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Abstract

We study the problem of learning mixtures of

Gaussians with censored data. Statistical learning

with censored data is a classical problem, with

numerous practical applications, however, finite-

sample guarantees for even simple latent variable

models such as Gaussian mixtures are missing.

Formally, we are given censored data from a mix-

ture of univariate Gaussians

k∑

i=1

wiN (µi, σ
2),

i.e. the sample is observed only if it lies inside

a set S. The goal is to learn the weights wi and

the means µi. We propose an algorithm that takes

only 1
εO(k) samples to estimate the weights wi and

the means µi within ε error.

1. Introduction

When we collect data, we often encounter situations in

which the data are partially observed. This can arise for a

variety of reasons, such as measurements falling outside of

the range of some apparatus or device. In machine learning

and statistics, this phenomenon is known as truncated or

censored data. Both refer to the case where we do not

observe the data when they fall outside a certain domain.

For censored data, we know the existence of data that fall

outside the domain, while for truncated data, we do not.

It is common to encounter truncated or censored data in

our daily lives. An example of truncated data is census

data. When a census bureau collects data, there may be

some difficulties for the bureau in collecting data for cer-

tain demographics for security, privacy, or legal reasons,

and these individuals may have no incentive to report their
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data. Therefore, the bureau cannot collect data about these

populations. In this case, the census data are truncated.

On the other hand, an example of censored data is test scores.

The range of scores in a test is typically set to be from 0 to

100. Some students may score the maximum score of 100

points, in which case it is unknown if they could have scored

even higher if the upper bound of the test score was higher

than 100. Of course, even though the students’ scores are

capped at 100, their scores are still being reported. Hence,

their scores are censored, which distinguishes them from

truncated data.

Indeed, statistical estimation on truncated or censored data

is a classical problem, dating back to the eighteenth century

(Bernoulli, 1760). After Bernoulli, (Galton, 1898; Pearson,

1902; Pearson & Lee, 1908; Lee, 1914; Fisher, 1931) studied

how to estimate the mean and the variance of of a univariate

Gaussian distribution from truncated samples. However,

most existing results do not address the problem of finite-

sample bounds, i.e. the results are mostly experimental or

asymptotic (Lee & Scott, 2012; McLachlan & Jones, 1988).

In fact, one can learn the distribution with infinitely many

truncated or censored samples—under mild assumptions,

one can show that the function restricted on a certain region

can be extended to the entire space by the identity theorem

from complex analysis. Unfortunately, it is still not clear

how to translate such results to finite sample bounds.

A recent notable result by Daskalakis et al. (2018) gave the

first efficient algorithm to learn the mean and the covariance

of a single Gaussian with finitely many truncated samples.

A natural extension to the problem of learning a single

Gaussian is the problem of learning a mixture of Gaussians.

To the best of our knowledge, there is no provable guarantees

on the problem of learning a mixture of Gassians with a

finite number of truncated or censored samples even in one

dimension.

As we will discuss in the related work section, there is a long

line of work on learning a mixture of Gaussians. Likelihood-

based approaches often do not provide provable guarantees

for learning mixtures of Gaussians since the objective func-

tion is not convex unless we impose strong assumptions

(Xu et al., 2016; Daskalakis et al., 2017). On the other

hand, many recent results rely heavily on the method of

moments, i.e. the algorithm estimates the moments E(Xs)
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as an intermediate step. With truncated or censored data,

estimating E(Xs) (here, the expectation is over the original,

untruncated data) becomes very challenging.

To overcome this, we propose an approach for estimating

moments from censored data. Recall that ordinary moments

are just expectations of monomials of a random variable.

However, by generalizing this to more general functions of a

random variable, we open up the possibility to capture more

complex structures of the distribution. In particular, when

the data is censored, these generalized functions allow us to

relate the expectations back the raw, uncensored distribution.

One must keep in mind that we still need to make a choice of

what functions to consider in addition to providing efficient

estimators of these generalized moments. We preview that a

suitable choice is found by a specific linear combination of

Hermite polynomials derived from the solution to a system

of linear equations. In our proof, we will delve deeper into

the analysis of the expectations of functions, depending on

the domain, and provide a delicate analysis to prove our

desired result.

Based on the above discussion, we may want to ask the

following question in a general sense: Can we learn a mix-

ture of Gaussians with truncated or censored data? In this

paper, we consider this problem and focus on the case that

the data is censored and the Gaussians are univariate and

homogeneous. We now define the problem formally.

2. Problem Definition

Let N (µ, σ2) be the normal distribution with mean µ and

variance σ2. Namely, the pdf of N (µ, σ2) is

gµ,σ2(x) :=
1√
2πσ

e−
1

2σ2 (x−µ)2 .

For any subset S ⊂ R, let Iµ,σ2(S) be the probability mass

of N (µ, σ2) on S, i.e.

Iµ,σ2(S) :=

∫

x∈S
gµ,σ2(x)dx.

Also, let N (µ, σ2, S) denote the conditional distribution

of a normal N (µ, σ2) given the set S. Namely, the pdf of

N (µ, σ2, S) is

gµ,σ2,S(x) :=

{
1

Iµ,σ2 (S)gµ,σ2(x) if x ∈ S

0 if x /∈ S.

Given a subset S ⊂ R, we consider the following sampling

procedure. Each time, a sample is drawn from a mixture of

Gaussians

k∑

i=1

wiN (µi, σ
2),

where wi > 0,
∑k

i=1 wi = 1, µi ∈ R, and σ > 0. If

this sample is inside S, we obtain this sample; otherwise,

we fail to generate a sample. Formally, X is a random

variable drawn from the following distribution. Let α be the

probability mass
∑k

i=1 wiIµi,σ2(S).

X ∼
{∑k

i=1 wiN (µi, σ
2, S) with probability α

FAIL with probability 1− α.

(1)

The value FAIL here refers to values that are not directly

accessible to the algorithm.

We assume that

(A1) S is an interval [−R,R] for some constant R > 0
and is known (it is easy to extend S to be any mea-

surable subset of [−R,R]; for simplicity, we assume

S = [−R,R]);

(A2) All µi are bounded, i.e. |µi| < M for some

constant M > 0;

(A3) The variance σ2 is known.

We also assume that the exact computation of the integral∫ z

0
e−

1
2 t

2

dt for any z can be done. Indeed, one can always

approximate this integral with an exponential convergence

rate via Taylor expansion. As we can see in our proof, this

error is negligible.

For a given error parameter ε > 0, we want to estimate all

wi, µi within ε error. The question is how many samples

from the above sampling procedure do we need to achieve

this goal? Our main contribution is a quantitative answer to

this question. We will prove the following theorem:

Theorem 2.1. Suppose we have n samples drawn

from the distribution (1) and we assume that

the mixture satisfies (A1)-(A3). Furthermore, let

wmin be min {wi | i = 1, . . . , k} and ∆min be

min {|µi − µj | | i, j = 1, . . . , k and i 6= j}. Then,

for a sufficiently small ε > 0, if wmin and ∆min satisfy

wmin∆min = Ω(ε), there is an efficient algorithm that

takes n = Ck · 1
εO(k) (where Ck is a constant depending

on k only) samples1 as the input and outputs ŵi, µ̂i for

i = 1, . . . , k such that, up to an index permutation Π,

|ŵΠ(i) − wi| < ε, |µ̂Π(i) − µi| < ε for i = 1, . . . , k

with probability 99
100 . The running time of the algorithm is

O(n · poly(k, 1
ε )).

1Here we assume the parameters R and M to be constant for
simplicity. It is easy to keep track of them in our proof and show

that the sample bound is Ck · ( 1
ε
)O(k·log(M+R+ 1

R
)).
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In other words, this theorem states that the sample com-

plexity for learning mixtures of k univariate Gaussians with

censored data is 1
εO(k) which is optimal in terms of asymp-

totic growth of the exponent O(k) (Wu & Yang, 2018). As

for the optimality of the constant in the exponent O(k), this

is an interesting open problem.

3. Related Work

Without truncation or censoring, the study of learning Gaus-

sian mixture models (Pearson, 1894) has a long history. We

focus on recent algorithmic results; see Lindsay (1995) for

additional background. Dasgupta (1999) proposed an algo-

rithm to learn the centers of each Gaussian when the centers

are Ω(
√
d) apart from each other. There are other results

such as (Vempala & Wang, 2004; Regev & Vijayaraghavan,

2017) that are based on similar separation assumptions and

that use clustering techniques.

There are other results using the method of moments.

Namely, the algorithm estimates the moments E(Xs) as

an intermediate step. Moitra & Valiant (2010); Kalai et al.

(2010) showed that, assuming k = O(1), there is an efficient

algorithm that learns the parameters with 1
εO(k) samples.

Hardt & Price (2015) showed that, when k = 2, the optimal

sample complexity of learning the parameters is Θ( 1
ε12 ).

For the case that the Gaussians in the mixture have equal

variance, Wu & Yang (2018) proved the optimal sample

complexity for learning the centers is Θ( 1
ε4k−2 ) if the vari-

ance is known and Θ( 1
ε4k

) if the variance is unknown. Later,

Doss et al. (2020) extended the optimal sample complexity

to high dimensions.

When the data are truncated or censored, however, the task

becomes more challenging. (Schneider, 1986; Balakrishnan

& Cramer, 2014; Cohen, 2016) provided a detailed survey

on the topic of learning Gaussians with truncated or cen-

sored data. Recently, Daskalakis et al. (2018) showed that,

if the samples are from a single Gaussian in high dimen-

sional spaces, there is an algorithm that uses Õ(d
2

ε2 ) samples

to learn the mean vector and the covariance matrix. Their

approach is likelihood based. Namely, they optimize the

negative log-likelihood function to find the optimal value.

This approach relies on the fact that, for a single Gaussian,

the negative log-likelihood function is convex and hence

one can use greedy approaches such as stochastic gradient

descent to find the optimal value.

Unfortunately, when there are multiple Gaussians in the

mixture, we may not have such convexity property for the

negative log-likelihood function. Nagarajan & Panageas

(2020) showed that, for the special case of a truncated mix-

ture of two Gaussians whose centers are symmetric around

the origin and assuming the truncated density is known, the

output by the EM algorithm converges to the true mean as

the number of iterations tends to infinity.

There are other problem settings that are closely related

to ours such as robust estimation of the parameters of a

Gaussian in high dimensional spaces. The setting of ro-

bust estimation is the following. The samples we observed

are generated from a single high dimensional Gaussians

except that a fraction of them is corrupted. Multiple previ-

ous results such as (Hopkins et al., 2022; Liu et al., 2021;

Diakonikolas & Kane, 2019; Diakonikolas et al., 2019; Lai

et al., 2016; Diakonikolas et al., 2017; 2018) proposed learn-

ing algorithms to learn the mean vector and the covariance

matrix.

Regression with truncated or censored data is another com-

mon formulation. Namely, we only observe the data when

the value of the dependent variable lies in a certain subset. A

classic formulation is the truncated linear regression model

(Tobin, 1958; Amemiya, 1973; Hausman & Wise, 1977;

Maddala, 1986). Recently, in the truncated linear regression

model, Daskalakis et al. (2019) proposed a likelihood-based

estimator to learn the parameters.

4. Preliminaries

We denote the set {0, 1, . . . , n − 1} to be [n] for any pos-

itive integer n. Let hj(x) be the (probabilist’s) Hermite

polynomials, i.e.

hj(x) = (−1)je
1
2x

2 d
j

dξj
e−

1
2 ξ

2

∣∣∣∣
ξ=x

for all x ∈ R.

Hermite polynomials can also be given by the exponential

generating function, i.e.

exµ−
1
2µ

2

=

∞∑

j=0

hj(x)
µj

j!
for any x, µ ∈ R. (2)

Also, the explicit formula for hj is

hj(x) = j!

bj/2c∑

i=0

(−1/2)i

i!(j − 2i)!
xj−2i

and this explicit formula is useful in our analysis.

In our proof, we will solve multiple systems of linear equa-

tions. Cramer’s rule provides an explicit formula for the

solution of a system of linear equations whenever the system

has a unique solution.

Lemma 4.1 (Cramer’s rule). Consider the following system

of n linear equations with n variables.

Ax = b

where A is a n-by-n matrix with nonzero determinant and b
is a n dimensional vector. Then, the solution of this system
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x̂ = A−1b satisfies that the i-th entry of x̂ is

det(A(i←b))/ det(A)

where A(i←b) is the same matrix as A except that the i-th
column is replaced with b.

Thanks to the application of Cramer’s rule, we often en-

counter determinants. The Cauchy-Binet formula is a for-

mula for the determinant of a matrix that each entry can be

expressed as an inner product of two vectors that correspond

to its row and column. Note that the Cauchy-Binet formula

usually applies to the case that the entries are finite sums.

For our purpose, we state the Cauchy-Binet formula for the

case that the entries are in integral form.

Lemma 4.2 (Cauchy–Binet formula). Let A be a n-by-n
matrix whose (r, c)-entry has a form of

∫
x∈S fr(x)gc(x)dx

for some functions fr, gc and some domain S ⊂ R. Then,

the determinant of A is

det(A) =

∫

x0>···>xn−1,x∈Sn

det(B(x)) · det(C(x))dx

where, for any x = (x0, . . . , xn−1) ∈ Sn, B(x) is a n-by-

n matrix whose (r, i)-entry is fr(xi) and C(x) is a n-by-n
matrix whose (i, c)-entry is gc(xi).

Another tool to help us compute the determinants is

Schur polynomials. Schur polynomials are defined as

follows. For any partition λ = (λ1, . . . , λn) such that

λ1 ≥ · · · ≥ λn and λi ≥ 0, define the function

a(λ1+n−1,λ2+n−2,...,λn)(x1, x2, . . . , xn) to be

a(λ1+n−1,λ2+n−2,...,λn)(x1, x2, . . . , xn)

:= det




xλ1+n−1
1 xλ1+n−1

2 · · · xλ1+n−1
n

xλ2+n−2
1 xλ2+n−2

2 · · · xλ2+n−2
n

...
...

. . .
...

xλn

1 xλn

2 · · · xλn
n


 .

In particular, when λ = (0, 0, . . . , 0), it becomes the Van-

dermonde determinant, i.e.

a(n−1,n−2,...,0)(x1, x2, . . . , xn) =
∏

1≤j<k≤n
(xj − xk).

Then, Schur polynomials are defined to be

sλ(x1, x2, . . . , xn)

:=
a(λ1+n−1,λ2+n−2,...,λn)(x1, x2, . . . , xn)

a(n−1,n−2,...,0)(x1, x2, . . . , xn)
.

It is known that sλ(x1, x2, . . . , xn) can be written as∑
Y x

Y where the summation is over all semi-standard

Young tableaux Y of shape λ. Here, each term x
Y means

xy1

1 · · ·xyn
n where yi is the number of occurrences of the

number i in Y and note that
∑n

i=1 yi =
∑n

i=1 λi. Also, a

semi-standard Young tableau Y of shape λ = (λ1, . . . , λn)
can be represented by a finite collection of boxes arranged in

left-justified rows where the row length is λi and each box

is filled with a number from 1 to n such that the numbers

in each row is non-decreasing and the numbers in each col-

umn is increasing. To avoid overcomplicating our argument,

when we count the number of semi-standard Young tableaux

of some shape we only use a loose bound for it.

5. Proof Overview

Recall that our setting is the following (cf. (1)): We are

given samples drawn from the following sampling proce-

dure. Each time, a sample is drawn from a mixture of

Gaussians

k∑

i=1

wiN (µi, σ
2)

where wi > 0,
∑k

i=1 wi = 1, µi ∈ R and σ > 0. If this

sample is inside S, we obtain this sample; otherwise, we

fail to generate a sample. Our goal is to learn wi and µi.

One useful way to view mixtures of Gaussians is to express

it as

( k∑

i=1

wiδµi

)
∗ N (0, σ2)

where δµi
is the delta distribution at µi and ∗ is the con-

volution operator. We call the distribution
∑k

i=1 wiδµi
the

mixing distribution. Let mj be the moment of the mixing

distribution, i.e.

mj :=
k∑

i=1

wiµ
j
i .

Since we assume that the variance is known, without loss

of generality, we set σ = 1; otherwise, we can scale all

samples such that σ = 1. First, we reduce the problem

to estimating mj , so that we can employ known results

on estimating mixtures of Gaussians using the method of

moments. For example, Wu & Yang (2018) proved the

following theorem.

Theorem 5.1 (Denoised method of moments, (Wu &

Yang, 2018)). Suppose mj are the moments of a distri-

bution that has k supports on R, i.e. mj has a form

of
∑k

i=1 wiµ
j
i where wi > 0,

∑k
i=1 wi = 1 and µi ∈

R. Let wmin be min {wi | i = 1, . . . , k} and ∆min and

min {|µi − µj | | i, j = 1, . . . , k and i 6= j}. For any δ >
0, let m̂j be the numbers that satisfy

|m̂j −mj | < δ for all j = 1, . . . , 2k − 1.
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Then, if wmin and ∆min satisfy wmin∆min = Ω(δO( 1
k
)),

there is an algorithm that takes m̂j as the input and outputs

ŵi, µ̂i such that, up to an index permutation Π,

|ŵΠ(i) − wi| < Ck · δ
Ω( 1

k
)

wmin

and

|µ̂Π(i) − µi| < Ck · δ
Ω( 1

k
)

∆min

where Ck is a constant depending on k only.

Unfortunately, unlike with fully observed mixtures of Gaus-

sians, estimating these moments is no longer straightforward.

As we will see in our proof, looking for unbiased estimators

relies on specific structures of Gaussians. When the data is

censored, such structures may not exist. Hence, we look for

a biased estimator and provide delicate analysis to bound the

bias. To see how we can estimate mj , we first express the

mixture as an expression that is in terms of mj . Suppose X
is the random variable drawn from the sampling procedure

conditioned on non-FAIL samples. For any function f , the

expectation of f(X) is

E(f(X)) =

∫

S

f(x) ·
(

k∑

i=1

wigµi,1,S(x)

)
dx

=
1

α
·
∫

S

f(x) ·
(

k∑

i=1

wigµi,1(x)

)
dx. (3)

Recall that α is the probability mass
∑k

i=1 wiIµi,1(S).
Note that, for any µ,

gµ,1(x) =
1√
2π

e−
1
2 (x−µ)

2

=
1√
2π

e−
1
2x

2

exµ−
1
2µ

2

=
1√
2π

e−
1
2x

2
∞∑

j=0

hj(x)
µj

j!
(4)

where hj is the j-th Hermite polynomial and the last equality

is from the fact (2). In other words, when we plug (4) into

(3), we have

α · E(f(X))

=

∫

S

f(x) ·




k∑

i=1

wi ·


 1√

2π
e−

1
2x

2
∞∑

j=0

hj(x)
µj
i

j!




 dx

=
∞∑

j=0

(∫

S

f(x) · 1√
2πj!

e−
1
2x

2

hj(x)dx

)
·
(

k∑

i=1

wiµ
j
i

)
.

To ease the notation, for any function f and positive integer

j, we define

Jf,j :=

∫

S

f(x) · 1√
2πj!

e−
1
2x

2

hj(x)dx. (5)

If we plug Jf,j and mj into the equation for α · E(f(X)),
we have

α · E(f(X)) =
∞∑

j=0

Jf,j ·mj . (6)

Ideally, if we manage to find 2k−1 functions f1, . . . , f2k−1
such that

Jfi,j =

{
1 if i = j

0 if i 6= j.

then we have

α · E(fi(X)) = mi for all i = 1, . . . , 2k − 1.

It means that we will have an unbiased estimator for mi and

therefore we just need to find out the amount of samples

we need by bounding the variance. Indeed, if S = R and

we pick fi to be the i-th Hermite polynomial hi then the

aforementioned conditions hold. It is how (Wu & Yang,

2018) managed to show their result. However, when S 6= R,

it becomes trickier.

A natural extension is to pick fi to be a linear combination

of Hermite polynomials, i.e.

fi =

`−1∑

a=0

βi,aha

for some positive integer `. The integer ` is a parameter

indicating how accurate our estimator is. Indeed, this ` →
∞ as ε → 0 as we will show in our proof. For each fi, there

are ` coefficients βi,j in the expression and therefore we

can enforce ` terms of Jfi,j to be the desired values. More

precisely, we can set βi,a such that

Jfi,j =

∫

S

fi(x) ·
1√
2πj!

e−
1
2x

2

hj(x)dx

=
`−1∑

a=0

βi,j

∫

S

ha(x) ·
1√
2πj!

e−
1
2x

2

hj(x)dx

=

`−1∑

a=0

βi,aJha,j =

{
1 if i = j

0 if i 6= j

for j = 0, . . . , ` − 1. If we assume the integrals can be

computed exactly, then all Jha,j are known. Hence, we can

solve βi,a by solving this system of linear equations.
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Now, if we plug them into (6) then we have

α · E(fi(X)) = mi +

∞∑

j=`

Jfi,j ·mj

︸ ︷︷ ︸
:=Ei

.

Note that the term mi is what we aim at and hence the

term Ei is the error term. Indeed, our estimator is a biased

estimator where the bias is Ei. Thanks to the factor 1
j! in the

term Jfi,j , intuitively, the term Ei → 0 as ` → 0.

Define our estimator m̂i to be

m̂i =
1

n




n′∑

s=1

fi(xs)


 (7)

where n′ is the number of samples that are non-FAIL and

xi are the non-FAIL samples. Note that, on average, the

term 1
n = α

n′
gives us the factor α implicitly. Then, by

Chebyshev’s inequality, we have

|m̂i −mi| < δ + |Ei| with probability 1− Var(m̂i)

δ2
.

Now, we break the problem down to the following two

subproblems.

• How large ` needs to be in order to make |Ei| < δ?

• Given δ > 0, how many samples do we need to make

the variance Var(m̂i) < δ2

100 and hence the success

probability larger than 99
100?

Detailed proofs are deferred to the appendix.

5.1. Bounds for the Number of Terms

To see how large ` needs to be, we first define the following

notations. Let v(j) be the `-dimensional vector whose a-th

entry is Jha,j , i.e.

v(j) =
[
Jh0,j Jh1,j · · · Jh`−1,j

]>
,

and V be the the `-by-` matrix whose r-th row is (v(r))>,

i.e.

V =
[
v(0) v(1) · · · v(`−1)

]>
. (8)

Recall that, by the definition of βi,a, βi,a satisfies

`−1∑

a=0

βi,aJha,j =

{
1 if i = j

0 if i 6= j
.

We can rewrite it as a system of linear equations.

V βi = ei (9)

where βi is the `-dimensional vector whose a-th entry is

βi,a and ei is the `-dimensional canonical vector which is a

zero vector except that the i-th entry is 1, i.e.

βi =
[
βi,0 βi,1 · · · βi,`−1

]>

and

ei =
[
0 · · · 1 · · · 0

]>
.

Namely, we have βi = V −1ei. Recall that the definition of

Ei is

Ei =
∞∑

j=`

Jfi,j ·mj .

To bound the term Jfi,j , observe that

Jfi,j =
`−1∑

a=0

βi,aJha,j = (v(j))>V −1ei

and, by Cramer’s rule, Jfi,j can be expressed as

Jfi,j =
det(V (i→j))

det(V )

where V (i→j) is the same matrix as V except that the i-th
row is replaced with v(j), i.e.

V (i→j)

=
[
v(0) · · · v(i−1) v(j) v(i+1) · · · v(`−1)

]>

(10)

for i = 1, . . . , 2k − 1 and j ≥ `. The right arrow in the

superscript indicates the row replacement. We preview that

there are column replacements in our calculation and we

will use left arrows to indicate it.

In Lemma A.2, we show that

|Jfi,j | =
| det(V (i→j))|

| det(V )| ≤ 1

2Ω(j log j)
.

Also, by the assumption that |µi| < M where M is a con-

stant, we have mj ≤ M j . Hence, we prove that

|Ei| ≤
∞∑

j=`

|Jfi,j ||mj | ≤
∞∑

j=`

1

2Ω(j log j)
·M j

≤ 1

2Ω(` log `)
·M ` ≤ δ

as long as ` = Ω(
log 1

δ

log log 1
δ

).

Hence, we have the following lemma.

Lemma 5.2. For a sufficiently small δ > 0, when ` =

Ω(
log 1

δ

log log 1
δ

), the estimators m̂i computed by (7) satisfies

|m̂i −mi| < 2δ with probability 1− Var(m̂i)

δ2
.
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5.2. Bounds for the Variance

Recall that our second subproblem is to bound the variance

of our estimator. To bound Var(m̂i), observe that

Var(m̂i) ≤ E(m̂2
i ) =

α

n
E(fi(X)2)

=
α

n
E

(( `−1∑

a=0

βi,aha(X)
)2
)

≤ α

n

(
`−1∑

a=0

|βi,a|
√

E (ha(X)2)

)2

(11)

By expanding the expectation explicitly,

E
(
ha(X)2

)
=

∫

S

ha(x)
2 ·
(

k∑

i=1

wigµi,1,S(x)

)
dx

≤ 1

α

∫

R

ha(x)
2 ·
(

k∑

i=1

wigµi,1(x)

)
dx

≤ 1

α
(O(M +

√
a))2a (12)

The last line comes from (Wu & Yang, 2018) where they

showed that

∫

R

ha(x)
2 ·
(

k∑

i=1

wigµi,1(x)

)
dx ≤ (O(M +

√
a))2a

in Lemma 5 of (Wu & Yang, 2018).

Now, we also need to bound |βi,a|. Recall that

βi = V −1ei.

By Cramer’s rule, each coordinate of βi is

βi,a =
det(V (ei←a))

det(V )

where V (ei←a) is the same matrix as V except that the a-th

column is replaced with ei, i.e.

V (ei←a)

=




v
(0)
0 · · · v

(0)
a−1 0 v

(0)
a+1 · · · v

(0)
`−1

...
. . .

...
...

...
. . .

...

v
(i)
0 · · · v

(i)
a−1 1 v

(i)
a+1 · · · v

(i)
`−1

...
. . .

...
...

...
. . .

...

v
(`−1)
0 · · · v

(`−1)
a−1 0 v

(`−1)
a+1 · · · v

(`−1)
`−1




(13)

In Lemma A.3, we show that

|βi,a| ≤ 2O(` log `). (14)

Therefore, if we plug (12) and (14) into (11), we have the

following lemma.

Algorithm 1 Learning mixtures of Gaussians with censored

data

Input: n iid samples x1, . . . , xn, number of Gaussians k,

parameter `, mean boundary parameter M , sample domain

S = [−R,R]

1: for i = 0 to 2k − 1 do

2: solve (9) to obtain βi = (βi,0, βi,1, . . . , βi,`−1)>, i.e.

solve the following system of linear equations

V βi = ei

where the (r, c)-entry of V is

∫

S

1√
2πr!

e−
1
2x

2

hc(x)hr(x)dx (15)

and ei is the canonical vector

3: end for

4: for each sample xs do

5: compute f̂i(xs) :=

{
fi(xs) if xs is non-FAIL

0 if xs is FAIL
;

recall that fi is

fi(x) =

`−1∑

a=0

βi,aha(x)

and ha is the a-th Hermite polynomial

ha(x) = a!

ba/2c∑

j=0

(−1/2)j

j!(a− 2j)!
xa−2j

6: end for

7: for i = 1 to 2k − 1 do

8: compute m̂i =
1
n

∑n
s=1 f̂i(xs) which is the same as

the estimator defined in (7)

9: end for

10: let ŵ1, ŵ2, . . . , ŵk and µ̂1, µ̂2, · · · , µ̂k be the output of

Algorithm 2 using m̂ = (m̂1, . . . , m̂2k−1) and M as

the input

Output: estimated weights ŵ1, ŵ2, . . . , ŵk and estimated

means µ̂1, µ̂2, · · · , µ̂k

Lemma 5.3. For any positive integer `, the estimator m̂i

computed by (7) has variance

Var(m̂i) ≤
1

n
· 2O(` log `).

5.3. Full Algorithm and Main Theorem

In this subsection, we will present the full algorithm and

combine with the analysis in the previous subsections to

prove our main theorem.

7
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Proof of Theorem 2.1. Suppose we are given n iid samples

x1, . . . , xn from the distribution (1). We will show that the

estimated weights ŵ1, ŵ2, . . . , ŵk and the estimated means

µ̂1, µ̂2, · · · , µ̂k outputted by Algorithm 1 taking x1, . . . , xn

as the input satisfy the desired guarantees.

By Lemma 5.2, when ` = Ω(
log 1

δ

log log 1
δ

), we have

|m̂i −mi| < 2δ with probability 1− Var(m̂i)

δ2

where m̂i are computed in Algorithm 1. Moreover, by

Lemma 5.3, we show that

Var(m̂i) ≤
1

n
· 2O(` log `)

which implies when ` = Ω(
log 1

δ

log log 1
δ

) the failure probability

is less than

Var(m̂i)

δ2
≤ 1

n
· poly(

1

δ
).

By applying the union bound over all i = 1, 2, . . . , 2k − 1,

when n = Ω(poly( 1δ )), we have

|m̂i −mi| < 2δ with probability
99

100
.

In (Wu & Yang, 2018), they showed that Algorithm 2 is the

algorithm that makes the guarantees hold in Theorem 5.1.

Therefore, if we pick δ = εΩ(k) along with the assumption

wmin∆min = Ω(ε), we have, up to an index permutation Π,

|ŵΠ(i) − wi| < ε, |µ̂Π(i) − µi| < ε for i = 1, . . . , k.

We now examine the running time of Algorithm 1. It

first takes k · poly(`) time2 to obtain βi. Then, it takes

n·k·poly(`) to compute m̂i. Finally, the running time for Al-

gorithm 2 is poly(k). Hence, by plugging ` = O(k log 1
ε ),

the running time of Algorithm 1 is n · poly(k, 1
ε ).

6. Conclusion and Discussion

In this paper, we study the classical problem of learning

mixtures of Gaussians with censored data. The problem

2Computing the integral in (15) can be reduced to computing

the integral
∫ z

0
e−

1
2
t2
dt by observing hc and hr are polynomials

and using integration by parts. If we remove the assumption that
the exact computation can be done, we will need to approximate

the integral up to an additive error of 1/2poly(k,`). One can approx-
imate the integral in an exponential convergence rate by Taylor
expansion and hence the running time is still k · poly(`) for this
step.

Algorithm 2 Denoised method of moments (Wu & Yang,

2018)

Input: estimated moments m̂ = (m̂1, . . . , m̂2k−1), mean

boundary parameter M

1: let m∗ = (m∗1, . . . ,m
∗
2k−1) be the optimal solution of

the following convex optimization problem

argmax
m

‖m̂−m‖

s.t. M ·M0,2k−2 < M1,2k−1 < −M ·M0,2k−2

where Mi,j is the Hankel matrix whose entries are

mi, . . . ,mj , i.e.

Mi,j =




mi mi+1 · · · m i+j
2

mi+1 mi+2 · · · mi

...
...

. . .
...

m i+j
2

m i+j
2 +1 · · · mj




2: let µ̂1, µ̂2, · · · , µ̂k be the roots of the polynomial P
where

P (x) = det




1 m
∗
1 · · · m

∗
k

...
...

. . .
...

m
∗
k−1 m

∗
k · · · m

∗
2k−1

1 x · · · xk




3: let (ŵ1, ŵ2, . . . , ŵk)
> be the solution of the following

system of linear equations




1 1 · · · 1
µ̂1 µ̂2 · · · µ̂k

...
...

. . .
...

µ̂k−1
1 µ̂k−1

2 · · · µ̂k−1
k







w1

w2

...

wk


 =




1
m
∗
1

...

m
∗
k−1




Output: estimated weights ŵ1, ŵ2, . . . , ŵk and estimated

means µ̂1, µ̂2, · · · , µ̂k

becomes more challenging compared to the problem of

learning with uncensored data because the data are partially

observed. Our result shows that there is an efficient algo-

rithm to estimate the weights and the means of the Gaussians.

Specifically, we show that one only needs 1
εO(k) censored

samples to estimate the weights and the means within ε
error. To the best of our knowledge, this is the first finite

sample bound for the problem of learning mixtures of Gaus-

sians with censored data even in the simple setting that the

Gaussians are univariate and homogeneous.

There are multiple natural extensions to this setting. For

example, a natural extension is to consider mixtures of mul-

tivariate Gaussians. Without truncation or censoring, one

popular approach to learn mixtures of multivariate Gaus-
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sians is to apply random projections and reduce the problem

to univariate Gaussians. This approach relies on the fact that

the projection of a mixture of Gaussians is also a mixture of

Gaussians. Unfortunately, this fact is no longer true when

the data are truncated or censored.

Another interesting direction is to relax the assumption of

known and homogeneous variances to unknown and/or non-

homogeneous variances. When the Gaussians are homo-

geneous, one can estimate the variance by computing the

pairwise distances between k + 1 samples and find the min-

imum of them if the samples are not truncated or censored.

It holds from the fact that two samples are from the same

Gaussian and hence the expected value of their squared dis-

tance is the variance. It becomes more challenging when

the samples are truncated or censored because the expected

value of the squared distance may not be the variance.

Furthermore, previous results indicate that, in the uncen-

sored setting, sample bounds can be improved when the cen-

ters of Gaussians in the mixture are well-separated (Moitra,

2015; Regev & Vijayaraghavan, 2017; Qiao et al., 2022).

An interesting direction for future research would be to

improve our results under stronger separation assumptions

on the components. For example, one strategy to exploit

separation is to apply the Fourier Transform to the pdf of

the mixture. With uncensored samples, it is straightforward

to estimate the Fourier Transform, however, when the pdf

is truncated, a challenge arises as the Fourier Transform

may not yield a convenient form, as required by these anal-

yses. We anticipate that delicate modifications may still be

needed, and leave this open to future work.
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A. Proof

In this section, we will present the proofs of the lemmas.

Lemma A.1. Let V be the matrix defined in (8), i.e. V is the `-by-` matrix whose (r, c)-entry is Jhc,r for r, c = 0, 1, . . . , `−1.

Recall that, from (5), Jhc,r is defined as

Jhc,r =

∫

S

1√
2πr!

e−
1
2x

2

hc(x)hr(x)dx.

Then, the determinant of V is

det(V ) =

(
1√
2π

)`

·
`−1∏

r=0

1

r!
·
∫

x0>···>x`−1,x∈S`

e−
1
2

∑`−1
c=0 x2

c ·
∏

0≤c1<c2≤`−1
(xc1 − xc2)

2
dx.

Proof. Since the (r, c)-entry of V is

Jhc,r =

∫

S

1√
2πr!

e−
1
2x

2

hc(x)hr(x)dx,

by factoring out the term 1√
2πr!

for each row, we have

det(V ) =

(
1√
2π

)`

·
`−1∏

r=0

1

r!
· det(W ) (16)

where W is the `-by-` matrix whose (r, c)-entry is

Wr,c =

∫

S

e−
1
2x

2

hc(x)hr(x)dx. (17)

By Cauchy-Binet formula, we can further express det(W ) as

det(W ) =

∫

x0>···>x`−1,x∈S`

(det(U(x)))2dx (18)

where U(x) is the `-by-` matrix whose (r, c)-entry is

U(x)r,c = e−
1
4x

2
chr(xc) (19)

for any x = (x0, . . . , x`−1) ∈ S`. By factoring out the term e−
1
4x

2
c for each column, we have

det(U(x)) = e−
1
4

∑`−1
c=0 x2

c det(P (x)) (20)

where P (x) is the `-by-` matrix whose (r, c)-entry is

P (x)r,c = hr(xc) (21)

for any x = (x0, . . . , x`−1) ∈ S`. Since hr is a polynomial of degree r with the leading coefficient 1, by applying row and

column operations, the determinant det(P (x)) is same as the determinant of the Vandermonde matrix, i.e.

det(P (x)) =
∏

0≤c1<c2≤`−1
(xc1 − xc2). (22)

In other words, the determinant det(V ) is

det(V ) =

(
1√
2π

)`

·
`−1∏

r=0

1

r!
·
∫

x0>···>x`−1,x∈S`

e−
1
2

∑`−1
c=0 x2

c ·
∏

0≤c1<c2≤`−1
(xc1 − xc2)

2
dx.
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Lemma A.2. Let V (i→j) be the matrix defined in (10) for i ≤ 2k − 1 and j ≥ ` ≥ 2(2k − 1) ≥ 2i. Then the absolute

value of the determinant of V (i→j) is

| det(V (i→j))| ≤ 1

2Ω(j log j)
· | det(V )|.

Proof. We can perform a similar computation as in the computation of det(V ). Namely, we factor out the term 1√
2πr!

for

each row, we have

| det(V (i→j))| =
(

1√
2π

)`

·
`−1∏

r=0,r 6=i

1

r!
· 1
j!

· | det(W (i→j))|

where W (i→j) is the same matrix as W from (17) except that the i-th row is replaced by the row
√
2πj!v(j). By comparing

to (16), we simplify | det(V (i→j))| to be

| det(V (i→j))| = i!

j!
· | det(W

(i→j))|
| det(W )| · | det(V )| (23)

By Cauchy-Binet formula, we can further express det(W (i→j)) as

det(W (i→j)) =

∫

x0>···>x`−1,x∈S`

det(U(x)) det(U (i→j)(x))dx

where U (i→j)(x) is the same matrix as U(x) from (19) except that the i-th row is replaced with the column whose c-th entry

is e−
1
4x

2
chj(xc) for any x = (x0, . . . , x`−1) ∈ R

`. Furthermore, by Cauchy–Schwarz inequality and comparing to (18),

| det(W (i→j))| ≤
(∫

x0>···>x`−1,x∈S`

(det(U(x)))2dx

)1/2(∫

x0>···>x`−1,x∈S`

(det(U (i→j)(x)))2dx

)1/2

=

(∫
x0>···>x`−1,x∈S`(det(U

(i→j)(x)))2dx
∫
x0>···>x`−1,x∈S`(det(U(x)))2dx

)1/2

| det(W )|. (24)

By factoring out the term e−
1
4x

2
c for each column, we have

det(U (i→j)(x)) = e−
1
4

∑`−1
c=0 x2

c det(P (i→j)(x)) (25)

where P (i→j)(x) is the same matrix as P (x) from (21) except that the i-th row is replaced with the row whose c-th entry is

hj(xc) for any x = (x0, . . . , x`−1) ∈ R
`.

This time, the computation of det(P (i→j)(x)) is not as easy as det(P (x)). In Lemma A.4 below, we will show that

| det(P (i→j)(x))| ≤ j!

i!( j−i2 )!
· 2O(j) · | det(P (x))|.

Plugging it into (25) and comparing (25) to (20), we have

| det(U (i→j)(x))| ≤ j!

i!( j−i2 )!
· 2O(j) · | det(U(x))|.

Furthermore, by plugging it into (24),

| det(W (i→j))| ≤
(∫

x0>···>x`−1,x∈S`(det(U
(i→j)(x)))2dx

∫
x0>···>x`−1,x∈S`(det(U(x)))2dx

)1/2

| det(W )| ≤ j!

i!( j−i2 )!
· 2O(j) · | det(W )|

12
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Finally, when we plug it into (23), we prove that

| det(V (i→j))| = i!

j!
· | det(W

(i→j))|
| det(W )| · | det(V )| ≤ i!

j!
· j!2O(j)

i!( j−i2 )!
· | det(V )| = 2O(j)

( j−i2 )!
· | det(V )|

Recall that i ≤ 2k − 1 and the assumption of j ≥ ` > 2(2k − 1) ≥ 2i. We have

| det(V (i→j))| ≤ 1

2Ω(j log j)
· | det(V )|.

Lemma A.3. Let V (ei←a) be the matrix defined in (13) for i ≤ 2k−1 and a ≤ `. Then the absolute value of the determinant

of V (ei←a) is

| det(V (ei←a))| ≤ 2O(` log `) · | det(V )|.

Proof. Recall that V (ei←a) is the same matrix as V except that the a-th column is replaced with ei. Hence, we first expand

the determinant along that column and factor out the term 1√
2πr!

for each row.

| det(V (ei←a))| =
(

1√
2π

)`−1
·

`−1∏

r=0,r 6=i

1

r!
· | det(W (−i,−a))|

where W (−i,−a) is the same matrix as W from (17) except that the i-th row and the a-th column are omitted. By comparing

to (16), we first simplify | det(V (ei←a))| to be

| det(V (ei←a))| =
√
2πi! · | det(W

(−i,−a))|
| det(W )| · | det(V )|

It means we need to bound the term
| det(W (−i,−a))|
| det(W )| from above. To achieve it, we will bound | det(W (−i,−a))| from above

and | det(W )| from below.

By Cauchy-Binet formula, we further express det(W (−i,−a)) as

det(W (−i,−a)) =

∫

x0>···>x`−2,x∈S`−1

det(U (−i)(x)) det(U (−a)(x))dx (26)

where U (−i)(x) (resp. U (−a)) is the (` − 1)-by-(` − 1) matrix whose (r, c)-entry is e−
1
4x

2
chr(xc) for r ∈ [`]\{i} (resp.

r ∈ [`]\{a}), c ∈ [`− 1] and any x = (x0, . . . , x`−2) ∈ R
`−1. By factoring out the term e−

1
4x

2
c fro each column,

det(U (−i)(x)) = e−
1
4

∑`−2
c=0 x2

c det(P (−i)(x)) (27)

where P (−i)(x) is the (` − 1)-by-(` − 1) matrix whose (r, c)-entry is hr(xc) for r ∈ [`]\{i}, c ∈ [` − 1] and any

x = (x0, . . . , x`−2) ∈ R
`−1.

Again, the computation of det(P (−i)(x)) is not as easy as det(P (x)). In Lemma A.5, we show that

| det(P (−i)(x))| ≤ 2O(` log `) ·
∏

1≤c1<c2≤`−2
|xc1 − xc2 |.

Note that the bound is independent to i and hence we have the same bound for |P (−a)(x)|. By plugging it into (27) and

further into (26), we have

| det(W (−i,−a))| ≤ 2O(` log `) ·
∫

x0>···>x`−2,x∈S`−1

e−
1
2

∑`−2
c=0 x2

c ·
∏

1≤c1<c2≤`−2
(xc1 − xc2)

2
dx. (28)

13
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Recall that, in Lemma A.1 and (16),

det(W ) =

∫

x0>···>x`−1,x∈S`

e−
1
2

∑`−1
c=0 x2

c ·
∏

0≤c1<c2≤`−1
(xc1 − xc2)

2
dx.

Since the term e−
1
2

∑`−1
c=0 x2

c ·∏0≤c1<c2≤`−1(xc1 − xc2)
2 in the integral is symmetric with respect to x0, . . . , x`−1, we have

det(W ) = `! ·
∫

x∈S`

e−
1
2

∑`−1
c=0 x2

c ·
∏

0≤c1<c2≤`−1
(xc1 − xc2)

2
dx.

To bound det(W ) from below, we consider integrating over the sub-region
{
x ∈ S` | |x`−1 − xc| > R

`

}
of S`.

det(W ) ≥ `! ·
∫

|x`−1−xc|>R
`
,x∈S`

e−
1
2

∑`−1
c=0 x2

c ·
∏

0≤c1<c2≤`−1
(xc1 − xc2)

2
dx

≥ `! ·
(
R

`

)2(`−1)
e−

1
2R

2 ·
∫

|x`−1−xc|>R
`
,x∈S`

e−
1
2

∑`−2
c=0 x2

c ·
∏

0≤c1<c2≤`−2
(xc1 − xc2)

2
dx

≥ `! ·R
(
R

`

)2(`−1)
e−

1
2R

2 ·
∫

x∈S`−1

e−
1
2

∑`−2
c=0 x2

c ·
∏

0≤c1<c2≤`−2
(xc1 − xc2)

2
dx

= ` ·R
(
R

`

)2(`−1)
e−

1
2R

2 ·
∫

x0>···>x`−2,x∈S`−1

e−
1
2

∑`−2
c=0 x2

c ·
∏

0≤c1<c2≤`−2
(xc1 − xc2)

2
dx

=
1

2O(` log `)
·
∫

x0>···>x`−2,x∈S`−1

e−
1
2

∑`−2
c=0 x2

c ·
∏

0≤c1<c2≤`−2
(xc1 − xc2)

2
dx (29)

In other words, by comparing | det(W )| in (29) to | det(W (−i,−a))| in (28), we have

| det(W (−i,−a))|
| det(W )| ≤ 2O(` log `)

and hence

| det(V (ei←a))|
| det(V )| =

√
2πi! · | det(W

(−i,−a))|
| det(W )| ≤ 2O(` log `).

Lemma A.4. Let P (i→j)(x) be the matrix defined in the proof of Lemma A.2. Then the absolute value of the determinant of

P (i→j)(x) is

| det(P (i→j)(x))| ≤ j!

i!( j−i2 )!
· 2O(j) · | det(P (x))|.

Recall that P (x) is the matrix defined in (21).

Proof. Since the entries of P (i→j)(x) are Hermite polynomials, we can decompose it into

P (i→j)(x) = C(i→j) ·X [j+1]

where C(i→j) is the `-by-(j + 1) matrix whose (r, c)-entry is the coefficient of xc in the r-th Hermite polynomial and

X [j+1] is the (j + 1)-by-` matrix whose (r, c)-entry is xr
c . For example, take ` = 4, i = 2, j = 6,

h0(x) = 1

h1(x) = x

h3(x) = −3x+ x3

h6(x) = −15 + 45x2 − 15x4 + x6

14
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and hence

C(i→j) =




1 0 0 0 0 0 0
0 1 0 0 0 0 0

−15 0 45 0 −15 0 1
0 −3 0 1 0 0 0




To compute det(P (i→j)(x)), we use Cauchy-Binet formula and we have

det(P (i→j)(x)) =
∑

T

det(C
(i→j)
:,T ) · det(X [j+1]

T,: )

where the summation is over all subset T of size ` of [j + 1], C
(i→j)
:,T is the `-by-` matrix whose columns are the columns of

C(i→j) at indices from T and X
[j+1]
T,: is the `-by-` matrix whose rows are the rows of X [j+1] at indices from T . Here, for

any positive integer n, we denote [n] to be the set {0, 1, . . . , n− 1}. Furthermore, by triangle inequality,

| det(P (i→j)(x))| ≤
∑

T

| det(C(i→j)
:,T )| · | det(X [j+1]

T,: )| (30)

We first make some simplifications to see what T makes the determinants nonzero. For example, take ` = 8, i = 2, j = 10,

we have

h0(x) = 1

h1(x) = x

h3(x) = −3x+ x3

h4(x) = 3− 6x2 + x4

h5(x) = 15x− 10x3 + x5

h6(x) = −15 + 45x2 − 15x4 + x6

h7(x) = −105x+ 105x3 − 21x5 + x7

h10(x) = −945 + 4725x2 − 3150x4 + 630x6 − 45x8 + x10

and

C(i,j) =up to row and column swaps




1
3 −6 1

−15 45 −15 1
−945 4725 −3150 630 −45 1

1
−3 1
15 −10 1

−105 105 −21 1




For simplicity, we assume that i, j, ` are even numbers and it is easy to prove the other cases by symmetry. If T satisfies one

of the following conditions:

• does not contain all odd numbers less than `, i.e. 1, 3, . . . , `− 1

• does not contain all even numbers less than i, i.e. 0, 2, . . . , i− 2

• contains more than one even number larger than or equal to `, i.e. `, `+ 2, . . . , j

then det(C
(i→j)
:,T ) = 0. In other words, the choices are

• T = [`] or

15
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• T = [`]\{a} ∪ {b} for a = i, i+ 2, . . . , `− 2 and b = `, `+ 2, . . . , j.

Therefore, there are only `−i
2 · j−`+2

2 + 1 = O(j2) choices for T such that det(C
(i→j)
:,T ) may not be 0.

If T = [`], by expanding the determinant det(C
(i→j)
:,T ) along the rows whose diagonal entry is 1, what we have left

is the determinant of a matrix A where A is the ( `−i2 )-by-( `−i2 ) matrix whose (r, c)-entry is (−1)
r−c
2

r!

( r−c
2 )!c!2

r−c
2

for

r = i+ 2, . . . , `− 2, j and c = i, i+ 2, . . . , `− 2. In the example, the matrix A is




−6 1
45 −15 1

4725 −3150 630


. By applying

row and column operations, we can compute the exact expression for det(A)

det(A) = (−1)
j−i
2

j!

i!2
j−i
2




`−i−2
2∑

m=0

(−1)m
1

m!( j−i2 −m)!


 .

In the example, we have

det(




−6 1
45 −15 1

4725 −3150 630


) = 14175

Note that the expression
∑ `−i−2

2
m=0 (−1)m 1

m!( j−i
2 −m)!

in the equation for det(A) can be easily bounded by

|
`−i−2

2∑

m=0

(−1)m
1

m!( j−i2 −m)!
| ≤

`−i−2
2∑

m=0

1

m!( j−i2 −m)!
≤

j−i
2∑

m=0

1

m!( j−i2 −m)!
=

2
j−i
2

( j−i2 )!

Hence, we have

| det(C(i→j)
:,T )| = | det(A)| ≤ j!

i!( j−i2 )!

Also, since T = [`], therefore | det(X [j+1]
T,: )| =∏0≤c1<c2≤`−1 |xc1 − xc2 |. When T = [`], we have

| det(C(i→j)
:,T )| · | det(X [j+1]

T,: )| ≤ j!

i!( j−i2 )!
·

∏

0≤c1<c2≤`−1
|xc1 − xc2 |

Now, consider the case that T = [`]\{a} ∪ {b} for a = i, i+ 2, . . . , `− 2 and b = `, `+ 2, . . . , j. Similar to the previous

calculation, by expanding the determinant det(C
(i→j)
:,T ) along the rows whose diagonal entry is 1, what we have left

is the determinant of a matrix A where A is the ( `−i2 )-by-( `−i2 ) matrix whose (r, c)-entry is (−1)
r−c
2

r!

( r−c
2 )!c!2

r−c
2

for

r = i + 2, . . . , a, j and c = i, i + 2, . . . , a − 2, b. For example, take a = 6 and b = 8, the matrix A is the example is


−6 1
45 −15
4725 −3150 −45


. By applying row and column operations, we can compute the exact expression for det(A)

det(A) = (−1)
j−b
2

j!

( j−b2 )!b!2
j−b
2

· (−1)
a−i
2

a!

(a−i2 )!i!2
a−i
2

In the example, we have

det(




−6 1
45 −15
4725 −3150 −45


) = −2025

16
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To bound | det(A)|,

| det(A)| = j!

( j−b2 )!b!2
j−b
2

· a!

(a−i2 )!i!2
a−i
2

=
j!

i!
· a!

(a−i2 )!b!( j−b2 )!
· 1

2
j−b+a−i

2

Note that 1

2
j−b+a−i

2

≤ 1. Recall that i ≤ a ≤ `− 2 and ` ≤ b ≤ j. We also have

a!

(a−i2 )!
≤ 2a · (a+ i

2
)! ≤ 2j · (b+ i

2
)!.

Hence,

| det(A)| ≤ j!

i!
· 2

j( b+i
2 )!

b!( j−b2 )!
=

j!

i!
· 2j · (

b+i
2 )!( b−i2 )!

b!
· ( j−i2 )!

( b−i2 )!( j−b2 )!
· 1

( j−i2 )!

Observe that

( b+i
2 )!( b−i2 )!

b!
≤ 1 and

( j−i2 )!

( b−i2 )!( j−b2 )!
≤ 2

j−i
2 ≤ 2

j
2 .

By plugging them into the above inequality,

| det(C(i→j)
:,T )| = | det(A)| ≤ j!

i!
· 2

3j
2

( j−i2 )!

Since a is omitted from {i, i+ 2, . . . , `− 2} and b is selected from {`, `+ 2, . . . , j}, it means that T = [`]\{a} ∪ {b}. By

the properties of Schur polynomials,

det(X
[j+1]
T,: ) =

(
∑

Y

x
Y

)
·

∏

1≤c1<c2≤`−1
(xc1 − xc2)

where the summation is over all semi-standard Young tableaux Y of shape (b− `+ 1, 1, . . . , 1︸ ︷︷ ︸
`− 1− a 1’s

, 0, . . . , 0︸ ︷︷ ︸
a 0’s

). Here, the term

x
Y means xy0

0 · · ·xy`−1

`−1 where ym is the number of occurrences of the number m in Y and note that
∑`−1

m=0 ym = b− a.

Based on the given shape, there is one row of size b− `−1 and one column of size `−a and they connect at the first element.

For the row, the number of non-decreasing sequences of size b− `− 1 whose numbers are between 0 and `− 1 inclusive is(
b

`−1
)
≤ 2j . For the column, the number of increasing sequences of size ` − a whose numbers are between 0 and ` − 1

inclusive is
(
`
a

)
≤ 2j . Hence, the number of semi-standard Young tableaux of such shape is bounded by

(
b

`−1
)
·
(
`
a

)
≤ 22j .

By the assumption that S = [−R,R], we can also bound the term |xY | to be

|xY | ≤ Rb−a ≤ 2O(j).

We can now bound the determinant | det(X [j+1]
T,: )| by

| det(X [j+1]
T,: )| ≤ 2O(j) ·

∏

1≤c1<c2≤`−1
(xc1 − xc2).

Namely, when T = [`]\{a} ∪ {b} for a = i, i+ 2, . . . , `− 2 and b = `, `+ 2, . . . , j,

| det(C(i→j)
:,T )| · | det(X [j+1]

T,: )| ≤ j!

i!
· 2

3j
2

( j−i2 )!
· 2O(j) ·

∏

1≤c1<c2≤`−1
(xc1 − xc2)

=
j!

i!( j−i2 )!
· 2O(j) ·

∏

0≤c1<c2≤`−1
|xc1 − xc2 |

17
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By considering all cases for T and plugging them into (30), we have

| det(P (i→j)(x))| ≤
∑

T

| det(C(i→j)
:,T )| · | det(X [j+1]

T,: )| ≤ j!

i!( j−i2 )!
· 2O(j) ·

∏

0≤c1<c2≤`−1
|xc1 − xc2 |

and, by comparing to det(P (x)) in (22) which is
∏

0≤c1<c2≤`−1 |xc1 − xc2 |,

| det(P (i→j)(x))| ≤ j!

i!( j−i2 )!
· 2O(j) · | det(P (x))|.

Lemma A.5. Let P (−i)(x) be the matrix defined in the proof of Lemma A.3. Then the absolute value of the determinant of

P (−i)(x) is

| det(P (−i)(x))| ≤ 2O(` log `) ·
∏

1≤c1<c2≤`−2
|xc1 − xc2 |.

Proof. Since the entries of P (−i)(x) are Hermite polynomials, we can decompose it into

P (−i)(x) = C(−i) ·X [`]

where C(−i) is the (` − 1)-by-` matrix whose (r, c)-entry is the coefficient of xc in the r-th Hermite polynomial for

r ∈ [`]\{i} and X [`] is the `-by-(`− 1) matrix whose (r, c)-entry is xr
c . For example, take ` = 4, i = 2,

h0(x) = 1

h1(x) = x

h3(x) = −3x+ x3

and hence

C(−i) =



1 0 0 0
0 1 0 0
0 −3 0 1


 and X [`] =




1 1 1
x0 x1 x2

x2
0 x2

1 x2
2

x3
0 x3

1 x3
2


 .

To compute det(P (−i)(x)), we use Cauchy-Binet formula and we have

det(P (−i)(x)) =
∑

T

det(C
(−i)
:,T ) · det(X [`]

T,:)

where the summation is over all subset T of size `− 1 of [`], C
(i→j)
:,T is the (`− 1)-by-(`− 1) matrix whose columns are the

columns of C(−i) at indices from T and X
[`]
T,: is the (`− 1)-by-(`− 1) matrix whose rows are the rows of X [`] at indices

from T . Furthermore, by triangle inequality,

| det(P (−i)(x))| ≤
∑

T

| det(C(−i)
:,T )| · | det(X [`]

T,:)| (31)

18
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We first make some simplifications to see what T makes the determinants nonzero. For example, take ` = 8, i = 2, we have

h0(x) = 1

h1(x) = x

h3(x) = −3x+ x3

h4(x) = 3− 6x2 + x4

h5(x) = 15x− 10x3 + x5

h6(x) = −15 + 45x2 − 15x4 + x6

h7(x) = −105x+ 105x3 − 21x5 + x7

and

C(−i) =up to row and column swaps




1
3 −6 1

−15 45 −15 1
1
−3 1
15 −10 1

−105 105 −21 1




Fro simplicity we assume that i, ` are even numbers and it is easy to prove the other cases by symmetry. If T does not

contain all odd numbers or all even numbers less than i, then det(C
(−i)
:,T ) = 0. In the words, the choices are [`]\{b} for

b = i, i+ 2, . . . , `− 2. Therefore, there are only `−i
2 = O(`) choices for T such that det(C

(−i)
:,T ) may be be 0.

Now, we expand the determinant det(C
(−i)
:,T ) along the rows whose diagonal entry is 1. What we have left is the determinant

of a matrix A where is A is the ( b−i2 )-by-( b−i2 ) matrix whose (r, c)-entry is (−1)
r−c
2

r!

( r−c
2 )!c!2

r−c
2

for r = i+ 2, . . . , b and

c = i, i+ 2, . . . , b− 2. For example, take b = 6, the matrix A in the above example is

[
−6 1
45 −15

]
. By applying row and

column operations, we can compute the exact expression for det(A) as

det(A) = (−1)
b−i
2

b!

( b−i2 )!i!2
b−i
2

and hence

| det(C(−i)
:,T )| = | det(A)| ≤ b!

( b−i2 )!i!2
b−i
2

≤ `!. (32)

In the example, we have

det(

[
−6 1
45 −15

]
) = 45.

By the properties of Schur polynomials,

det(X
[`]
T,:) =

(
∑

Y

x
Y

)
·

∏

1≤c1<c2≤`−2
(xc1 − xc2)

where the summation is over all semi-standard Young tableaux Y of shape ( 1, . . . , 1︸ ︷︷ ︸
`− 1− b 1’s

, 0, . . . , 0︸ ︷︷ ︸
b 0’s

). Recall that the term x
Y

means xy0

0 · · ·xy`−2

`−2 where ym is the number of occurrences of the number m in Y and note that
∑`−2

m=0 ym = `− 1− b.
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Based on the given shape, there is only one column of size ` − 1 − b. That means the number of semi-standard Young

tableaux of such shape is the number of increasing sequences of size `− 1− b whose numbers are between 0 and `− 2
inclusive which is

(
`−1
b

)
≤ 2`. By the assumption that S = [−R,R], we can also bound the term |xY | to be

|xY | ≤ R`−1−b ≤ 2O(`).

It means that

| det(X [`]
T,:)| ≤ 2O(`) ·

∏

1≤c1<c2≤`−2
(xc1 − xc2). (33)

By plugging (32) and (33) into (31), we can now bound | det(P (−i)(x))| by

| det(P (−i)(x))| ≤
∑

T

| det(C(−i)
:,T )| · | det(X [`]

T,:)| ≤ 2O(` log `) ·
∏

1≤c1<c2≤`−2
|xc1 − xc2 |.
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