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Abstract—As wireless communication systems strive to im-
prove spectral efficiency, there has been a growing interest in
employing machine learning (ML)-based approaches for adaptive
modulation and coding scheme (MCS) selection. In this paper, we
introduce a new adaptive MCS selection framework for massive
MIMO systems that operates without any feedback from users
by solely relying on instantaneous uplink channel estimates. Our
proposed method can effectively operate in multi-user scenarios
where user feedback imposes excessive delay and bandwidth
overhead. To learn the mapping between the user channel
matrices and the optimal MCS level of each user, we develop a
Convolutional Neural Network (CNN)-Long Short-Term Memory
Network (LSTM)-based model and compare the performance
with the state-of-the-art methods. Finally, we validate the effec-
tiveness of our algorithm by evaluating it experimentally using
real-world datasets collected from the RENEW massive MIMO
platform.

Index Terms—Adaptive MCS Selection, Machine Learning,
Convolutional Neural Network, Long Short-Term Memory Net-
work, Channel State Information, Feedback Delay

I. INTRODUCTION

The growing demand for high-speed wireless connectivity

has led to the adoption of advanced wireless communica-

tion technologies such as massive multi-user multiple-input

multiple-output (MIMO) systems. Massive MIMO enhances

the spectral efficiency (SE) in wireless networks by leveraging

a large number of service antennas to serve a large number of

users on the same time-frequency channel resource. However,

rate adaptation by selecting the appropriate transmission link

parameters, including modulation and coding scheme (MCS),

to maximize spectral efficiency remains a challenging task,

particularly in dynamic wireless environments where channel

conditions can vary rapidly. Adaptive modulation and coding

(AMC) has been studied as a critical block in MAC/PHY

layers of wireless standards, and various algorithms have been

developed to enable the dynamic adjustment of MCS levels in

response to changing channel conditions [1].

In a time division duplex (TDD)-based massive MIMO

system, base stations (BSs) can acquire channel state infor-

mation (CSI) through uplink training thanks to reciprocity.

The 5G standard defines several pilot patterns for channel

estimation, where the appropriate pilot pattern and pilot period

will be determined by the network operator depending on

the configuration. It also follows in the standard that user

equipment (UE) has to report a channel quality indicator (CQI)

to the serving BS to be used to decide the MCS in the

next transmission slot. In current standard implementations,

the period of the channel estimation is typically significantly

shorter than the CQI feedback period [2].

Recently, machine learning (ML) has emerged as a promis-

ing methodology applied across diverse aspects of wireless

communication [3]–[5], encompassing adaptive modulation

and coding. Various techniques have been proposed to utilize

the CQI feedback and CSI information as inputs for different

ML models, allowing for efficient learning of the optimal

mapping between channel conditions and MCS levels. An

online deep learning algorithm for adaptive modulation and

coding in massive MIMO systems is proposed in [4], which

leverages self-learning in a deep neural network (DNN) model.

In [5], authors proposed a deep Q-network (DQN)-based joint

adaptive scheduling algorithm of MCS and space division mul-

tiplexing (SDM) for 5G massive MIMO. A hybrid data-driven

and model-based ML approach for link adaptation is proposed

in [6], which leverages CSI history to optimally select the

MCS. These methods rely on conforming to the standard

requirements and presume that every user will provide CQI

feedback. Furthermore, most of the proposed methods in the

literature provide performance analysis through only limited

numerical results derived from simulated channels.

In massive multi-user MIMO systems, where a large number

of users are scheduled on the same time-frequency resource,

and an even larger number of users are connected to each

serving BS, having feedback from each user causes the delay

to grow significantly, making the user feedback prohibitive

due to imposing an excessive delay. Nevertheless, CQI ac-

quisitions for beamformed users are independent such that

each individual user may not know how many other MU-

MIMO layers are being adopted. Therefore, CQI feedback

lacks context, which is even more severe in massive MIMO

networks. Moreover, the CQI feedback period is typically long

so the downlink CQI of the previous slot can become outdated

to be used as a reference to do MCS selection for the next

slot, especially in significantly varying channel environments

(e.g. high mobility). This motivates the need for an adaptive

MCS selection framework that relies only on the instantaneous

uplink channel estimates, removing the need for any feedback

from users.

Additionally, sequential correlation is a pivotal factor in
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Another important factor in optimally predicting the MCS

is the need to capture the temporal dependencies that exist

between successive transmission slots as mentioned in Sec. I.

Long Short-Term Memory (LSTM) networks [12], a type of

recurrent neural network (RNN) [13], are known to excel

in modeling sequential data and time-series forecasting. To

capture the temporal correlation in channel data, we add an

LSTM block to our overall architecture.

Fig. 2 illustrates our employed architectural framework,

which includes three key components: a CNN-based segment,

an LSTM-based segment, and three Fully Connected Layers

(FCLs). The CNN employs Dense Blocks each consisting of

four convolutional layers, maintaining consistent feature map

sizes and incorporating skip-connections via concatenation

layers. Batch Normalization (BN) layers are added at the end

of each Dense Block to mitigate overfitting. Average pooling

layers are placed between Dense Blocks to reduce feature map

dimensions. The flattening layer transforms CNN outputs into

a flat format for input to LSTM networks. The LSTM structure

comprises three memory blocks with forget, input, and output

gates, employing sigmoid functions to control information

flow and tanh functions to adjust values. Ultimately, the FCLs

combine features extracted by the CNN and LSTM to generate

the MCS prediction.

III. PERFORMANCE EVALUATION

In this section, we assess our adaptive MCS framework

by conducting a thorough evaluation. We gather simulation

and over-the-air (OTA) data using Agora [14], a real-time

software implementation of massive MIMO PHY/MAC for

both massive MIMO BS and users. Agora can be run in

simulator mode where datasets from QUAsi Deterministic

RadIo channel GenerAtor (QuaDRiGa) [15] can be replayed

using a software channel simulator between Agora BS and

Agora user software [16]. Agora can also be run on the

RENEW massive MIMO BS and single-antenna clients that

emulate UEs. We benchmark our approach against various

state-of-the-art (SOTA) techniques, including heuristic and

ML-based methods, to evaluate testing accuracy. This analysis

demonstrates our model’s effectiveness in selecting the optimal

MCS.

A. Experiment Setup

To generate training data, we configure QuaDRiGa software

to simulate a 32 (base station antennas) × 4 (single-antenna

UE) MIMO channel. In the model, the base station is posi-

tioned at the center of a circular area with a radius of 100

meters. For dataset completeness, we generate channels under

3D Urban Micro (UMi) Line-of-Sight (LoS), UMi Non-Line-

of-Sight (NLoS), Urban Macro (UMa) Los, and UMa NLoS

models. For each, we consider two channel scenarios: static

and mobile. For static scenarios, we conduct four different

modes: 1) uncorrelated mode, where users are positioned at

considerable distances from each other, 2) one user cluster

where all users share the same scatterers and hence have highly

correlated channels, 3) two user cluster with two users in

each cluster, and 4) random user placement. In the mobile

scenario, users within this circle move in various directions at

different speeds, with an average speed of 2.8 m/s. We also

consider two distinct initial user placements in the mobile

scenario: 1) co-located, and 2) randomly placed. In the co-

located case, the users have high initial inter-user correlation

and correlation will be decreased gradually as users move

to different directions. In the random initial placement, more

diverse channel conditions are covered. In total, we generated

channel matrices for 13.5K transmission frames to be replayed

into the emulated massive MIMO network environment by

the Agora software. We utilized the MCS Table 2 of the 3rd

Generation Partnership Project (3GPP) Technical Specification

38.214 [10] with modulation schemes, including 4-QAM, 16-

QAM, 64-QAM, and 256-QAM, as well as LDPC code rates

ranging from 0.11 to 0.92. In our study, we only considered

MCS indices ranging from 10 to 24 in the table. This restric-

tion arises from the impracticality of adopting MCS values that

are either too high or too low, as they lead to intolerable bit

error rates or inadequate spectral efficiency. Additionally, we

adopt the Bit Error Rate (BER) as our performance metric.

We collected datasets for per-frame BER for each channel

model. Specifically, we conduct multiple rounds of evaluation

per channel, exploring all available MCS indices. The optimal

MCS for a given channel scenario is then defined as the

MCS index that achieves an acceptable BER (i.e., lower than

10−3 [17]) in the largest number of frames. In Fig.4, we

present the histogram depicting the distribution of optimal

MCS across various channel scenarios and modes in UMi-

LoS channel model, encompassing 1000 frames. Notably, the

frequency distribution of optimal MCS aligns closely with

the results of inter-user correlation analysis. Specifically, in

static scenarios with one user cluster mode, high inter-user

correlation is encountered due to the proximity of users.

Consequently, the lowest MCS (10) is optimal as it ensures

an acceptable BER in most cases. In contrast, “two user

clusters” mode exhibits less inter-user interference than the

one user cluster but more than the uncorrelated mode and

random placement. When transitioning to a mobile scenario,

the correlation changes more randomly due to user mobility,

resulting in a more dispersed distribution of optimal MCS over

the 1000 test frames.

We also conduct OTA experiments on the RENEW Massive

MIMO platform [9] to collect real-world datasets using Agora.

Fig. 3 illustrates our OTA experiment setup. We consider

two channel scenarios (i.e. static and mobile). For the static

scenario, uncorrelated, one-user cluster and two-user clusters

are emulated. In the mobile scenario, we maintained three

fixed users while moving the fourth user towards the static

ones in a sequential manner. Throughout this process, the inter-

user correlations between the mobile user and the static users

varied with the changing distance between each static user and

the mobile user.

We use both simulated and real channel datasets to train our

ML model presented in §II. We run our model training on an

NVIDIA DGX A100 server [18]. For DenseNet, we use three
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Fig. 3: OTA experiment deployment in static scenario: (a)

uncorrelated mode (b) one user cluster and (c) two user

clusters, and (d) user mobility scenario.

interleaved dense blocks and pooling layers. Each dense block

comprises four 2-D convolution layers, two concatenation

layers, and a batch-normalization (BN) layer. A flattening layer

is utilized to process the CNN output before passing it to the

LSTM. The LSTM module features three memory blocks, each

with four interacting layers. We used PyTorch [19] and the

SGD optimizer [20] to train the model. Relevant simulation

parameters are summarized in Table I.

(a) (b) (c)

(d) (e) (f)

Fig. 4: Optimal MCS histogram in different channel scenarios

and modes of UMi-LoS channel model: (a) static one user

cluster (b) static two user clusters (c) static uncorrelated mode

(d) static random placement (e) mobile one user cluster, and

(f) mobile random placement.

B. Benchmarks

To comprehensively compare AMC techniques, we employ

state-of-the-art DRL and Look-Up-Table (LUT) methods as

TABLE I: Experiment Setting and Training Parameters

Parameter Value

System Bandwidth 20 MHz
System Carrier Frequency 3.6 GHz

Frame Duration 1 ms
MCS Table MCS index table 2 for PDSCH [21]
Cell Radius 100 m
UE Speed 0 & 2.8 m/s

Number of BS Antennas 32
Number of UEs 4

Batch Size 64
Learning Rate 1e-3

Optimizer SGD
Episodes 300

well as a CNN-only method.

DRL-based AMC: Deep reinforcement learning is favored

in AMC for its ability to learn autonomously from envi-

ronmental interactions, obviating the need for pre-collected

datasets. Accordingly, we employ a Deep Q-Network (DQN)

approach, as demonstrated in prior works [8], [22]. To main-

tain the historical MCS selection context, we expand the

state representation by including not only the current frame’s

channel matrix but also those of the last two frames. The

DQN model generates actions representing the chosen MCS

index. The reward function assigns a value of 100 if the

action matches the pre-collected optimal MCS index, and 0

otherwise. For our neural network architecture, we employ

a five-layer structure, each with 64 neurons, and fine-tune

hyperparameters via grid search to optimize performance.

LUT AMC: The LUT method is a traditional technique

employed in the 5G standard. Nevertheless, its performance is

significantly impacted by factors such as 5G numerology, the

number of user spatial streams, propagation conditions, and

traffic characteristics. In [23], a novel Signal-to-Noise Ratio

(SNR)-CQI-MCS mapping table is introduced and assessed

within the context of 5G multi-user scenarios encompassing

audio, video, and gaming traffic patterns, achieving a perfor-

mance enhancement of approximately 35% compared to state-

of-the-art mapping tables. Consequently, we implement this

innovative LUT table and conduct a comparative analysis with

our proposed approach.

CNN-based AMC: The last benchmark we conducted is for

an ablation study where we disabled the LSTM component in

our proposed model, relying solely on CNN for prediction.

As depicted in Sec. II, sequential dependencies are pivotal in

the context of AMC. Previous frame channel conditions offer

valuable insights for selecting the MCS in the current frame.

Disabling the LSTM responsible for extracting inter-frame

sequential channel information would compromise prediction

accuracy.

C. Experiment Results

1) Training and Testing Results: We gathered a com-

prehensive dataset consisting of 16k simulation and OTA

samples, encompassing diverse channel scenarios and modes.

This dataset was partitioned into 13.5k samples for training

and 2.5k for testing purposes. Our model underwent training
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