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Abstract

We study the problem of learning mixtures of
Gaussians with censored data. Statistical learning
with censored data is a classical problem, with
numerous practical applications, however, finite-
sample guarantees for even simple latent variable
models such as Gaussian mixtures are missing.
Formally, we are given censored data from a mix-
ture of univariate Gaussians
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i.e. the sample is observed only if it lies inside
a set S. The goal is to learn the weights w; and
the means p;. We propose an algorithm that takes
only 50% samples to estimate the weights w; and
the means p; within € error.

1. Introduction

When we collect data, we often encounter situations in
which the data are partially observed. This can arise for a
variety of reasons, such as measurements falling outside of
the range of some apparatus or device. In machine learning
and statistics, this phenomenon is known as truncated or
censored data. Both refer to the case where we do not
observe the data when they fall outside a certain domain.
For censored data, we know the existence of data that fall
outside the domain, while for truncated data, we do not.

It is common to encounter truncated or censored data in
our daily lives. An example of truncated data is census
data. When a census bureau collects data, there may be
some difficulties for the bureau in collecting data for cer-
tain demographics for security, privacy, or legal reasons,
and these individuals may have no incentive to report their
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data. Therefore, the bureau cannot collect data about these
populations. In this case, the census data are truncated.

On the other hand, an example of censored data is test scores.
The range of scores in a test is typically set to be from O to
100. Some students may score the maximum score of 100
points, in which case it is unknown if they could have scored
even higher if the upper bound of the test score was higher
than 100. Of course, even though the students’ scores are
capped at 100, their scores are still being reported. Hence,
their scores are censored, which distinguishes them from
truncated data.

Indeed, statistical estimation on truncated or censored data
is a classical problem, dating back to the eighteenth century
(Bernoulli, 1760). After Bernoulli, (Galton, 1898; Pearson,
1902; Pearson & Lee, 1908; Lee, 1914; Fisher, 1931) studied
how to estimate the mean and the variance of of a univariate
Gaussian distribution from truncated samples. However,
most existing results do not address the problem of finite-
sample bounds, i.e. the results are mostly experimental or
asymptotic (Lee & Scott, 2012; McLachlan & Jones, 1988).
In fact, one can learn the distribution with infinitely many
truncated or censored samples—under mild assumptions,
one can show that the function restricted on a certain region
can be extended to the entire space by the identity theorem
from complex analysis. Unfortunately, it is still not clear
how to translate such results to finite sample bounds.

A recent notable result by Daskalakis et al. (2018) gave the
first efficient algorithm to learn the mean and the covariance
of a single Gaussian with finitely many truncated samples.
A natural extension to the problem of learning a single
Gaussian is the problem of learning a mixture of Gaussians.
To the best of our knowledge, there is no provable guarantees
on the problem of learning a mixture of Gassians with a
finite number of truncated or censored samples even in one
dimension.

As we will discuss in the related work section, there is a long
line of work on learning a mixture of Gaussians. Likelihood-
based approaches often do not provide provable guarantees
for learning mixtures of Gaussians since the objective func-
tion is not convex unless we impose strong assumptions
(Xu et al., 2016; Daskalakis et al., 2017). On the other
hand, many recent results rely heavily on the method of
moments, i.e. the algorithm estimates the moments E(X#®)
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as an intermediate step. With truncated or censored data,
estimating E(X®) (here, the expectation is over the original,
untruncated data) becomes very challenging.

To overcome this, we propose an approach for estimating
moments from censored data. Recall that ordinary moments
are just expectations of monomials of a random variable.
However, by generalizing this to more general functions of a
random variable, we open up the possibility to capture more
complex structures of the distribution. In particular, when
the data is censored, these generalized functions allow us to
relate the expectations back the raw, uncensored distribution.
One must keep in mind that we still need to make a choice of
what functions to consider in addition to providing efficient
estimators of these generalized moments. We preview that a
suitable choice is found by a specific linear combination of
Hermite polynomials derived from the solution to a system
of linear equations. In our proof, we will delve deeper into
the analysis of the expectations of functions, depending on
the domain, and provide a delicate analysis to prove our
desired result.

Based on the above discussion, we may want to ask the
following question in a general sense: Can we learn a mix-
ture of Gaussians with truncated or censored data? In this
paper, we consider this problem and focus on the case that
the data is censored and the Gaussians are univariate and
homogeneous. We now define the problem formally.

2. Problem Definition

Let NV(i1, 0%) be the normal distribution with mean g and
variance o2, Namely, the pdf of N'(p1, 02) is

L

o2(x) =
gl’g() 2mo

For any subset S C R, let I, ,2(S) be the probability mass
of N'(11,0%) on S, i.e.

uo2(S) = / G0 (z)d.
zeS

Also, let N'(u, 02, S) denote the conditional distribution
of a normal NV (u, 02) given the set S. Namely, the pdf of

N(u, 02, 9) is

1 T
gu,o'2,5'($) = I,L,(,z(S)gHMT2 () ifzes
0 ifrdS.

Given a subset S C R, we consider the following sampling
procedure. Each time, a sample is drawn from a mixture of
Gaussians

k
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where w; > 0, 25:1 w; = 1, u; € R,and ¢ > 0. If
this sample is inside .S, we obtain this sample; otherwise,
we fail to generate a sample. Formally, X is a random
variable drawn from the following distribution. Let « be the
probability mass >2° | w;l,,. ,2(S).

¥ Zle wiN (u;, 02, 8)  with probability a
FAIL with probability 1 — «.
(1)

The value FAIL here refers to values that are not directly
accessible to the algorithm.

‘We assume that

(A1) S'is an interval [— R, R] for some constant R > 0
and is known (it is easy to extend S to be any mea-
surable subset of [— R, R]; for simplicity, we assume
S =[-R, R));

(A2) All p; are bounded, i.e. |u;| < M for some
constant M > 0;

(A3) The variance o2 is known.

We also assume that the exact computation of the integral
foz e~ 2" dt for any z can be done. Indeed, one can always
approximate this integral with an exponential convergence
rate via Taylor expansion. As we can see in our proof, this
error is negligible.

For a given error parameter € > 0, we want to estimate all
w;, pb; within € error. The question is how many samples
from the above sampling procedure do we need to achieve
this goal? Our main contribution is a quantitative answer to
this question. We will prove the following theorem:

Theorem 2.1. Suppose we have n samples drawn
from the distribution (1) and we assume that
the mixture satisfies (Al)-(A3). Furthermore, let
Wmin  be min{w; |i=1,...,k} and Apin be
min {|p; — 4| | 4,5 =1,....kand i # j}. Then,
for a sufficiently small ¢ > 0, if wyiy and Ay, satisfy
WminAmin = (), there is an efficient algorithm that
takes n = CY, - EO% (where Cy, is a constant depending
on k only) samples' as the input and outputs W;, i; for
i =1,...,k such that, up to an index permutation II,
|’lﬁn(i)—wi‘<6, |/7H(i)_ﬂi|<5 fori=1,...k
with probability %. The running time of the algorithm is
O(n - poly(k, 1)).

"Here we assume the parameters R and M to be constant for
simplicity. It is easy to keep track of them in our proof and show

that the sample bound is Cy, - (é)o(’“'IOg(A/IJrR*%)),
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In other words, this theorem states that the sample com-
plexity for learning mixtures of k univariate Gaussians with
censored data is EO% which is optimal in terms of asymp-
totic growth of the exponent O(k) (Wu & Yang, 2018). As
for the optimality of the constant in the exponent O(k), this
is an interesting open problem.

3. Related Work

Without truncation or censoring, the study of learning Gaus-
sian mixture models (Pearson, 1894) has a long history. We
focus on recent algorithmic results; see Lindsay (1995) for
additional background. Dasgupta (1999) proposed an algo-
rithm to learn the centers of each Gaussian when the centers
are Q(v/d) apart from each other. There are other results
such as (Vempala & Wang, 2004; Regev & Vijayaraghavan,
2017) that are based on similar separation assumptions and
that use clustering techniques.

There are other results using the method of moments.
Namely, the algorithm estimates the moments E(X®) as
an intermediate step. Moitra & Valiant (2010); Kalai et al.
(2010) showed that, assuming k = O(1), there is an efficient
algorithm that learns the parameters with EO% samples.
Hardt & Price (2015) showed that, when k& = 2, the optimal
sample complexity of learning the parameters is @(E%)
For the case that the Gaussians in the mixture have equal
variance, Wu & Yang (2018) proved the optimal sample
complexity for learmng the centers is O( = =z ) if the vari-
ance is known and @( o ) if the variance is unknown. Later,
Doss et al. (2020) extended the optimal sample complexity
to high dimensions.

When the data are truncated or censored, however, the task
becomes more challenging. (Schneider, 1986; Balakrishnan
& Cramer, 2014; Cohen, 2016) provided a detailed survey
on the topic of learning Gaussians with truncated or cen-
sored data. Recently, Daskalakis et al. (2018) showed that,
if the samples are from a single Gaussian in high dimen-
sional spaces, there is an algorithm that uses O( ) samples
to learn the mean vector and the covariance matrix. Their
approach is likelihood based. Namely, they optimize the
negative log-likelihood function to find the optimal value.
This approach relies on the fact that, for a single Gaussian,
the negative log-likelihood function is convex and hence
one can use greedy approaches such as stochastic gradient
descent to find the optimal value.

Unfortunately, when there are multiple Gaussians in the
mixture, we may not have such convexity property for the
negative log-likelihood function. Nagarajan & Panageas
(2020) showed that, for the special case of a truncated mix-
ture of two Gaussians whose centers are symmetric around
the origin and assuming the truncated density is known, the
output by the EM algorithm converges to the true mean as

the number of iterations tends to infinity.

There are other problem settings that are closely related
to ours such as robust estimation of the parameters of a
Gaussian in high dimensional spaces. The setting of ro-
bust estimation is the following. The samples we observed
are generated from a single high dimensional Gaussians
except that a fraction of them is corrupted. Multiple previ-
ous results such as (Hopkins et al., 2022; Liu et al., 2021;
Diakonikolas & Kane, 2019; Diakonikolas et al., 2019; Lai
et al., 2016; Diakonikolas et al., 2017; 2018) proposed learn-
ing algorithms to learn the mean vector and the covariance
matrix.

Regression with truncated or censored data is another com-
mon formulation. Namely, we only observe the data when
the value of the dependent variable lies in a certain subset. A
classic formulation is the truncated linear regression model
(Tobin, 1958; Amemiya, 1973; Hausman & Wise, 1977;
Maddala, 1986). Recently, in the truncated linear regression
model, Daskalakis et al. (2019) proposed a likelihood-based
estimator to learn the parameters.

4. Preliminaries

We denote the set {0,1,...,n — 1} to be [n] for any pos-
itive integer n. Let h;(x) be the (probabilist’s) Hermite
polynomials, i.e.

- 2 ] 1¢2
i) = (~1)eds* et

dfj for all x € R.

E=x
Hermite polynomials can also be given by the exponential

generating function, i.e.

oo

J
exu—éu? — Z h](tr)/“”i

' foranyz,p e R.  (2)
: J:
j=0

Also, the explicit formula for h; is

Li/2]
PEEDY (=12
i(j — 24)!

=0
and this explicit formula is useful in our analysis.

In our proof, we will solve multiple systems of linear equa-
tions. Cramer’s rule provides an explicit formula for the
solution of a system of linear equations whenever the system
has a unique solution.

Lemma 4.1 (Cramer’s rule). Consider the following system
of n linear equations with n variables.

Ax =10

where A is a n-by-n matrix with nonzero determinant and b
is a n dimensional vector. Then, the solution of this system
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7 = A~'b satisfies that the i-th entry of T is
det(AGY))/ det(A)

where AU is the same matrix as A except that the i-th
column is replaced with b.

Thanks to the application of Cramer’s rule, we often en-
counter determinants. The Cauchy-Binet formula is a for-
mula for the determinant of a matrix that each entry can be
expressed as an inner product of two vectors that correspond
to its row and column. Note that the Cauchy-Binet formula
usually applies to the case that the entries are finite sums.
For our purpose, we state the Cauchy-Binet formula for the
case that the entries are in integral form.

Lemma 4.2 (Cauchy—Binet formula). Let A be a n-by-n
matrix whose (r, c)-entry has a form of [ _ fr(x)gc(x)dz
for some functions f,., g. and some domain S C R. Then,
the determinant of A is

det(A) = / det(B(x)) - det(C(x))dx
To> - >Tp_1,XES™

where, for any x = (xg,...,Zn_1) € S™, B(x) is a n-by-
n matrix whose (r,1)-entry is f.(x;) and C(x) is a n-by-n
matrix whose (i, c)-entry is g.(x;).

Another tool to help us compute the determinants is
Schur polynomials. Schur polynomials are defined as
follows. For any partition A = (Aq,...,A,) such that

A > > M\, and )\; > 0, define the function
a()\1+n71,)\2+n72,...,)\n)(:L'lv T2y vy (En) to be
a()\1+n71,)\2+n72,...,)\n)(xla T2y >$n)
A1+n—1 A14+n—1 A14+n—1
3;}\ 2 xi 2 !
2+n— 2t+n— Ao+n—2
Ty ) x,?
:= det
An An An
Ly Lo e Ly

In particular, when A = (0,0, ...,0), it becomes the Van-
dermonde determinant, i.e.
I =

1<j<k<n

A(n—-1,n-2,...,0) ($17 Z2,... 7xn) =

Then, Schur polynomials are defined to be

)
L a()\1+n71,)\2+n72,...,/\n)(xla$2a cee ,l‘n)
7xn) '

sa(z1, xa, ..

A(n—1,n—-2,...,0) (1'1; L2y -

It is known that sy(x1,22,...,%,) can be written as
>y x¥ where the summation is over all semi-standard
Young tableaux Y of shape \. Here, each term x¥ means
xy' -+ z¥" where y; is the number of occurrences of the

number ¢ in Y and note that Y ;- y; = >, A;. Also, a
semi-standard Young tableau Y of shape A = (\q,...,\,)
can be represented by a finite collection of boxes arranged in
left-justified rows where the row length is A; and each box
is filled with a number from 1 to n such that the numbers
in each row is non-decreasing and the numbers in each col-
umn is increasing. To avoid overcomplicating our argument,
when we count the number of semi-standard Young tableaux
of some shape we only use a loose bound for it.

5. Proof Overview

Recall that our setting is the following (cf. (1)): We are
given samples drawn from the following sampling proce-
dure. Each time, a sample is drawn from a mixture of
Gaussians

k
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where w; > O,Zle w; = 1,u; € Rand o > 0. If this
sample is inside S, we obtain this sample; otherwise, we
fail to generate a sample. Our goal is to learn w; and ;.

One useful way to view mixtures of Gaussians is to express
it as

(iwiém) * N(0,0?)

where J,,, is the delta distribution at p; and * is the con-
volution operator. We call the distribution Zle w;d,, the
mixing distribution. Let m; be the moment of the mixing
distribution, i.e.

k
m; = wi 4]
j g il
i=1

Since we assume that the variance is known, without loss
of generality, we set ¢ = 1; otherwise, we can scale all
samples such that o = 1. First, we reduce the problem
to estimating m;, so that we can employ known results
on estimating mixtures of Gaussians using the method of
moments. For example, Wu & Yang (2018) proved the
following theorem.

Theorem 5.1 (Denoised method of moments, (Wu &
Yang, 2018)). Suppose m; are the moments of a distri-
bution that has k supports on R, i.e. m; has a form
of Zle wiug where w; > 0, Zle w; = 1land p; €
R. Let Wmin be min{w; | i =1,...,k} and Apnin and
min {|p; — pjl | 4,5 =1,...,kandi # j}. Forany§ >
0, let m; be the numbers that satisfy

Im; —m;| <o forallj=1,...,2k— 1.
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Then, lf Wmin and Amin Satisfy wminAmin - Q((SO(%)):
there is an algorithm that takes M; as the input and outputs
W;, [i; such that, up to an index permutation 11,

R §92U%)
|15y — wil < C -
Wmin
and
R §2(%)
Ay — pal < Ck - A

where CY, is a constant depending on k only.

Unfortunately, unlike with fully observed mixtures of Gaus-
sians, estimating these moments is no longer straightforward.
As we will see in our proof, looking for unbiased estimators
relies on specific structures of Gaussians. When the data is
censored, such structures may not exist. Hence, we look for
a biased estimator and provide delicate analysis to bound the
bias. To see how we can estimate m, we first express the
mixture as an expression that is in terms of m;. Suppose X
is the random variable drawn from the sampling procedure
conditioned on non-FAIL samples. For any function f, the
expectation of f(X) is

:
/Sf(x). (Zwigm’l’s(x)> da

k
$~/Sf(:c). (;Uﬁgm,l(l‘)> dz.  (3)

Recall that « is the probability mass Z _ywily,, 1(9).
Note that, for any p,

E(f(X))

1
V2T

= 1 e_%zzewu‘_%y’Z

Vor

1 _ 1.2 > ,u,j
= ——e 27 hi(x)— 4
= 2:; (@) )

o b (@—n)?

Gua(z) =

where h; is the j-th Hermite polynomial and the last equality
is from the fact (2). In other words, when we plug (4) into
(3), we have

a-E(f(X))

To ease the notation, for any function f and positive integer
7, we define

/f \/ﬂj' e 2% hj(z)dz. (5)

If we plug Jy ; and m; into the equation for o - E(f(X)),
we have

(X)=>_Jp;-m;. (6)
Ideally, if we manage to find 2k — 1 functions f1, ..., for—1
such that
1 ifi=j
g = P .
0 if i # j.
then we have
E(fi(X)) =m, foralli =1,...,2k — 1.

It means that we will have an unbiased estimator for m; and
therefore we just need to find out the amount of samples
we need by bounding the variance. Indeed, if S = R and
we pick f; to be the i-th Hermite polynomial h; then the
aforementioned conditions hold. It is how (Wu & Yang,
2018) managed to show their result. However, when S # R,
it becomes trickier.

A natural extension is to pick f; to be a linear combination
of Hermite polynomials, i.e.

-1
fz = Z ﬂi,aha
a=0

for some positive integer ¢. The integer ¢ is a parameter
indicating how accurate our estimator is. Indeed, this ¢ —
oo as € — 0 as we will show in our proof. For each f;, there
are ¢ coefficients 3; ; in the expression and therefore we
can enforce £ terms of Jy, ; to be the desired values. More
precisely, we can set 3; , such that

J.fl / fl \/ﬁ]' e h](x)dl'

— 1 1.2
= i | ha(z)- e 2% hj(x)dx
2_)5/3 (@) ey

—1

1

= § Biadhg,j = {0
a=0

for 5 = 0,...,¢ — 1. If we assume the integrals can be
computed exactly, then all Jj, ; are known. Hence, we can
solve f3; o by solving this system of linear equations.

ifi=j
ifi £ j
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Now, if we plug them into (6) then we have

a E(fi(X)=m;+ > Jp;-m;.
=L

:51

Note that the term m; is what we aim at and hence the
term &; is the error term. Indeed, our estimator is a biased
estimator where the bias is £;. Thanks to the factor % in the
term Jy, ;, intuitively, the term & — 0 as £ — 0.

Define our estimator m; to be
1 (&
m; = Zlfi(:rs) (7)
=

where n' is the number of samples that are non-FAIL and
x,; are the non-FAIL samples. Note that, on average, the
term % = % gives us the factor o implicitly. Then, by
Chebyshev’s inequality, we have

Var(m,;)
62

Now, we break the problem down to the following two
subproblems.

|m,; —my| < 6 +|&| with probability 1 —

» How large ¢ needs to be in order to make |&;| < §?

e Given § > 0, how many samples do we need to make
. ~ 2
the variance Var(m;) < fﬁ and hence the success

probability larger than % ?

Detailed proofs are deferred to the appendix.

5.1. Bounds for the Number of Terms

To see how large ¢ needs to be, we first define the following
notations. Let v(9) be the ¢-dimensional vector whose a-th
entry is Jy_ ;, i.e.

)

o) = [Jho,j Ihij Jhefl-,j]—r

and V be the the £-by-¢ matrix whose r-th row is (v(")) T,

i.e.
V="[® o0 U(H)f, (8)

Recall that, by the definition of 3; ,, 3; , satisfies
ifi =7

-1 1
Zﬂz‘,aJha,j = { U
= 0 ifi #j
We can rewrite it as a system of linear equations.

where (3; is the /-dimensional vector whose a-th entry is
Bi o and e; is the ¢-dimensional canonical vector which is a
zero vector except that the ¢-th entry is 1, i.e.
T
Bi=[Bio Bia Bie—1]
and
T
e, = [0 R ()] .

Namely, we have §5; = V' ~le;. Recall that the definition of
gi is

(o]
Ei= Jpj my.
j=¢

To bound the term Jy, ;, observe that

-1
= Zﬂiﬂl‘]/ba,j — (U(j))valei
a=0

and, by Cramer’s rule, Jy, ; can be expressed as

g det (V=)
T = T det(V)

where V(177) is the same matrix as V except that the i-th
row is replaced with U(j), i.e.

Vv (i=9)

= [v© (=D ) li+D) U(f—l)f

(10
fori = 1,...,2k — 1 and 5 > ¢. The right arrow in the
superscript indicates the row replacement. We preview that

there are column replacements in our calculation and we
will use left arrows to indicate it.

In Lemma A.2, we show that

det(V (i—9) 1
| det( -
|det(V)] — 2@ logj)’

|sz‘,j‘ =

Also, by the assumption that | ;| < M where M is a con-
stant, we have m; < M7. Hence, we prove that

o0 o0 1
1&i] < Z:E|in,j\|mj| < Z:Em - MY
J= J=

¢
= 2Q(flog £) MT<6
—( logs
as long as { = Q(loglog%).

Hence, we have the following lemma.
Lemma 5.2. For a sufficiently small § > 0, when { =
log %
(log log %

), the estimators m; computed by (7) satisfies

Var(m,)

|r/f11—mz\ <20 52

with probability 1 —
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5.2. Bounds for the Variance

Recall that our second subproblem is to bound the variance
of our estimator. To bound Var(m,; ), observe that

Var(m,) < E(?) = “E(fi(X)?)
-1
E /Bi,aha(X) g
((Zpatec0’)
-1 2
<= (Z @,WE(ha(X)?)) (11)
a=0

By expanding the expectation explicitly,

k
E (ha(X)z) = /Sha((ﬂ)z' <Z wig#i71,5($)> da

3|e

l x 2. - w; T T
<o [ (Z i >> 4
< é(O(M—i-\/&))Q“ (12)

The last line comes from (Wu & Yang, 2018) where they
showed that

k
[ atar (Z wigm(x)) do < (O(M + Va))™

in Lemma 5 of (Wu & Yang, 2018).

Now, we also need to bound |5; ,|. Recall that
Bi =V e

By Cramer’s rule, each coordinate of j3; is

8. — det(V(eia))
T det(V)

where V' (¢1<-%) is the same matrix as V except that the a-th
column is replaced with e;, i.e.

V(ei<—a)
- (0 0 0 0) 1
vé) Ufl—)1 0 U((LJZ1 U§31
= 7j(()w vffll 1 vffll Ug_)l
L0 0 )
(13)
In Lemma A.3, we show that
|Bi,a] < 2001080, (14)

Therefore, if we plug (12) and (14) into (11), we have the
following lemma.

Algorithm 1 Learning mixtures of Gaussians with censored
data
Input: n iid samples x4, . .., z,, number of Gaussians k,
parameter ¢, mean boundary parameter M, sample domain
S = [_Ra R]

1: fori =0to 2k — 1do

2: solve (9) to obtain 3; = (Bi.0, Bit,s---Bie—1)",ie.

solve the following system of linear equations

VBi=e;
where the (7, ¢)-entry of V' is

2

/ L te he(a)hy (2)da (15)
S

—e
vV 2mr!
and e; is the canonical vector
3: end for

4: for each sample z, do

5:  compute ﬁ(xs) = {

recall that f; is

fz(xs)
0 if x4 is FAIL

if 24 is non-FAIL

)

-1
fz(x) = Z /Bi,aha(CE)

and h,, is the a-th Hermite polynomial

6: end for

7. fori =1to 2k — 1do R

8:  compute m; = > " | f;(z,) which is the same as

the estimator defined in (7)

9: end for

10: let @1,@2, e 77:U\k and ﬁl,ﬁg, cee
Algorithm 2 using m = (my, ..
the input

, 11 be the output of
.,Mmoi_1) and M as
Output: estimated weights Wy, Wa, . . . , Wy, and estimated
means i1, flg, - -, ik

Lemma 5.3. For any positive integer {, the estimator m;
computed by (7) has variance

Var(im,;) < — . 20(logf),

S|

5.3. Full Algorithm and Main Theorem

In this subsection, we will present the full algorithm and
combine with the analysis in the previous subsections to
prove our main theorem.
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Proof of Theorem 2.1. Suppose we are given n iid samples
1, ..., T, from the distribution (1). We will show that the
estimated weights w1, Wa, . . ., Wy, and the estimated means
11, [2, - - , g outputted by Algorithm 1 taking x1, ..., x,
as the input satisfy the desired guarantees.

log %
log log %

By Lemma 5.2, when ¢ = €( ), we have

. . o Var(m;
|m; —m;| < 2§ with probability 1 — %
where m; are computed in Algorithm 1. Moreover, by

Lemma 5.3, we show that

Var(f;) < = - 201080
n
which implies when £ = ( lo:i g% ) the failure probability
B
is less than
Var(m;) 1
< — -poly(=
5z = o poly(3)

By applying the union bound over all: =1,2,...,2k — 1,
when n = Q(poly(})), we have

|1 | <260 ith probabilit %9

m; —1m,; Wil 1 v

P ¥ 100

In (Wu & Yang, 2018), they showed that Algorithm 2 is the
algorithm that makes the guarantees hold in Theorem 5.1.
Therefore, if we pick § = £(*) along with the assumption
WiminAmin = 2(g), we have, up to an index permutation II,
|y — wil <e, i) — il < e
We now examine the running time of Algorithm 1. Tt
first takes k - poly(¢) time® to obtain 3;. Then, it takes
n-k-poly(¢) to compute m;. Finally, the running time for Al-
gorithm 2 is poly(k). Hence, by plugging ¢ = O(klog 1),
the running time of Algorithm 1 is n - poly(k, 1).

O

6. Conclusion and Discussion

In this paper, we study the classical problem of learning
mixtures of Gaussians with censored data. The problem

2Computing the integral in (15) can be reduced to computing
the integral |, Oz e~ 2t dt by observing h. and h, are polynomials
and using integration by parts. If we remove the assumption that
the exact computation can be done, we will need to approximate
the integral up to an additive error of 1/2P°Y(*:©) One can approx-
imate the integral in an exponential convergence rate by Taylor
expansion and hence the running time is still k& - poly(¢) for this
step.

fort=1,... k.

Algorithm 2 Denoised method of moments (Wu & Yang,
2018)

Input: estimated moments m = (my, . .
boundary parameter M

., My _1), mean

I: letm* = (mj,...,m}, ;) be the optimal solution of
the following convex optimization problem

arg max||m — my||
m
st. M - Mo ap—2 = Miop_1 = —M - Mo or_2

where M, ; is the Hankel matrix whose entries are

m;,...,mj,1.¢.
m; m;q 1’1’1%
mi+1 mi+2 m;
M,; =] .
Mmit; IMMit; m;
i My Z

2: let fiy, fl2, - - , jix be the roots of the polynomial P

where
* *
1 ml .. mk}
P(z) = det :
* * *
my_, 1My Mok_1
1 T .. zk

3: let (@y, s, ..., W) " be the solution of the following
system of linear equations

1 1 17 [w 1
f1 T Hr | |we mj
k=1 ~k—1 ~k—1 ' .
1) o M Wk my._q

Output: estimated weights w1, Wo, . . . , Wy and estimated

means fiy, fig, -~ -, fix

becomes more challenging compared to the problem of
learning with uncensored data because the data are partially
observed. Our result shows that there is an efficient algo-
rithm to estimate the weights and the means of the Gaussians.
Specifically, we show that one only needs 50% censored
samples to estimate the weights and the means within ¢
error. To the best of our knowledge, this is the first finite
sample bound for the problem of learning mixtures of Gaus-
sians with censored data even in the simple setting that the
Gaussians are univariate and homogeneous.

There are multiple natural extensions to this setting. For
example, a natural extension is to consider mixtures of mul-
tivariate Gaussians. Without truncation or censoring, one
popular approach to learn mixtures of multivariate Gaus-
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sians is to apply random projections and reduce the problem
to univariate Gaussians. This approach relies on the fact that
the projection of a mixture of Gaussians is also a mixture of
Gaussians. Unfortunately, this fact is no longer true when
the data are truncated or censored.

Another interesting direction is to relax the assumption of
known and homogeneous variances to unknown and/or non-
homogeneous variances. When the Gaussians are homo-
geneous, one can estimate the variance by computing the
pairwise distances between k + 1 samples and find the min-
imum of them if the samples are not truncated or censored.
It holds from the fact that two samples are from the same
Gaussian and hence the expected value of their squared dis-
tance is the variance. It becomes more challenging when
the samples are truncated or censored because the expected
value of the squared distance may not be the variance.

Furthermore, previous results indicate that, in the uncen-
sored setting, sample bounds can be improved when the cen-
ters of Gaussians in the mixture are well-separated (Moitra,
2015; Regev & Vijayaraghavan, 2017; Qiao et al., 2022).
An interesting direction for future research would be to
improve our results under stronger separation assumptions
on the components. For example, one strategy to exploit
separation is to apply the Fourier Transform to the pdf of
the mixture. With uncensored samples, it is straightforward
to estimate the Fourier Transform, however, when the pdf
is truncated, a challenge arises as the Fourier Transform
may not yield a convenient form, as required by these anal-
yses. We anticipate that delicate modifications may still be
needed, and leave this open to future work.
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A. Proof

In this section, we will present the proofs of the lemmas.

Lemma A.1. Let V be the matrix defined in (8), i.e. V is the £-by-{ matrix whose (r, ¢)-entry is Jy, , forr,c =0,1,...,(—1.
Recall that, from (5), Jy,. , is defined as

1 .
Jhmr/g\/ﬂrle 2 he(z)hy(x)dz.

Then, the determinant of V' is

det(V) = (\%)

Proof. Since the (r, c)-entry of V is

¢ -1

1 1 f-1 2
. H i' . e 2 Ec:o Te o, H (:L.Cl — $C2)2dx.
r—0 . zo>->xp_1,XESE

0<c1<ca<l—1

1 i
Jhc’r:/s\/ﬂrle he(x)h,(x)dx,
1

by factoring out the term Worel for each row, we have
1\ 2y
det(V)=| —= ) - — - det(W 16
0= (75) L -aeem (16)

where W is the ¢-by-¢ matrix whose (r, ¢)-entry is

W, = / e 2% ho(2)h, (2)d2. (17)
s
By Cauchy-Binet formula, we can further express det(W) as
det(W) = / (det(U(x)))?dx (18)
o> >xe—1,XES*
where U (x) is the ¢-by-£ matrix whose (r, ¢)-entry is
U(X)rc = e 1% h, () (19)
for any x = (xg,...,7¢_1) € S*. By factoring out the term e~ 7 for each column, we have
det(U(x)) = e~ 7 Ze=0 2 det(P(x)) (20)

where P(x) is the £-by-£ matrix whose (r, ¢)-entry is

P(x)rc = hr(zc) 21
for any x = (zq,...,2¢_1) € S Since h, is a polynomial of degree r with the leading coefficient 1, by applying row and
column operations, the determinant det(P(x)) is same as the determinant of the Vandermonde matrix, i.e.

det(P(x)) = H (Tey — Xey)- (22)

0<c1<c2<l—1
In other words, the determinant det (V') is

det(V) = (\%)

¢ -1

1 -1 2
: H =5 €73 Teso e . H (Te, — Te, )2 dx.
r—0 7". zo>>xp_1,XESE

0<c1<ca<l—1

11
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Lemma A.2. Let V™9) be the matrix defined in (10) for i < 2k — 1 and j > € > 2(2k — 1) > 2i. Then the absolute
value of the determinant of V—7) is

1

‘dm(y%r»ﬁ)|§ TG 87

| det(V)].

Proof. We can perform a similar computation as in the computation of det(V"). Namely, we factor out the term \/%T' for

each row, we have

=
det(V@=y = [ — ) . — . = .| det(W=9)
[det (V1)) ( %) L 5t

where W (=79 is the same matrix as W from (17) except that the i-th row is replaced by the row v/27j!v). By comparing
to (16), we simplify | det(V (*=9))| to be

; (i)
i)y = & [detsWERI)] )
[ det(VEm)] = aet (77 | det(V)] (23)

By Cauchy-Binet formula, we can further express det (17 (#=9)) as

det(W=9)) — / det(U(x)) det(U7~) (x))dx

x> >xp_1,XESE

where U (*7)(x) is the same matrix as U (x) from (19) except that the i-th row is replaced with the column whose c-th entry
is e~ 470 hj(z.) for any x = (zq,...,2¢—1) € R’. Furthermore, by Cauchy—-Schwarz inequality and comparing to (18),

1/2 1/2
| det(W(=9))| < / (det(U(x)))%dx / (det (U9 (x)))%dx
o> >xp_1,XESE To>-->xp_1,XES?

e (i—7) b'e 2 X 1/2
= (fa;o>~~>wtzhxe5£(d "o ) ) | det(W)].

(24)
fx0>~-->xe,1,xesé (det(U(x)))?dx
By factoring out the term e~ 172 for each column, we have
det (U9 (x)) = emi X0 det (P09 (x)) (25)

where P(179) (x) is the same matrix as P(x) from (21) except that the i-th row is replaced with the row whose c-th entry is
h;j(z.) forany x = (x,...,z¢-1) € R".

This time, the computation of det(P(7)(x)) is not as easy as det(P(x)). In Lemma A.4 below, we will show that

et (PO )| < P 290 der(Po)|.

Plugging it into (25) and comparing (25) to (20), we have

i— ] J
|det (U9 (x))] < z'(%)'

Furthermore, by plugging it into (24),

(det(U9)(x)))%dx
det(U(x)))2dx

i

.
||
N

| det(W(l_U)ﬂ g (fwo>"'>zzl7xesif

1/2
1 .
T ( ) | det(W)] < J'“-2O(])~\det(W)|
o> >xp_1,XESE :

12
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Finally, when we plug it into (23), we prove that

o i (i—7) 1l
| det(V =) = it [det (W) | det(V)] < v

412000) 20(j5)
jt | det (W) :

gy eI = ey

Recall that i < 2k — 1 and the assumption of j > ¢ > 2(2k — 1) > 2i. We have

| det(V)]

1

‘det(V(Hg)N < TG 87

- | det(V)].

O

Lemma A.3. Let V(®:%) be the matrix defined in (13) for i < 2k —1 and a < {. Then the absolute value of the determinant
of V(ei<a) jg

| det(V(eia))| < 201080 | det (V).

Proof. Recall that V(¢ is the same matrix as V except that the a-th column is replaced with e;. Hence, we first expand

the determinant along that column and factor out the term \/%T, for each row.

[ det (Ve = (L) T Lt
2 r:O,r;ﬁiT.

where W (=%~ is the same matrix as W from (17) except that the i-th row and the a-th column are omitted. By comparing
to (16), we first simplify | det(V (¢ )| to be

| det(W (=5=a)|

det(V(© <) = 2ril - -| det(V
er(v (e = Vamit- A den(v)
It means we need to bound the term % from above. To achieve it, we will bound | det (1 (~%~9))| from above
and | det(W)| from below.
By Cauchy-Binet formula, we further express det(TW(~%~%)) as
det(WH=9)) = / det (U9 (x)) det (U2 (x))dx (26)
To>>xp_2,XESTT
where U9 (x) (resp. U(=®) is the (¢ — 1)-by-(¢ — 1) matrix whose (r, ¢)-entry is e~ 5% h,.(z,) for r € [(]\{i} (resp.
r € [)\{a}),c€ [ —1]and any x = (g, ..., rs_2) € R‘"L. By factoring out the term e~ 72 fro each column,
det(UC)(x)) = e~ Zez0 =2 det (P9 (x)) 7)

where P(~%)(x) is the (¢ — 1)-by-(¢ — 1) matrix whose (r,c)-entry is h,.(x.) for r € [{]\{i}, ¢ € [¢ — 1] and any
x = (20,...,74_2) € REL

Again, the computation of det(P(~%(x)) is not as easy as det(P(x)). In Lemma A.5, we show that

| det(PU(x))] < 200080 T e, — e

1<ec1 < <l—2

Note that the bound is independent to 7 and hence we have the same bound for | P(~%)(x)|. By plugging it into (27) and
further into (26), we have

| det(W(—6=a))| < 20(¢log ) / e~ 3 oo H (Te, — Te, ) 2dx. (28)

o
o> >Tp_2,XESFT 1<c1<cp<f—2

13
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Recall that, in Lemma A.1 and (16),

det(W) = / em7 Xezoel . H (Te, — Te, )2dx.
To>-->xp_1,XESE

0<ec1<eca2<l—1

. _1 £—1 2 . . . ) )
Since the term ez 2e=0 % - [o<e, cer<o—1(Te, — ey )2 in the integral is symmetric with respect to g, . .., 2¢_1, we have
_1Nxt—1 2
det(W) = £1- / AR ] (e we)x
xest 0<c1<ca<l—1

To bound det(W) from below, we consider integrating over the sub-region {x € S* | |zy—1 — x| > £} of 5.

det(W) > ¢! - / B =L H (Te, — Te,)2dx

R ¢
|ze—1—zc|> 4 xES 0<cy<ca<t—1

2(¢4—1)
R _1p2 _1xf-2 2
Z K' . <€ e 2R . e 2 c=0%Tc . | I (xcl _.TCQ)QdX
|m£—1*Ic|>%1X€f51Z

OSCl <02§Z—2

R 2(6_1) 1 p2 1 £—2 2
>0 R <Z) e 2. / . €2 Zue=0Tc . H (Te, — Te, ) 2dx
xeSt-1

0<c1<ca<b—2

RN\ 20D
=0 R(7 em3 P PO L I (e —2e,)dx
¢ To>->xp_2,xESETT “ 2

0<c1<ca<l—2

1 _1xt-2 2
= o )| P | G 29)
To> - >Tp_9,XESTT

0<c1<c2<l—2
In other words, by comparing | det(W)| in (29) to | det(W (~»~%))| in (28), we have

| det(W(=5=a)))]

< 20(£10g€)
[det(W)|  —

and hence

| det(V(er=a)| et (WY
Ll LA Y (| R meA—— ) EA 0N
[det(V)] T dee (W)

O
Lemma A.4. Let P(—7) (x) be the matrix defined in the proof of Lemma A.2. Then the absolute value of the determinant of
PU=9)(x) is
o 1 )
| det (P9 (x))| < .'(;.]_i)' -200) | det(P(x))].
1. =)

Recall that P(x) is the matrix defined in (21).

Proof. Since the entries of P(*~7) (x) are Hermite polynomials, we can decompose it into

PU=d) (x) = 0l=9) . xU+1)

where C(i79) is the £-by-(j + 1) matrix whose (7, c)-entry is the coefficient of ¢ in the r-th Hermite polynomial and
XU+ is the (j + 1)-by-¢ matrix whose (r, ¢)-entry is x7.. For example, take £ = 4,7 = 2, j = 6,

14
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and hence
1 o 0 0 0 00
Cli=3) — 0 1 0 0 0 00
-15 0 45 0 —-15 0 1
0 -3 01 0 0O
To compute det(P(—7)(x)), we use Cauchy-Binet formula and we have
det(PU9)(x) Z det(C (Z%J)) de t(X[JJrl])
T
where the summation is over all subset " of size £ of [j + 1], C. (l_” ) is the ¢- by-£ matrix whose columns are the columns of
C=9) at indices from T and X7 1) i the {-by-{ matrix Whose rows are the rows of XU+ at indices from 7'. Here, for
any positive integer n, we denote [ ] to be the set {0, 1,...,n — 1}. Furthermore, by triangle inequality,
| det(PU=9)(x))| < Z | det(CU7)] - | det(XE )] (30)

We first make some simplifications to see what 7" makes the determinants nonzero. For example, take £ = 8,7 = 2, j = 10,
we have

ho(z) =1

hi(z) ==

hs(z) = =3z + 23

hy(x) =3 — 627 + 2*

hs(z) = 15z — 102° + =

he(z) = —15 + 452% — 152" + 2

h7z(z) = =105z 4+ 1052° — 212° + x

hio(x) = —945 4 472522 — 31502 + 63025 — 452° 4 o

and
- -
3 —6 1
—-15 45 —15 1
i) 6 o and cotamn swans —945 4725 —-3150 630 —45 1 )

-3 1
15 10 1

—105 105 —-21 1

For simplicity, we assume that i, j, £ are even numbers and it is easy to prove the other cases by symmetry. If 7" satisfies one
of the following conditions:

¢ does not contain all odd numbers less than /,i.e. 1,3,...,/—1
¢ does not contain all even numbers less than ¢,i.e. 0,2,...,7 — 2
 contains more than one even number larger than or equal to ¢, i.e. £, £+ 2,...,j

then det(C.’, (023)) = 0. In other words, the choices are
e T'=[{or

15
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e T=[\{a}U{b} fora=1i,i+2,....0 —2andb=0,0+2,...,].

Therefore, there are only £* - # + 1 = O(j?) choices for T such that det(C’:(yiT_}j )) may not be 0.

If T = [{], by expanding the determinant det(C’:(f;j )) along the rows whose diagonal entry is 1, what we have left

{—1i
2

r!

e g0t
(7F5)el272

is the determinant of a matrix A where A is the (:5%)-by-(45¢) matrix whose (r, c)-entry is (—1)=" for

—6 1
r=i+2,....,4—2,jand c =14,i+2,...,¢ — 2. In the example, the matrix Ais | 45 —15 1 |. By applying
4725 —3150 630
row and column operations, we can compute the exact expression for det(A)

£—i—2

izi j! 2 1
det(A) = (—1 - -
et(4) = (1T = | X ()"

m=0
In the example, we have

—6 1
det(| 45 —15 1 |)=14175
4725 —3150 630

£—i—2

Note that the expression >, %, (—=1)™

m!(i5=—m)

. in the equation for det(A) can be easily bounded by

Hence, we have

| det(CU77)] = [ det(A)] < -

Also, since T' = [/], therefore |det(X7[Zj1])| = [lo<e,<en<o—1 1Ter = Tey |- When T' = [{], we have

, i
| det(Cr )| [det (X2 < e T e, — e

Jj—i
Z'( 2 )' 0<c1<ca<l—1

Now, consider the case that T = [¢|\{a} U {b} fora =i,i+2,...,£ —2and b= {¢,£+ 2,..., . Similar to the previous
calculation, by expanding the determinant det(C’:(f;J )) along the rows whose diagonal entry is 1, what we have left

—c

is the determinant of a matrix A where A is the (£5%)-by-(%5*) matrix whose (r,c)-entry is (—1)"=" rt

r=i+2,...,a,jand ¢ = 9,7+ 2,...,a — 2,b. For example, take ¢ = 6 and b = 8, the matrix A is tﬁe example is
—6 1
45 —15 . By applying row and column operations, we can compute the exact expression for det(A)
4725 —3150 —45

for

i i s al
(4)=1) (552) 127" 1) (a2
In the example, we have
—6 1
det(| 45 —15 ) = —2025

4725 —3150 —45

16
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To bound | det(A)],

4! a! 4! a! 1

|det(A)| = (JT)‘b'Qi (agz) a = o : ( )|bl(37)' : 2%

Note that —— < 1. Recall thati < a </ —2and ¢ < b < j. We also have
2 2
a! a-+i b+
<2 (< (2L
(a;z)! 2 2
Hence,
| det(4)] < 2 2j<%§>':.7 5 (B! G 1
R B (G

Observe that

By plugging them into the above inequality,

R 1l
|det(C7 )] = | det(A)] < %

Since a is omitted from {4,7 + 2,...,¢ — 2} and b is selected from {¢,£ + 2, ..., j}, it means that T' = [¢{]\{a} U {b}. By
the properties of Schur polynomials,

det X[j+1] (ZX ) . H (xcl - xcz)

1<c1 <ea<l—1

where the summation is over all semi-standard Young tableaux Y of shape (b — ¢+ 1, 1,...,1 ,0,...,0). Here, the term

{—1—als a0’s
x¥ means x§° - - - """ where y,, is the number of occurrences of the number m in Y and note that Zﬁ;o Ym = b —a.
Based on the given shape, there is one row of size b — £ — 1 and one column of size ¢ — a and they connect at the first element.
For the row, the number of non-decreasing sequences of size b — ¢ — 1 whose numbers are between 0 and ¢ — 1 inclusive is
( 431) < 27. For the column, the number of increasing sequences of size £ — a whose numbers are between 0 and £ — 1

inclusive is (2) < 27. Hence, the number of semi-standard Young tableaux of such shape is bounded by ( 431) . (2) < 227,
By the assumption that S = [~ R, R], we can also bound the term |xY'| to be

|XY| < Rbfa < 20(]’).
We can now bound the determinant | det(X[Tj:rl])\ by

det(XT <200 [T (2o, — o)
1<c1<ea<l—1

Namely, when T' = [{|\{a} U {b} fora =¢,i+2,...., £ —2andb=V(,L+2,...,7,

o , 9% _
[ det(CU7)] - [ det(XE )] < Z' . jj» '.Qou). I (-2
v (T) 1<ec1<ea<t—1
" _
= | j,l | '20(.]) ' H |:CC1 7I’C2|
Z(T) 0<c1<ca<l—1
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By considering all cases for 7" and plugging them into (30), we have

1l
| det (P~ (x) \<Z|det CUM| - Jdet(xET < — L 200 T |ae, — 2,

J
z'(T) 0<ci<co<l—1

and, by comparing to det(P(x)) in (22) whichis [ o<, oo, <p_1 [Te; — Teyls

‘det(p(i%j)(x)ﬂ < -|(j!i)| .20(j) . |det(P(X))|.
1. =)

O

Lemma A.5. Ler P(—7) (x) be the matrix defined in the proof of Lemma A.3. Then the absolute value of the determinant of

PEO(x) is

|det(PCO(x))] < 20050 T ey — @l

1<c1<ea<l—2

Proof. Since the entries of P(—) (x) are Hermite polynomials, we can decompose it into
p=9 (x) = o= . xl

where C(~% is the (¢ — 1)-by-¢ matrix whose (r,c)-entry is the coefficient of z¢ in the r-th Hermite polynomial for
€ [)\{i} and X! is the ¢-by-(¢ — 1) matrix whose (r, c)-entry is «7. For example, take ¢ = 4,i = 2,

ho()
hl(l‘)
hs(x) = =3z + 23

1
x

and hence
oo 111
c =10 1 0 0 and X! = xg x; xg
0 -3 0 1 S

Ty Ty T

To compute det(P(~%(x)), we use Cauchy-Binet formula and we have

det(P)(x Zdet 0 G7) - det(x1)

where the summation is over all subset 7" of size £ — 1 of [¢], C’S?j ) is the (£ — 1)-by-(¢ — 1) matrix whose columns are the
columns of O~ at indices from 7" and Xq[fl is the (¢ — 1)-by-(¢ — 1) matrix whose rows are the rows of X at indices
from T'. Furthermore, by triangle inequality,

| det(PC)(x))] < Y [det(C57)] - | det(XL)] 31)
T

18
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We first make some simplifications to see what 7" makes the determinants nonzero. For example, take ¢ = 8,7 = 2, we have

ho(z) =

hi(z) =

hs(z) = =3z + 23

ha(z) = 3 — 627 + 2*

hs(z) = 152 — 102° + 2°

he(z) = —15 + 452% — 152" + 2

hr(x) = —105x + 1052° — 212° + 27

and
o _
3 —6
_ —15 45 —15 1
O(iz) —up to row and column swaps 1

-3 1
15 —10 1

—105 1056 —-21 1

Fro simplicity we assume that i, £ are even numbers and it is easy to prove the other cases by symmetry. If 7" does not
contain all odd numbers or all even numbers less than 4, then det(C':(_;)) = 0. In the words, the choices are [¢]\{b} for

b=1i,i+2,...,{— 2. Therefore, there are only 5% = O(¢) choices for T" such that det(C:(,;i)) may be be 0.

Now, we expand the determinant det(C' (;i)) along the rows whose diagonal entry is 1. What we have left is the determinant
of a matrix A where is A is the (25%)-by-(25%) matrix whose (r, ¢)-entry is (—1) =" (;Ti'rgc forr =i+2,...,band
5 c:

c=1,i+2,...,b— 2. For example, take b = 6, the matrix A in the above example is [ L ] . By applying row and

45 —15
column operations, we can compute the exact expression for det(A) as

det(4) = (~1)'7 —
B (b5

and hence

_ bl
| det(C )] = [ det(A)] € ———— < L. 32)

GRL

In the example, we have

By the properties of Schur polynomials,
det X[e] (Z X > . H (Icl - Icz)
1<c1 <ea<l—2

where the summation is over all semi-standard Young tableaux Y of shape ( 1,...,1 ,0,...,0). Recall that the term x’
N——

——
—1—-0b1s b0’s
Ye—2

means z - - -, where y,, is the number of occurrences of the number m in Y and note that Zm oYm =L —1—b.

19
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Based on the given shape, there is only one column of size / — 1 — b. That means the number of semi-standard Young
tableaux of such shape is the number of increasing sequences of size £ — 1 — b whose numbers are between 0 and ¢ — 2
inclusive which is (531) < 2¢. By the assumption that S = [~ R, R], we can also bound the term |xY | to be

It means that

[det(Xp)] <200 T (2e, — 2. (33)

1<c1<ca<l—2

By plugging (32) and (33) into (31), we can now bound | det(P(~%(x))| by

[ det(PCD(x))] < 3 [det(CG0)] - [det(X5)| < 200020 T Jae, — 2.
T 1<cy <ca<l—2
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