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Abstract—As wireless communication systems strive to im-
prove spectral efficiency, there has been a growing interest in
employing machine learning (ML)-based approaches for adaptive
modulation and coding scheme (MCS) selection. In this paper, we
introduce a new adaptive MCS selection framework for massive
MIMO systems that operates without any feedback from users
by solely relying on instantaneous uplink channel estimates. Qur
proposed method can effectively operate in multi-user scenarios
where user feedback imposes excessive delay and bandwidth
overhead. To learn the mapping between the user channel
matrices and the optimal MCS level of each user, we develop a
Convolutional Neural Network (CNN)-Long Short-Term Memory
Network (LSTM)-based model and compare the performance
with the state-of-the-art methods. Finally, we validate the effec-
tiveness of our algorithm by evaluating it experimentally using
real-world datasets collected from the RENEW massive MIMO
platform.

Index Terms—Adaptive MCS Selection, Machine Learning,
Convolutional Neural Network, Long Short-Term Memory Net-
work, Channel State Information, Feedback Delay

I. INTRODUCTION

The growing demand for high-speed wireless connectivity
has led to the adoption of advanced wireless communica-
tion technologies such as massive multi-user multiple-input
multiple-output (MIMO) systems. Massive MIMO enhances
the spectral efficiency (SE) in wireless networks by leveraging
a large number of service antennas to serve a large number of
users on the same time-frequency channel resource. However,
rate adaptation by selecting the appropriate transmission link
parameters, including modulation and coding scheme (MCS),
to maximize spectral efficiency remains a challenging task,
particularly in dynamic wireless environments where channel
conditions can vary rapidly. Adaptive modulation and coding
(AMC) has been studied as a critical block in MAC/PHY
layers of wireless standards, and various algorithms have been
developed to enable the dynamic adjustment of MCS levels in
response to changing channel conditions [1].

In a time division duplex (TDD)-based massive MIMO
system, base stations (BSs) can acquire channel state infor-
mation (CSI) through uplink training thanks to reciprocity.
The 5G standard defines several pilot patterns for channel
estimation, where the appropriate pilot pattern and pilot period
will be determined by the network operator depending on
the configuration. It also follows in the standard that user
equipment (UE) has to report a channel quality indicator (CQI)
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to the serving BS to be used to decide the MCS in the
next transmission slot. In current standard implementations,
the period of the channel estimation is typically significantly
shorter than the CQI feedback period [2].

Recently, machine learning (ML) has emerged as a promis-
ing methodology applied across diverse aspects of wireless
communication [3]-[5], encompassing adaptive modulation
and coding. Various techniques have been proposed to utilize
the CQI feedback and CSI information as inputs for different
ML models, allowing for efficient learning of the optimal
mapping between channel conditions and MCS levels. An
online deep learning algorithm for adaptive modulation and
coding in massive MIMO systems is proposed in [4], which
leverages self-learning in a deep neural network (DNN) model.
In [5], authors proposed a deep Q-network (DQN)-based joint
adaptive scheduling algorithm of MCS and space division mul-
tiplexing (SDM) for 5G massive MIMO. A hybrid data-driven
and model-based ML approach for link adaptation is proposed
in [6], which leverages CSI history to optimally select the
MCS. These methods rely on conforming to the standard
requirements and presume that every user will provide CQI
feedback. Furthermore, most of the proposed methods in the
literature provide performance analysis through only limited
numerical results derived from simulated channels.

In massive multi-user MIMO systems, where a large number
of users are scheduled on the same time-frequency resource,
and an even larger number of users are connected to each
serving BS, having feedback from each user causes the delay
to grow significantly, making the user feedback prohibitive
due to imposing an excessive delay. Nevertheless, CQI ac-
quisitions for beamformed users are independent such that
each individual user may not know how many other MU-
MIMO layers are being adopted. Therefore, CQI feedback
lacks context, which is even more severe in massive MIMO
networks. Moreover, the CQI feedback period is typically long
so the downlink CQI of the previous slot can become outdated
to be used as a reference to do MCS selection for the next
slot, especially in significantly varying channel environments
(e.g. high mobility). This motivates the need for an adaptive
MCS selection framework that relies only on the instantaneous
uplink channel estimates, removing the need for any feedback
from users.

Additionally, sequential correlation is a pivotal factor in
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AMC strategies. To enhance performance, Outer Loop Link
Adaptation (OLLA) [7] has been introduced as an improve-
ment over traditional Inner Loop Link Adaptation (ILLA).
Apart from Channel Quality Indicator (CQI) feedback, OLLA
incorporates the acknowledgment (ACK)/negative acknowl-
edgment (NACK) from previous time slots in the uplink
control information. This inclusion of sequential data from
prior slots can provide insightful channel condition context to
AMC, especially in mobility scenarios. Recent works based on
reinforcement learning (RL) [8] have explored the integration
of CQI or CSI from multiple time slots into the state space to
guide the model in capturing channel sequential correlations.
Nonetheless, this approach results in an expanded state space,
thereby posing challenges in convergence, especially as the
network scales. Consequently, it is imperative to consider
alternative models that are based on sequential dependencies
to address this issue.

In this paper, we present an innovative ML-based frame-
work for adaptive modulation and coding in massive MIMO
networks. We introduce a feedback-free AMC technique that
capitalizes on the CSI acquired through uplink sounding
reference signals (SRS) to facilitate the selection of the MCS
for the subsequent downlink transmission. We present a model
based on Convolutional Neural Networks and Long Short-
Term Memory networks (CNN-LSTM) designed to effectively
learn the optimal mapping between instantaneous uplink CSI
and the most suitable MCS for individual users. CNNs are
adept at extracting spatial information from the channel matrix,
particularly relevant in multi-user transmission scenarios with
inter-user correlation. Additionally, LSTMs excel at processing
sequential correlations across different transmission time slots.
We demonstrate the effectiveness of the proposed algorithm
through extensive experimentation with real-world datasets
collected from the RENEW platform [9], a programmable
multi-cell massive MIMO base station deployed on the Rice
University campus. Our approach enables the adaptive adjust-
ment of MCS levels based solely on channel estimates with
high accuracy and thus significantly reduces feedback delays
by obviating the requirement for user-provided CQI feedback.
Apart from multi-user systems, the proposed algorithm is
applicable to the single-user regime as well.

II. PROPOSED ADAPTIVE MCS ALGORITHM
A. Overview of Multi-User Feedback-Free AMC

An illustration of a feedback-free adaptive MCS selection
scheme compared to a feedback-based technique is provided
in Fig. 1. In a traditional feedback-based framework, UEs
transmit CQI feedback to the base station via an uplink
control channel, and the base station subsequently maps the
received CQI values to specific MCS levels by referencing
a predefined lookup table [10]. Some existing literature [4],
[51, [8] also incorporates ML-based methods for this mapping
process. In an effort to enhance the accuracy of this mapping,
some approaches include Hybrid Automatic Repeat Request
(HARQ) information (i.e. ACK/NACK) from previous time
slots in the feedback signals, as the sequential dependency
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Fig. 1: Comparison of a Feedback-Free and a Feedback-based
Adaptive MCS selection scheme.

of channel condition plays a critical role in adaptive MCS
selection, particularly in mobile scenarios.

Nevertheless, according to [10], CQI feedback typically
consumes 4 bits per transmission, incurs up to an 8§-ms
delay, and happens every 8 time slot. In cases where radio
resources are limited, and stringent time constraints exist, the
feedback-based approach may struggle to adjust MCS levels
promptly, leading to a degradation in system performance. In
contrast, the feedback-free-based (FF-based) method leverages
the uplink channel matrix, estimated through channel measure-
ments using uplink pilots, to eliminate the overhead associated
with bandwidth consumption. Channel measurements exhibit
a significantly shorter periodicity compared to CQI feedback,
ensuring the real-time adaptability of MCS.

B. ML-based AMC Model

Our FF-based AMC aims to predict the MCS for the next
downlink transmission by employing an ML-based approach.
We focus on wideband AMC, where the same MCS is assigned
to the entire bandwidth. The input for our ML model is a 3D
channel matrix, with dimensions corresponding to base station
antennas, user equipment, and the real and imaginary parts
of complex entries in the channel matrix. To perform AMC
using the channel matrix, it is critical to use a model that can
extract intricate inter-user correlation from the channel matrix,
which is a key determining factor in the downlink channel
quality of the users. Akin to the use of convolutional neural
networks (CNNs) to extract hierarchical features in images, we
also adopt a DenseNet-based CNN architecture [11], a variant
of deep CNNs that solve the well-known vanishing gradients
in CNNs using skip-connections.
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Fig. 2: ML-based framework.
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Another important factor in optimally predicting the MCS
is the need to capture the temporal dependencies that exist
between successive transmission slots as mentioned in Sec. L.
Long Short-Term Memory (LSTM) networks [12], a type of
recurrent neural network (RNN) [13], are known to excel
in modeling sequential data and time-series forecasting. To
capture the temporal correlation in channel data, we add an
LSTM block to our overall architecture.

Fig. 2 illustrates our employed architectural framework,
which includes three key components: a CNN-based segment,
an LSTM-based segment, and three Fully Connected Layers
(FCLs). The CNN employs Dense Blocks each consisting of
four convolutional layers, maintaining consistent feature map
sizes and incorporating skip-connections via concatenation
layers. Batch Normalization (BN) layers are added at the end
of each Dense Block to mitigate overfitting. Average pooling
layers are placed between Dense Blocks to reduce feature map
dimensions. The flattening layer transforms CNN outputs into
a flat format for input to LSTM networks. The LSTM structure
comprises three memory blocks with forget, input, and output
gates, employing sigmoid functions to control information
flow and tanh functions to adjust values. Ultimately, the FCLs
combine features extracted by the CNN and LSTM to generate
the MCS prediction.

III. PERFORMANCE EVALUATION

In this section, we assess our adaptive MCS framework
by conducting a thorough evaluation. We gather simulation
and over-the-air (OTA) data using Agora [14], a real-time
software implementation of massive MIMO PHY/MAC for
both massive MIMO BS and users. Agora can be run in
simulator mode where datasets from QUAsi Deterministic
Radlo channel GenerAtor (QuaDRiGa) [15] can be replayed
using a software channel simulator between Agora BS and
Agora user software [16]. Agora can also be run on the
RENEW massive MIMO BS and single-antenna clients that
emulate UEs. We benchmark our approach against various
state-of-the-art (SOTA) techniques, including heuristic and
ML-based methods, to evaluate testing accuracy. This analysis
demonstrates our model’s effectiveness in selecting the optimal
MCS.

A. Experiment Setup

To generate training data, we configure QuaDRiGa software
to simulate a 32 (base station antennas) X 4 (single-antenna
UE) MIMO channel. In the model, the base station is posi-
tioned at the center of a circular area with a radius of 100
meters. For dataset completeness, we generate channels under
3D Urban Micro (UMi) Line-of-Sight (LoS), UMi Non-Line-
of-Sight (NLoS), Urban Macro (UMa) Los, and UMa NLoS
models. For each, we consider two channel scenarios: static
and mobile. For static scenarios, we conduct four different
modes: 1) uncorrelated mode, where users are positioned at
considerable distances from each other, 2) one user cluster
where all users share the same scatterers and hence have highly
correlated channels, 3) two user cluster with two users in

each cluster, and 4) random user placement. In the mobile
scenario, users within this circle move in various directions at
different speeds, with an average speed of 2.8 m/s. We also
consider two distinct initial user placements in the mobile
scenario: 1) co-located, and 2) randomly placed. In the co-
located case, the users have high initial inter-user correlation
and correlation will be decreased gradually as users move
to different directions. In the random initial placement, more
diverse channel conditions are covered. In total, we generated
channel matrices for 13.5K transmission frames to be replayed
into the emulated massive MIMO network environment by
the Agora software. We utilized the MCS Table 2 of the 3rd
Generation Partnership Project (3GPP) Technical Specification
38.214 [10] with modulation schemes, including 4-QAM, 16-
QAM, 64-QAM, and 256-QAM, as well as LDPC code rates
ranging from 0.11 to 0.92. In our study, we only considered
MCS indices ranging from 10 to 24 in the table. This restric-
tion arises from the impracticality of adopting MCS values that
are either too high or too low, as they lead to intolerable bit
error rates or inadequate spectral efficiency. Additionally, we
adopt the Bit Error Rate (BER) as our performance metric.
We collected datasets for per-frame BER for each channel
model. Specifically, we conduct multiple rounds of evaluation
per channel, exploring all available MCS indices. The optimal
MCS for a given channel scenario is then defined as the
MCS index that achieves an acceptable BER (i.e., lower than
1072 [17]) in the largest number of frames. In Fig.4, we
present the histogram depicting the distribution of optimal
MCS across various channel scenarios and modes in UMi-
LoS channel model, encompassing 1000 frames. Notably, the
frequency distribution of optimal MCS aligns closely with
the results of inter-user correlation analysis. Specifically, in
static scenarios with one user cluster mode, high inter-user
correlation is encountered due to the proximity of users.
Consequently, the lowest MCS (10) is optimal as it ensures
an acceptable BER in most cases. In contrast, “two user
clusters” mode exhibits less inter-user interference than the
one user cluster but more than the uncorrelated mode and
random placement. When transitioning to a mobile scenario,
the correlation changes more randomly due to user mobility,
resulting in a more dispersed distribution of optimal MCS over
the 1000 test frames.

We also conduct OTA experiments on the RENEW Massive
MIMO platform [9] to collect real-world datasets using Agora.
Fig. 3 illustrates our OTA experiment setup. We consider
two channel scenarios (i.e. static and mobile). For the static
scenario, uncorrelated, one-user cluster and two-user clusters
are emulated. In the mobile scenario, we maintained three
fixed users while moving the fourth user towards the static
ones in a sequential manner. Throughout this process, the inter-
user correlations between the mobile user and the static users
varied with the changing distance between each static user and
the mobile user.

We use both simulated and real channel datasets to train our
ML model presented in §II. We run our model training on an
NVIDIA DGX A100 server [18]. For DenseNet, we use three
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Fig. 3: OTA experiment deployment in static scenario: (a)
uncorrelated mode (b) one user cluster and (c) two user
clusters, and (d) user mobility scenario.

interleaved dense blocks and pooling layers. Each dense block
comprises four 2-D convolution layers, two concatenation
layers, and a batch-normalization (BN) layer. A flattening layer
is utilized to process the CNN output before passing it to the
LSTM. The LSTM module features three memory blocks, each
with four interacting layers. We used PyTorch [19] and the
SGD optimizer [20] to train the model. Relevant simulation
parameters are summarized in Table 1.
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Fig. 4: Optimal MCS histogram in different channel scenarios
and modes of UMi-LoS channel model: (a) static one user
cluster (b) static two user clusters (c) static uncorrelated mode
(d) static random placement (e) mobile one user cluster, and
(f) mobile random placement.

B. Benchmarks

To comprehensively compare AMC techniques, we employ
state-of-the-art DRL and Look-Up-Table (LUT) methods as

TABLE I: Experiment Setting and Training Parameters

Parameter Value
System Bandwidth 20 MHz
System Carrier Frequency 3.6 GHz
Frame Duration 1 ms
MCS Table MCS index table 2 for PDSCH [21]
Cell Radius 100 m
UE Speed 0 & 2.8 m/s
Number of BS Antennas 32
Number of UEs 4
Batch Size 64
Learning Rate le-3
Optimizer SGD
Episodes 300

well as a CNN-only method.

DRL-based AMC: Deep reinforcement learning is favored
in AMC for its ability to learn autonomously from envi-
ronmental interactions, obviating the need for pre-collected
datasets. Accordingly, we employ a Deep Q-Network (DQN)
approach, as demonstrated in prior works [8], [22]. To main-
tain the historical MCS selection context, we expand the
state representation by including not only the current frame’s
channel matrix but also those of the last two frames. The
DQN model generates actions representing the chosen MCS
index. The reward function assigns a value of 100 if the
action matches the pre-collected optimal MCS index, and 0
otherwise. For our neural network architecture, we employ
a five-layer structure, each with 64 neurons, and fine-tune
hyperparameters via grid search to optimize performance.

LUT AMC: The LUT method is a traditional technique
employed in the 5G standard. Nevertheless, its performance is
significantly impacted by factors such as 5G numerology, the
number of user spatial streams, propagation conditions, and
traffic characteristics. In [23], a novel Signal-to-Noise Ratio
(SNR)-CQI-MCS mapping table is introduced and assessed
within the context of 5G multi-user scenarios encompassing
audio, video, and gaming traffic patterns, achieving a perfor-
mance enhancement of approximately 35% compared to state-
of-the-art mapping tables. Consequently, we implement this
innovative LUT table and conduct a comparative analysis with
our proposed approach.

CNN-based AMC: The last benchmark we conducted is for
an ablation study where we disabled the LSTM component in
our proposed model, relying solely on CNN for prediction.
As depicted in Sec. II, sequential dependencies are pivotal in
the context of AMC. Previous frame channel conditions offer
valuable insights for selecting the MCS in the current frame.
Disabling the LSTM responsible for extracting inter-frame
sequential channel information would compromise prediction
accuracy.

C. Experiment Results

1) Training and Testing Results: We gathered a com-
prehensive dataset consisting of 16k simulation and OTA
samples, encompassing diverse channel scenarios and modes.
This dataset was partitioned into 13.5k samples for training
and 2.5k for testing purposes. Our model underwent training
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for 300 epochs, resulting in progressively improving training
and testing accuracy, as depicted in Fig. 5a. Ultimately, we
achieved a training accuracy of 97.6% and a testing accuracy
of 92.5%.

2) Performance Results: We evaluate the testing accuracy
of our CNN-LSTM model in comparison to other benchmark
models. For CNN and DQN-based approaches, we employ
the testing dataset for inference and compare their predictions
to pre-collected optimal MCS indices. In the case of the
Look-Up Table (LUT), we map recorded SNR to CQI and
then to MCS indices for comparison with the optimal MCS
indices, assessing testing accuracy. Our comparison results are
presented in Fig. 5b. The CNN-LSTM model outperforms
other benchmarks due to its ability to effectively extract
sequential and spatial channel information. Additionally, DQN
performs less effectively in terms of testing accuracy, primarily
because it struggles with the high-dimensional raw channel
matrix from a 32-antenna base station and 4 UEs. Besides, the
LUT exhibits the poorest performance among the benchmark
models due to its limited adaptability to diverse channel
conditions. Notably, the incorporation of LSTM into our model
yields an impressive 8% accuracy improvement compared to
the CNN-only model.

IV. CONCLUSION

In this paper, we presented a CNN-LSTM-based adaptive
modulation and coding (AMC) technique for massive MIMO
networks. Our method relies only on the channel state infor-
mation of the users to predict the modulation and coding index
(MCS) in MU-MIMO transmissions. To train and evaluate our
model, we acquire both simulated and real-world data from the
Agora PHY/MAC software and the RENEW massive MIMO
platform under a variety of channel conditions including
user mobility. Our findings reveal superior performance over
existing state-of-the-art massive MIMO AMC methods across
diverse channel scenarios and modes.
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