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Abstract

ML APIs have greatly relieved application developers of
the burden to design and train their own neural network mod-
els—classifying objects in an image can now be as simple as
one line of Python code to call an API. However, these APIs
offer the same pre-trained models regardless of how their out-
put is used by different applications. This can be suboptimal
as not all ML inference errors can cause application failures,
and the distinction between inference errors that can or cannot
cause failures varies greatly across applications.

To tackle this problem, we first study 77 real-world applica-
tions, which collectively use six ML APIs from two providers,
to reveal common patterns of how ML API output affects ap-
plications’ decision processes. Inspired by the findings, we
propose ChameleonAPI, an optimization framework for ML
APIs, which takes effect without changing the application
source code. ChameleonAPI provides application developers
with a parser that automatically analyzes the application to
produce an abstract of its decision process, which is then used
to devise an application-specific loss function that only penal-
izes API output errors critical to the application. Chameleon-
API uses the loss function to efficiently train a neural network
model customized for each application and deploys it to serve
API invocations from the respective application via existing
interface. Compared to a baseline that selects the best-of-all
commercial ML API, we show that ChameleonAPI reduces
incorrect application decisions by 43%.

1 Introduction

The landscape of ML applications has greatly changed, with
the rise of ML APIs significantly lowering the barrier of ML
application developers. Instead of designing and managing
neural network models by themselves via frameworks like
TensorFlow and PyTorch, application developers can now
simply invoke ML APIs, provided by open-source libraries
or commercial cloud service providers, to accomplish com-
mon ML tasks like object detection, facial emotion analy-
sis, etc. This convenience thus gives rise to a variety of ML
applications on smartphones, tablets, sensors, and personal
assistants [9,29, 50, 65].

Although ML APIs have eased the integration of ML tasks
with applications, they are suboptimal by serving different ap-
plications with the same neural network models. This issue is
particularly striking when applications use the ML API results
to make control-flow decisions (also referred to as applica-
tion decisions in this paper). Different applications may check
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the result of the same ML API using different control-flow
code structures and different condition predicates, a process
that we refer to as the application’s decision process (see §2
for the formal definition). Due to the heterogeneity across
applications’ decision processes, we make two observations.

e First, some incorrect ML API outputs may still lead to cor-
rect application decisions, with only certain critical errors
of API output affecting the application’s decision.

e Second, among all possible output errors of an ML API,
which ones are critical vary significantly across applica-
tions that use this API. That is, the same API output error
may have a much greater effect on one application than on
another.

Figure | illustrates the decision process of a garbage-
classification application Heapsortcypher [49]. It first in-
vokes Google’s classification API upon a garbage image.
Then, based on the returned labels, a simple logic is used
to make the application decision about which one of the
pre-defined categories (Recycle, Compost, and Donate) or
others the image belongs to. For example, for an input image
whose ground-truth label is “Shirt”, the correct application
decision is Donate, as shown in Figure | (b).

For this application, when the classification API fails to
return “Shirt”, the application decision may or may not be
wrong. For example, Figure 1 (c) and (d) show two possible
wrong API output: if the output is “Paper”, the application
will make a wrong decision of Recycle; however, if the out-
put is “Jacket”, the application will make the correct deci-
sion of Donate despite not matching the ground-truth label.
More subtly, if the API returns a list of two labels, “Shirt”
and “Paper”, the application would make a correct decision
if “Shirt” is ordered before “Paper” by the API, but would
make a wrong decision if “Paper” is ordered before “Shirt”.
The reason is that the application logic, the for loop in Fig-
ure | (a), checks one API-output label at a time. As we will
see later, there are also other ways that applications check
the API-output list, which will affect application decision
differently.

As we can see, for a specific application, some errors of
an ML API may be critical, like mis-classifying the shirt to
“Paper” in the example above, and yet some errors may be
non-critical, like mis-classifying the shirt image as “Jacket”
or classifying the shirt image as both “Shirt” and “Paper”
in the examples above. Which errors are critical varies, de-
pending on the application’s decision process.

These observations regarding the critical errors specific to
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Recycle = ['Plastic’, 'Wood’, “Glass’, 'Paper’, Cardboard’]
Compost = ['Food', 'Produce', 'Snack']
Donate = ['Clothing', 'Jacket’, 'Shirt', 'Pants', 'Footwear', 'Shoe’]

response = client.label detection(Image)
for obj in response.label annotations:
if obj.name in Reeyele:
return “recycle”
elif obj.name in COmMPOSE:
return Ncompost”
elif obj.name in Donate:
return “donate”
return “It is others.”

ML API invocation

Application decisions

(a) Code snippet of app Heapsortcypher
Image

(Ground-truth: “Shirt”) i;?

Correct app
App decision
“Donate”

(b) Correct app decision based on input image’s ground-truth label

e MLaaS
Image RPN
~p
L
ﬁ App App decision:
“recycle”

(c) ML API output error leads to wrong app decision

] MLaaS
Image \f‘;"i\&"’ >
v
ﬁ App App decision:
“Donate”

(d) ML API output error still leads to correct app decision

Figure 1: An example ML application whose decision depends
on the output of ML API (multi-label classification), but not
all errors of ML API output have the same effect.

each application suggest substantial room for improvement
by customizing the ML API, essentially the neural network
model underneath the API, for individual application’s deci-
sion process. In particular, for a given application, the cus-
tomized model can afford having more errors less critical to
the application for the benefit of having fewer critical errors
that cause wrong application decisions.

Thus, our goal is to allow ML APIs and their underlying
neural network models to be automatically customized for
a given application, so as to minimize incorrect application
decisions without changing the application’s source code or in-
terface between ML API and software exposed to developers.
This way, application developers who do not have the exper-
tise to design and train customized ML models can still enjoy
the accessibility of generic ML APIs while getting closer to
the accuracy of ML models customized for the application.

No prior work shares the same goal as us. The closest line
of prior work specializes DNN models for given queries [7,
8,36,37,43], but they require application developers to use
a domain specific language (e.g., in SQL [36]) instead of
general programming languages, like Java and Python, and
mostly focus on reducing the DNN’s size. In contrast, we keep
both the ML API interface and the application source code
intact while avoiding incorrect decisions for ML applications.

With the aforementioned goal, this paper makes two contri-
butions. First, we run an empirical study over 77 real-world
applications that collectively use six ML APIs to reveal sev-

eral common patterns of how the outputs of ML APIs affect
the application decisions (§2).

Our study identifies two types of ML API output that are
used by applications to make control-flow decisions (categor-
ical labels and sentiment scores), and three types of decision
types (True-False, Multi-Choice, and Multi-Selection) with
different implications regarding which ML API output errors
are critical to the application.

Our study also quantitatively reveals opportunities of model
customization. (1) Although popular image-classification
models are trained to recognize as many as 19.8K differ-
ent labels, the largest number used by any one application for
decision making is only 54. Consequently, mis-classification
among the remaining tens of thousands of labels are com-
pletely irrelevant to an application. (2) More importantly,
applications tend to treat multiple labels (4.7 on average) as
one equivalence class in their decision making, such as labels
Plastic,Wood,Glass,Paper,and Cardboard in Figure 1(a).
Mis-classification among those labels inside one equivalence
class does not matter. (3) Which labels are relevant to an ap-
plication’s decision making vary greatly across applications,
with only 12% of application pairs share any labels used for
their decision making.

Second, inspired by the empirical study, we propose
ChameleonAPI, which customizes and serves ML models be-
hind the ML API for each given application’s decision process,
without any change to the existing ML API or the application
source code (§3). ChameleonAPI works in three steps. First,
it provides a parser that analyzes application source code to
extract information about how ML inference results are used
in the application’s decision process. Based on the analysis
result, ChameleonAPI then constructs the loss function to
reflect which ML model output is more relevant to the given
application as well as the different severity of ML inference
errors on the application decisions. The ML model will be
retrained accordingly using the new loss function. Finally,
when the ML API is invoked by the application at runtime, a
customized ML model will be used to serve this query.

We evaluate ChameleonAPI on 57 real-world open-source
applications that use Google and Amazon’s vision and lan-
guage APIs. We show that ChameleonAPI’s re-trained models
reduce 48% of incorrect decisions compared to the off-the-
shelf ML models and 50% compared to the commercial ML
APIs. Even compared with a baseline that selects the best-
of-all commercial ML API, ChameleonAPI reduces 43% of
incorrect decisions. ChameleonAPI only takes up to 24 min-
utes on a GeForce RTX 3080 GPU to re-train the ML model.

Our code is publicly available at https://github.com/
UChi-JCL/chameleonAPI.

2 Understanding Application Decision Process

We conduct an empirical study to understand how applica-
tions make decisions based on ML APIs (§2.3), and how this
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ML API name ML task Provider  # of apps
label_detection Vision::Image classification Google 29
detect_labels Vision::Image classification Amazon 11
object_localization ~ Vision::Object detection Google 8
analyze_sentiment  Language::Sentiment analysis ~ Google 14
analyze_entities Language::Entity recognition Google 6
classify_text Language:: Text classification Google 9

Table 1: Summary of applications used in our empirical study.

decision making logic implies the different severity of ML
inference errors (§2.4). This study will reveal why and how
to customize the ML API backend for each application. As
a representative sample of ML APIs, this study focuses on
cloud Al services due to their popularity.

2.1 Definitions

Preliminaries: We begin with basic definitions.

e Application decision: the collective control-flow decisions
(i.e., which branch(es) are taken) made by the application
under the influence of a particular ML API output.

e [ncorrect ML API output: a situation when the API output
differs from the API input’s human-labeled ground truth.
We refer to such ML API outputs as API output errors.

e Correct decision: the application decision if the API output
is the same as the human-labeled ground-truth of the input.

e Application decision failure: a situation when the appli-
cation decision is different from the correct decision, also
referred to as application failure for short in this paper.

Software decision process: Given these definitions, an ap-
plication’s software decision process (or decision process for
short) is the logic that maps an ML API output to an applica-
tion decision. The code snippet in Figure | shows an example
decision process, which maps the output of a classification
ML API on an image to the image’s recycling categorization
specific to this application.

Critical and non-critical errors: For a given decision pro-
cess, some API output errors will still lead to a correct deci-
sion, whereas some API output errors will lead to an incorrect
decision and hence an application failure. We refer to the
former as non-critical errors, and the latter as critical errors.

2.2 Methodology

Our work focuses on applications that use ML API output
to make control-flow decisions. To this end, we look at 77
open-source applications which collectively use six widely
used vision and language APIs [10,65] offered by two popular
cloud Al service providers, as summarized in Table 1.

These applications come from two sources. First, we study
all 50 applications that use vision and language APIs from a
recently published benchmark suite of open-source ML appli-
cations [66]. Second, given the popularity of image classifi-
cation APIs [11, 12], we additionally sample 27 applications

from GitHub that use Google and Amazon image classifica-
tion APIs (16 for the former and 11 for the latter). We obtain
these 27 by checking close to 100 applications that use image
classification APIs and filtering out those that directly print
out or store the API output. Every application in our bench-
mark suite uses exactly one ML API for decision making.

Threats to validity: While many applications use the APIs
listed in Table 1, there are a few other APIs not covered
in our study. A few vision and language-related ML tasks
are not as popular and hence are not covered in our study
(e.g., face recognition and syntax analysis). Speech APIs are
not covered, because their outputs are rarely used to affect
application control flow based on our checking of open-source
applications. Finally, our study does not cover applications
that use ML APIs offered by other cloud or local providers.

2.3 Understanding the decision mechanism

Q1: What types of ML API outputs are typically used by
applications to make decisions?

ML APIs produce output of a variety of types. The sen-
timent analysis API outputs a list of floating-point value
pairs (score and magnitude), describing the sentiment of
the whole document and every individual sentence; the other
five APIs in Table | each produces a list of categorical labels
ranked in descending order of their confidence scores, which
is also part of the output. Some APIs’ output also contains
other information, like coordinates of bounding boxes, en-
tity names, links to Wikipedia URLSs, and so on. Among all
these, only two types have been used in application decision
processes of our studied application: the floating-point pair
(score and magnitude) and the categorical labels.

For the 63 applications that use categorical-label output
from the five APIs (all except analyze_sentiment in Table
1), they each define one or more label lists and check which
label list(s) an API output label belongs to. The code snippet
of a landmark classification application in Figure 2(a) is an
example of this. It calls the label_detection API with a
sight-seeing image and checks the output labels to see if the
image might contain Landmark, or just ordinary Building,
or Person.

For the 14 applications that use the analyze_sentiment
API, they each define several value ranges and check which
range the sentiment score and/or magnitude falls in. The
code snippet of FoodDelivery [48] in Figure 2(b) is an ex-
ample. This application calls analyze_sentiment with a
restaurant review text, and then checks the returned sentiment
score to judge if the review is negative, positive, or neutral.

Q2: What type of decisions do applications make?

We observe three categories of ML-based decision making,
which we name following common question types in exams:

(1) True-False decision, where a single label list or value
range is defined and one selection is allowed: either the ML
API output belongs to this list/range or not. This type occurs
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Invocation of ML API

Branch condition that uses API output

Structure indicating decision types

Landmark = [“Landmark, “Sculpture”]

Building = [“Building”, “Estate”,
“Mansion” ]

Person = [“Person”, “Lady”]

res = client.label detection(Img)

annotations = res.label_annotations

labels = [obj.name for obj in annotations]

if any([l in Landmark for 1 in labels]):
return “Landmark”

elif any([l in Building for 1 in labels]):
return ”Building”

elif any([1l in Person for 1 in labels]):
return "Person”

text = types.Document(content=Text)
res = client.analyze sentiment(text)
sentiment = res.document_sentiment
sentiment_score = sentiment.score
if sentiment score < 0.3:
print(“It's a negative sentence!”)
elif sentiment_score > 0.6:
print(“It's a positive sentence!”)
else: ## between 0.3 and 0.6
print(“It's a neutral sentence!”)

else: ## obj.name not in any list
return “It is others.”

Protein = [”Hamburger”,”Meat”,
“Patty”]
. Grain = [“Noodle”,”Pasta”,”Bread”
Plant = [“”Houseplant”,“Bonsai”, Fru;t _ {“A 1" ;Oran e","Pear"]]
“Plant”, “Flowerpot”] PP 4 g

res = client.label detection(Img)
returned_set = set()
for obj in res.label_annotations:
if obj.name in Protein:
returned_set.add(“protein”)
elif obj.name in Grain:
returned_set.add(“grain”)
elif obj.name in Fruit:
returned_set.add(“fruit”)
return returned_set

res =
client.label detection(Img)
for obj in
response.label_annotations:
if obj.name in Plant:
return “Plant found!”
return “No plant found.”

(a) Aander-ETL (b) FoodDelivery

(Label output, Multi-Choice, App-Order)

(Float-point value output, Multi-Choice)

(c) Plant-watcher
(Label output, True-False)

(d) The-Coding-Kid
(Label output, Multi-Select)

Figure 2: Code snippets from five example applications where ML API output affects control flow decisions in different ways.

in about one third of the applications in our study. For exam-
ple, the plant management application Plant-watcher [57]
(Figure 2(c)) checks to see if the image contains plants or not.

(2) Multi-Choice decision, where multiple lists of labels or
value ranges are defined, and one selection is allowed. The
ML API output will be assigned to at most one list or range;
the application’s decision making logic determines which of
these lists/ranges the output belongs to, or determines that the
output belongs to none of them. This type of decision is the
most common, occurring in about 45% of benchmark appli-
cations. The garbage classification application discussed in
§ 1 makes such a Multi-Choice decision. It decides which one
of the following classes the input image belongs to: Recycle,
Compost, Donate, or none of them.

(3) Multi-Select decision, where multiple label lists or value
ranges are defined, and multiple selections are allowed about
which label lists or value ranges the ML API output belongs
to. This type of decisions occur in close to a quarter of the
applications. Figure 2(d) illustrates such an example from the
nutrition advisor application The-Coding-Kid [62]. This ap-
plication defines three label lists to represent nutrition types:
Protein, Grain, and Fruit, and it checks to find all the nu-
trition types present in the input image.

In the remainder of the paper, we will use target class
to refer to a label list (or a value range) that is used to
match against a categorical label (or a value). For instance,
the code snippet in Figure 2(a) has three label lists as
its target classes ([Landmark, Sculpture], [Building,
Estate, Mansion], and [Person, Lady]), and the code
snippet in Figure 2(b) has three value ranges as its target
classes (<0. 3, >0. 6, and in between).

Q3: How do applications reach Multi-Choice decisions?

When the ML API outputs multiple labels, the outcome of
a Multi-Choice decision varies depending on which matching
order is used. First, the matching order can be determined by
the API output. For example, the garbage classification appli-
cation (Figure 1) first checks whether the first label in the API
output matches any target class. If so, later API output labels
will be skipped, even if they might match with a different class.
If there is no match for the first label, the second output label

is checked, and so on. These labels are ranked by the API in
the descending order of their associated confidence scores, so
we refer to such a matching order as API-order. It is used by
80% of applications that make Multi-Choice decisions.

The matching order can also be specified by the application,
referred to as App-order. For instance, regardless the API
output, application Aander-ETL [1] (Figure 2(a)) always first
checks if the Landmark class matches with any output label.
If there is a match, the decision is made. Only when it fails
to match Landmark, will it move on to check the next choice,
Building, and so on. This matching order is used by 20% of
applications that make Multi-Choice decisions.

2.4 Understanding the decision implication

Q4: Does an application need ML APIs that can accurately
identify thousands of labels?

ML models behind popular ML APIs are well trained to
support a wide range of applications. For example, Google
and Microsoft’s image-classification APIs are capable of iden-
tifying more than 10000 labels [44], while Amazon’s image-
classification API can identify 2580 labels [3]. However, for
each individual application, its decision making only requires
classifying the input image into a handful of target classes: 7
at most in our benchmark applications. The largest number
of image-classification labels checked by an application is
54, a tiny portion of all the labels an image-classification API
could output.

Clearly, for any application, a customized ML model that
focuses on those target classes used by the application’s de-
cision process has the potentially to out-perform the big and
generic ML model behind ML APIs. How to accomplish the
customization without damaging the accessibility of ML APIs
will be the goal of ChameleonAPI.

05: Are there equivalence classes among ML API outputs
in the context of application decision making?

For the 63 applications that make decisions based on API
output of categorical labels, they present 121 target classes in
total, each containing 4.7 labels on average (3 being the me-
dian). Only 35 target classes in 22 applications contain a sin-
gle label. For the 14 applications that make decisions based on
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floating-point sentiment score and magnitude, their target
classes all contain an infinite number of score or magnitude
values. In other word, no class contains just a single value.

Clearly, the wide presence of multi-value target classes
creates equivalence classes among output returned by the
API—errors within one equivalence class are nof critical to
the corresponding application. This offers another opportunity
for ML customization.

Q6: How much difference is there between different appli-
cations’ target classes?

Overall, the difference is significant. We have conducted
pair-wise comparison between any two applications in our
benchmark suit, and found that 88% of application pairs share
no common labels in any of their target classes. Similarly,
among the 381 labels that appear in at least one application’s
target classes, 88% of them appear in only one application
(i.e., 335 out of 381 labels).

Clearly, there is little overlap among the target classes of
different applications, again making a case for per-application
customization of the ML models used by the ML APIs.

Q7: Do different decision mechanisms imply different sen-
sitivity to output errors of ML APIs?

Even for two applications that have the same target classes,
if they try to make different types of decisions, they will have
different sensitivity to ML API output errors—some API er-
rors might be critical to one application, but not to the other.
For example, errors that affect the selection of different target
classes are equally critical to Multi-Select decisions. However,
this is not true for Multi-Choice, where only the first matched
target class matters. Furthermore, the matching order of a
Multi-Choice decision affects which errors are critical. When
the APIl-output order is used (e.g.,HeapsortCypher in Fig-
ure 1), an error on the first label in the API output is more
likely to be critical than an error on other labels in the output.
However, when App-order order is used (e.g.,Aander-ETL in
Figure 2(a)), errors related to labels in the first target class
(e.g.,Landmark) are more likely to be critical than those re-
lated to labels in later target classes (e.g.,Person).

Clearly, to customize ML models for each application, we
need to take into account what is the decision type and what
is the matching order (for Multi-Choice decisions).

3 Design of ChameleonAPI

Inspired by the study of §2, we now present ChameleonAPI
which automatically customizes ML models for applications.

3.1 Problem formulation

Goal: For an application that uses ML APIs, our goal is to
minimize critical errors in the API outputs for this appli-
cation by efficiently re-training the original generic neural
network models underneath these APIs into customized mod-
els; our approach stands in contrast to typical approaches that
minimize all inference errors. In other words, the new ML

Creation of app-specific

loss function (3.2) Output

App source : Decision-process App-specific MLAPI
code summary :"; loss function DNN :"; backend

—— Loss
Training DNN using app-specific
loss function

extraction of decision-
process summary (3.3)

Figure 3: The logical steps of how ChameleonAPI customizes
d for individual applications.

model should return outputs that lead the application process
to the same decision as if the ground-truth of the input is
returned by the ML APIL.

To formally state this objective, we denote how an applica-
tion makes a decision by App(API(x)), where X is the input
to the ML API and API(x) is the API output. Then for a given
application decision process of App(-) and an input set X',
our goal is to train an ML model DNN(+) such that

21612 {xi|App(API(x;)) # App(API(x;))},

where API(x;) = F(DNN(x;)) (1)

Here, API (x;) is a hypothetical API function that always
returns the ground truth of input x;, and F(-) represents the
postprocessing used by the API to translate a DNN output to
an API output. For instance, an image classification model’s
output is a vector of confidence scores between 0 and 1 (each
for a label), but the ML API will use a threshold 0 to filter
and return only labels with scores higher than 6, or the top
labels with the highest confidence scores.

Our goal in Eq | differs from the traditional goal of an ML
model, which minimizes any errors in the API output, i.e.,

min | {x|API(x)) # API(x)} . @

Given that it is hard to obtain a DNN with 100% accuracy,
the difference between the two formulations is crucial, since
not all API output errors in Eq. 2 will cause incorrect applica-
tion decisions in Eq. 1. Thus, compared to optimizing Eq. 2,
optimizing Eq. 1 is more likely to focus the DNN training on
reducing the critical errors for the application.

To train a DNN that optimizes Eq. 1, we need to decide if a
DNN inference output DNN(x) is a critical error or not (i.e.,
App(DNN(x)) # App(/m(x))) at the end of every training
iteration. This decision needs to be made automatically and
efficiently. For example, repeatedly running the entire ML
application after every training iteration would not work, as it
may significantly slow down the training procedure.

A careful reader might notice that the formulation in Eq. | also depends
on the input set. Though the input set should ideally follow the same dis-
tribution of real user inputs of the application, this distribution is hard to
obtain in advance and may also vary over time and across users. Instead, we
focus our discussion on training the ML model to minimize Eq. | with an
assumed input distribution. Our evaluation (§5) will test the resulting model’s
performance over different input distributions.
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Logical steps of ChameleonAPI: To customize and deploy
the DNN for an application, ChameleonAPI takes three log-
ical steps (Figure 3). First, ChameleonAPI extracts from an
application’s source code a decision-process summary (ex-
plained shortly), a succinct representation of the application’s
decision process, which will be used to determine if a DNN
inference error is critical (details in §3.3). Second, Chameleon-
API converts a decision-process summary to a loss function,
which can be directly used to train a DNN (details in §3.2).
This loss function only penalizes DNN outputs that lead to
critical errors with respect to a given application. Finally, the
loss function will be used to train a customized DNN for this
particular application’s ML API invocations (§3.4).

A decision-process summary is a succinct abstraction of the
application that contains enough information to determine if
a DNN inference output causes a critical error or not. Specifi-
cally, it includes three pieces of information (defined in §2.3):

o Composition of target classes: the label list or value range
of each target class;

e Decision type: True-False, Multi-Choice, or Multi-Select;

e Matching order: over the target classes, APIl-order or App-
order, if the application makes a Multi-Choice decision.

For a concrete example, the decision-process summary of the
garbage classification application in Figure 2(a) contains (1)
three label lists representing three target classes: Recycle,
Compost, and Donate; (2) the Multi-Choice type of decision;
and (3) the matching order of APl-order.

What is changed, what is not: ChameleonAPI does not
change the ML API or the application source code. Unlike
recent work that aims to shrink the size of DNNs or speed
them up [36,37, 54], we do not change the DNN architecture
(shape and input/output interface); instead, we train the DNN
to minimize critical errors. That said, deploying Chameleon-
API has two requirements. First, the application developers
need to run ChameleonAPI’s parser script to automatically
extract the decision-process summary. Second, an ML model
needs to be retrained for each application, instead of serving
the same model to all applications.

The remainder of this section will begin with the design
of the application-specific loss function based on decision-
process summary, followed by how to extract the decision-
process summary from the application, and finally, how the
customized ML models are used to serve ML API queries.

3.2 Application-specific loss function

Given Eq |, ChameleonAPI trains a DNN model with a new
loss function, which only penalizes critical errors of an appli-
cation, rather than all DNN inference errors. Since decision
processes vary greatly across applications (§2.4), we first
explain how to conceptually capture different decision pro-
cesses in a generic description, which allows us to derive the
mathematical form of ChameleonAPI’s loss function later.

Generalization of decision processes: For each application

Cl = [“Landmark, “Sculpture”]

C2 = [“Building”, “Estate”]

res = client.label_detection(Image)

annotations = res.label_annotations

labels = [obj.name for obj in

annotations]

if any([1l in CI for 1 in labels]):
return “Cl”

elif any([l in C2 for 1 in labels]):
return "C2”

Target classes:
[“Landmark, “Sculpture” ]
[“Building”, “Estate”]

Decision type:
Multi-Choice

Matching order:
App-order

(a) Application source code (b) Decision-process Yy

DNN output y (score, label) Target class ¢’ Matched? M%)

1st check: <[0.8, “Building”], C1 > > False (mismatch)

2nd check: <[0.6, “Estate”], C1 > > False (mismatch)

31 check: <[0.2, “Landmark”], C1 > - False (score below 6)
4th check: <[0.1, “Sculpture’], C1 > - False (score below 6)
5th check: <[0.8, “Building”], C2 > > True < EOD

(¢) Generic description of the decision process
on DNN output y = [0.1,0.2,0.8,0.6] & score threshold 8 = 0.3

Figure 4: The generic description (shown in (c)) of an applica-
tion (whose source code is shown in (a) and decision-process
summary in (b)) on a DNN inference outputy.

in our study (§2.2), our insight is that its decision process
can always be viewed as traversing a sequence of conditional
checks until an end-of-decision (EOD) occurs:

1% check: < y,c) >— m()

jth check: < y7c(1) > M(]) <= EOD

where the j-th check takes as input the DNN output y and
one of target classes ¢\/), and returns a binary M) indicating
whether y\/) matches the condition of ¢\/) and a binary deci-
sion whether this check happens before the EOD. The set of
target classes successfully matched before the EOD will be
those selected by the application.

Figure 4 shows (a) an example application, (b) the decision-
process summary, and (c) the generic description for this
application’s decision process and a DNN output.

This generic description (e.g., the traversal order of the
target classes, how a match is determined in a check, and
when the EOD occurs) will depend on the information in the
decision-process summary and the DNN output y. We stress
that this generic description may not apply to all applications,
but it does apply to all applications in our study (§2.2).
Categorization of critical errors: Importantly, this generic
description helps to categorize critical errors:

e Type-1 Critical Errors: A correct target class ¢ is not
matched before EOD, but will be so if EOD occurs later.

e Type-2 Critical Errors: A correct target class ¢ is never
matched, before or after the EOD.

e Type-3 Critical Errors: An incorrect target class ¢ is
matched before EOD.
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A useful property of this categorization is that any wrong de-
cision (a correct target class not being picked, or an incorrect
target class being picked) falls in a unique category, and non-
critical errors do not belong to any category. In other words,
as long as the loss function penalizes the occurrences of each
category, it will only capture critical errors.

ChameleonAPTI’s first attempt of a new loss function: To
understand why it is difficult to penalize critical errors and
critical errors only, we first consider the common practice
of assigning a higher weight to the loss of a DNN output if
the ground-truth of the input will lead to a selection of some
target classes (e.g., [26, 35, 64]). Henceforth, we refer to this
basic design of loss function as ChameleonAPI ;.

At best, ChameleonAPI,, . might improve the DNN’s
label-wise accuracy on inputs whose ground-truth decision
selects some target classes. However, as elaborated in §2.3,
we also need to consider which labels belong to the same
target class, the decision type, and the matching order of
an application decision process in order to capture the
three types of critical errors. For instance, in the garbage-
classification application (Figure 1), without knowing the
label lists of each target class, ChameleonAPI,,;. will give
an equal penalty to a critical error of mis-classifying a Paper
image to Wood and a non-critical error of mis-classifying a
Paper image to Shirt. Similarly, without knowing the match-
ing order, ChameleonAPI, ;. will equally penalize the output
of [Plastic, Jacket] and [Jacket, Plastic], but only the
latter leads to correct output because Jacket is matched first.

ChameleonAPT’s loss function: ChameleonAPI leverages

the categorization of critical errors to systematically derive

a loss function that penalizes each type of critical error. To

make it concrete, we explain ChameleonAPT’s loss function of

“label-based API, Multi-Choice type of decision, and App-order”
(e.g., Figure 4). Appendix§B will detail the loss functions of

other decision processes. The loss function of such applica-
tions has three terms, each penalizing one type of critical

error:

Type-1 Critical Errors

L(y) = Sigmoid ( mi ! 1)-6 3
(y) = Sigmoi (mln(zeﬂiifc(Y[}’%%?y{]) ) 3)

Type-2 Critical Errors Type-3 Critical Errors

Sigmoid (6 — i Sigmoid -6
+ Sigmoi ( ?éegy[])JrZ igmoi (}lel%f}’“ )

c<¢é

Here, y[/] denotes the score of the label /, G, denotes the set of
labels of target class c, ¢ denotes the correct (i.e., ground-truth)
target class, and the sigmoid function Sigmoid(x) = HLEX will
incur a higher penalty on a greater positive value.

Why does it capture the critical errors? Given this applica-
tion is Multi-Choice, the EOD will occur right after the first
match of a target class, i.e., the first check with a ¢ such that
max;eg, y[I] > 6.

e A Type-1 critical error occurs, if (1) the correct target class
¢ is matched and (2) it is matched after the EOD. First, the
correct target class ¢ is matched, if and only if at least one
of its labels has a score above the confidence threshold,
s0 max;cg, y|!/] > 0). Second, this match happens after the
break, if and only if some target class ¢ before ¢ (i.e., ¢ < ¢)
is matched, so max;cg, y[/] > 0). Put together, the first term
of Eq 3 penalizes any occurrence of these conditions.

e A Type-2 critical error occurs, if no label in the correct
target class ¢ has a score high enough for ¢ to be matched,
i.e., max;cg, y[I] < O, so the second term of Eq 3 penalizes
any occurrence of this condition.

e A Type-3 critical error occurs, if any incorrect target class
¢ before ¢ (i.e., ¢ < ¢) has a label with a score high enough
for ¢ to be matched, i.e., max;ec, y[{] — 6, so the third term
of Eq 3 penalizes any occurrence of this condition.

To train a DNN, the loss function must be differentiable
with respect to the DNN ouput y. Eq 3 uses the max function
several times. Though max is not naturally differentiable, it
can be closely approximated in well-known differentiable
forms provided by PyTorch’s differentiable operators [56]).

3.3 Extracting applications’ decision process

The current prototype of ChameleonAPI program analysis
supports Python applications that make decisions based on
categorical label output or floating point output of ML APIs.
We first discuss how it works for ML APIs with categor-
ical label output, like all the APIs in Table 1 except for
analyze_sentiment. We will then discuss a variant of it
that works for most use cases of analyze_sentiment.

Given application source code, ChameleonAPI first identi-
fies all the invocations of ML APIs. For every invocation / in
a function f, ChameleonAPI then identifies all the branches
whose conditions have a data dependency upon the ML API’s
label output. We will refer to these branches as I-branches. If
there is no such branch in f, ChameleonAPI then checks the
call graph, and analyzes up to 2 levels of callers and up to 5
levels of callees of f until such a branch is identified. If no
such branch is identified after this, ChameleonAPI considers
the ML API invocation [ to not affect application decisions
and hence does not consider any optimization for it. If some /-
branches are identified, ChameleonAPI records the top-level
function analyzed, F, and moves on to extract the decision-
process summary in following steps.

What are the target classes? ChameleonAPI figures out all
the target classes and their composition in two steps.

The first step leverages symbolic execution and constraint
solving to identify all the labels that belong to any target
classes. Specifically, ChameleonAPI applies symbolic exe-
cution to function F, treating the parameters of F and the
label output of I as symbolic (i.e., the symbolic execution
skips the ML. API invocation / and directly uses I’s symbolic
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output in the remaining execution of F)’. Since applications
typically match only one label in API output at a time (as ob-
served in §2.3), we set the label array returned by / to contain
one element (label) and use a symbolic string to represent
it. Through symbolic execution, ChameleonAPI obtains con-
straints for every path that involves an /-branch, solving which
tells Chameleon API which labels need to be in the output of
the ML API in order to execute each unique path, essentially
all the labels that belong to any target class.

One potential concern is that a solver may only output
one instead of all values that satisfy a constraint. Fortu-
nately, the symbolic execution engine used by ChameleonAPI,
NICE [31], turns Python code into an intermediate represen-
tation where each branch is in a simplest form. Take Figure
2(d) as an example, the source-code branch if obj.name in
Protein is transformed into three branches where obj.name
is compared with “Hamburger”, “Meat”, and “Patty” sepa-
rately, allowing us to capture all three labels by solving three
separate path constraints.

The second step groups these labels into target classes by
comparing their respective paths: if two API output, each with
one label, lead the program to follow the same execution path
at the source-code level, these two labels belong to the same
target class. For example, in Figure 2(d), the execution path
is exactly the same when the label_detection API returns
[“Hamburger”], comparing with when it returns [“Meat”],
with all function parameters and other API output fields being
the same. Consequently, we can know that label Hamburger
and label Meat belong to the same target class. To figure out
the path, ChameleonAPI simply executes function F using
each input produced by the constraint solver and traces the
source-code execution path using the Python trace module.

One final challenge is that ChameleonAPI needs to identify
and exclude the path where none of the target classes are
matched (e.g., the “It is others.” path in Figure 2(a)).
We achieve this by carefully setting the default solution in the
constraint solver to be an empty string, which is impossible
to output for any ML APISs in this paper. This way, whenever
this default solution is output, ChameleonAPI knows that the
corresponding path matches no target class.

What is the type of decision? When only one target class is
identified, ChameleonAPI reports a True-False decision type.
Otherwise, ChameleonAPI decides whether the decision type
is Multi-Choice or Multi-Select by checking the source-code ex-
ecution path associated with every target class label obtained
above. If any execution evaluates an /-branch after another
I-branch is already evaluated to be true, ChameleonAPI re-
ports a Multi-Select decision type; otherwise, ChameleonAPI
reports a Multi-Choice decision type.

What is the matching order over the target classes? To tell
whether a Multi-Choice decision is made through API-Order

2Recall that an API output contains several fields not used to influence
control flow in any applications. We set them with pre-defined dummy values.

like in Figure | or App-Order like in Figure 2(a), Chameleon-
API first identifies all the for loops that iterate through the la-
bel array output by the ML API and have control-dependency
with I-branches, e.g., the for 1 in labels in Figure 2(a)
and the for obj in response.label_annotations in
Figure 1.

ChameleonAPI then checks how many such output-
iterating loops there are. If there is only one and this loop is
not inside another loop, like that in Figure 1, ChameleonAPI
considers the matching order to be API-Order, as the appli-
cation only iterates through each output label once, with the
matching order determined by the output array arranged by
the ML API. Otherwise, ChameleonAPI considers the match-
ing order to be App-Order. This is the case for the example
shown in Figure 2(a), where three output-iterating loops are
identified, each of which matches with one target class in
an order determined by the application: the Landmark target
class, followed by the Building, and finally the Person.

How to handle floating-point output of ML APIs? Recall
in §2.3 that some ML APIs, e.g.,analyze_sentiment, have
floating-point output and the application defines several value
ranges to put each floating-point output into one category.
To handle this type of API, ChameleonAPI needs to identify
the value range of each target class, which is not supported
by NICE and other popular constraint solvers. Fortunately,
many applications directly compare API output with constant
values in /-branches, giving ChameleonAPI a chance to in-
fer the value range. For these applications, ChameleonAPI
first extracts those constant values that are compared with
API output in /-branches, e.g., 0.3 and 0.6 in Figure 2(b).
ChameleonAPI then forms tentative value ranges using these
numbers, like -1 — 0.3, 0.3 — 0.6, and 0.6 — 1 for Figure 2(b)
(-1 and 1 are the smallest and biggest possible score output
of analyze_sentiment based on the API manual). To con-
firm these value ranges and figure out the boundary situation,
ChameleonAPI then executes function F with all the bound-
ary values, as well as some values in the middle of each range.
By comparing which values lead to the same execution path,
ChameleonAPI finalizes the value ranges. For the example in
Figure 2(b), after executing with score set to -0.35, 0.3, 0.45,
0.6, and 0.8, ChameleonAPI settles down on the final value
ranges to be: (-1,0.3), [0.3,0.6), and [0.6,1).

Limitation The static analysis in ChameleonAPI does not
handle the iterated object of while loops, unfolded loops, and
recursive functions. For complexity concerns, ChameleonAPI
only checks caller and callee functions with limited levels, and
hence may miss some /-branches far away from the API invo-
cation. ChameleonAPT’s ability of identifying target classes is
limited by the constraint solver. ChameleonAPI assumes dif-
ferent source-code paths correspond to different target classes,
which in theory could be wrong if the application behaves
exactly the same under different execution paths.
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Figure 5: Workflow of ChameleonAPI.

3.4 Putting them together

We put these components together into a ML-as-a-Service
workflow shown in Figure 5.

First, when an application (A) is developed or updated,
the developers run a parser (described in §3.3) provided by
ChameleonAPI on A’s source code to extract the decision-
process summary for A. The developers can then upload the
decision-process summary to ChameleonAPI’s backend to-
gether with a unique application ID* (which will later be used
to identify queries from the same application).

ChameleonAPI’s backend then uses the received decision-
process summary to construct a new application-specific loss
function (described in §3.2). When a DNN is trained using the
new loss function, its inference results will lead to fewer criti-
cal errors (i.e., incorrect application decisions) for application
A. In our prototype, ChameleonAPI uses the new loss func-
tion to re-train an off-the-shelf pre-trained DNN, a common
practice to save training time (see §5 for quantification). The
DNN re-training uses an application-specific dataset sampled
from the dataset used by the pre-trained generic DNN (see
Table 2 and §4), so that each target/non-target class is selected
by ground-truth decisions of the same number of inputs.

Finally, ChameleonAPI backend maintains a set of DNN
models, each customized for an application and keyed by the
application ID. When application A invokes an ML API at
run time, the ChameleonAPI backend will use the application
ID associated with the API query to identify the DNN model
customized for A, run the DNN on the input, and return the
inference result of the selected model to the application.

Note that, ChameleonAPI can also be used to customize
ML models that run locally behind the ML APIs, instead of
those in the cloud through ML service providers. In this case,
developers run the ChameleonAPI parser on their application

3In many MLaaS offerings [2,20], a connection between the application
and the MLaaS backend is commonly created before the application issues
any queries. Existing MLaaS already allows applications to specify the
application ID via the connection between the application and backend.

Generic model
TResNet-L [6]

Dataset
Openlmages [44]

Image Classification

Object Detection COCO [14] Faster-RCNN [58]
Sentiment Analysis Amazon review [39] BERT [18]
Text Classification Yahoo [30] BERT [18]
Entity Recognition conll2003 [63] BERT [18]

Table 2: The ML APIs and datasets in evaluation.

and save the parser’s result into a local file. This local file will
then be consumed to help re-train an off-the-shelf DNN into
a customized DNN to serve the application.

4 Implementation

Extractor of decision-process summary: The current pro-
totype of ChameleonAPI is implemented for Python applica-
tions that use Google or Amazon ML APIs. It takes as input
the application source code and returns as output the decision-
process summary in the JSON format. It uses NICE symbolic
execution engine [31] and CVCS5 constraint solver [5] to iden-
tify target classes, and uses Python static analysis framework
Pyan [47] and Jedi [24] to identify the decision type and the
matching order. Particularly, it identifies the object that is it-
erated through by a for-loop through the iter expression in
each for-loop header, which is used to distinguish Multi-Choice
and Multi-Select decisions and the matching order.

ML re-training: The re-training module is implemented in
PyTorch v1.10 and CUDA 11.1. It uses a decision-process
summary to construct a new loss function (see §3.2), and then
replaces the builtin loss function in Pytorch with the new
loss function, and uses the common forward and backward
propagation procedure to re-train an off-the-shelf pre-trained
DNN model (explained next).

Generic models: Without access to the models and the
training data used by commercial ML services, we use open-
sourced pre-trained DNNs and their training datasets as a
proxy, which are summarized in Table 2. These DNNs are
trained on the “training” portion of their respective datasets.
They are trained to achieve good accuracy over a wide range
of labels, and we have confirmed that their accuracies in terms
of application decisions are similar to the real ML APIs (§5.2).

Training data: We make sure that the labels included in these
datasets cover the labels used in the decision processes of the
applications in our study. An exception is text classification:
to our best knowledge, there is no open-source dataset that
covers the classes in Google’s text classification API. Instead,
we use the Yahoo Question topic classification dataset [30],
whose classes are similar to those used in the applications.
Instead of training DNNs on all training data, most of
which do not match any target classes of an application, we
create a downsampled training set for ChameleonAPI and
ChameleonAPI,,;.. For each application, we randomly sam-
ple (without replacement) its training data such that each
target class and the non-target class (not matching any target
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class) is the correct decision for the same number of training
inputs, which depending on applications, ranges from 12K to
40K. With such training set, ChameleonAPI,;. will be equiv-
alently implemented by training on the downsampled training
set using the conventional loss function (i.e., cross-entropy
loss for classification tasks). Moreover, the downsampled
training set significantly speedups DNN re-training (§5.2).

5 Evaluation

Our evaluation aims to answer following questions: How
much can ChameleonAPI reduce incorrect application de-
cisions? How long does it take ChameleonAPI to cus-
tomize DNN models for applications? and Why does
ChameleonAPI reduce incorrect application decisions where
ChameleonAPI,;. falls short?

5.1 Setup

Applications: We have applied ChameleonAPI on all the 77
applications summarized in Table 1. Due to space constraints,
our discussion below focuses on the 57 applications that in-
volve three popular ML tasks, image-classification, object-
detection, and text-classification, and omits the remaining 20
applications that involve sentiment analysis and entity recogni-
tion. The results of the latter show similar trends of advantage
from ChameleonAPI and are available in Appendix §D.
Metrics: For each scheme (explained shortly) and each ap-
plication, we calculate the incorrect decision rate (IDR): the
fraction of testing inputs whose application decisions do not
match the correct application decisions (i.e., decisions based
on human-annotated ground truth).

Schemes: We compare the results of these schemes:

o Various commercial ML APIs: the results returned by ML
APIs of three service providers (Google [20], Amazon [2]
and Microsoft [51]).

e Best-of-all API*: a hypothetical method that queries ML
APIs from those three service providers on each input and
picks the best output based on the classic definitions of
accuracy: label-wise recall for classification tasks and mean-
square-error of floating-point output for sentiment analysis.
This serves as an idealized reference of recent work [11,12],
which tries to select the best API output with high label-
wise accuracy.

e Generic models: the open-sourced generic model based on
which the next three schemes are re-trained. They serve
as a reference without customization and achieve similar
accuracy as commercial APIs. Their details are explained
in Section 4.

o Categorized models: This scheme pre-trains a number of
specialized models. Each specialized model replaces the
last layer of the generic model so that it outputs the confi-
dence scores for a smaller number of labels representing

EE RT3

a common category (e.g., “dog”, “animal”, “person” and

a few other labels represent the “natural object” category),
and is fine tuned from the generic model accordingly. A sim-
ple parser checks which labels are used by an application.
If all the labels belong to one category, the corresponding
model specialized for this category is used to serve API
calls from this application. If the labels belong to multiple
categories, multiple specialized models will be used, which
we will explain more later. We set up 35 categories for
image classification and 7 categories for object detection
based on the Wikidata knowledge graph [68], as well as
15 categories for text classification based on the inherent
hierarchy in Google text-classification output. More details
of how we have designed these categories are available in
the Appendix §C.

Note that, we have designed this scheme to represent
a middle-point in the design space between the generic
model and the ChameleonAPI approach: on one hand, this
scheme offers some application customization, but not as
much as ChameleonAPI (e.g., which labels belong to the
same target class, what is the decision process, and what is
the matching order used by the application are all ignored);
on the other hand, this scheme requires a simpler parser
compared to ChameleonAPI.

e ChameleonAPly,;.: the model is re-trained with
ChameleonAPI’s training data, which concentrates on
labels used by the application, but with the conventional
loss function. Like Categorized models, this scheme only
needs a simple parser that extracts which labels are used by
the application, and does not make use of other application
information that ChameleonAPI uses. Unlike Categorized
models, this scheme prepares a customized model for
each application, instead of relying on a small number of
categorized models.

e ChameleonAPI (our solution): the model re-trained with
our training data and loss function.

Testing data: For the same application, all schemes are tested
against the same testing input set. The testing set of an ap-
plication is randomly sampled from the “testing” portion of
the dataset associated with the application’s generic model
(Table 2). We make sure that no testing input appears in the
training data. Like the creation of training data of Chameleon-
API (§4), by default, we randomly sample the testing data
such that each target class and the non-target class (not match-
ing any target class) appear as the correct decision for the
same number of testing inputs, which ranges from 1.2K to
4K. This is similar to the testing sets used in related work on
ML API (e.g., [11,36,37,66]). Such data downsampling is
commonly used in ML [19,46]. Other than Figure 9, we will
use this as the default testing dataset.

Hardware setting: We evaluate ChameleonAPI and other
approaches on a GeForce RTX 3080 GPU, and an Intel(R)
Xeon(R) E5-2667 v4 CPU, with 62GB memory.
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(c) Applications making Multi-Select decisions.

Figure 6: ChameleonAPI reduces the incorrect decision rate (IDR) on the 57 applications that use Google’s or Amazon’s
image-classification, text-classification, and object-detection APIs.

True-False Multi-Choice  Multi-Select

Google API 0.29 0.32 0.35
Microsoft API 0.30 0.33 0.32
Amazon API 0.31 0.33 0.36
Best-of-all API* 0.26 0.27 0.31
Generic models 0.29 0.30 0.34
Categorized models 0.24 0.27 0.31
ChameleonAPIg;. 0.19 0.22 0.27
ChameleonAPI 0.13 0.16 0.21

Table 3: Average incorrect decision rate (IDR) among apps
that make different types of decisions. The lower the better.
The top half represents commercial APIs and their idealistic
combinations, the bottom half represents open-source models.

Single-category Multi-category

Generic models 0.32 0.28
Categorized models 0.28 0.27
ChameleonAPIg;. 0.24 0.18
ChameleonAPI 0.17 0.14

Table 4: Average IDR among single-category and multi-
category applications. The lower the better.

5.2 Results

Overall gains: Measured by the average incorrect deci-
sion rate (IDR) across all applications, the most accurate
scheme is ChameleonAPI, with an IDR of 0.16, and the least
accurate scheme is Generic models, with an IDR of 0.31. In
other words, ChameleonAPI successfully reduces the number
of incorrect decisions of its baseline model by almost 50%.
ChameleonAPI,. (0.22), Categorized models (0.28), and
Best-of-all API* (0.28) have IDR rates in between.

The advantage of ChameleonAPI, and even
ChameleonAPI,;., over the other schemes is consis-
tent across all three types of applications that make different
types of decisions, as shown in Table 3. In fact, Chameleon-
API offers the highest accuracy by a clear margin for every
single application in our evaluation, as shown in Figure 6.

To better compare the ChameleonAPI approach with Cate-
gorized models, we divide the 57 applications into two types:
(1) 39 single-category applications — each application uses
labels that belong to one category and hence can benefit from
one specialized model in the Categorized models scheme; (2)
18 multi-category applications — each application uses labels
that belong to multiple categories. For these applications, the
Categorized models scheme feeds the API input to multiple
specialized models and combines these models’ output to
form the API output. As shown in Table 4, the Categorized
models scheme does offer improvement from Generic models
by considering which labels belong to an application’s target
classes, particularly for single-category applications. How-
ever, both ChameleonAPI and ChameleonAPI,,;. perform
better than Categorized models for both single-category and
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Figure 7: Re-training time for applications in Figure 6(a).

multi-category applications—the per-application customiza-
tion in ChameleonAPI and ChameleonAPI,,;. has paid off.

The above advantage of ChameleonAPI over
ChameleonAPI,,;. and Categorized models shows that the
static analysis used in ChameleonAPI to extract not only
what labels are used by the application, but also which labels
belong to the same target class, the decision type, and the
matching order, as described in Section 3.3, is worthwhile.
Cost of obtaining customized models: The customization
effort of ChameleonAPI includes two parts (1) extracting
the decision-process summary from application source code,
and (2) re-training the ML model. The first part takes a few
seconds: on an Intel(R) Xeon(R) E5-2667 v4 CPU machine,
our parser extracts the decision-process summary from every
benchmark application within 10 seconds.

The second part takes a few minutes, much faster than
training a neural network from scratch. As shown in Figure 7,
re-training DNNs for the 21 applications in Figure 6(a) on a
single RTX 3080 GPU takes 8 to 24 minutes. Focusing on
a small portion of all possible labels (§2.4), ChameleonAPI
fine-tunes pre-trained models using much less training data
than the generic models and thus needs fewer iterations to
converge.

Considering that a V100 GPU with similar processing
GFLOPS as our RTX 3080 GPU only costs $2.38 per hour
on Google Cloud [21], re-training an ML model for one ap-
plication costs less than $1.

Cost of hosting customized models: For cloud providers,
ChameleonAPI would incur a higher hosting cost than tra-
ditional ML APIs by serving a customized DNN for every
application instead of a generic DNN for all applications.

The extra cost includes more disk space to store cus-
tomized neural network models. For example, each image-
classification model in ChameleonAPI uses 115 MB of disk
space. So, for n applications, 115 -n MB of disk space may
be needed to store ChameleonAPI customized models.

The extra cost also involves more GPU resources. A naive
design of using one GPU to exclusively serve requests to one
customized neural network model will likely lead to under-
utilization of GPU resources. To serve different applications’
customized models on one GPU, we need to pay attention
to memory working set and performance isolation issues. In
our experiments on an RTX 3080 GPU, loading an image-
classification model from CPU to GPU RAM takes 18 to 40
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Figure 8: Precision-recall trade-off for HeapsortCypher.

ms (inference itself takes 10 to 35 ms with a batch size of
1). Fortunately, modern GPU has sufficiently large RAMs to
host several requests to different customized models simulta-
neously: in our experiments, the peak memory consumption
of one inference request is less than 2GB. Furthermore, the
majority of the model inference memory consumption comes
from intermediate states, instead of the model itself. Con-
sequently, the memory consumption of multiple inference
requests on different models is similar to that on the same
model.

Of course, ChameleonAPI can take advantage of recent
proposals to improve GPU sharing [15,55,71,73] as well as
to reduce the footprint of serving multiple DNNs [33]. These
techniques could be advantageously employed by Chameleon-
API to determine the optimal degree of sharing among cus-
tomized DNNs, and we leave them to future work.

Finally, there is also the extra cost of needing more com-
plex software to manage the DNN serving. For instance,
ChameleonAPI needs to dynamically route each request to a
GPU that serves the DNN of the application (see §3.4).

Precision-recall tradeoffs: Traditionally, for a trained ML
model, it is common to vary the confidence-score thresholds
in order to find the best precision-recall tradeoff of a trained
model. Thus, it is important that ChameleonAPI also achieves
better precision-recall tradeoffs. Figure 8 shows the precision-
recall results in each target class of a particular application, by
varying the detection threshold 0 (defined in §3.2) of two base-
lines (real APIs are excluded, because we cannot change their
thresholds and their IDR is not as low as ChameleonAPI,,;.).
ChameleonAPI’s tradeoffs are better than both baselines (and
we observe similar results in other applications). Note that
since ChameleonAPI’s loss function uses an assumed 0, we
do not vary the 6 when testing it; instead, we re-train five
DNNs of ChameleonAPI, each with a different 6 and test
them with their respective thresholds.

Understanding the improvement: ChameleonAPI’s unique
advantage is that it factors in the decision process of an ap-
plication, including not only the target classes but also the
decision type and the matching order. Next, we use two case
studies to further reveal the underlying tradeoffs made by
ChameleonAPI to achieve its improvement on application-
decision accuracy.

First, ChameleonAPI reduces errors related to different
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Figure 9: How the accuracy advantage of ChameleonAPI
changes with different input distribution.

target classes differently depending on their different roles
in the application decision process. This effect is particularly
striking in Multi-Choice applications with the matching order
of App-Order, where the first target class is always matched
against API output. Thus, when the correct target class is
not the first one, falsely including a label that belongs to the
first target class will more likely be a critical error than other
mis-classifications, because it will block the match of other
target classes. To illustrate this, we consider the Multi-Choice
application of Aander-ETL. We increase the percentage of
testing inputs whose correct action is the first target class or
the last target class. Figure 9 shows that increasing the portion
of inputs of the last target class (Person) generally leads
to bigger gains of ChameleonAPI, whereas increasing the
portion of the first target class (Landmark) does the opposite.
This shows the application itself already has good tolerance
to mis-classification on inputs that belong to the first target
class, but not to mis-classification on the inputs that belong
to later target classes, which is exactly where ChameleonAPI
can help.

Second, recall from §3.2 that our loss function helps to min-
imize critical errors, even at the cost of missing labels that do
not affect application decisions (i.e., non-critical errors). To
show this, we define label error rate on an image as the frac-
tion of the image’s ground-truth labels that are missed by the
DNN output (a label list). We consider IoTWor (explained in
Table 5), which similar to Anander-ETL makes Multi-Choice
decisions with App-Order matching order. The average la-
bel missing rate of ChameleonAPI on our testing images is
0.21, which is slightly higher than ChameleonAPI;.’s 0.18.
This means ChameleonAPI makes more label-level mistakes
than ChameleonAPI,;.. However, our IDR (0.17) is 44%
lower than ChameleonAPI, ., which means ChameleonAPI
makes far fewer critical errors.

6 Related Work

Due to space constraints, we discuss related papers that have
not been discussed earlier in the paper.

Optimizing storage and throughput of DNN serving: Var-
ious techniques have been proposed to optimize the delay,
throughput, and storage of ML models via model distilla-
tion [40,54,61], pruning [26] or cascading [4,7]. This line of
work explores a different design space than ChameleonAPI:

they design ML models with higher inference speed or smaller
model size with minimum loss in accuracy. ChameleonAPI
focuses on re-training existing ML models such that the rate
of incorrect decisions of a given application is reduced.

Application-side optimization: Recent work also proposes
to change the applications to better leverage existing ML
APIs. One line of work [11,12,69] invokes ML APIs from
different service providers to achieve high accuracy within
a query cost budget. Another line of work aims to eliminate
misuse of ML APIs in applications [65, 66]. They require
changes to the application source code (e.g., changing the
API input preparation, switching from image-classification
API to object-detectin API, etc.). They are complementary to
our work, because we customize the ML-API backend DNN
and do not require changes on the application’s source code.

Measurement work on MLaaS: For their rising popularity,
ML-as-a-Service platforms have also attracted many measure-
ment studies to understand accuracy [10], performance [70],
robustness [28], and fairness [41]. However, they have so far
not taken in account the ML applications that use ML, APIs,
and is thus different from our empirical study of ML applica-
tions in §2. Previous work that studies ML applications [65]
did not look into the decision making process and how ML
API errors might affect different applications differently.

Finally, a myriad of techniques have been studied to better
manage and schedule GPU resources in ML training/serving
systems (e.g., [13,16,17,22,25,27,32,42,45,53,59, 60, 67,
72,74]). They aim for different goals than ChameleonAPI,
but these techniques can be used to help ChameleonAPI train
and serve the application-specific ML models.

7 Conclusion

ML APIs are popular for its accessibility to application de-
velopers who do not have the expertise to design and train
their own ML models. In this paper, we study how the generic
ML models behind ML. APIs might affect different applica-
tions’ control-flow decisions in different ways, and how some
ML API output errors may or may not be critical due to the
application decision making logic. Guided by this study, we
have designed ChameleonAPI that offers both the accuracy
advantage of a custom ML model and the accessibility of the
traditional ML API.
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Appendix A Applications

Table 5: The statistics of 77 applications in empirical study. (Multi-Choice-* refer to Multi-Choice (*-Order).)

Application name Decision Type | # of Target Classes Branch Conditions
(Link to Github repo) (Matching Order) |(# of labels per class) (Class lists or value ranges are separated by semicolons.)
Image Multi-Label Classification (Google label_detection, AWS detect_labels)
2019-iot-ai-workshop Multi-Choice-App 2(7,2) [Capuchin monkey, ...]; [Wildlife biologist, ...]
Aander-ETL Multi-Choice-App 309,6,5) [Landmark, Sculpture, ...]; [Building, Estate, ...]; [Human, ...]
ArtGuide Multi-Choice-API 2(6,3) [Painting, Picture frame, ...]; [Building, Architecture, ...]
AWS_CloudComputing Multi-Select 2(1,1) [Hot dog]; [Food]
DoorWatch True-False 1(6) [Clothing, Person, Human, Furniture, Child, Man]
AWSRekognition Multi-Select 2(3,3) [Person, People, Human]; [Art, Drawing, Sketch]
GraduateProject True-False 1(5) [Orator, Professor, Projection Screen, ...]
Voice-Assistant Multi-Select 365,31 [Highway, Lane, ...]; [Car, ...]; [Classroom]
callforcode True-False 1(5) [Water, Waste, Bottle, Plastic, Pollution]
Car-Image-search True-False 1(6) [Sedan, Mini SUV, Coupe utility, Truck, Van, Convertible]
cloudComputing_project2 | Multi-Choice-API 3(1,3,1) [Person]; [Dog, Cat, Mammal]; [Flower]
CSC847_GAE_Proj2 Multi-Choice-API 32,2,1) [Mammal, Livestock]; [Human, People]; [Flower]
cutiehack Multi-Select 2(1,3) [Banana]; [Lemon, Citrus fruit, Apple]
CycleGAN-tensorflow_pixie| Multi-Choice-API 3(1,6,4) [Food]; [Girl, Boy, Man, ...]; [Room, Living room, House, ...]
DisasterRelief True-False 1(8) [Hurricane, Flood, Tornado, Landslide, Earthquake, Volcano, ...]
Dogecoin_musk True-False 14) [Dog, Mammal, Carnivore, Wolf]
flaskAPI True-False 13 [Food, Recipe, Ingredient]
food-assessment-system Multi-Choice-API| 5 (35,22, 54,4, 6) |[Dessert, ...]; [Grilling, ...]; [Strawberries, ...]; [Cigarette, ...]; ...
Foodier Multi-Select 2(13,1) [Building, Logo, Menu, Person, Vehicle, People, ...]; [Food]
Hack-At-Home-II Multi-Choice-API 2(3,3) [Food, Junk food, Plastic]; [Drinkware, Wood, Metal]
HeapSortCypher Multi-Choice-API 38,5, 11) [Food, Food grain, ...]; [Clothing, Shirt, ...]; [Paper bag, ...]
IngredientPrediction Multi-Select 31,11 [Spaghetti]; [Bean]; [Naan]
FESMKMITL True-False 1(1) [Face]
milab Multi-Choice-App 3(,1,1) [Sign]; [Nature]; [Car]
BirdSwe Multi-Choice-API 1(5) [Smoke, Bird, ...]
ai-server-proto Multi-Choice-API 33, 14) [Eye, Eyeball, Eyes]; [Landmark, Sculpture, Monument, ...]
Pheonix True-False 1(1) [Fire]
photo_book Multi-Choice-API 3(10, 10, 2) [Mammal, Bird, Insect, ...]; [Skin, Lip, ...]; [Flower, Plant]
Plant-Watcher True-False 1(5) [Plant, Flowerpot, Houseplant, Bonsai, Wood]
RecBot Multi-Choice-App 2(11,8) [Tin, Paper, Magazine, Carton, ...]; [Food, Bread, Pizza, ...]
roblab-hslu True-False 1(7) [Raincoat, Coat, Jacket, T-shirt, Trousers, Jeans, Shorts]
senior-project Multi-Choice-API 32,3, 1) [Landscape, Landmark]; [Self-portrait, Portrait, ...]; [Flower]
smart-can True-False 109 [Paper, Bottle, Plastic, Container, Tin can, Glass, ...]
smart-trash-bin Multi-Choice-API 2(14,5) [Aviator sunglass, Beer glass, ...]; [Plastic arts, ...]
smartHamper Multi-Choice-API 3(7,4,3) [Shirt, T-shirt, ...]; [Trousers, Denim, ...]; [Brand, Text, ...]
StudySpaceAvailability True-False 14) [Hardware, Power Drill, Drill, Electronics]
The-Coding-Kid Multi-Select 6(9,6,9,3,6,3) |[[Noodle, ..]; [Meat, ...]; [Produce, ...]; [Fruit, ...]; [Milk, ...]; ...
Tinyml Multi-Select 34,6,5) [Car, Truck, ...]J; [Gun, Weapon Violence, ...]; [Cat, Dog, ...]
UofTHacksBackend Multi-Choice-API 4(3,3,7,4) [T-shirt, ...]; [Outerwear, ...]; [Pants, ...]; [Footwear, ...]
garbage-sort Multi-Choice-API 2(1,20) [Food];[Metal, ...];
Image Object Detection (Google object_localization)
equipment-detection-poc Multi-Select 1(1) [Shoe]
flood_depths Multi-Select 105 [Car, Van, Truck, Boat, Toy vehicle]
SBHacks2021 Multi-Select 1(1) [Person]
SeeFarBeyond Multi-Select 112 [Spoon, Coin]
( To be continued )
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Table 5: The statistics of 77 applications in empirical study (Continued).

Application Decisi.on Type | # of Target Classes . Branch Conditions .
(Matching Order) |(# of labels per class) (Class lists or value ranges are separated by semicolons.)
shecodes-hack Multi-Select 112 [Dress, Top]
SunHacks2019 Multi-Select 13) [Person, Chair, Table]
thgml Multi-Select 1(7) [Pizza, Food, Sushi, Baked goods, Snack, Cake, Dessert]
Verlan Multi-Select 12 [Dog, Animal]

Text Sentiment Classification (Google sentiment_detection)

animal-analysis Multi-Choice-API 4(1,1,1,1) [0.5, 1]; [0, 0.5]; [-0.5, O]; [-1, -0.5]
calhacksv2 Multi-Choice-API| 6(1,1,1,1,1,1) |[0.5,1];[0.5, 1]; [0.1, 0.5]; [-0.1, 0.1]; [-0.5, -0.17; [-1, -0.5]
carbon_hack_sentiment Multi-Choice-API 31,11 [0.3333, 1]; [-0.3333, 0.3333]; [-1, -0.3333]
FoodDelivery Multi-Choice-API 3({1,1,1) [0.6, 1]; [0.3, 0.6]; [-1, 0.3]
devfest Multi-Choice-API 4(1,1,1, 1) [0.6, 1]; [0.4, 0.6]; [0.2, 0.4]; [-1, 0.2]
EC601_twitter_keyword Multi-Choice-API 3(1,1,1) [0.25, 1]; [-0.25, 0.25]; [0.25, 1]
ElectionSentimentAnalysis | Multi-Choice-API 3(1,1,1) [0.05, 1]; [0, 0.05]; [-1, O]
Hapi Multi-Choice-API 2(1,1) [-1,01]; [0, 1]
JournalBot Multi-Choice-API 3(1,1,1) [0.5, 1]; [0, 0.5]; [-1, O]
Mind_Reading_Journal Multi-Choice-API 4(1,1,1, 1) [0.15, 1]; [0.1, 0.15]; [-0.15, O0.1]; [-1, -0.15]
Sarcatchtic-MakeSPP19 Multi-Choice-API 2(1, 1 [-0.5, 1]; [-1, -0.5]
stockmine Multi-Choice-API 2(1,1) [-1, O]; [O, 1]
Tone Multi-Choice-API 3(1,1,1) [-1,-0.5]; [-0.5, 0.5]; [0.5, 1]
UOttaHack_2019 Multi-Choice-API 3(1,1,1) [0.25, 1]; [-0.25, 0.25]; [-1, -0.25]

Text Entity Detection (Google entity_detection)
GeoScholar True-False 1(1) [LOC]
HackThe6ix Multi-Choice-API| 7 (1, 1, 1, 1, 1, 1, 1) |[PERSON]; [LOC]; [ADD]; [NUM]; [DATE]; [PRICE]; [ORG]
Klassroom Multi-Choice-API 2(2,2) [PERSON, PROPER]; [LOC, ORG]
newsChronicle True-False 1(1) [OTHER]
ocr-contratos True-False 1(1) [NUM]
uofthacks6 True-False 1(1) [OTHER]

Text Topic Classification (Google text_classify)
DMnMD True-False 1(1) [Health]
HLPFL True-False 1(8) [Public Safety, Law & Government, Emergency Services, News, ...]
MirrorDashboard True-False 1(7) [Jobs & Education, Law & Government, News, ...]
noteScript True-False 1(1) [Food]
pennapps_2019f True-False 12 [News/Politics, Investing]
soap Multi-Choice-API 2(2,2) [Sensitive Subjects, ...]; [Discrimination & Identity Relations, ...]
SocialEyes Multi-Choice-API 22,1 [people & society, sensitive subjects]; [adult]
Twitter_Mining_ GAE True-False 1(1) [Sentitive]
vfriendo True-False 1(1) [Restaurants]
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Appendix B Loss function for other decision-
process summaries

True-False:

Penalize Type-1 Critical Errors

L(y) = Sigmoid(max(y)—0)
1eGe
Penalize Type-1 Critical Errors

+ Sigmoid(6 — max(y)) 4)
1€G,

Multi-Select:

Penalize Type-1 Critical Errors

L(y) = Z Sigmoid(6 — gre%xy[l])
cel ¢

®)

Penalize Type-3 Critical Errors

+ ) Sigmoid(maxy[l] - 6)
CEU(-GL»\T [€Ge

Multi-Choice APl-order: Here we explain why this loss
function captures the critical errors:

e A Type-1 error occurs, if (1) the correct target class is
matched, thus at least one of its labels has a score above
the confidence threshold (max;cg, y[I] > 0), and (2) it is
matched after the EOD because all of the labels belonging
to the correct target class have scores below the maximum
score of labels in the incorrect target classes.

e A Type-2 error occurs if the maximum score for labels in a
correct target class falls below threshold 0, thus it is never
matched (before or after EOD).

e A Type-3 error occurs if any labels belonging (max;¢, y[/])
to incorrect target classes appears before labels in the cor-
rect target class.

Type-1 Critical Errors

L(y) = Sigmoid <[€$2§Gc}’[l] - gggp[l])

Type-2 Critical Errors

+ Sigmoid ( max_ y[l]— 9) ©
16U5¢5G(-

Type-3 Critical Errors

+ LE’C Sigmoid (gg}:y[!] El’elici;)(( y[l])
Value ranges: As for APIs that output a score y to describe
the input, applications typically define several value ranges
as target classes to make decisions, where the lower bound of
the ¢’ target class is denoted as /. and the upper bound of the
! target class is denoted as u,.

Type-1 Critical Errors

L(y;) = Sigmoid (y — u¢) + Sigmoid (/s — y)
Type-3 Critical Errors @)

+ Y Sigmoid(u, —y) + Sigmoid(y — I)
c#e

where ¢ is the index of the correct target class. A Type-1 error
occurs (i.e., a correct target class is matched after EOD) when
the output score y exceeds the upper bound of the ground-
truth value range (u.), or falls below the lower bound of the
ground-truth value range (I.). A Type-3 error occurs when
the upper bound of an incorrect value range exceeds y and
its lower bound falls below y, leading it to be selected. Type-
2 errors are absent in this application because all the target
classes span the whole output range, thus a target class must
be matched.
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Appendix C Setup of Categorized models

Here, we describe in detail how we construct the label cate-
gories to support the scheme of Categorized models, which
is one of the schemes in comparison with ChameleonAPI
(Section 5).

Image-classification Image-classification APIs typically
contains many thousands of labels without providing their
categorization or hierarchy. Therefore, we create categories
leveraging the Wikidata knowledge graph [68], a widely used
knowledge graph database that has been referred to during the
creation of many popular ML training datasets [23,34,44]. In
this knowledge graph, each node is a named entity, covering
all the labels used in popular image-classification APIs [2,
20,52], and each edge represents a relationship between two
entities (e.g., “subclass of”, “different from”, “said to be the
same as”).

Extracting “subclass of” edges in Wikidata knowledge
graph, we get a directed acyclic graph (DAG) of label hi-
erarchy. We believe it offers a principled foundation to create
label categories based on two observations: (1) If an entity/n-
ode e is reachable from another entity/node ¢’ through several
subclass-of edges, €’ is also covered by the category of e (e.g.,
entity “motor vehicle” is directly connected to “land vehicle”,
entity “land vehicle” is directly connected to “vehicle”, so
“motor vehicle” is also covered by the “vehicle” category); (2)
The distance, measured in the number of subclass-of edges,
between an entity/node and the DAG root indicates the speci-
ficity of the concept behind this node, with shorter distance
representing coarser-grained categories. We will refer to a
node that is k edges away from the root as a Level-k node.

Based on these observations, we formally define a set of
categories Cy for all the image-classification labels L at a
specificity level k as follows: Cy is the minimum set of Level-k
nodes such that every label / € L is covered by at least one cat-
egory node ¢, € C. We could categorize all the applications
into single-category and multi-category applications using any
level of specificity settings. In this paper, we adopt Level-2
specificity setting, since the number of single-category appli-
cations drops a lot when moving from Level-2 to Level-3,
indicating Level-3 categories may be too fine-grained.

Under Level-2, we set up 35 categorized models that cover
all the image-classification labels. Six of them are used by ap-
plications in our benchmark, including natural object, tempo-
ral entity, artificial entity, system, phenomenon, and continu-
ant. With this categorization, 27 of the 40 image-classification
applications are single-category, and the rest 13 applications
are multi-category.

Object-detection Similar as image-classification API, ev-
ery object-detection API label also corresponds to an entity
node in the Wikidata knowledge graph. Therefore, we use the

same methodology and the same specificity Level-2 to define
categories for object detection labels.

Seven categorized models are set up to cover all object-
detection labels. The object-detection labels used by 8 object-
detection benchmark applications belong to 3 categories:
natural object, artificial entity, and system. Under this set-
ting, there will be 7 single-category applications, and 1 multi-
category applications.

Text-classification The Google text-classification API [20]
offers the hierarchy tree of all its labels. We simply follow
their categorization and get 15 categories to covering all text-
classification labels. Nine categories are used by applications
in our benchmark, including business & industrial, people &
society, health, food & drink, jobs & education, news, sensitive
subjects, adult, and law & government. Under this categoriza-
tion, there are 5 single-category text-classification applica-
tions, and 4 multi-category text-classification applications.

Other types of applications There are two other types of
applications in our benchmark that are not suitable for design-
ing pre-specialized models: sentiment analysis and named
entity recognition.

For sentiment analysis API, the corresponding applications
typically define several value-ranges and determine which
range the API output (a sentiment score) falls into. Since
the API output is a floating point number, there are infinite
ways of defining value-ranges. Therefore, it is impracticable
to create pre-categorized models.

For named entity recognition API, it only has 6 labels:
person, location, organization, number, date, and misc [20].
They are already high-level categories. There is no need to
create pre-categorized models for each category.
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Appendix D Results of other applications

As mentioned in §5.1, the results of the 20 applications that involve sentiment analysis and entity recognition were not included in
the evaluation section. Their results are shown in Figure 10 and 1 1. As we can see, the advantage of ChameleonAPI is consistent
across these applications, similar to what we presented in§5. Note that, the scheme of Categorized models does not apply to
applications that involve these two types of ML tasks, and hence is not included in Figure 10 and 11.
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Figure 10: Results on entity-recognition applications.
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Figure 11: Results on sentiment-analysis applications.
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