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Abstract

ML APIs have greatly relieved application developers of

the burden to design and train their own neural network mod-

els—classifying objects in an image can now be as simple as

one line of Python code to call an API. However, these APIs

offer the same pre-trained models regardless of how their out-

put is used by different applications. This can be suboptimal

as not all ML inference errors can cause application failures,

and the distinction between inference errors that can or cannot

cause failures varies greatly across applications.

To tackle this problem, we first study 77 real-world applica-

tions, which collectively use six ML APIs from two providers,

to reveal common patterns of how ML API output affects ap-

plications’ decision processes. Inspired by the findings, we

propose ChameleonAPI, an optimization framework for ML

APIs, which takes effect without changing the application

source code. ChameleonAPI provides application developers

with a parser that automatically analyzes the application to

produce an abstract of its decision process, which is then used

to devise an application-specific loss function that only penal-

izes API output errors critical to the application. Chameleon-

API uses the loss function to efficiently train a neural network

model customized for each application and deploys it to serve

API invocations from the respective application via existing

interface. Compared to a baseline that selects the best-of-all

commercial ML API, we show that ChameleonAPI reduces

incorrect application decisions by 43%.

1 Introduction

The landscape of ML applications has greatly changed, with

the rise of ML APIs significantly lowering the barrier of ML

application developers. Instead of designing and managing

neural network models by themselves via frameworks like

TensorFlow and PyTorch, application developers can now

simply invoke ML APIs, provided by open-source libraries

or commercial cloud service providers, to accomplish com-

mon ML tasks like object detection, facial emotion analy-

sis, etc. This convenience thus gives rise to a variety of ML

applications on smartphones, tablets, sensors, and personal

assistants [9, 29, 50, 65].

Although ML APIs have eased the integration of ML tasks

with applications, they are suboptimal by serving different ap-

plications with the same neural network models. This issue is

particularly striking when applications use the ML API results

to make control-flow decisions (also referred to as applica-

tion decisions in this paper). Different applications may check

the result of the same ML API using different control-flow

code structures and different condition predicates, a process

that we refer to as the application’s decision process (see §2

for the formal definition). Due to the heterogeneity across

applications’ decision processes, we make two observations.

• First, some incorrect ML API outputs may still lead to cor-

rect application decisions, with only certain critical errors

of API output affecting the application’s decision.

• Second, among all possible output errors of an ML API,

which ones are critical vary significantly across applica-

tions that use this API. That is, the same API output error

may have a much greater effect on one application than on

another.

Figure 1 illustrates the decision process of a garbage-

classification application Heapsortcypher [49]. It first in-

vokes Google’s classification API upon a garbage image.

Then, based on the returned labels, a simple logic is used

to make the application decision about which one of the

pre-defined categories (Recycle, Compost, and Donate) or

others the image belongs to. For example, for an input image

whose ground-truth label is “Shirt”, the correct application

decision is Donate, as shown in Figure 1 (b).

For this application, when the classification API fails to

return “Shirt”, the application decision may or may not be

wrong. For example, Figure 1 (c) and (d) show two possible

wrong API output: if the output is “Paper”, the application

will make a wrong decision of Recycle; however, if the out-

put is “Jacket”, the application will make the correct deci-

sion of Donate despite not matching the ground-truth label.

More subtly, if the API returns a list of two labels, “Shirt”

and “Paper”, the application would make a correct decision

if “Shirt” is ordered before “Paper” by the API, but would

make a wrong decision if “Paper” is ordered before “Shirt”.

The reason is that the application logic, the for loop in Fig-

ure 1 (a), checks one API-output label at a time. As we will

see later, there are also other ways that applications check

the API-output list, which will affect application decision

differently.

As we can see, for a specific application, some errors of

an ML API may be critical, like mis-classifying the shirt to

“Paper” in the example above, and yet some errors may be

non-critical, like mis-classifying the shirt image as “Jacket”

or classifying the shirt image as both “Shirt” and “Paper”

in the examples above. Which errors are critical varies, de-

pending on the application’s decision process.

These observations regarding the critical errors specific to
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Figure 1: An example ML application whose decision depends

on the output of ML API (multi-label classification), but not

all errors of ML API output have the same effect.

each application suggest substantial room for improvement

by customizing the ML API, essentially the neural network

model underneath the API, for individual application’s deci-

sion process. In particular, for a given application, the cus-

tomized model can afford having more errors less critical to

the application for the benefit of having fewer critical errors

that cause wrong application decisions.

Thus, our goal is to allow ML APIs and their underlying

neural network models to be automatically customized for

a given application, so as to minimize incorrect application

decisions without changing the application’s source code or in-

terface between ML API and software exposed to developers.

This way, application developers who do not have the exper-

tise to design and train customized ML models can still enjoy

the accessibility of generic ML APIs while getting closer to

the accuracy of ML models customized for the application.

No prior work shares the same goal as us. The closest line

of prior work specializes DNN models for given queries [7,

8, 36, 37, 43], but they require application developers to use

a domain specific language (e.g., in SQL [36]) instead of

general programming languages, like Java and Python, and

mostly focus on reducing the DNN’s size. In contrast, we keep

both the ML API interface and the application source code

intact while avoiding incorrect decisions for ML applications.

With the aforementioned goal, this paper makes two contri-

butions. First, we run an empirical study over 77 real-world

applications that collectively use six ML APIs to reveal sev-

eral common patterns of how the outputs of ML APIs affect

the application decisions (§2).

Our study identifies two types of ML API output that are

used by applications to make control-flow decisions (categor-

ical labels and sentiment scores), and three types of decision

types (True-False, Multi-Choice, and Multi-Selection) with

different implications regarding which ML API output errors

are critical to the application.

Our study also quantitatively reveals opportunities of model

customization. (1) Although popular image-classification

models are trained to recognize as many as 19.8K differ-

ent labels, the largest number used by any one application for

decision making is only 54. Consequently, mis-classification

among the remaining tens of thousands of labels are com-

pletely irrelevant to an application. (2) More importantly,

applications tend to treat multiple labels (4.7 on average) as

one equivalence class in their decision making, such as labels

Plastic, Wood, Glass, Paper, and Cardboard in Figure 1(a).

Mis-classification among those labels inside one equivalence

class does not matter. (3) Which labels are relevant to an ap-

plication’s decision making vary greatly across applications,

with only 12% of application pairs share any labels used for

their decision making.

Second, inspired by the empirical study, we propose

ChameleonAPI, which customizes and serves ML models be-

hind the ML API for each given application’s decision process,

without any change to the existing ML API or the application

source code (§3). ChameleonAPI works in three steps. First,

it provides a parser that analyzes application source code to

extract information about how ML inference results are used

in the application’s decision process. Based on the analysis

result, ChameleonAPI then constructs the loss function to

reflect which ML model output is more relevant to the given

application as well as the different severity of ML inference

errors on the application decisions. The ML model will be

retrained accordingly using the new loss function. Finally,

when the ML API is invoked by the application at runtime, a

customized ML model will be used to serve this query.

We evaluate ChameleonAPI on 57 real-world open-source

applications that use Google and Amazon’s vision and lan-

guage APIs. We show that ChameleonAPI’s re-trained models

reduce 48% of incorrect decisions compared to the off-the-

shelf ML models and 50% compared to the commercial ML

APIs. Even compared with a baseline that selects the best-

of-all commercial ML API, ChameleonAPI reduces 43% of

incorrect decisions. ChameleonAPI only takes up to 24 min-

utes on a GeForce RTX 3080 GPU to re-train the ML model.

Our code is publicly available at https://github.com/

UChi-JCL/chameleonAPI.

2 Understanding Application Decision Process

We conduct an empirical study to understand how applica-

tions make decisions based on ML APIs (§2.3), and how this
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ML API name ML task Provider # of apps

label_detection Vision::Image classification Google 29

detect_labels Vision::Image classification Amazon 11

object_localization Vision::Object detection Google 8

analyze_sentiment Language::Sentiment analysis Google 14

analyze_entities Language::Entity recognition Google 6

classify_text Language::Text classification Google 9

Table 1: Summary of applications used in our empirical study.

decision making logic implies the different severity of ML

inference errors (§2.4). This study will reveal why and how

to customize the ML API backend for each application. As

a representative sample of ML APIs, this study focuses on

cloud AI services due to their popularity.

2.1 Definitions

Preliminaries: We begin with basic definitions.

• Application decision: the collective control-flow decisions

(i.e., which branch(es) are taken) made by the application

under the influence of a particular ML API output.

• Incorrect ML API output: a situation when the API output

differs from the API input’s human-labeled ground truth.

We refer to such ML API outputs as API output errors.

• Correct decision: the application decision if the API output

is the same as the human-labeled ground-truth of the input.

• Application decision failure: a situation when the appli-

cation decision is different from the correct decision, also

referred to as application failure for short in this paper.

Software decision process: Given these definitions, an ap-

plication’s software decision process (or decision process for

short) is the logic that maps an ML API output to an applica-

tion decision. The code snippet in Figure 1 shows an example

decision process, which maps the output of a classification

ML API on an image to the image’s recycling categorization

specific to this application.

Critical and non-critical errors: For a given decision pro-

cess, some API output errors will still lead to a correct deci-

sion, whereas some API output errors will lead to an incorrect

decision and hence an application failure. We refer to the

former as non-critical errors, and the latter as critical errors.

2.2 Methodology

Our work focuses on applications that use ML API output

to make control-flow decisions. To this end, we look at 77

open-source applications which collectively use six widely

used vision and language APIs [10,65] offered by two popular

cloud AI service providers, as summarized in Table 1.

These applications come from two sources. First, we study

all 50 applications that use vision and language APIs from a

recently published benchmark suite of open-source ML appli-

cations [66]. Second, given the popularity of image classifi-

cation APIs [11, 12], we additionally sample 27 applications

from GitHub that use Google and Amazon image classifica-

tion APIs (16 for the former and 11 for the latter). We obtain

these 27 by checking close to 100 applications that use image

classification APIs and filtering out those that directly print

out or store the API output. Every application in our bench-

mark suite uses exactly one ML API for decision making.

Threats to validity: While many applications use the APIs

listed in Table 1, there are a few other APIs not covered

in our study. A few vision and language-related ML tasks

are not as popular and hence are not covered in our study

(e.g., face recognition and syntax analysis). Speech APIs are

not covered, because their outputs are rarely used to affect

application control flow based on our checking of open-source

applications. Finally, our study does not cover applications

that use ML APIs offered by other cloud or local providers.

2.3 Understanding the decision mechanism

Q1: What types of ML API outputs are typically used by

applications to make decisions?

ML APIs produce output of a variety of types. The sen-

timent analysis API outputs a list of floating-point value

pairs (score and magnitude), describing the sentiment of

the whole document and every individual sentence; the other

five APIs in Table 1 each produces a list of categorical labels

ranked in descending order of their confidence scores, which

is also part of the output. Some APIs’ output also contains

other information, like coordinates of bounding boxes, en-

tity names, links to Wikipedia URLs, and so on. Among all

these, only two types have been used in application decision

processes of our studied application: the floating-point pair

(score and magnitude) and the categorical labels.

For the 63 applications that use categorical-label output

from the five APIs (all except analyze_sentiment in Table

1), they each define one or more label lists and check which

label list(s) an API output label belongs to. The code snippet

of a landmark classification application in Figure 2(a) is an

example of this. It calls the label_detection API with a

sight-seeing image and checks the output labels to see if the

image might contain Landmark, or just ordinary Building,

or Person.

For the 14 applications that use the analyze_sentiment

API, they each define several value ranges and check which

range the sentiment score and/or magnitude falls in. The

code snippet of FoodDelivery [48] in Figure 2(b) is an ex-

ample. This application calls analyze_sentiment with a

restaurant review text, and then checks the returned sentiment

score to judge if the review is negative, positive, or neutral.

Q2: What type of decisions do applications make?

We observe three categories of ML-based decision making,

which we name following common question types in exams:

(1) True-False decision, where a single label list or value

range is defined and one selection is allowed: either the ML

API output belongs to this list/range or not. This type occurs
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Branch condition that uses API output Structure indicating decision typesInvocation of ML API

Figure 2: Code snippets from five example applications where ML API output affects control flow decisions in different ways.

in about one third of the applications in our study. For exam-

ple, the plant management application Plant-watcher [57]

(Figure 2(c)) checks to see if the image contains plants or not.

(2) Multi-Choice decision, where multiple lists of labels or

value ranges are defined, and one selection is allowed. The

ML API output will be assigned to at most one list or range;

the application’s decision making logic determines which of

these lists/ranges the output belongs to, or determines that the

output belongs to none of them. This type of decision is the

most common, occurring in about 45% of benchmark appli-

cations. The garbage classification application discussed in

§1 makes such a Multi-Choice decision. It decides which one

of the following classes the input image belongs to: Recycle,

Compost, Donate, or none of them.

(3) Multi-Select decision, where multiple label lists or value

ranges are defined, and multiple selections are allowed about

which label lists or value ranges the ML API output belongs

to. This type of decisions occur in close to a quarter of the

applications. Figure 2(d) illustrates such an example from the

nutrition advisor application The-Coding-Kid [62]. This ap-

plication defines three label lists to represent nutrition types:

Protein, Grain, and Fruit, and it checks to find all the nu-

trition types present in the input image.

In the remainder of the paper, we will use target class

to refer to a label list (or a value range) that is used to

match against a categorical label (or a value). For instance,

the code snippet in Figure 2(a) has three label lists as

its target classes ([Landmark, Sculpture], [Building,

Estate, Mansion], and [Person, Lady]), and the code

snippet in Figure 2(b) has three value ranges as its target

classes (<0.3, >0.6, and in between).

Q3: How do applications reach Multi-Choice decisions?

When the ML API outputs multiple labels, the outcome of

a Multi-Choice decision varies depending on which matching

order is used. First, the matching order can be determined by

the API output. For example, the garbage classification appli-

cation (Figure 1) first checks whether the first label in the API

output matches any target class. If so, later API output labels

will be skipped, even if they might match with a different class.

If there is no match for the first label, the second output label

is checked, and so on. These labels are ranked by the API in

the descending order of their associated confidence scores, so

we refer to such a matching order as API-order. It is used by

80% of applications that make Multi-Choice decisions.

The matching order can also be specified by the application,

referred to as App-order. For instance, regardless the API

output, application Aander-ETL [1] (Figure 2(a)) always first

checks if the Landmark class matches with any output label.

If there is a match, the decision is made. Only when it fails

to match Landmark, will it move on to check the next choice,

Building, and so on. This matching order is used by 20% of

applications that make Multi-Choice decisions.

2.4 Understanding the decision implication

Q4: Does an application need ML APIs that can accurately

identify thousands of labels?

ML models behind popular ML APIs are well trained to

support a wide range of applications. For example, Google

and Microsoft’s image-classification APIs are capable of iden-

tifying more than 10000 labels [44], while Amazon’s image-

classification API can identify 2580 labels [3]. However, for

each individual application, its decision making only requires

classifying the input image into a handful of target classes: 7

at most in our benchmark applications. The largest number

of image-classification labels checked by an application is

54, a tiny portion of all the labels an image-classification API

could output.

Clearly, for any application, a customized ML model that

focuses on those target classes used by the application’s de-

cision process has the potentially to out-perform the big and

generic ML model behind ML APIs. How to accomplish the

customization without damaging the accessibility of ML APIs

will be the goal of ChameleonAPI.

Q5: Are there equivalence classes among ML API outputs

in the context of application decision making?

For the 63 applications that make decisions based on API

output of categorical labels, they present 121 target classes in

total, each containing 4.7 labels on average (3 being the me-

dian). Only 35 target classes in 22 applications contain a sin-

gle label. For the 14 applications that make decisions based on
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floating-point sentiment score and magnitude, their target

classes all contain an infinite number of score or magnitude

values. In other word, no class contains just a single value.

Clearly, the wide presence of multi-value target classes

creates equivalence classes among output returned by the

API—errors within one equivalence class are not critical to

the corresponding application. This offers another opportunity

for ML customization.

Q6: How much difference is there between different appli-

cations’ target classes?

Overall, the difference is significant. We have conducted

pair-wise comparison between any two applications in our

benchmark suit, and found that 88% of application pairs share

no common labels in any of their target classes. Similarly,

among the 381 labels that appear in at least one application’s

target classes, 88% of them appear in only one application

(i.e., 335 out of 381 labels).

Clearly, there is little overlap among the target classes of

different applications, again making a case for per-application

customization of the ML models used by the ML APIs.

Q7: Do different decision mechanisms imply different sen-

sitivity to output errors of ML APIs?

Even for two applications that have the same target classes,

if they try to make different types of decisions, they will have

different sensitivity to ML API output errors—some API er-

rors might be critical to one application, but not to the other.

For example, errors that affect the selection of different target

classes are equally critical to Multi-Select decisions. However,

this is not true for Multi-Choice, where only the first matched

target class matters. Furthermore, the matching order of a

Multi-Choice decision affects which errors are critical. When

the API-output order is used (e.g.,HeapsortCypher in Fig-

ure 1), an error on the first label in the API output is more

likely to be critical than an error on other labels in the output.

However, when App-order order is used (e.g.,Aander-ETL in

Figure 2(a)), errors related to labels in the first target class

(e.g.,Landmark) are more likely to be critical than those re-

lated to labels in later target classes (e.g.,Person).

Clearly, to customize ML models for each application, we

need to take into account what is the decision type and what

is the matching order (for Multi-Choice decisions).

3 Design of ChameleonAPI

Inspired by the study of §2, we now present ChameleonAPI

which automatically customizes ML models for applications.

3.1 Problem formulation

Goal: For an application that uses ML APIs, our goal is to

minimize critical errors in the API outputs for this appli-

cation by efficiently re-training the original generic neural

network models underneath these APIs into customized mod-

els; our approach stands in contrast to typical approaches that

minimize all inference errors. In other words, the new ML

App source

code

extraction of decision-

process summary (3.3)

Decision-process

summary

Creation of app-specific

loss function (3.2)

App-specific 

loss function
DNN

Output 

Loss

Training DNN using app-specific

loss function

ML API 

backend

Figure 3: The logical steps of how ChameleonAPI customizes

d for individual applications.

model should return outputs that lead the application process

to the same decision as if the ground-truth of the input is

returned by the ML API.

To formally state this objective, we denote how an applica-

tion makes a decision by App(API(x)), where x is the input

to the ML API and API(x) is the API output. Then for a given

application decision process of App(·) and an input set X1,

our goal is to train an ML model DNN(·) such that

min
xi∈X

∣∣∣{xi|App(API(xi)) ̸= App(ÂPI(xi))}
∣∣∣ ,

where API(xi) = F(DNN(xi)) (1)

Here, ÂPI(xi) is a hypothetical API function that always

returns the ground truth of input xi, and F(·) represents the

postprocessing used by the API to translate a DNN output to

an API output. For instance, an image classification model’s

output is a vector of confidence scores between 0 and 1 (each

for a label), but the ML API will use a threshold θ to filter

and return only labels with scores higher than θ, or the top k

labels with the highest confidence scores.

Our goal in Eq 1 differs from the traditional goal of an ML

model, which minimizes any errors in the API output, i.e.,

min
xi∈X

∣∣∣{xi|API(xi) ̸= ÂPI(xi)}
∣∣∣ . (2)

Given that it is hard to obtain a DNN with 100% accuracy,

the difference between the two formulations is crucial, since

not all API output errors in Eq. 2 will cause incorrect applica-

tion decisions in Eq. 1. Thus, compared to optimizing Eq. 2,

optimizing Eq. 1 is more likely to focus the DNN training on

reducing the critical errors for the application.

To train a DNN that optimizes Eq. 1, we need to decide if a

DNN inference output DNN(x) is a critical error or not (i.e.,

App(DNN(x)) ̸= App(ÂPI(x))) at the end of every training

iteration. This decision needs to be made automatically and

efficiently. For example, repeatedly running the entire ML

application after every training iteration would not work, as it

may significantly slow down the training procedure.

1A careful reader might notice that the formulation in Eq. 1 also depends

on the input set. Though the input set should ideally follow the same dis-

tribution of real user inputs of the application, this distribution is hard to

obtain in advance and may also vary over time and across users. Instead, we

focus our discussion on training the ML model to minimize Eq. 1 with an

assumed input distribution. Our evaluation (§5) will test the resulting model’s

performance over different input distributions.
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Logical steps of ChameleonAPI: To customize and deploy

the DNN for an application, ChameleonAPI takes three log-

ical steps (Figure 3). First, ChameleonAPI extracts from an

application’s source code a decision-process summary (ex-

plained shortly), a succinct representation of the application’s

decision process, which will be used to determine if a DNN

inference error is critical (details in §3.3). Second, Chameleon-

API converts a decision-process summary to a loss function,

which can be directly used to train a DNN (details in §3.2).

This loss function only penalizes DNN outputs that lead to

critical errors with respect to a given application. Finally, the

loss function will be used to train a customized DNN for this

particular application’s ML API invocations (§3.4).

A decision-process summary is a succinct abstraction of the

application that contains enough information to determine if

a DNN inference output causes a critical error or not. Specifi-

cally, it includes three pieces of information (defined in §2.3):

• Composition of target classes: the label list or value range

of each target class;

• Decision type: True-False, Multi-Choice, or Multi-Select;

• Matching order: over the target classes, API-order or App-

order, if the application makes a Multi-Choice decision.

For a concrete example, the decision-process summary of the

garbage classification application in Figure 2(a) contains (1)

three label lists representing three target classes: Recycle,

Compost, and Donate; (2) the Multi-Choice type of decision;

and (3) the matching order of API-order.

What is changed, what is not: ChameleonAPI does not

change the ML API or the application source code. Unlike

recent work that aims to shrink the size of DNNs or speed

them up [36, 37, 54], we do not change the DNN architecture

(shape and input/output interface); instead, we train the DNN

to minimize critical errors. That said, deploying Chameleon-

API has two requirements. First, the application developers

need to run ChameleonAPI’s parser script to automatically

extract the decision-process summary. Second, an ML model

needs to be retrained for each application, instead of serving

the same model to all applications.

The remainder of this section will begin with the design

of the application-specific loss function based on decision-

process summary, followed by how to extract the decision-

process summary from the application, and finally, how the

customized ML models are used to serve ML API queries.

3.2 Application-specific loss function

Given Eq 1, ChameleonAPI trains a DNN model with a new

loss function, which only penalizes critical errors of an appli-

cation, rather than all DNN inference errors. Since decision

processes vary greatly across applications (§2.4), we first

explain how to conceptually capture different decision pro-

cesses in a generic description, which allows us to derive the

mathematical form of ChameleonAPI’s loss function later.

Generalization of decision processes: For each application

� = � = 0.3

1st check: <[0.8, < =],    C1       >  à False (mismatch)

2nd check: <[0.6, < =],        C1       >  à False (mismatch)

3rd check: <[0.2, < =],    C1       >  à False (score below �)

4th check: <[0.1, < =],  C1       >  à False (score below �)

5th check: <[0.8, < =],    C2       >  à True

6th check: <[0.6, < =],    C2       >  à True

7th check: <[0.2, < =],    C2       >  à False

8th check: <[0.1, < =],  C2       >  à False

ÿ EOD

DNN output � (score, label) Target class �(�) Matched? �(�)

Target classes:

Decision type:

Matching order: 

Figure 4: The generic description (shown in (c)) of an applica-

tion (whose source code is shown in (a) and decision-process

summary in (b)) on a DNN inference output y.

in our study (§2.2), our insight is that its decision process

can always be viewed as traversing a sequence of conditional

checks until an end-of-decision (EOD) occurs:

1st check: < y,c(1) >→ M(1)

. . .

jth check: < y,c( j)
>→ M( j) ⇐ EOD

. . .

where the j-th check takes as input the DNN output y and

one of target classes c( j), and returns a binary M( j) indicating

whether y( j) matches the condition of c( j) and a binary deci-

sion whether this check happens before the EOD. The set of

target classes successfully matched before the EOD will be

those selected by the application.

Figure 4 shows (a) an example application, (b) the decision-

process summary, and (c) the generic description for this

application’s decision process and a DNN output.

This generic description (e.g., the traversal order of the

target classes, how a match is determined in a check, and

when the EOD occurs) will depend on the information in the

decision-process summary and the DNN output y. We stress

that this generic description may not apply to all applications,

but it does apply to all applications in our study (§2.2).

Categorization of critical errors: Importantly, this generic

description helps to categorize critical errors:

• Type-1 Critical Errors: A correct target class c is not

matched before EOD, but will be so if EOD occurs later.

• Type-2 Critical Errors: A correct target class c is never

matched, before or after the EOD.

• Type-3 Critical Errors: An incorrect target class c is

matched before EOD.
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A useful property of this categorization is that any wrong de-

cision (a correct target class not being picked, or an incorrect

target class being picked) falls in a unique category, and non-

critical errors do not belong to any category. In other words,

as long as the loss function penalizes the occurrences of each

category, it will only capture critical errors.

ChameleonAPI’s first attempt of a new loss function: To

understand why it is difficult to penalize critical errors and

critical errors only, we first consider the common practice

of assigning a higher weight to the loss of a DNN output if

the ground-truth of the input will lead to a selection of some

target classes (e.g., [26, 35, 64]). Henceforth, we refer to this

basic design of loss function as ChameleonAPIbasic.

At best, ChameleonAPIbasic might improve the DNN’s

label-wise accuracy on inputs whose ground-truth decision

selects some target classes. However, as elaborated in §2.3,

we also need to consider which labels belong to the same

target class, the decision type, and the matching order of

an application decision process in order to capture the

three types of critical errors. For instance, in the garbage-

classification application (Figure 1), without knowing the

label lists of each target class, ChameleonAPIbasic will give

an equal penalty to a critical error of mis-classifying a Paper

image to Wood and a non-critical error of mis-classifying a

Paper image to Shirt. Similarly, without knowing the match-

ing order, ChameleonAPIbasic will equally penalize the output

of [Plastic, Jacket] and [Jacket, Plastic], but only the

latter leads to correct output because Jacket is matched first.

ChameleonAPI’s loss function: ChameleonAPI leverages

the categorization of critical errors to systematically derive

a loss function that penalizes each type of critical error. To

make it concrete, we explain ChameleonAPI’s loss function of

“label-based API, Multi-Choice type of decision, and App-order”

(e.g., Figure 4). Appendix§B will detail the loss functions of

other decision processes. The loss function of such applica-

tions has three terms, each penalizing one type of critical

error:

L(y) =

Type-1 Critical Errors︷ ︸︸ ︷
Sigmoid

(
min

(
max

l∈∪c<ĉGc

y[l],max
l∈Gĉ

y[l]

)
−θ

)
(3)

+

Type-2 Critical Errors︷ ︸︸ ︷
Sigmoid

(
θ−max

l∈Gĉ

y[l]

)
+

Type-3 Critical Errors︷ ︸︸ ︷

∑
c<ĉ

Sigmoid

(
max
l∈Gc

y[l]−θ

)

Here, y[l] denotes the score of the label l, Gc denotes the set of

labels of target class c, ĉ denotes the correct (i.e., ground-truth)

target class, and the sigmoid function Sigmoid(x) = 1
1+ex will

incur a higher penalty on a greater positive value.

Why does it capture the critical errors? Given this applica-

tion is Multi-Choice, the EOD will occur right after the first

match of a target class, i.e., the first check with a c such that

maxl∈Gc
y[l]g θ.

• A Type-1 critical error occurs, if (1) the correct target class

ĉ is matched and (2) it is matched after the EOD. First, the

correct target class ĉ is matched, if and only if at least one

of its labels has a score above the confidence threshold,

so maxl∈Gĉ
y[l]g θ). Second, this match happens after the

break, if and only if some target class c before ĉ (i.e., c < ĉ)

is matched, so maxl∈Gc
y[l]g θ). Put together, the first term

of Eq 3 penalizes any occurrence of these conditions.

• A Type-2 critical error occurs, if no label in the correct

target class ĉ has a score high enough for ĉ to be matched,

i.e., maxl∈Gĉ
y[l]< θ, so the second term of Eq 3 penalizes

any occurrence of this condition.

• A Type-3 critical error occurs, if any incorrect target class

c before ĉ (i.e., c < ĉ) has a label with a score high enough

for c to be matched, i.e., maxl∈Gc
y[l]−θ, so the third term

of Eq 3 penalizes any occurrence of this condition.

To train a DNN, the loss function must be differentiable

with respect to the DNN ouput y. Eq 3 uses the max function

several times. Though max is not naturally differentiable, it

can be closely approximated in well-known differentiable

forms provided by PyTorch’s differentiable operators [56]).

3.3 Extracting applications’ decision process

The current prototype of ChameleonAPI program analysis

supports Python applications that make decisions based on

categorical label output or floating point output of ML APIs.

We first discuss how it works for ML APIs with categor-

ical label output, like all the APIs in Table 1 except for

analyze_sentiment. We will then discuss a variant of it

that works for most use cases of analyze_sentiment.

Given application source code, ChameleonAPI first identi-

fies all the invocations of ML APIs. For every invocation I in

a function f , ChameleonAPI then identifies all the branches

whose conditions have a data dependency upon the ML API’s

label output. We will refer to these branches as I-branches. If

there is no such branch in f , ChameleonAPI then checks the

call graph, and analyzes up to 2 levels of callers and up to 5

levels of callees of f until such a branch is identified. If no

such branch is identified after this, ChameleonAPI considers

the ML API invocation I to not affect application decisions

and hence does not consider any optimization for it. If some I-

branches are identified, ChameleonAPI records the top-level

function analyzed, F , and moves on to extract the decision-

process summary in following steps.

What are the target classes? ChameleonAPI figures out all

the target classes and their composition in two steps.

The first step leverages symbolic execution and constraint

solving to identify all the labels that belong to any target

classes. Specifically, ChameleonAPI applies symbolic exe-

cution to function F , treating the parameters of F and the

label output of I as symbolic (i.e., the symbolic execution

skips the ML API invocation I and directly uses I’s symbolic
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output in the remaining execution of F)2. Since applications

typically match only one label in API output at a time (as ob-

served in §2.3), we set the label array returned by I to contain

one element (label) and use a symbolic string to represent

it. Through symbolic execution, ChameleonAPI obtains con-

straints for every path that involves an I-branch, solving which

tells ChameleonAPI which labels need to be in the output of

the ML API in order to execute each unique path, essentially

all the labels that belong to any target class.

One potential concern is that a solver may only output

one instead of all values that satisfy a constraint. Fortu-

nately, the symbolic execution engine used by ChameleonAPI,

NICE [31], turns Python code into an intermediate represen-

tation where each branch is in a simplest form. Take Figure

2(d) as an example, the source-code branch if obj.name in

Protein is transformed into three branches where obj.name

is compared with “Hamburger”, “Meat”, and “Patty” sepa-

rately, allowing us to capture all three labels by solving three

separate path constraints.

The second step groups these labels into target classes by

comparing their respective paths: if two API output, each with

one label, lead the program to follow the same execution path

at the source-code level, these two labels belong to the same

target class. For example, in Figure 2(d), the execution path

is exactly the same when the label_detection API returns

[“Hamburger”], comparing with when it returns [“Meat”],

with all function parameters and other API output fields being

the same. Consequently, we can know that label Hamburger

and label Meat belong to the same target class. To figure out

the path, ChameleonAPI simply executes function F using

each input produced by the constraint solver and traces the

source-code execution path using the Python trace module.

One final challenge is that ChameleonAPI needs to identify

and exclude the path where none of the target classes are

matched (e.g., the “It is others.” path in Figure 2(a)).

We achieve this by carefully setting the default solution in the

constraint solver to be an empty string, which is impossible

to output for any ML APIs in this paper. This way, whenever

this default solution is output, ChameleonAPI knows that the

corresponding path matches no target class.

What is the type of decision? When only one target class is

identified, ChameleonAPI reports a True-False decision type.

Otherwise, ChameleonAPI decides whether the decision type

is Multi-Choice or Multi-Select by checking the source-code ex-

ecution path associated with every target class label obtained

above. If any execution evaluates an I-branch after another

I-branch is already evaluated to be true, ChameleonAPI re-

ports a Multi-Select decision type; otherwise, ChameleonAPI

reports a Multi-Choice decision type.

What is the matching order over the target classes? To tell

whether a Multi-Choice decision is made through API-Order

2Recall that an API output contains several fields not used to influence

control flow in any applications. We set them with pre-defined dummy values.

like in Figure 1 or App-Order like in Figure 2(a), Chameleon-

API first identifies all the for loops that iterate through the la-

bel array output by the ML API and have control-dependency

with I-branches, e.g., the for l in labels in Figure 2(a)

and the for obj in response.label_annotations in

Figure 1.

ChameleonAPI then checks how many such output-

iterating loops there are. If there is only one and this loop is

not inside another loop, like that in Figure 1, ChameleonAPI

considers the matching order to be API-Order, as the appli-

cation only iterates through each output label once, with the

matching order determined by the output array arranged by

the ML API. Otherwise, ChameleonAPI considers the match-

ing order to be App-Order. This is the case for the example

shown in Figure 2(a), where three output-iterating loops are

identified, each of which matches with one target class in

an order determined by the application: the Landmark target

class, followed by the Building, and finally the Person.

How to handle floating-point output of ML APIs? Recall

in §2.3 that some ML APIs, e.g.,analyze_sentiment, have

floating-point output and the application defines several value

ranges to put each floating-point output into one category.

To handle this type of API, ChameleonAPI needs to identify

the value range of each target class, which is not supported

by NICE and other popular constraint solvers. Fortunately,

many applications directly compare API output with constant

values in I-branches, giving ChameleonAPI a chance to in-

fer the value range. For these applications, ChameleonAPI

first extracts those constant values that are compared with

API output in I-branches, e.g., 0.3 and 0.6 in Figure 2(b).

ChameleonAPI then forms tentative value ranges using these

numbers, like -1 – 0.3, 0.3 – 0.6, and 0.6 – 1 for Figure 2(b)

(-1 and 1 are the smallest and biggest possible score output

of analyze_sentiment based on the API manual). To con-

firm these value ranges and figure out the boundary situation,

ChameleonAPI then executes function F with all the bound-

ary values, as well as some values in the middle of each range.

By comparing which values lead to the same execution path,

ChameleonAPI finalizes the value ranges. For the example in

Figure 2(b), after executing with score set to -0.35, 0.3, 0.45,

0.6, and 0.8, ChameleonAPI settles down on the final value

ranges to be: (-1,0.3), [0.3,0.6), and [0.6,1).

Limitation The static analysis in ChameleonAPI does not

handle the iterated object of while loops, unfolded loops, and

recursive functions. For complexity concerns, ChameleonAPI

only checks caller and callee functions with limited levels, and

hence may miss some I-branches far away from the API invo-

cation. ChameleonAPI’s ability of identifying target classes is

limited by the constraint solver. ChameleonAPI assumes dif-

ferent source-code paths correspond to different target classes,

which in theory could be wrong if the application behaves

exactly the same under different execution paths.
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Figure 5: Workflow of ChameleonAPI.

3.4 Putting them together

We put these components together into a ML-as-a-Service

workflow shown in Figure 5.

First, when an application (A) is developed or updated,

the developers run a parser (described in §3.3) provided by

ChameleonAPI on A’s source code to extract the decision-

process summary for A. The developers can then upload the

decision-process summary to ChameleonAPI’s backend to-

gether with a unique application ID3 (which will later be used

to identify queries from the same application).

ChameleonAPI’s backend then uses the received decision-

process summary to construct a new application-specific loss

function (described in §3.2). When a DNN is trained using the

new loss function, its inference results will lead to fewer criti-

cal errors (i.e., incorrect application decisions) for application

A. In our prototype, ChameleonAPI uses the new loss func-

tion to re-train an off-the-shelf pre-trained DNN, a common

practice to save training time (see §5 for quantification). The

DNN re-training uses an application-specific dataset sampled

from the dataset used by the pre-trained generic DNN (see

Table 2 and §4), so that each target/non-target class is selected

by ground-truth decisions of the same number of inputs.

Finally, ChameleonAPI backend maintains a set of DNN

models, each customized for an application and keyed by the

application ID. When application A invokes an ML API at

run time, the ChameleonAPI backend will use the application

ID associated with the API query to identify the DNN model

customized for A, run the DNN on the input, and return the

inference result of the selected model to the application.

Note that, ChameleonAPI can also be used to customize

ML models that run locally behind the ML APIs, instead of

those in the cloud through ML service providers. In this case,

developers run the ChameleonAPI parser on their application

3In many MLaaS offerings [2, 20], a connection between the application

and the MLaaS backend is commonly created before the application issues

any queries. Existing MLaaS already allows applications to specify the

application ID via the connection between the application and backend.

Dataset Generic model

Image Classification OpenImages [44] TResNet-L [6]

Object Detection COCO [14] Faster-RCNN [58]

Sentiment Analysis Amazon review [39] BERT [18]

Text Classification Yahoo [30] BERT [18]

Entity Recognition conll2003 [63] BERT [18]

Table 2: The ML APIs and datasets in evaluation.

and save the parser’s result into a local file. This local file will

then be consumed to help re-train an off-the-shelf DNN into

a customized DNN to serve the application.

4 Implementation

Extractor of decision-process summary: The current pro-

totype of ChameleonAPI is implemented for Python applica-

tions that use Google or Amazon ML APIs. It takes as input

the application source code and returns as output the decision-

process summary in the JSON format. It uses NICE symbolic

execution engine [31] and CVC5 constraint solver [5] to iden-

tify target classes, and uses Python static analysis framework

Pyan [47] and Jedi [24] to identify the decision type and the

matching order. Particularly, it identifies the object that is it-

erated through by a for-loop through the iter expression in

each for-loop header, which is used to distinguish Multi-Choice

and Multi-Select decisions and the matching order.

ML re-training: The re-training module is implemented in

PyTorch v1.10 and CUDA 11.1. It uses a decision-process

summary to construct a new loss function (see §3.2), and then

replaces the builtin loss function in Pytorch with the new

loss function, and uses the common forward and backward

propagation procedure to re-train an off-the-shelf pre-trained

DNN model (explained next).

Generic models: Without access to the models and the

training data used by commercial ML services, we use open-

sourced pre-trained DNNs and their training datasets as a

proxy, which are summarized in Table 2. These DNNs are

trained on the “training” portion of their respective datasets.

They are trained to achieve good accuracy over a wide range

of labels, and we have confirmed that their accuracies in terms

of application decisions are similar to the real ML APIs (§5.2).

Training data: We make sure that the labels included in these

datasets cover the labels used in the decision processes of the

applications in our study. An exception is text classification:

to our best knowledge, there is no open-source dataset that

covers the classes in Google’s text classification API. Instead,

we use the Yahoo Question topic classification dataset [30],

whose classes are similar to those used in the applications.

Instead of training DNNs on all training data, most of

which do not match any target classes of an application, we

create a downsampled training set for ChameleonAPI and

ChameleonAPIbasic. For each application, we randomly sam-

ple (without replacement) its training data such that each

target class and the non-target class (not matching any target
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class) is the correct decision for the same number of training

inputs, which depending on applications, ranges from 12K to

40K. With such training set, ChameleonAPIbasic will be equiv-

alently implemented by training on the downsampled training

set using the conventional loss function (i.e., cross-entropy

loss for classification tasks). Moreover, the downsampled

training set significantly speedups DNN re-training (§5.2).

5 Evaluation

Our evaluation aims to answer following questions: How

much can ChameleonAPI reduce incorrect application de-

cisions? How long does it take ChameleonAPI to cus-

tomize DNN models for applications? and Why does

ChameleonAPI reduce incorrect application decisions where

ChameleonAPIbasic falls short?

5.1 Setup

Applications: We have applied ChameleonAPI on all the 77

applications summarized in Table 1. Due to space constraints,

our discussion below focuses on the 57 applications that in-

volve three popular ML tasks, image-classification, object-

detection, and text-classification, and omits the remaining 20

applications that involve sentiment analysis and entity recogni-

tion. The results of the latter show similar trends of advantage

from ChameleonAPI and are available in Appendix §D.

Metrics: For each scheme (explained shortly) and each ap-

plication, we calculate the incorrect decision rate (IDR): the

fraction of testing inputs whose application decisions do not

match the correct application decisions (i.e., decisions based

on human-annotated ground truth).

Schemes: We compare the results of these schemes:

• Various commercial ML APIs: the results returned by ML

APIs of three service providers (Google [20], Amazon [2]

and Microsoft [51]).

• Best-of-all API*: a hypothetical method that queries ML

APIs from those three service providers on each input and

picks the best output based on the classic definitions of

accuracy: label-wise recall for classification tasks and mean-

square-error of floating-point output for sentiment analysis.

This serves as an idealized reference of recent work [11,12],

which tries to select the best API output with high label-

wise accuracy.

• Generic models: the open-sourced generic model based on

which the next three schemes are re-trained. They serve

as a reference without customization and achieve similar

accuracy as commercial APIs. Their details are explained

in Section 4.

• Categorized models: This scheme pre-trains a number of

specialized models. Each specialized model replaces the

last layer of the generic model so that it outputs the confi-

dence scores for a smaller number of labels representing

a common category (e.g., “dog”, “animal”, “person” and

a few other labels represent the “natural object” category),

and is fine tuned from the generic model accordingly. A sim-

ple parser checks which labels are used by an application.

If all the labels belong to one category, the corresponding

model specialized for this category is used to serve API

calls from this application. If the labels belong to multiple

categories, multiple specialized models will be used, which

we will explain more later. We set up 35 categories for

image classification and 7 categories for object detection

based on the Wikidata knowledge graph [68], as well as

15 categories for text classification based on the inherent

hierarchy in Google text-classification output. More details

of how we have designed these categories are available in

the Appendix §C.

Note that, we have designed this scheme to represent

a middle-point in the design space between the generic

model and the ChameleonAPI approach: on one hand, this

scheme offers some application customization, but not as

much as ChameleonAPI (e.g., which labels belong to the

same target class, what is the decision process, and what is

the matching order used by the application are all ignored);

on the other hand, this scheme requires a simpler parser

compared to ChameleonAPI.

• ChameleonAPIbasic: the model is re-trained with

ChameleonAPI’s training data, which concentrates on

labels used by the application, but with the conventional

loss function. Like Categorized models, this scheme only

needs a simple parser that extracts which labels are used by

the application, and does not make use of other application

information that ChameleonAPI uses. Unlike Categorized

models, this scheme prepares a customized model for

each application, instead of relying on a small number of

categorized models.

• ChameleonAPI (our solution): the model re-trained with

our training data and loss function.

Testing data: For the same application, all schemes are tested

against the same testing input set. The testing set of an ap-

plication is randomly sampled from the “testing” portion of

the dataset associated with the application’s generic model

(Table 2). We make sure that no testing input appears in the

training data. Like the creation of training data of Chameleon-

API (§4), by default, we randomly sample the testing data

such that each target class and the non-target class (not match-

ing any target class) appear as the correct decision for the

same number of testing inputs, which ranges from 1.2K to

4K. This is similar to the testing sets used in related work on

ML API (e.g., [11, 36, 37, 66]). Such data downsampling is

commonly used in ML [19, 46]. Other than Figure 9, we will

use this as the default testing dataset.

Hardware setting: We evaluate ChameleonAPI and other

approaches on a GeForce RTX 3080 GPU, and an Intel(R)

Xeon(R) E5-2667 v4 CPU, with 62GB memory.
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(c) Applications making Multi-Select decisions.

Figure 6: ChameleonAPI reduces the incorrect decision rate (IDR) on the 57 applications that use Google’s or Amazon’s

image-classification, text-classification, and object-detection APIs.

True-False Multi-Choice Multi-Select

Google API 0.29 0.32 0.35

Microsoft API 0.30 0.33 0.32

Amazon API 0.31 0.33 0.36

Best-of-all API* 0.26 0.27 0.31

Generic models 0.29 0.30 0.34

Categorized models 0.24 0.27 0.31

ChameleonAPIbasic 0.19 0.22 0.27

ChameleonAPI 0.13 0.16 0.21

Table 3: Average incorrect decision rate (IDR) among apps

that make different types of decisions. The lower the better.

The top half represents commercial APIs and their idealistic

combinations; the bottom half represents open-source models.

Single-category Multi-category

Generic models 0.32 0.28

Categorized models 0.28 0.27

ChameleonAPIbasic 0.24 0.18

ChameleonAPI 0.17 0.14

Table 4: Average IDR among single-category and multi-

category applications. The lower the better.

5.2 Results

Overall gains: Measured by the average incorrect deci-

sion rate (IDR) across all applications, the most accurate

scheme is ChameleonAPI, with an IDR of 0.16, and the least

accurate scheme is Generic models, with an IDR of 0.31. In

other words, ChameleonAPI successfully reduces the number

of incorrect decisions of its baseline model by almost 50%.

ChameleonAPIbasic (0.22), Categorized models (0.28), and

Best-of-all API* (0.28) have IDR rates in between.

The advantage of ChameleonAPI, and even

ChameleonAPIbasic, over the other schemes is consis-

tent across all three types of applications that make different

types of decisions, as shown in Table 3. In fact, Chameleon-

API offers the highest accuracy by a clear margin for every

single application in our evaluation, as shown in Figure 6.

To better compare the ChameleonAPI approach with Cate-

gorized models, we divide the 57 applications into two types:

(1) 39 single-category applications — each application uses

labels that belong to one category and hence can benefit from

one specialized model in the Categorized models scheme; (2)

18 multi-category applications — each application uses labels

that belong to multiple categories. For these applications, the

Categorized models scheme feeds the API input to multiple

specialized models and combines these models’ output to

form the API output. As shown in Table 4, the Categorized

models scheme does offer improvement from Generic models

by considering which labels belong to an application’s target

classes, particularly for single-category applications. How-

ever, both ChameleonAPI and ChameleonAPIbasic perform

better than Categorized models for both single-category and

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation    375



Dog
e

Phe
on

ix
Flas

k

Rob
lab

Grad
Pr

Smart
C

Plan
tW
DisR

el

FESM

StuS
pa

Bird
Swe

Rek
og

CarS
ea

Call
co

de

DMnM
D

HLP
FL

Mirro
rD
no

teS

pe
nn

ap

Tw
itM

G
vfr

ien
d

0

5

10

15

20

Tr
ai

ni
ng

 ti
m

e(
m

in
s)

Figure 7: Re-training time for applications in Figure 6(a).

multi-category applications—the per-application customiza-

tion in ChameleonAPI and ChameleonAPIbasic has paid off.

The above advantage of ChameleonAPI over

ChameleonAPIbasic and Categorized models shows that the

static analysis used in ChameleonAPI to extract not only

what labels are used by the application, but also which labels

belong to the same target class, the decision type, and the

matching order, as described in Section 3.3, is worthwhile.

Cost of obtaining customized models: The customization

effort of ChameleonAPI includes two parts (1) extracting

the decision-process summary from application source code,

and (2) re-training the ML model. The first part takes a few

seconds: on an Intel(R) Xeon(R) E5-2667 v4 CPU machine,

our parser extracts the decision-process summary from every

benchmark application within 10 seconds.

The second part takes a few minutes, much faster than

training a neural network from scratch. As shown in Figure 7,

re-training DNNs for the 21 applications in Figure 6(a) on a

single RTX 3080 GPU takes 8 to 24 minutes. Focusing on

a small portion of all possible labels (§2.4), ChameleonAPI

fine-tunes pre-trained models using much less training data

than the generic models and thus needs fewer iterations to

converge.

Considering that a V100 GPU with similar processing

GFLOPS as our RTX 3080 GPU only costs $2.38 per hour

on Google Cloud [21], re-training an ML model for one ap-

plication costs less than $1.

Cost of hosting customized models: For cloud providers,

ChameleonAPI would incur a higher hosting cost than tra-

ditional ML APIs by serving a customized DNN for every

application instead of a generic DNN for all applications.

The extra cost includes more disk space to store cus-

tomized neural network models. For example, each image-

classification model in ChameleonAPI uses 115 MB of disk

space. So, for n applications, 115 ·n MB of disk space may

be needed to store ChameleonAPI customized models.

The extra cost also involves more GPU resources. A naive

design of using one GPU to exclusively serve requests to one

customized neural network model will likely lead to under-

utilization of GPU resources. To serve different applications’

customized models on one GPU, we need to pay attention

to memory working set and performance isolation issues. In

our experiments on an RTX 3080 GPU, loading an image-

classification model from CPU to GPU RAM takes 18 to 40

Figure 8: Precision-recall trade-off for HeapsortCypher.

ms (inference itself takes 10 to 35 ms with a batch size of

1). Fortunately, modern GPU has sufficiently large RAMs to

host several requests to different customized models simulta-

neously: in our experiments, the peak memory consumption

of one inference request is less than 2GB. Furthermore, the

majority of the model inference memory consumption comes

from intermediate states, instead of the model itself. Con-

sequently, the memory consumption of multiple inference

requests on different models is similar to that on the same

model.

Of course, ChameleonAPI can take advantage of recent

proposals to improve GPU sharing [15, 55, 71, 73] as well as

to reduce the footprint of serving multiple DNNs [33]. These

techniques could be advantageously employed by Chameleon-

API to determine the optimal degree of sharing among cus-

tomized DNNs, and we leave them to future work.

Finally, there is also the extra cost of needing more com-

plex software to manage the DNN serving. For instance,

ChameleonAPI needs to dynamically route each request to a

GPU that serves the DNN of the application (see §3.4).

Precision-recall tradeoffs: Traditionally, for a trained ML

model, it is common to vary the confidence-score thresholds

in order to find the best precision-recall tradeoff of a trained

model. Thus, it is important that ChameleonAPI also achieves

better precision-recall tradeoffs. Figure 8 shows the precision-

recall results in each target class of a particular application, by

varying the detection threshold θ (defined in §3.2) of two base-

lines (real APIs are excluded, because we cannot change their

thresholds and their IDR is not as low as ChameleonAPIbasic).

ChameleonAPI’s tradeoffs are better than both baselines (and

we observe similar results in other applications). Note that

since ChameleonAPI’s loss function uses an assumed θ, we

do not vary the θ when testing it; instead, we re-train five

DNNs of ChameleonAPI, each with a different θ and test

them with their respective thresholds.

Understanding the improvement: ChameleonAPI’s unique

advantage is that it factors in the decision process of an ap-

plication, including not only the target classes but also the

decision type and the matching order. Next, we use two case

studies to further reveal the underlying tradeoffs made by

ChameleonAPI to achieve its improvement on application-

decision accuracy.

First, ChameleonAPI reduces errors related to different
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target classes differently depending on their different roles

in the application decision process. This effect is particularly

striking in Multi-Choice applications with the matching order

of App-Order, where the first target class is always matched

against API output. Thus, when the correct target class is

not the first one, falsely including a label that belongs to the

first target class will more likely be a critical error than other

mis-classifications, because it will block the match of other

target classes. To illustrate this, we consider the Multi-Choice

application of Aander-ETL. We increase the percentage of

testing inputs whose correct action is the first target class or

the last target class. Figure 9 shows that increasing the portion

of inputs of the last target class (Person) generally leads

to bigger gains of ChameleonAPI, whereas increasing the

portion of the first target class (Landmark) does the opposite.

This shows the application itself already has good tolerance

to mis-classification on inputs that belong to the first target

class, but not to mis-classification on the inputs that belong

to later target classes, which is exactly where ChameleonAPI

can help.

Second, recall from §3.2 that our loss function helps to min-

imize critical errors, even at the cost of missing labels that do

not affect application decisions (i.e., non-critical errors). To

show this, we define label error rate on an image as the frac-

tion of the image’s ground-truth labels that are missed by the

DNN output (a label list). We consider IoTWor (explained in

Table 5), which similar to Anander-ETL makes Multi-Choice

decisions with App-Order matching order. The average la-

bel missing rate of ChameleonAPI on our testing images is

0.21, which is slightly higher than ChameleonAPIbasic’s 0.18.

This means ChameleonAPI makes more label-level mistakes

than ChameleonAPIbasic. However, our IDR (0.17) is 44%

lower than ChameleonAPIbasic, which means ChameleonAPI

makes far fewer critical errors.

6 Related Work

Due to space constraints, we discuss related papers that have

not been discussed earlier in the paper.

Optimizing storage and throughput of DNN serving: Var-

ious techniques have been proposed to optimize the delay,

throughput, and storage of ML models via model distilla-

tion [40, 54, 61], pruning [26] or cascading [4, 7]. This line of

work explores a different design space than ChameleonAPI:

they design ML models with higher inference speed or smaller

model size with minimum loss in accuracy. ChameleonAPI

focuses on re-training existing ML models such that the rate

of incorrect decisions of a given application is reduced.

Application-side optimization: Recent work also proposes

to change the applications to better leverage existing ML

APIs. One line of work [11, 12, 69] invokes ML APIs from

different service providers to achieve high accuracy within

a query cost budget. Another line of work aims to eliminate

misuse of ML APIs in applications [65, 66]. They require

changes to the application source code (e.g., changing the

API input preparation, switching from image-classification

API to object-detectin API, etc.). They are complementary to

our work, because we customize the ML-API backend DNN

and do not require changes on the application’s source code.

Measurement work on MLaaS: For their rising popularity,

ML-as-a-Service platforms have also attracted many measure-

ment studies to understand accuracy [10], performance [70],

robustness [28], and fairness [41]. However, they have so far

not taken in account the ML applications that use ML APIs,

and is thus different from our empirical study of ML applica-

tions in §2. Previous work that studies ML applications [65]

did not look into the decision making process and how ML

API errors might affect different applications differently.

Finally, a myriad of techniques have been studied to better

manage and schedule GPU resources in ML training/serving

systems (e.g., [13, 16, 17, 22, 25, 27, 32, 42, 45, 53, 59, 60, 67,

72, 74]). They aim for different goals than ChameleonAPI,

but these techniques can be used to help ChameleonAPI train

and serve the application-specific ML models.

7 Conclusion

ML APIs are popular for its accessibility to application de-

velopers who do not have the expertise to design and train

their own ML models. In this paper, we study how the generic

ML models behind ML APIs might affect different applica-

tions’ control-flow decisions in different ways, and how some

ML API output errors may or may not be critical due to the

application decision making logic. Guided by this study, we

have designed ChameleonAPI that offers both the accuracy

advantage of a custom ML model and the accessibility of the

traditional ML API.
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Appendix A Applications

Table 5: The statistics of 77 applications in empirical study. (Multi-Choice-* refer to Multi-Choice (*-Order).)

Application name

(Link to Github repo)

Decision Type

(Matching Order)

# of Target Classes

(# of labels per class)

Branch Conditions

(Class lists or value ranges are separated by semicolons.)

Image Multi-Label Classification (Google label_detection, AWS detect_labels)

2019-iot-ai-workshop Multi-Choice-App 2 (7, 2) [Capuchin monkey, ...]; [Wildlife biologist, ...]

Aander-ETL Multi-Choice-App 3 (9, 6, 5) [Landmark, Sculpture, ...]; [Building, Estate, ...]; [Human, ...]

ArtGuide Multi-Choice-API 2 (6, 3) [Painting, Picture frame, ...]; [Building, Architecture, ...]

AWS_CloudComputing Multi-Select 2 (1, 1) [Hot dog]; [Food]

DoorWatch True-False 1 (6) [Clothing, Person, Human, Furniture, Child, Man]

AWSRekognition Multi-Select 2 (3, 3) [Person, People, Human]; [Art, Drawing, Sketch]

GraduateProject True-False 1 (5) [Orator, Professor, Projection Screen, ...]

Voice-Assistant Multi-Select 3 (5, 3, 1) [Highway, Lane, ...]; [Car, ...]; [Classroom]

callforcode True-False 1 (5) [Water, Waste, Bottle, Plastic, Pollution]

Car-Image-search True-False 1 (6) [Sedan, Mini SUV, Coupe utility, Truck, Van, Convertible]

cloudComputing_project2 Multi-Choice-API 3 (1, 3, 1) [Person]; [Dog, Cat, Mammal]; [Flower]

CSC847_GAE_Proj2 Multi-Choice-API 3 (2, 2, 1) [Mammal, Livestock]; [Human, People]; [Flower]

cutiehack Multi-Select 2 (1, 3) [Banana]; [Lemon, Citrus fruit, Apple]

CycleGAN-tensorflow_pixie Multi-Choice-API 3 (1, 6, 4) [Food]; [Girl, Boy, Man, ...]; [Room, Living room, House, ...]

DisasterRelief True-False 1 (8) [Hurricane, Flood, Tornado, Landslide, Earthquake, Volcano, ...]

Dogecoin_musk True-False 1 (4) [Dog, Mammal, Carnivore, Wolf]

flaskAPI True-False 1 (3) [Food, Recipe, Ingredient]

food-assessment-system Multi-Choice-API 5 (35, 22, 54, 4, 6) [Dessert, ...]; [Grilling, ...]; [Strawberries, ...]; [Cigarette, ...]; ...

Foodier Multi-Select 2 (13, 1) [Building, Logo, Menu, Person, Vehicle, People, ...]; [Food]

Hack-At-Home-II Multi-Choice-API 2 (3, 3) [Food, Junk food, Plastic]; [Drinkware, Wood, Metal]

HeapSortCypher Multi-Choice-API 3 (8, 5, 11) [Food, Food grain, ...]; [Clothing, Shirt, ...]; [Paper bag, ...]

IngredientPrediction Multi-Select 3 (1, 1, 1) [Spaghetti]; [Bean]; [Naan]

FESMKMITL True-False 1 (1) [Face]

milab Multi-Choice-App 3 (1, 1, 1) [Sign]; [Nature]; [Car]

BirdSwe Multi-Choice-API 1 (5) [Smoke, Bird, ...]

ai-server-proto Multi-Choice-API 3 (3, 14) [Eye, Eyeball, Eyes]; [Landmark, Sculpture, Monument, ...]

Pheonix True-False 1 (1) [Fire]

photo_book Multi-Choice-API 3 (10, 10, 2) [Mammal, Bird, Insect, ...]; [Skin, Lip, ...]; [Flower, Plant]

Plant-Watcher True-False 1 (5) [Plant, Flowerpot, Houseplant, Bonsai, Wood]

RecBot Multi-Choice-App 2 (11, 8) [Tin, Paper, Magazine, Carton, ...]; [Food, Bread, Pizza, ...]

roblab-hslu True-False 1 (7) [Raincoat, Coat, Jacket, T-shirt, Trousers, Jeans, Shorts]

senior-project Multi-Choice-API 3 (2, 3, 1) [Landscape, Landmark]; [Self-portrait, Portrait, ...]; [Flower]

smart-can True-False 1 (9) [Paper, Bottle, Plastic, Container, Tin can, Glass, ...]

smart-trash-bin Multi-Choice-API 2 (14, 5) [Aviator sunglass, Beer glass, ...]; [Plastic arts, ...]

smartHamper Multi-Choice-API 3 (7, 4, 3) [Shirt, T-shirt, ...]; [Trousers, Denim, ...]; [Brand, Text, ...]

StudySpaceAvailability True-False 1 (4) [Hardware, Power Drill, Drill, Electronics]

The-Coding-Kid Multi-Select 6 (9, 6, 9, 3, 6, 3) [Noodle, ...]; [Meat, ...]; [Produce, ...]; [Fruit, ...]; [Milk, ...]; ...

Tinyml Multi-Select 3 (4, 6, 5) [Car, Truck, ...]; [Gun, Weapon Violence, ...]; [Cat, Dog, ...]

UofTHacksBackend Multi-Choice-API 4 (3, 3, 7, 4) [T-shirt, ...]; [Outerwear, ...]; [Pants, ...]; [Footwear, ...]

garbage-sort Multi-Choice-API 2 (1, 20) [Food];[Metal, ...];

Image Object Detection (Google object_localization)

equipment-detection-poc Multi-Select 1 (1) [Shoe]

flood_depths Multi-Select 1 (5) [Car, Van, Truck, Boat, Toy vehicle]

SBHacks2021 Multi-Select 1 (1) [Person]

SeeFarBeyond Multi-Select 1 (2) [Spoon, Coin]

( To be continued )
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Table 5: The statistics of 77 applications in empirical study (Continued).

Application
Decision Type

(Matching Order)

# of Target Classes

(# of labels per class)

Branch Conditions

(Class lists or value ranges are separated by semicolons.)

shecodes-hack Multi-Select 1 (2) [Dress, Top]

SunHacks2019 Multi-Select 1 (3) [Person, Chair, Table]

thgml Multi-Select 1 (7) [Pizza, Food, Sushi, Baked goods, Snack, Cake, Dessert]

Verlan Multi-Select 1 (2) [Dog, Animal]

Text Sentiment Classification (Google sentiment_detection)

animal-analysis Multi-Choice-API 4 (1, 1, 1, 1) [0.5, 1]; [0, 0.5]; [-0.5, 0]; [-1, -0.5]

calhacksv2 Multi-Choice-API 6 (1, 1, 1, 1, 1, 1) [0.5, 1]; [0.5, 1]; [0.1, 0.5]; [-0.1, 0.1]; [-0.5, -0.1]; [-1, -0.5]

carbon_hack_sentiment Multi-Choice-API 3 (1, 1, 1) [0.3333, 1]; [-0.3333, 0.3333]; [-1, -0.3333]

FoodDelivery Multi-Choice-API 3 (1, 1, 1) [0.6, 1]; [0.3, 0.6]; [-1, 0.3]

devfest Multi-Choice-API 4 (1, 1, 1, 1) [0.6, 1]; [0.4, 0.6]; [0.2, 0.4]; [-1, 0.2]

EC601_twitter_keyword Multi-Choice-API 3 (1, 1, 1) [0.25, 1]; [-0.25, 0.25]; [0.25, 1]

ElectionSentimentAnalysis Multi-Choice-API 3 (1, 1, 1) [0.05, 1]; [0, 0.05]; [-1, 0]

Hapi Multi-Choice-API 2 (1, 1) [-1, 0]; [0, 1]

JournalBot Multi-Choice-API 3 (1, 1, 1) [0.5, 1]; [0, 0.5]; [-1, 0]

Mind_Reading_Journal Multi-Choice-API 4 (1, 1, 1, 1) [0.15, 1]; [0.1, 0.15]; [-0.15, 0.1]; [-1, -0.15]

Sarcatchtic-MakeSPP19 Multi-Choice-API 2 (1, 1) [-0.5, 1]; [-1, -0.5]

stockmine Multi-Choice-API 2 (1, 1) [-1, 0]; [0, 1]

Tone Multi-Choice-API 3 (1, 1, 1) [-1, -0.5]; [-0.5, 0.5]; [0.5, 1]

UOttaHack_2019 Multi-Choice-API 3 (1, 1, 1) [0.25, 1]; [-0.25, 0.25]; [-1, -0.25]

Text Entity Detection (Google entity_detection)

GeoScholar True-False 1 (1) [LOC]

HackThe6ix Multi-Choice-API 7 (1, 1, 1, 1, 1, 1, 1) [PERSON]; [LOC]; [ADD]; [NUM]; [DATE]; [PRICE]; [ORG]

Klassroom Multi-Choice-API 2 (2, 2) [PERSON, PROPER]; [LOC, ORG]

newsChronicle True-False 1 (1) [OTHER]

ocr-contratos True-False 1 (1) [NUM]

uofthacks6 True-False 1 (1) [OTHER]

Text Topic Classification (Google text_classify)

DMnMD True-False 1 (1) [Health]

HLPFL True-False 1 (8) [Public Safety, Law & Government, Emergency Services, News, ...]

MirrorDashboard True-False 1 (7) [Jobs & Education, Law & Government, News, ...]

noteScript True-False 1 (1) [Food]

pennapps_2019f True-False 1 (2) [News/Politics, Investing]

soap Multi-Choice-API 2 (2, 2) [Sensitive Subjects, ...]; [Discrimination & Identity Relations, ...]

SocialEyes Multi-Choice-API 2 (2, 1) [people & society, sensitive subjects]; [adult]

Twitter_Mining_GAE True-False 1 (1) [Sentitive]

vfriendo True-False 1 (1) [Restaurants]
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Appendix B Loss function for other decision-

process summaries

True-False:

L(y) =

Penalize Type-1 Critical Errors
︷ ︸︸ ︷

Sigmoid(max
l∈Gĉ

(y)−θ)

+

Penalize Type-1 Critical Errors
︷ ︸︸ ︷

Sigmoid(θ−max
l∈Gc

(y)) (4)

Multi-Select:

L(y) =

Penalize Type-1 Critical Errors
︷ ︸︸ ︷

∑
c∈T̂

Sigmoid(θ−max
l∈Gc

y[l])

+

Penalize Type-3 Critical Errors
︷ ︸︸ ︷

∑
c∈∪cGc\T̂

Sigmoid(max
l∈Gc

y[l]−θ)

(5)

Multi-Choice API-order: Here we explain why this loss

function captures the critical errors:

• A Type-1 error occurs, if (1) the correct target class is

matched, thus at least one of its labels has a score above

the confidence threshold (maxl∈Gĉ
y[l] g θ), and (2) it is

matched after the EOD because all of the labels belonging

to the correct target class have scores below the maximum

score of labels in the incorrect target classes.

• A Type-2 error occurs if the maximum score for labels in a

correct target class falls below threshold θ, thus it is never

matched (before or after EOD).

• A Type-3 error occurs if any labels belonging (maxl /∈Gĉ
y[l])

to incorrect target classes appears before labels in the cor-

rect target class.

L(y) =

Type-1 Critical Errors
︷ ︸︸ ︷

Sigmoid

(

max
l∈∪c̸=ĉGc

y[l]−max
l∈Gĉ

y[l]

)

+

Type-2 Critical Errors
︷ ︸︸ ︷

Sigmoid

(

max
l∈∪c̸=ĉGc

y[l]−θ

)

+

Type-3 Critical Errors
︷ ︸︸ ︷

∑
c̸=ĉ

Sigmoid

(

max
l∈Gc

y[l]−max
l∈Gĉ

y[l]

)

(6)

Value ranges: As for APIs that output a score y to describe

the input, applications typically define several value ranges

as target classes to make decisions, where the lower bound of

the cth target class is denoted as lc and the upper bound of the

cth target class is denoted as uc.

L(yi) =

Type-1 Critical Errors
︷ ︸︸ ︷

Sigmoid(y−uĉ)+Sigmoid(lĉ −y)

+

Type-3 Critical Errors
︷ ︸︸ ︷

∑
c ̸=ĉ

Sigmoid(uc −y)+Sigmoid(y− lc)

(7)

where ĉ is the index of the correct target class. A Type-1 error

occurs (i.e., a correct target class is matched after EOD) when

the output score y exceeds the upper bound of the ground-

truth value range (uc), or falls below the lower bound of the

ground-truth value range (lc). A Type-3 error occurs when

the upper bound of an incorrect value range exceeds y and

its lower bound falls below y, leading it to be selected. Type-

2 errors are absent in this application because all the target

classes span the whole output range, thus a target class must

be matched.
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Appendix C Setup of Categorized models

Here, we describe in detail how we construct the label cate-

gories to support the scheme of Categorized models, which

is one of the schemes in comparison with ChameleonAPI

(Section 5).

Image-classification Image-classification APIs typically

contains many thousands of labels without providing their

categorization or hierarchy. Therefore, we create categories

leveraging the Wikidata knowledge graph [68], a widely used

knowledge graph database that has been referred to during the

creation of many popular ML training datasets [23,34,44]. In

this knowledge graph, each node is a named entity, covering

all the labels used in popular image-classification APIs [2,

20, 52], and each edge represents a relationship between two

entities (e.g., “subclass of”, “different from”, “said to be the

same as”).

Extracting “subclass of” edges in Wikidata knowledge

graph, we get a directed acyclic graph (DAG) of label hi-

erarchy. We believe it offers a principled foundation to create

label categories based on two observations: (1) If an entity/n-

ode e is reachable from another entity/node e′ through several

subclass-of edges, e′ is also covered by the category of e (e.g.,

entity “motor vehicle” is directly connected to “land vehicle”,

entity “land vehicle” is directly connected to “vehicle”, so

“motor vehicle” is also covered by the “vehicle” category); (2)

The distance, measured in the number of subclass-of edges,

between an entity/node and the DAG root indicates the speci-

ficity of the concept behind this node, with shorter distance

representing coarser-grained categories. We will refer to a

node that is k edges away from the root as a Level-k node.

Based on these observations, we formally define a set of

categories Ck for all the image-classification labels L at a

specificity level k as follows: Ck is the minimum set of Level-k

nodes such that every label l ∈ L is covered by at least one cat-

egory node ck ∈Ck. We could categorize all the applications

into single-category and multi-category applications using any

level of specificity settings. In this paper, we adopt Level-2

specificity setting, since the number of single-category appli-

cations drops a lot when moving from Level-2 to Level-3,

indicating Level-3 categories may be too fine-grained.

Under Level-2, we set up 35 categorized models that cover

all the image-classification labels. Six of them are used by ap-

plications in our benchmark, including natural object, tempo-

ral entity, artificial entity, system, phenomenon, and continu-

ant. With this categorization, 27 of the 40 image-classification

applications are single-category, and the rest 13 applications

are multi-category.

Object-detection Similar as image-classification API, ev-

ery object-detection API label also corresponds to an entity

node in the Wikidata knowledge graph. Therefore, we use the

same methodology and the same specificity Level-2 to define

categories for object detection labels.

Seven categorized models are set up to cover all object-

detection labels. The object-detection labels used by 8 object-

detection benchmark applications belong to 3 categories:

natural object, artificial entity, and system. Under this set-

ting, there will be 7 single-category applications, and 1 multi-

category applications.

Text-classification The Google text-classification API [20]

offers the hierarchy tree of all its labels. We simply follow

their categorization and get 15 categories to covering all text-

classification labels. Nine categories are used by applications

in our benchmark, including business & industrial, people &

society, health, food & drink, jobs & education, news, sensitive

subjects, adult, and law & government. Under this categoriza-

tion, there are 5 single-category text-classification applica-

tions, and 4 multi-category text-classification applications.

Other types of applications There are two other types of

applications in our benchmark that are not suitable for design-

ing pre-specialized models: sentiment analysis and named

entity recognition.

For sentiment analysis API, the corresponding applications

typically define several value-ranges and determine which

range the API output (a sentiment score) falls into. Since

the API output is a floating point number, there are infinite

ways of defining value-ranges. Therefore, it is impracticable

to create pre-categorized models.

For named entity recognition API, it only has 6 labels:

person, location, organization, number, date, and misc [20].

They are already high-level categories. There is no need to

create pre-categorized models for each category.
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Appendix D Results of other applications

As mentioned in §5.1, the results of the 20 applications that involve sentiment analysis and entity recognition were not included in

the evaluation section. Their results are shown in Figure 10 and 11. As we can see, the advantage of ChameleonAPI is consistent

across these applications, similar to what we presented in§5. Note that, the scheme of Categorized models does not apply to

applications that involve these two types of ML tasks, and hence is not included in Figure 10 and 11.
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Figure 10: Results on entity-recognition applications.
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Figure 11: Results on sentiment-analysis applications.
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