q(p) _dt(zm, p) _ Ot b | O -z >0
du du ox oy, O ou R o .
2 1/3 1/3 2
Note that 4 = MTP, Tuyb = Tlp = (4#2) > t((4'u(;) ) 4(ag+1)3) = (4W(Ll)1/3 —-1>0.

(a®+1)
q(1r) < 0 when p — 0%, By Theorem 6(iii), g(p) = t(zp, p) < t(+/p(a? +1),u) < 0.
Combining all of the theses, i.e.

p— 2
When p < (W) ,then t(1/p(a? + 1), 1) < 0 by Theorem 6(ii). It implies that

dq(p) a?
R 0, 1 <0, ¢t )>0
d i, a(p) Q(4(a2 n 1)3)
There exists a 7 < 4((13%)3, q(7) = 0. Such 7 is the same as in Theorem 5(iv).

(v) We follow the same proof from the proof of Theorem 5(v).

(vi) By Theorem 6(v), Vi < po, there exists three stationary points such that 0 < 2™ <z, <

Ti* <y < ), < a. Because % = % = 0, then
T=T1p T=Tub
dt(z; p) dt(x; p) dt(x; p)
0 N 0 N 0
de |, _.. 70, dr |, _ 70, dr | e 7
w w w
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By implicit function theorem [14], for solutions to equation ¢(x; 1) = 0, there exists a
unique continuously differentiable function such that z = x(x) and satisfies t(z(u), u) = 0.

Therefore,
z2—p(a+1)
de __04/0p _ o G@iniet®

dp ~ 0t)ox

—a 4paix
2 ¥ @D

Therefore, by Theorem 6(iii)
dx
dp

dzr

<0

—
'/L‘_IH

>0

L=k
"

Hok ok

Because 0 < z,

<z < x;* < wyp and lim,_,o+ 1, = lim, 0+ Ty = 0.
lim z** = lim x;** =0
pn—0 pn—0

Let us consider ¢(a(1 — c), 1) where ¢ = 23 and 1 < -

t(a(l —cp); p)

a ua®

Tl W@F D+
_ocp na?
oo @+ 1) + 21— en)?)?

pa®

So — —
= @0y
16
2cp — e 0
By Theorem 6(iii). It implies
a(l —cp) <,
taking p# — 0T on both side,

a= lim a(l —cp) < lim z¥ <a
n—0+ ( M)7u~>0+ b=

Hence, lim,,_,¢ xz = q.
When p = 7, because t(zp; 1) = 0 and zy, > /p(a? +1) > ay, t(x; p) is increas-

ing function between [T, Zyp] then t(y/p(a? +1);u) > t(amw;u) = 0. Moreover,
t(v/p(a? + 1), u), o1, and z* are continuous function w.r.t y, 36 > 0 which is really

small, such that p = 7 — ¢ and t(\/p(a? + 1), ) > 0, t(z1p, ) < 0 (by Theorem 6(iv))

and z;* > a1, hence j—z < 0. It implies when y decreases, then x},* increases. This
J—
I
relation holds until z7* = \/pu(a? + 1)

t(a)", 1) = t(v/p(a® +1),1) =0
B <a(\/a2 +1-— a)>2
>p=———F——

2(a? +1)
a(va%+1—a a(va’+1—a 2
and /p(a?+1) = (27\/%1) Note that when p < (ﬁ) ,
t(v/p(a? +1),p) < 0, it implies that z3* > y/p(a? + 1) and %‘z:z** > 0, thus de-

creasing p leads to decreasing ,". We can conclude

a(vVa?+1—a)
maxaz't < ——— o
p<r H 2va? +1
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2 2
Note that Vus.t.(%) < p o< T,z < (@)’ 5o

a(va?2+1—a 2
t((%) 1) = 0.

Note that when o > ie. (27%)% > p(a® + 1) then
dz
dp

_a_
a?+1°

>0

—
ZIA’*IH

It implies that when y decreases, 7, also decreases. It holds true until zy, = \/p(a® +1).
The same analysis can be applied to z, like above, we can conclude that

. . _aVa®+1+a)
T T e A 1

a(vVa?>+1—a) < a(vVa?+1+a) .
e W e NS

Hence

E.4 Proof of Theorem 7,8 and 9

Proof. The proof is similar to the proof of Theorem 5 and Theorem 6. O

E.5 Proof of Lemma 1

Proof.

Vg (@,y) = (M2‘;52 u(a? —|2-x1y) + xz)
Let A1 (V2g,(2,9)), \2(V2g,(z, y)) be the eigenvalue of matrix Vg, (z, y), then
M(V2gu(@,9) + X2(Vgu(, y))
=Tr(Vigu(z,y) = p+y* + pla® +1) + 2 >0
Now we calculate the product of eigenvalue
M(V2gu(@,y)) - A (Vg (W)
= det(V?g,(W))

=(u+y*)(u(a® + 1) + 2°) — 42y?
_ pa pa
- X

() > ay

—42%y? >0

aftyo/3 ap
=>(— >
() Y
1/3

Sy + g > (dap)

Note that for (z};, y},), (", y,;*"), they satisfy (11a) and (11b), this fact is used in third equality and
second “&”. By (32b), we know A (V2g,,(2,y)) - \2(V?g,(x,y)) > 0 for (@3, 9), (T, y507),

woo Y
and Ay (V2g,(z,v)) - X2(V2gu(x,y)) < 0 for (z}*,y%*), then

M(V2gu(x,y)) > 0,22(V2gu(e,y)) >0 for (z}, y;0), (a7, y,")

Al(Vng(x,y)) < 0or Xa(V3gu(z,y)) <0 for (", y,,")
and
Vgu(z,y) =0
Then (z7},,y},), (3, y,;**) are locally minima, (z};*,y,;*) is saddle point for g, (W). O
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E.6 Proof of Lemma 2

gu(W)

* )

* 00y

* (X;,‘",y;”)
39,(W)

— 20

a9.W) _
— W

x

Figure 8: Stationary points when p < 7

Proof. Let us define the functions as below

yua(@) =\ [n(*—=)  0<z<a

yﬂg(x):’u(a2 _:Mlz)_’_m2 O0<z<a
zu1(y) yQM—Z,u 0<y<gaz
2ay) = u(g—(a2+1)) 0<y< %

with simple calculations,

Yur > Yu2 < t(z;p) > 0 2 € (0,2, U [z, 2]

pootp
and
* * 3k kK a
:E,u,lZxHQ@r(y;ﬂ)S()@ye[yu7yu]u[yp ua2+1)

Here we divide B,, into three parts, C 1, Cp2, Cp3
Con ={(z, 9|z} <z <, ym <y <y, }U{(z,y)lz), <z <a,ye<y<y,}
Cpz ={(z,y)|z}" <2 <,,0 <y <yua} U{(z,y)]7, <r<a,0<y<yu}
Cus ={(z,y)|z}" <z <}, yp2 <y <y U{(@,9)lr), <z <a,yu <y < yuo}

Also note that

o) €O 2D P
g, (,y) g, (,y)
V(z,y) € Ch2 = o <0, oy <0

The gradient flow follows
09, (z(t),y(t))
' (t SHTAAU I I
(ygtD - (M?%w») = —Vgu(z(1), y(t))
oy
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then

"t
V(@,y) € Cur = (”?58) <0, Vgl >0 “2)
W(z.y) € Cur = @Eg) >0, Vgl >0 (43)

Note that || Vg, || is not diminishing and bounded away from 0. Let us consider the (z(0),y(0)) €
Cy1, since Vg, (z,y) # 0, —Vg,(z,y) < 0in (42) and boundness of C,,1, it implies there exists a
finite 5 > 0 such that

(m(to),y(to)) S 8OM1, (a:(t),y(t)) S Cul for 0 <t <ty

where 0C,; is defined as
0Cu = {(z,y)|z,” <z <,y =yu}tU{(z,y)lz, <z <a,y=yu} CCus
For the same reason, if (2(0),y(0)) € C,.2, there exists a finite time t; > 0,

(J?(to),y(to)) S 8OM2, (J?(t),y(t)) S CHQ forO0 <t <ty
where 0C),5 is defined as
0Cu2 = {(z,y)|z,” <z <,y =yu}U{(z,y)lz, <z <a,y=yu} CCu
then by lemma 7, lim; oo ((t), y(t)) = (7}, y};)- O
E.7 Proof of Lemma 3

Proof. This is just a result of the Theorem 5. O

E.8 Proof of Lemma 5
Proof. Note that
2 _(n+y? 2xy _(n 0 y? 2xy
Vigu(W) = ( 22y p(a®+1) +£C2) - (0 p@?+1)) Tlowy 22

Let || - ||op is the spectral norm, and it satisfies triangle inequality

) u 0 ¥  2zy
sl <[5 o), 15 %)

2
2 y© 2zy
=p(a®+1)+ H (Qxy 22 )

The spectral norm of the second term in area A is bounded by

(2% 4+ y?) + /(22 + y2)? + 12222 < 2a* + V4a* +12a* 242

< a
(z,y)eA 2 2

op

op

We use 22 < a?,y? < a? in the inequality. Therefore,

V29, (W H < 3a® + p(a® +1)

Also, according to [5, 33], for any f, if V2 f exists, then f is L smooth if and only if |V2f|Op < L.
With this, we conclude the proof. O

E.9 Proof of Lemma 7

Proof. First we prove Vt > 0, (z(t),y(t)) € C,3, because if (z(t),y(t)) ¢ C,3, then there exists a

finite ¢ such that
(:E(t), y(t)) € 80#3
where 0C|,3 is the boundary of C,;3, defined as

OCu3 = {(z,yY)ly = yu1(x) ory = y,2(v), 2" <z < a}
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W.L.O.G, let us assume (2(0),y(0)) € 9Cy3 and (z(0),y(0)) # (z},,y;;). Here are four different
cases,

~ o) ify(0) =y (@(0), 25 < 2(0) <,

Z0) i9(0) = g (@(0),2; < 2(0) <a
Vgu(z(t),y(t)) = < 8 i y(0) = g (2(0)), 27 < 2(0) <

Z0) ifu(0) = ya(e(0)), 27 < 2(0) < a

This indicates that —Vg,,(x(t),y(t)) are pointing to the interior of C,3, then (z(t), y(t)) can not
escape C\,3. Here we can focus our attention in C),3, because V¢ > 0, (z(¢),y(t)) € C,3. For
Algorithm 1,

df (z¢)

T Vi(z)z: = —||Vf(zt)||§

In our setting, V(z,y) € Cu3
{ Vou(w,y) #0  (2,y) # (2}, y},)
(z,y) =0 (2,9) = (z},v,)
$0

dgy (x(t),y(t) _ { —||Vgu||§ <0 (x,y) # (z}, ;)
dt ~Vgullz =0 (z,y) = (=}, ;)
Plus, (x},,y},) is the unique stationary point of g, (W) in Cy,3. By lemma 8

9u(®,y) > gl y,)  (7,9) # (2, 9,)

By Lyapunov asymptotic stability theorem [28], and applying it to gradient flow for g,,(z,y) in Cp3,
we can conclude lim; oo (2(t), y(t)) = (@}, y},)- O

E.10 Proof of Lemma 8

Proof. Forany (z,y) € Cy3in4l, and (z,y) # (},,9},), in Algorithm 7. W.L.O.G, we can assume
r € (z}7, x},), the analysis details can also be applied to = € (7}, a). It is obvious that 7; < ;11
and g1 < g;. Also, lim; . (Z;,9;) = (z},,y;;). Otherwise either 7; # x, or §; # y;; hold,
Algorithm 7 continues until im;_, oo (%5, 7;) = Um0 (Yu2(75), 2,41 (Z5)), i.e. (Z;,Y;) converges
to (z},, ;)

Moreover, note that for any j = 0,1, ...

g;t(ij—hgj—l) > gu(a?j—lvgj) > gu(‘iﬂﬂj)

Because
. . - N 09,(Tj-1,7) , - N o
Iu(Tj—1,75-1) — 9u(Tj-1,75) = W(yjl — ;) where§ € (7;,7;-1)
Note that 5 (~ ~)
Gu\Tj—1,Y ~ ~ ~ ~
# > 0= gu(Tj-1,9j-1) > 9u(Tj-1,7;)

By the same reason,

9u(Zj-1,95) > 9u(5, ;)
By Lemma 1, (x},,y},) is local minima, and there exists a r, > 0 and any {(=,y) | [[(z,y) —
(@ yille < rut9u(@,y) > gulwy,yy,) Since lim; o0 (%5, 75) = (¥}, y;;), there exists a J > 0
such that Vj > J, |[(Z;,9;) — (z},,9,,)|l2 < ry, combining them all

9u(2,Y) > 9u(T5,95) > gu(z),,vy)

34



N R W N =

Algorithm 7: Path goes to (z7;, y;;)
Input: (z, yN) GNCug,xul(y),yug(m) as (38a),(37b)
Output: {(Z;,7;)}72,
(5:07 go) — (l‘, y)
forj =1,2,...do
9j < Yua(Zj-1)
Tj = T (P5-1)
end

E.11 Proof of Lemma 4

Proof. From the proof of Theorem 1, any any scheduling for p, satisfies following will do the job
(2/a)*3ut’® < < p
Note that in Algorithm 4, we have @ = /4(po + €) < a, then it is obvious
(/)P < /)%,

The same analysis for Theorem 1 can be applied here. O

E.12 Proof of Lemma 6

Proof. By the Theorem 3 and Lemma 5 and the fact that Ai}e is u-stationary point region, we use the
same argument as proof of Lemma 7 to demonstrate the gradient descent will never go to Aie. O

E.13 Proof of Lemma 9

Proof. By Theorem 9(iv)
maxz,5 < ML, 5

*k

We also know from the proof of Corollary 3, ;"

*ok * *
< ;s and x; 5 <z, . Consequently,

* %k . *
max x < minx
u<ts e — >0 €

Because 73 > 7, s0

* ok < *ok < . *
max 7 < Max . < mina,
O
E.14 Proof of Corollary 1
Proof. Note that
a? < 1 -0
——= <= a
4(a?+1)3 — 27

2 . . .o, . . .
when a > 2—57, then “T > o = it satisfies condition in Lemma 4, we obtain the

1 a?
27 Z 4(a2+1)3 )
same result. O

E.15 Proof of Corollary 2

Proof. Use Theorem 5(vi) and Theorem 6(vi). O
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E.16 Proof of Corollary 3
Proof. 1t is easy to know that

ra(y; ) > re(y; ) > r(y; p)
and

ta(zsp) <te(z;p) <t(z;p)

and when p < 7, there are three solutions to 7(y; #) = 0 by Theorem 5. Also, we know from
Theorem 7, 8

lim r.(y;pu) = oo lim rg(y; p) = oo
i, e(yi 1) i, 5(y; 1)
L 2
Note that when (%) <a?+1

(1+58)

P (Vi 1) = (a4 - SO

<0 Vp>0
Vi 4p

Therefore,
0= ra(Vip) > re(v/is p) > r(Vi p)

Also, we know that for y,}, defined in Theorem 5(iii), we know 7 (yyup; ¢t) > 0 from Theorem 5(iv).
Therefore,

rﬁ(yub;luf) > Te(?Jub?:“’) > T(yub;:u') >0

Besides, /& < yub. By monotonicity of 73(y; 1) and r.(y; i) from the Theorem 7(ii) and Theorem
8(ii), it implies that there are at least two solutions to 73(y; ) and 7¢(y; p). From the geometry
of 75(y; 1), re(y; 1), 7(y; ) and tg(x; ), te(w; p), t(z; p), it is trivial to know that xy, . < 7,
Yie Z Y Tpiie Z T Ve S Y-

Finally, for every point (z,7) € Al

.- there exists a pair €1, €o, each satisfying |e1| < e and |e3] <,
such that (, y) is the solution to

m_ua+61 Hna + €o

TR YT R a1 )

We can repeat the same analysis above to show that 2}, . < z, y;; . > y. Applying the same logic
toV(z,y) € A2, we find 27, > x, y, . < y. Thus, (7, y},) is the extreme point of A}, . and

f,e?
(3%, y*) is the extreme point of A” _, we get the results. O

F Experiments Details

In this section, we present experiments to validate the global convergence of Algorithm 6. Our
goal is twofold: First, we aim to demonstrate that irrespective of the starting point, Algorithm 6
using gradient descent consistently returns the global minimum. Second, we contrast our updating
scheme for (i, € as prescribed in Algorithm 6 with an arbitrary updating scheme for ji, €. This
comparison illustrates how inappropriate setting of parameters in gradient descent could lead to
incorrect solutions.
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F.1 Random Initialization Converges to Global Optimum

Algorithm 6 fora =2 f=0.01 6=0.4 o =0.2034
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(a) Random Initialization 1
Algorithm 6 for a =2 B =0.01 6 = 0.4 yp = 0.2034
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(c) Random Initialization 3

Algorithm 6 for a =2 B=0.01 6= 0.4 o = 0.2034
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(b) Random Initialization 2

Algorithm 6 for a =2 8= 0.01 6 = 0.4 4o = 0.2034
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0.5

0.4
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0.1

0.0

(d) Random Initialization 4

Figure 9: Trajectory of the gradient descent path with the different initializations for a = 2. We
observe that regardless of the initialization, Algorithm 6 always converges to the global minimum.

Initial o =

a? (1-8)°(1-p)*
4 (148)?

37



Algorithm 6 for a =0.5 B =0.01 6 = 0.1 o = 0.0429
Algorithm 6 for a =0.5 B=0.01 6 = 0.1 o = 0.0429
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(a) Random Initialization 1 (b) Random Initialization 2
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(d) Random Initialization 4

(¢) Random Initialization 3

Figure 10: Trajectory of the gradient descent path with the different initializations for a = 0.5. We
observe that regardless of the initialization, Algorithm 6 always converges to the global minimum.

Initial pg = % (1_(‘51)i(51)_26)4

38



F.2 Wrong Specification of 6 Leads to Spurious Local Optimial

Algorithm 6 for @ =0.5 B =0.01 6 =0.4 o =0.0127 Algorithm 6 for a =0.5 B =0.01 6 = 0.1 o = 0.0429
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04 \end 0.4
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-0.2 0.0 0.2 04 0.6 -0.2 0.0 0.2 0.4 0.6
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Figure 11: Trajectory of the gradient descent path for two difference 6. Left: S violates requirement
2
(%) < (1 —6)(a® + 1) in Theorem 4, leading to spurious local minimum. Right: 3 follows

2
(%) < (1 —4)(a® + 1) in Theorem 4, leading to global minimum. Initial py =
a2 (1-9)°(1-p)*

4 (4P

requirement

F.3 Wrong Specification of 5 Leads to Incorrect Solution

Algorithm 6 fora =2 B=0.6 6 = 0.4 o = 0.0022 Algorithm 6 fora =2 B=0.01 6 =0.4 uo=0.2034
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Figure 12: Trajectory of the gradient descent path for two difference 8. Left: 5 violates requirement

2
(%) < (1—6)(a®+1) in Theorem 4, leading to incorrect solution. Right: 3 follows requirement

2
(%) < (1 —6)(a® + 1) in Theorem 4, leading to global minimum. Initial jio = o 1=0°(1-p)"
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F.4 Faster decrease of ;:;, Leads to Incorrect Solution

05
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0.0

Algorithm 6 for a =0.5 B =0.01 6 =0.15 pp =0.0361

@Start

.

!
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i
@end

0.0
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x

(a) Bad scheduling

Algorithm 6 for a =0.5 B =0.01 6 =0.15 pp =0.0361

@g5tart

0.0

(b) Good scheduling

Figure 13: Trajectory of the gradient descent path for two difference update rules for px with the
same initialization. Left: “Bad scheduling” uses a faster-decreasing scheme for (i, leading to an
incorrect solution, even a non-local optimal solution. Right: “Good scheduling” follows updating

rule for py, in Algorithm 6, leading to the global minimum. Initial py =

40

a? (1-6)°(1-p)*
4 (1+p)?
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