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Abstract

In this paper, we provide a rigorous proof of convergence of the Adaptive Moment Estimate (Adam)
algorithm for a wide class of optimization objectives. Despite the popularity and efficiency of the Adam
algorithm in training deep neural networks, its theoretical properties are not yet fully understood, and
existing convergence proofs require unrealistically strong assumptions, such as globally bounded gradients,
to show the convergence to stationary points. In this paper, we show that Adam provably converges to
ë-stationary points with O(ë−4) gradient complexity under far more realistic conditions. The key to
our analysis is a new proof of boundedness of gradients along the optimization trajectory of Adam,
under a generalized smoothness assumption according to which the local smoothness (i.e., Hessian norm
when it exists) is bounded by a sub-quadratic function of the gradient norm. Moreover, we propose a
variance-reduced version of Adam with an accelerated gradient complexity of O(ë−3).

1 Introduction

In this paper, we study the non-convex unconstrained stochastic optimization problem

min
x

{f(x) = E¿ [f(x, ¿)]} . (1)

The Adaptive Moment Estimation (Adam) algorithm (Kingma and Ba, 2014) has become one of the most
popular optimizers for solving (1) when f is the loss for training deep neural networks. Owing to its efficiency
and robustness to hyper-parameters, it is widely applied or even sometimes the default choice in many ma-
chine learning application domains such as natural language processing (Vaswani et al., 2017; Brown et al.,
2020; Devlin et al., 2019), generative adversarial networks (Radford et al., 2015; Isola et al., 2016; Zhu et al.,
2017), computer vision (Dosovitskiy et al., 2020), and reinforcement learning (Lillicrap et al., 2015; Mnih et al.,
2016; Schulman et al., 2017). It is also well known that Adam significantly outperforms stochastic gradient
descent (SGD) for certain models like transformer (Zhang et al., 2020b; Kunstner et al., 2023; Ahn et al.,
2023).

Despite its success in practice, theoretical analyses of Adam are still limited. The original proof of
convergence in (Kingma and Ba, 2014) was later shown by Reddi et al. (2018) to contain gaps. The authors
in (Reddi et al., 2018) also showed that for a range of momentum parameters chosen independently with the
problem instance, Adam does not necessarily converge even for convex objectives. However, in deep learning
practice, the hyper-parameters are in fact problem-dependent as they are usually tuned after given the
problem and weight initialization. Recently, there have been many works proving the convergence of Adam for
non-convex functions with various assumptions and problem-dependent hyper-parameter choices. However,
these results leave significant room for improvement. For example, (D’efossez et al., 2020; Guo et al., 2021)
prove the convergence to stationary points assuming the gradients are bounded by a constant, either explicitly
or implicitly. On the other hand, (Zhang et al., 2022; Wang et al., 2022) consider weak assumptions, but
their convergence results are still limited. See Section 2 for more detailed discussions of related works.

To address the above-mentioned gap between theory and practice, we provide a new convergence analysis
of Adam without assuming bounded gradients, or equivalently, Lipschitzness of the objective function. In
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addition, we also relax the standard global smoothness assumption, i.e., the Lipschitzness of the gradient
function, as it is far from being satisfied in deep neural network training. Instead, we consider a more
general, relaxed, and non-uniform smoothness condition according to which the local smoothness (i.e., Hes-
sian norm when it exists) around x is bounded by a sub-quadratic function of the gradient norm ‖'f(x)‖
(see Definition 3.2 and Assumption 2 for the details). This generalizes the (L0, L1) smoothness condition
proposed by (Zhang et al., 2019) based on language model experiments. Even though our assumptions are
much weaker and more realistic, we can still obtain the same O(ë24) gradient complexity for convergence to
an ë-stationary point.

The key to our analysis is a new technique to obtain a high probability, constant upper bound on
the gradients along the optimization trajectory of Adam, without assuming Lipschitzness of the objective
function. In other words, it essentially turns the bounded gradient assumption into a result that can be
directly proven. Bounded gradients imply bounded stepsize at each step, with which the analysis of Adam
essentially reduces to the simpler analysis of AdaBound (Luo et al., 2019). Furthermore, once the gradient
boundedness is achieved, the analysis under the generalized non-uniform smoothness assumption is not much
harder than that under the standard smoothness condition. We will introduce the technique in more details
in Section 5. We note that the idea of bounding gradient norm along the trajectory of the optimization
algorithm can be use in other problems as well. For more details, we refer the reader to our concurrent
work (Li et al., 2023) in which we present a set of new techiniques and methods for bounding gradient norm
for other optimization algorithms under a generalized smoothness condition.

Another contribution of this paper is to show that the gradient complexity of Adam can be further
improved with variance reduction methods. To this end, we propose a variance-reduced version of Adam by
modifying its momentum update rule, inspired by the idea of the STORM algorithm (Cutkosky and Orabona,
2019). Under additional generalized smoothness assumption of the component function f(·, ¿) for each ¿,
we show that this provably accelerates the convergence with a gradient complexity of O(ë23). This rate
improves upon the existing result of (Wang and Klabjan, 2022) where the authors obtain an asymptotic
convergence of their approach to variance reduction for Adam in the non-convex setting, under the bounded
gradient assumption.

1.1 Contributions

In light of the above background, we summarize our main contributions as follows.

• We develop a new analysis to show that Adam converges to stationary points under relaxed assump-
tions. In particular, we do not assume bounded gradients or Lipschitzness of the objective function.
Furthermore, we also consider a generalized non-uniform smoothness condition where the local smooth-
ness or Hessian norm is bounded by a sub-quadratic function of the gradient norm. Under these more
realistic assumptions, we obtain a dimension free gradient complexity of O(ë24) if the gradient noise
is centered and bounded.

• We generalize our analysis to the setting where the gradient noise is centered and has sub-Gaussian
norm, and show the convergence of Adam with a gradient complexity of O(ë24 log3.25(1/ë)).

• We propose a variance-reduced version of Adam (VRAdam) with provable convergence guarantees. In
particular, we obtain the accelerated O(ë23) gradient complexity.

2 Related work

In this section, we discuss the relevant literature related to different aspects of our work.

Convergence of Adam. Adam was first proposed by Kingma and Ba (2014) with a theoretical conver-
gence guarantee for convex functions. However, Reddi et al. (2018) found a gap in the proof of this conver-
gence analysis, and also constructed counter-examples for a range of hyper-parameters on which Adam does
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not converge. That being said, the counter-examples depend on the hyper-parameters of Adam, i.e., they are
constructed after picking the hyper-parameters. Therefore, it does not rule out the possibility of obtaining
convergence guarantees for problem-dependent hyper-parameters, as also pointed out by (Shi et al., 2021;
Zhang et al., 2022).

Many recent works have developed convergence analyses of Adam with various assumptions and hyper-
parameter choices. Zhou et al. (2018b) show Adam with certain hyper-parameters can work on the counter-
examples of (Reddi et al., 2018). De et al. (2018) prove convergence for general non-convex functions as-
suming gradients are bounded and the signs of stochastic gradients are the same along the trajectory. The
analysis in (D’efossez et al., 2020) also relies on the bounded gradient assumption. Guo et al. (2021) assume
the adaptive stepsize is upper and lower bounded by two constants, which is not necessarily satisfied unless
assuming bounded gradients or considering the AdaBound variant (Luo et al., 2019). (Zhang et al., 2022;
Wang et al., 2022) consider very weak assumptions. However, they show either 1) “convergence” only to some
neighborhood of stationary points with a constant radius, unless assuming the strong growth condition; or
2) convergence to stationary points but with a slower rate.

Variants of Adam. After Reddi et al. (2018) pointed out the non-convergence issue with Adam, vari-
ous variants of Adam that can be proved to converge were proposed (Zou et al., 2018; Gadat and Gavra,
2022; Chen et al., 2018, 2022; Luo et al., 2019; Zhou et al., 2018b). For example, AMSGrad (Reddi et al.,
2018) and AdaFom (Chen et al., 2018) modify the second order momentum so that it is non-decreasing.
AdaBound (Luo et al., 2019) explicitly imposes upper and lower bounds on the second order momentum so
that the stepsize is also bounded. AdaShift (Zhou et al., 2018b) uses a new estimate of the second order
momentum to correct the bias. There are also some works (Zhou et al., 2018a; Gadat and Gavra, 2022;
Iiduka, 2023) that provide convergence guarantees of these variants. One closely related work to ours is
(Wang and Klabjan, 2022), which considers a variance-reduced version of Adam by combining Adam and
SVRG (Johnson and Zhang, 2013). However, they assume bounded gradients and can only get an asymptotic
convergence in the non-convex setting.

Generalized smoothness condition. Generalizing the standard smoothness condition in a variety of
settings has been a focus of many recent papers. Recently, (Zhang et al., 2019) proposed a generalized
smoothness condition called (L0, L1) smoothness, which assumes the local smoothness or Hessian norm is
bounded by an affine function of the gradient norm. The assumption was well-validated by extensive experi-
ments conducted on language models. Various analyses of different algorithms under this condition were later
developed (Zhang et al., 2020a; Qian et al., 2021; Zhao et al., 2021; Faw et al., 2023; Reisizadeh et al., 2023;
Crawshaw et al., 2022). One recent closely-related work is (Wang et al., 2022) which studies converges of
Adam under the (L0, L1) smoothness condition. However, their results are still limited, as we have mentioned
above. In this paper, we consider an even more general smoothness condition where the local smoothness
is bounded by a sub-quadratic function of the gradient norm, and prove the convergence of Adam under
this condition. In our concurrent work (Li et al., 2023), we further analyze various other algorithms in both
convex and non-convex settings under similar generalized smoothness conditions following the same key idea
of bounding gradients along the trajectory.

Variance reduction methods. The technique of variance reduction was introduced to accelerate convex
optimization in the finite-sum setting (Roux et al., 2012; Johnson and Zhang, 2013; Shalev-Shwartz and Zhang,
2013; Mairal, 2013; Defazio et al., 2014). Later, many works studied variance-reduced methods in the
non-convex setting and obtained improved convergence rates for standard smooth functions. For exam-
ple, SVRG and SCSG improve the O(ë24) gradient complexity of stochastic gradient descent (SGD) to
O(ë210/3) (Allen-Zhu and Hazan, 2016; Reddi et al., 2016; Lei et al., 2017). Many new variance reduction
methods (Fang et al., 2018; Tran-Dinh et al., 2019; Liu et al., 2020; Li et al., 2021; Cutkosky and Orabona,
2019; Liu et al., 2023) were later proposed to further improve the complexity to O(ë23), which is optimal and
matches the lower bound in (Arjevani et al., 2023). Recently, (Reisizadeh et al., 2023; Chen et al., 2023) ob-
tained the O(ë23) complexity for the more general (L0, L1) smooth functions. Our variance-reduced Adam
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is motivated by the STORM algorithm proposed by (Cutkosky and Orabona, 2019), where an additional
term is added in the momentum update to correct the bias and reduce the variance.

3 Preliminaries

Notation. Let ‖·‖ denote the Euclidean norm of a vector or spectral norm of a matrix. For any given vector
x, we use (x)i to denote its i-th coordinate and x2,

:
x, |x| to denote its coordinate-wise square, square

root, and absolute value respectively. For any two vectors x and y, we use x » y and x/y to denote their
coordinate-wise product and quotient respectively. We also write x � y or x � y to denote the coordinate-
wise inequality between x and y, which means (x)i f (y)i or (x)i g (y)i for each coordinate index i. For
two symmetric real matrices A and B, we say A � B or A � B if B 2A or A 2B is positive semi-definite
(PSD). Given two real numbers a, b * R, we denote a ' b := min{a, b} for simplicity. Finally, we use O(·),
Θ(·), and Ω(·) for the standard big-O, big-Theta, and big-Omega notation.

3.1 Description of the Adam algorithm

Algorithm 1 Adam

1: Input: ³, ³sq, ·, », T, xinit

2: Initialize m0 = v0 = 0 and x1 = xinit

3: for t = 1, · · · , T do

4: Draw a new sample ¿t and perform the following updates
5: mt = (1 2 ³)mt21 + ³'f(xt, ¿t)
6: vt = (12 ³sq)vt21 + ³sq('f(xt, ¿t))2
7: m̂t =

mt

12(12³)t

8: v̂t =
vt

12(12³sq)t

9: xt+1 = xt 2 ·:
v̂t+»

» m̂t

10: end for

The formal definition of Adam proposed in (Kingma and Ba, 2014) is shown in Algorithm 1, where Lines
5–9 describe the update rule of iterates {xt}1ftfT . Lines 5–6 are the updates for the first and second order
momentum, mt and vt, respectively. In Lines 7–8, they are re-scaled to m̂t and v̂t in order to correct the
initialization bias due to setting m0 = v0 = 0. Then the iterate is updated by xt+1 = xt 2 ht » m̂t where
ht = ·/(

:
v̂t + ») is the adaptive stepsize vector for some parameters · and ».

3.2 Assumptions

In what follows below, we will state our main assumptions for analysis of Adam.

3.2.1 Function class

We start with a standard assumption in optimization on the objective function f whose domain lies in a
Euclidean space with dimension d.

Assumption 1. The objective function f is differentiable and closed within its open domain dom(f) ¦ R
d

and is bounded from below, i.e., f7 := infx f(x) > 2>.

Remark 3.1. A function f is said to be closed if its sub-level set {x * dom(f) | f(x) f a} is closed for each
a * R. In addition, a continuous function f over an open domain is closed if and only f(x) tends to infinity
whenever x approaches to the boundary of dom(f), which is an important condition to ensure the iterates of
Adam with a small enough stepsize · stay within the domain with high probability. Note that this condition
is mild since any continuous function defined over the entire space R

d is closed.
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Besides Assumption 1, the only additional assumption we make regarding f is that its local smoothness
is bounded by a sub-quadratic function of the gradient norm. More formally, we consider the following
(Ã, L0, LÃ) smoothness condition with 0 f Ã < 2.

Definition 3.2. A differentiable real-valued function f is (Ã, L0, LÃ) smooth for some constants Ã, L0, LÃ g 0
if the following inequality holds almost everywhere in dom(f)

∥

∥'2f(x)
∥

∥ f L0 + LÃ ‖'f(x)‖Ã .

Remark 3.3. When Ã = 1 , Definition 3.2 reduces to the (L0, L1) smoothness condition in (Zhang et al.,
2019). When Ã = 0 or LÃ = 0, it reduces to the standard smoothness condition.

Assumption 2. The objective function f is (Ã, L0, LÃ) smooth with 0 f Ã < 2.

The standard smooth function class is very restrictive as it only contains functions that are upper and
lower bounded by quadratic functions. The (L0, L1) smooth function class is more general since it also
contains, e.g., univariate polynomials and exponential functions. Assumption 2 is even more general and
contains univariate rational functions, double exponential functions, etc. See Appendix B.1 for the formal
propositions and proofs. We also refer the reader to our concurrent work (Li et al., 2023) for more detailed
discussions of examples of (Ã, L0, LÃ) smooth functions for different Ãs.

It turns out that bounded Hessian norm at a point x implies local Lipschitzness of the gradient in the
neighborhood around x. In particular, we have the following lemma.

Lemma 3.4. Under Assumptions 1 and 2, for any a > 0 and two points x * dom(f), y * R
d such that

‖y 2 x‖ f a
L0+Lρ(‖'f(x)‖+a)ρ , we have y * dom(f) and

‖'f(y)2'f(x)‖ f (L0 + LÃ(‖'f(x)‖ + a)Ã) · ‖y 2 x‖ .

Remark 3.5. Lemma 3.4 can be actually used as the definition of (Ã, L0, LÃ) smooth functions in place of
Assumption 2. Besides the local gradient Lipschitz condition, it also suggests that, as long as the update at
each step is small enough, the iterates will not go outside of the domain.

For the special case of Ã = 1, choosing a = max{‖'f(x)‖ , L0/L1}, one can verify that the required locality
size in Lemma 3.4 satisfies a

L0+L1(‖'f(x)‖+a) g 1
3L1

. In this case, Lemma 3.4 states that ‖x2 y‖ f 1/(3L1)

implies ‖'f(y)2'f(x)‖ f 2(L0+L1 ‖'f(x)‖) ‖y 2 x‖ . Therefore, it reduces to the local gradient Lipschitz
condition for (L0, L1) smooth functions in (Zhang et al., 2019, 2020a) up to numerical constant factors. For
Ã 6= 1, the proof is more involved because Grönwall’s inequality used in (Zhang et al., 2019, 2020a) no longer
applies. Therefore we defer the detailed proof of Lemma 3.4 to Appendix B.2.

3.2.2 Stochastic gradient

We consider one of the following two assumptions on the stochastic gradient 'f(xt, ¿t) in our analysis of
Adam.

Assumption 3. The gradient noise is centered and almost surely bounded. In particular, for some Ã g 0
and all t g 1,

Et21['f(xt, ¿t)] = 'f(xt), ‖'f(xt, ¿t)2'f(xt)‖ f Ã, a.s.,

where Et21[ · ] := E[ · |¿1, . . . , ¿t21] is the conditional expectation given ¿1, . . . , ¿t21.

Assumption 4. The gradient noise is centered with sub-Gaussian norm. In particular, for some R g 0 and
all t g 1,

Et21['f(xt, ¿t)] = 'f(xt), Pt21 (‖'f(xt, ¿t)2'f(xt)‖ g s) f 2e2
s2

2R2 , "s * R,

where Et21[ · ] := E[ · |¿1, . . . , ¿t21] and Pt21[ · ] := P[ · |¿1, . . . , ¿t21] are the conditional expectation and prob-
ability given ¿1, . . . , ¿t21.
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Assumption 4 is strictly weaker than Assumption 3 since an almost surely bounded random variable
clearly has sub-Gaussian norm, but it results in a slightly worse convergece rate up to poly-log factors (see
Theorems 4.1 and 4.2). Both of them are stronger than the most standard bounded variance assumption

E[‖'f(xt, ¿t)2'f(xt)‖2] f Ã2 for some Ã g 0, although Assumption 3 is actually a common assumption
in existing analyses under the (L0, L1) smoothness condition (see e.g. (Zhang et al., 2019, 2020a)). The
extension to the bounded variance assumption is challenging and a very interesting future work as it is also
the assumption considered in the lower bound (Arjevani et al., 2023). We suspect that such an extension
would be straightforward if we consider a mini-batch version of Algorithm 1 with a batch size of S = Ω(ë22),
since this results in a very small variance of O(ë2) and thus essentially reduces the analysis to the deterministic
setting. However, for practical Adam with an O(1) batch size, the extension is challenging and we leave it
as a future work.

4 Results

In the section, we provide our convergence results for Adam under Assumptions 1, 2, and 3 or 4. To keep
the statements of the theorems concise, we first define several problem-dependent constants. First, we let
∆1 := f(x1) 2 f7 < > be the initial sub-optimality gap. Next, given a large enough constant G > 0, we
define

r := min
{

1
5LρGρ21 ,

1

5(Lρ21

0
Lρ)1/ρ

}

, L := 3L0 + 4LÃG
Ã, (2)

where L can be viewed as the effective smoothness constant along the trajectory if one can show ‖'f(xt)‖ f
G and ‖xt+1 2 xt‖ f r at each step (see Section 5 for more detailed discussions). We will also use c1, c2 to
denote some small enough numerical constants and C1, C2 to denote some large enough ones. The formal
convergence results under Assumptions 1, 2, and 3 are presented in the following theorem, whose proof is
deferred in Appendix C.

Theorem 4.1. Suppose Assumptions 1, 2, and 3 hold. Denote » := log(1/·) for any 0 < · < 1. Let G be a

constant satisfying G g max
{

2», 2Ã,
:
C1∆1L0, (C1∆1LÃ)

1
22ρ

}

. Choose

0 f ³sq f 1, ³ f min

{

1,
c1»ë

2

Ã2G
:
»

}

, · f c2 min

{

r»

G
,
Ã»³

LG
:
»
,

»3/2³

L
:
G

}

.

Let T = max
{

1
³2 ,

C2∆1G
·ë2

}

. Then with probability at least 12 ·, we have ‖'f(xt)‖ f G for every 1 f t f T ,

and 1
T

∑T
t=1 ‖'f(xt)‖

2 f ë2.

Note that G, the upper bound of gradients along the trajectory, is a constant that depends on », Ã, L0, LÃ,
and the initial sub-optimality gap ∆1, but not on ë. There is no requirement on the second order momentum
parameter ³sq, although many existing works like (D’efossez et al., 2020; Zhang et al., 2022; Wang et al.,
2022) need certain restrictions on it. We choose very small ³ and ·, both of which are O(ë2). Therefore,
from the choice of T , it is clear that we obtain a gradient complexity of O(ë24), where we only consider the
leading term. We are not clear whether the dependence on ë is optimal or not, as the Ω(ë24) lower bound in
(Arjevani et al., 2023) assumes the weaker bounded variance assumption than our Assumpion 3. However,
it matches the state-of-the-art complexity among existing analyses of Adam.

One limitation of the dependence of our complexity on » is O(»22), which might be large since » is
usually small in practice, e.g., the default choice is » = 1028 in the PyTorch implementation. There are
some existing analyses on Adam (D’efossez et al., 2020; Zhang et al., 2022; Wang et al., 2022) whose rates
do not depend explicitly on » or only depend on log(1/»). However, all of them depend on poly(d), whereas
our rate is dimension free. The dimension d is also very large, especially when training transformers, for
which Adam is widely used. We believe that independence on d is better than that on », because d is fixed
given the architecture of the neural network but » is a hyper-parameter which we have the freedom to tune.
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In fact, based on our preliminary experimental results on CIFAR-10 shown in Figure 1, the performance of
Adam is not very sensitive to the choice of ». Although the default choice of » is 1028, increasing it up to
0.01 only makes minor differences.
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(c) ResNet110

Figure 1: Test errors of different models trained on CIFAR-10 using the Adam optimizer with ³ = 0.9, ³sq =
0.999, · = 0.001 and different »s. From left to right: (a) a shallow CNN with 6 layers; (b) ResNet-Small
with 20 layers; and (c) ResNet110 with 110 layers.

As discussed in Section 3.2.2, we can generalize the bounded gradient noise condition in Assumption 3
to the weaker sub-Gaussian noise condition in Assumption 4. The following theorem formally shows the
convergence result under Assumptions 1, 2, and 4, whose proof is deferred in Appendix C.6.

Theorem 4.2. Suppose Assumptions 1, 2, and 4 hold. Denote » := log(2/·) and Ã := R
√

2 log(4T/·) for

any 0 < · < 1. Let G be a constant satisfying G g max
{

2», 2Ã,
:
C1∆1L0, (C1∆1LÃ)

1
22ρ

}

. Choose

0 f ³sq f 1, ³ f min

{

1,
c1»ë

2

Ã2G
:
»

}

, · f c2 min

{

r»

G
,
Ã»³

LG
:
»
,

»3/2³

L
:
G

}

.

Let T = max
{

1
³2 ,

C2∆1G
·ë2

}

. Then with probability at least 12 ·, we have ‖'f(xt)‖ f G for every 1 f t f T ,

and 1
T

∑T
t=1 ‖'f(xt)‖

2 f ë2.

Note that the main difference of Theorem 4.2 from Theorem 4.1 is that Ã is now O(
:
logT ) instead of

a constant. With some standard calculations, one can show that the gradient complexity in Theorem 4.2 is
bounded by O(ë24 logp(1/ë)), where p = max

{

3, 9+2Ã
4

}

< 3.25.

5 Analysis

5.1 Bounding the gradients along the optimization trajectory

We want to bound the gradients along the optimization trajectory mainly for two reasons. First, as dis-
cussed in Section 2, many existing analyses of Adam rely on the assumption of bounded gradients, because
unbounded gradient norm leads to unbounded second order momentum v̂t which implies very small stepsize,
and slow convergence. On the other hand, once the gradients are bounded, it is straightforward to control
v̂t as well as the stepsize, and therefore the analysis essentially reduces to the easier one for AdaBound.
Second, informally speaking1, under Assumption 2, bounded gradients also imply bounded Hessians, which

1The statement is informal because here we can only show bounded gradients and Hessians at the iterate points, which
only implies local smoothness near the neighborhood of each iterate point (see Section 5.2). However, the standard smoothness
condition is a stronger global condition which assumes bounded Hessian at every point within a convex set.
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essentially reduces the (Ã, L0, LÃ) smoothness to the standard smoothness. See Section 5.2 for more formal
discussions.

In this paper, instead of imposing the strong assumption of globally bounded gradients, we develop a new
analysis to show that with high probability, the gradients are always bounded along the trajectory of Adam
until convergence. The essential idea can be informally illustrated by the following “circular" reasoning that
we will make precise later. On the one hand, if ‖'f(xt)‖ f G for every t g 1, it is not hard to show the
gradient converges to zero based on our discussions above. On the other hand, we know that a converging
sequence must be upper bounded. Therefore there exists some G2 such that ‖'f(xt)‖ f G2 for every t g 1.
In other words, the bounded gradient condition implies the convergence result and the convergence result
also implies the boundedness condition, forming a circular argument.

This circular argument is of course flawed. However, we can break the circularity of reasoning and
rigorously prove both the bounded gradient condition and the convergence result using a contradiction
argument. Before introducing the contradiction argument, we first need to provide the following useful
lemma, which is the reverse direction of a generalized Polyak-Lojasiewicz (PL) inequality, whose proof is
deferred in Appendix B.3.

Lemma 5.1. Under Assumptions 1 and 2, we have ‖'f(x)‖2f 3(3L0 + 4LÃ ‖'f(x)‖Ã)(f(x) 2 f7).

Define the function ·(u) := u2

3(3L0+4Lρuρ) over u g 0. It is easy to verify that if Ã < 2, · is increasing

and its range is [0,>). Therefore, · is invertible and ·21 is also increasing. Then, for any constant G > 0,
denoting F = ·(G), Lemma 5.1 suggests that if f(x)2 f7 f F , we have

‖'f(x)‖ f ·21(f(x)2 f7) f ·21(F ) = G.

In other words, if Ã < 2, the gradient is bounded within any sub-level set, even though the sub-level set could
be unbounded. Then, let Ç be the first time the sub-optimality gap is strictly greater than F , truncated at
T + 1, or formally,

Ç := min{t | f(xt)2 f7 > F} ' (T + 1). (3)

Then at least when t < Ç , we have f(xt)2 f7 f F and thus ‖'f(xt)‖ f G. Based on our discussions above,
it is not hard to analyze the updates before time Ç , and one can contruct some Lyapunov function to obtain
an upper bound on f(xÇ )2f7. On the other hand, if Ç f T , we immediately obtain a lower bound on f(xÇ ),
that is f(xÇ ) 2 f7 > F , by the definition of Ç in (3). If the lower bound is greater than the upper bound,
it leads to a contradiction, which shows Ç = T + 1, i.e., the sub-optimality gap and the gradient norm are
always bounded by F and G respectively before the algorithm terminates. We will illustrate the technique in
more details in the simple deterministic setting in Section 5.3, but first, in Section 5.2, we introduce several
prerequisite lemmas on the (Ã, L0, LÃ) smoothness.

5.2 Local smoothness

In Section 5.1, we informally mentioned that (Ã, L0, LÃ) smoothness essentially reduces to the standard
smoothness if the gradient is bounded. In this section, we will make the statement more precise. First, note
that Lemma 3.4 implies the following useful corollary.

Corollary 5.2. Under Assumptions 1 and 2, for any G > 0 and two points x * dom(f), y * R
d such

that ‖'f(x)‖ f G and ‖y 2 x‖ f r := min
{

1
5LρGρ21 ,

1

5(Lρ21

0
Lρ)1/ρ

}

, denoting L := 3L0 + 4LÃG
Ã, we have

y * dom(f) and

‖'f(y)2'f(x)‖ f L ‖y 2 x‖ , f(y) f f(x) +
〈

'f(x), y 2 x
〉

+
L

2
‖y 2 x‖2 .

The proof of Corollary 5.2 is deferred in Appendix B.4. Although the inequalities in Corollary 5.2 look
very similar to the standard global smoothness condition with constant L, it is still a local condition as it
requires ‖x2 y‖ f r. Fortunately, at least before Ç , such a requirement is easy to satisfy for small enough
·, according to the following lemma whose proof is deferred in Appendix C.5.
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Lemma 5.3. Under Assumption 3, if t < Ç and choosing G g Ã, we have ‖xt+1 2 xt‖ f ·D where
D := 2G/».

Then as long as · f r/D, we have ‖xt+1 2 xt‖ f r which satisfies the requirement in Corollary 5.2. Then
we can apply the inequalities in it in the same way as the standard smoothness condition. In other words,
most classical inequalities derived for standard smooth functions also apply to (Ã, L0, LÃ) smooth functions.

5.3 Warm-up: analysis in the deterministic setting

In this section, we consider the simpler deterministic setting where the stochastic gradient 'f(xt, ¿t) in
Algorithm 1 or (18) is replaced with the exact gradient 'f(xt). As discussed in Section 5.1, the key in our
contradiction argument is to obtain both upper and lower bounds on f(xÇ )2f7. In the following derivations,
we focus on illustrating the main idea of our analysis technique and ignore minor proof details. In addition,
all of them are under Assumptions 1, 2, and 3.

In order to obtain the upper bound, we need the following two lemmas. First, denoting ët := m̂t2'f(xt),
we can obtain the following informal descent lemma for deterministic Adam.

Lemma 5.4 (Descent lemma, informal). For any t < Ç , choosing G g » and a small enough ·,

f(xt+1)2 f(xt) /2 ·

4G
‖'f(xt)‖2 +

·

2»
‖ët‖2 , (4)

where “/” omits less important terms.

Proof Sketch of Lemma 5.4. By the definition of Ç , for all t < Ç , we have f(xt) 2 f7 f F which implies
‖'f(xt)‖ f G. Then from the update rule (18) in Proposition C.1 provided later in Appendix C, it is easy
to verify v̂t � G2 since v̂t is a convex combination of {('f(xs))2}sft. Let ht := ·/(

:
v̂t + ») be the stepsize

vector and denote Ht := diag(ht). We know

·

2G
I � ·

G+ »
I � Ht �

·

»
I. (5)

As discussed in Section 5.2, when · is small enough, we can apply Corollary 5.2 to obtain

f(xt+1)2 f(xt) /
〈

'f(xt), xt+1 2 xt
〉

=2 ‖'f(xt)‖2Ht
2'f(xt)¦Htët

f2 1

2
‖'f(xt)‖2Ht

+
1

2
‖ët‖2Ht

f2 ·

4G
‖'f(xt)‖2 +

·

2»
‖ët‖2 ,

where in the first (approximate) inequality we ignore the second order term 1
2L ‖xt+1 2 xt‖2 ? ·2 in Corol-

lary 5.2 for small enough ·; the equality applies the update rule xt+1 2 xt = 2Htm̂t = 2Ht('f(xt) + ët);

in the second inequality we use 2a¦Ab f ‖a‖2A + ‖b‖2A for any PSD matrix A and vectors a and b; and the
last inequality is due to (5).

Compared with the standard descent lemma for gradient descent, there is an additional term of ‖ët‖2 in
Lemma 5.4. In the next lemma, we bound this term recursively.

Lemma 5.5 (Informal). Choosing ³ = Θ(·GÃ+1/2), if t < Ç , we have

‖ët+1‖2 f (12 ³/4) ‖ët‖2 +
»³

16G
‖'f(xt)‖2 . (6)
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Proof Sketch of Lemma 5.5. By the update rule (18) in Proposition C.1, we have

ët+1 = (12 ³t+1) (ët +'f(xt)2'f(xt+1)) . (7)

For small enough ·, we can apply Corollary 5.2 to get

‖'f(xt+1)2'f(xt)‖2fL2 ‖xt+12xt‖2fO(·2G2Ã) ‖m̂t‖2fO(·2G2Ã)(‖'f(xt)‖2+‖ët‖2), (8)

where the second inequality is due to L = O(GÃ) and ‖xt+1 2 xt‖ = O(·) ‖m̂t‖; and the last inequality uses

m̂t = 'f(xt) + ët and Young’s inequality ‖a+ b‖2 f 2 ‖a‖2 + 2 ‖b‖2. Therefore,

‖ët+1‖2 f(1 2 ³t+1)(1 + ³t+1/2) ‖ët‖2 + (1 + 2/³t+1) ‖'f(xt+1)2'f(xt)‖2

f(1 2 ³t+1/2) ‖ët‖2 +O(·2G2Ã/³t+1)
(

‖'f(xt)‖2 + ‖ët‖2
)

f(1 2 ³/4) ‖ët‖2 +
»³

16G
‖'f(xt)‖2 ,

where the first inequality uses (7) and Young’s inequality ‖a+ b‖2 f (1 + u) ‖a‖2 + (1 + 1/u) ‖b‖2 for any
u > 0; the second inequality uses (12³t+1)(1 +³t+1/2) f 12³t+1/2 and (8); and in the last inequality we
use ³ f ³t+1 and choose ³ = Θ(·GÃ+1/2) which implies O(·2G2Ã/³t+1) f »³

16G f ³/4.

Now we combine them to get the upper bound on f(xÇ ) 2 f7. Define the function Φt := f(xt) 2 f7 +
2·
»³ ‖ët‖2. Note that for any t < Ç , (4)+ 2·

»³×(6) gives

Φt+1 2 Φt f 2 ·

8G
‖'f(xt)‖2 . (9)

The above inequality shows Φt is non-increasing and thus a Lyapunov function. Therefore, we have

f(xÇ )2 f7 f ΦÇ f Φ1 = ∆1,

where in the last inequality we use Φ1 = f(x1)2 f7 = ∆1 since ë1 = m̂1 2'f(x1) = 0 in the deterministic
setting.

As discussed in Section 5.1, if Ç f T , we have F < f(xÇ ) 2 f7 f ∆1. Note that we are able to choose

a large enough constant G so that F = G2

3(3L0+4LρGρ) is greater than ∆1, which leads to a contradiction

and shows Ç = T + 1. Therefore, (9) holds for all 1 f t f T . Taking a summation over 1 f t f T and
re-arranging terms, we get

1

T

T
∑

t=1

‖'f(xt)‖2 f 8G(Φ1 2 ΦT+1)

·T
f 8G∆1

·T
f ë2,

if choosing T g 8G∆1

·ë2 , i.e., it shows convergence with a gradient complexity of O(ë22) since both G and ·
are constants independent of ë in the deterministic setting.

5.4 Extension to the stochastic setting

In this part, we briefly introduce how to extend the analysis to the more challenging stochastic setting. It
becomes harder to obtain an upper bound on f(xÇ )2 f7 because Φt is no longer non-increasing due to the
existence of noise. In addition, Ç defined in (3) is now a random variable. Note that all the derivations, such
as Lemmas 5.4 and 5.5, are conditioned on the random event t < Ç . Therefore, one can not simply take a
total expectation of them to show E[Φt] is non-increasing.

Fortunately, Ç is in fact a stopping time with nice properties. If the noise is almost surely bounded as
in Assumption 3, by a more careful analysis, we can obtain a high probability upper bound on f(xÇ ) 2 f7

using concentration inequalities. Then we can still obtain a contradiction and convergence under this high
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probability event. If the noise has sub-Gaussian norm as in Assumption 4, one can change the definition of
Ç to

Ç := min{t | f(xt)2 f7 > F} 'min{t | ‖'f(xt)2'f(xt, ¿t)‖ > Ã} ' (T + 1)

for appropriately chosen F and Ã. Then at least when t < Ç , the noise is bounded by Ã. Hence we can get
the same upper bound on f(xÇ )2 f7 as if Assumption 3 still holds. However, when t f T , the lower bound
f(xÇ ) 2 f7 > F does not necessarily holds, which requires some more careful analyses. The details of the
proofs are involved and we defer them in Appendix C.

6 Variance-reduced Adam

In this section, we propose a variance-reduced version of Adam (VRAdam). This new algorithm is de-
picted in Algorithm 2. Its main difference from the original Adam is that in the momentum update rule
(Line 6), an additional term of (12 ³) ('f(xt, ¿t)2'f(xt21, ¿t)) is added, inspired by the STORM algo-
rithm (Cutkosky and Orabona, 2019). This term corrects the bias of mt so that it is an unbiased estimate of
'f(xt) in the sense of total expectation, i.e., E[mt] = 'f(xt). We will also show that it reduces the variance
and accelerates the convergence.

Aside from the adaptive stepsize, one major difference between Algorithm 2 and STORM is that our
hyper-parameters · and ³ are fixed constants whereas theirs are decreasing as a function of t. Choosing
constant hyper-parameters requires a more accurate estimate at the initialization. That is why we use a
mega-batch S1 to evaluate the gradient at the initial point to initialize m1 and v1 (Lines 2–3). In practice,
one can also do a full-batch gradient evaluation at initialization. Note that there is no initialization bias
for the momentum, so we do not re-scale mt and only re-scale vt. We also want to point out that although
the initial mega-batch gradient evaluation makes the algorithm a bit harder to implement, constant hyper-
parameters are usually easier to tune and more common in training deep neural networks. It should be not
hard to extend our analysis to time-decreasing · and ³ and we leave it as an interesting future work.

Algorithm 2 Variance-Reduced Adam (VRAdam)

1: Input: ³, ³sq, ·, », T, S1, xinit

2: Draw a batch of samples S1 with size S1 and use them to evaluate the gradient 'f(xinit,S1).
3: Initialize m1 = 'f(xinit,S1), v1 = ³sqm

2
1, and x2 = xinit 2 ·m1

|m1|+» .

4: for t = 2, · · · , T do

5: Draw a new sample ¿t and perform the following updates:
6: mt = (1 2 ³)mt21 + ³'f(xt, ¿t)+(1 2 ³) ('f(xt, ¿t)2'f(xt21, ¿t))
7: vt = (12 ³sq)vt21 + ³sq('f(xt, ¿t))2
8: v̂t =

vt
12(12³sq)t

9: xt+1 = xt 2 ·:
v̂t+»

»mt

10: end for

In addition to Assumption 1, we need to impose the following assumptions which can be viewed as
stronger versions of Assumptions 2 and 3, respectively.

Assumption 5. The objective function f and the component function f(·, ¿) for each fixed ¿ are (Ã, L0, LÃ)
smooth with 0 f Ã < 2.

Assumption 6. The random variables {¿t}1ftfT are sampled i.i.d. from some distribution P such that for
any x * dom(f),

E¿>P ['f(x, ¿)] = 'f(x), ‖'f(x, ¿)2'f(x)‖ f Ã, a.s.

11



Remark 6.1. Assumption 6 is stronger than Assumption 3. Assumption 3 applies only to the iterates gener-
ated by the algorithm, while Assumption 6 is a pointwise assumption over all x * dom(f) and further assumes
an i.i.d. nature of the random variables {¿t}1ftfT . Also note that, similar to Adam, it is straightforward to
generalize the assumption to noise with sub-Gaussian norm as in Assumption 4.

6.1 Analysis

In this part, we briefly discuss challenges in the analysis of VRAdam. The detailed analysis is deferred in
Appendix D. Note that Corollary 5.2 requires bounded update ‖xt+1 2 xt‖ f r at each step. For Adam, it
is easy to satisfy for a small enough · according to Lemma 5.3. However, for VRAdam, obtaining a good
enough almost sure bound on the update is challenging even though the gradient noise is bounded. To bypass
this difficulty, we directly impose a bound on ‖'f(xt)2mt‖ by changing the definition of the stopping time
Ç , similar to how we deal with the sub-Gaussian noise condition for Adam. In particular, we define

Ç := min{t | ‖'f(xt)‖ > G} 'min{t | ‖'f(xt)2mt‖ > G} ' (T + 1).

Then by definition, both ‖'f(xt)‖ and ‖'f(xt)2mt‖ are bounded by G before time Ç , which directly
implies bounded update ‖xt+1 2 xt‖. Of course, the new definition brings new challenges to lower bounding
f(xÇ )2 f7, which requires more careful analyses specific to the VRAdam algorithm. Please see Appendix D
for the details.

6.2 Convergence guarantees for VRAdam

In the section, we provide our main results for convergence of VRAdam under Assumptions 1, 5, and 6.
We consider the same definitions of problem-dependent constants ∆1, r, L as those in Section 4 to make
the statements of theorems concise. Let c be a small enough numerical constant and C be a large enough
numerical constant. The formal convergence result is shown in the following theorem.

Theorem 6.2. Suppose Assumptions 1, 5, and 6 hold. For any 0 < · < 1, let G > 0 be a constant satisfying

G g max
{

2», 2Ã,
√

C∆1L0/·, (C∆1LÃ/·)
1

22ρ

}

. Choose 0 f ³sq f 1 and ³ = a2·2, where a = 40L
:
G»23/2.

Choose

· f c ·min

{

r»

G
,

»

L
,

»2·

∆1L2
,

»2
:
·ë

ÃGL

}

, T =
64G∆1

··ë2
, S1 g 1

2³2T
.

Then with probability at least 12·, we have ‖'f(xt)‖ f G for every 1 f t f T , and 1
T

∑T
t=1 ‖'f(xt)‖

2 f ë2.

Note that the choice of G, the upper bound of gradients along the trajectory of VRAdam, is very similar
to that in Theorem 4.1 for Adam. The only difference is that now it also depends on the failure probability ·.
Similar to Theorem 4.1, there is no requirement on ³sq and we choose a very small ³ = O(ë2). However, the
variance reduction technique allows us to take a larger stepsize · = O(ë) (compared with O(ë2) for Adam)
and obtain an accelerated gradient complexity of O(ë23), where we only consider the leading term. We
are not sure whether it is optimal as the Ω(ë23) lower bound in (Arjevani et al., 2023) assumes the weaker
bounded variance condition. However, our result significantly improves upon (Wang and Klabjan, 2022),
which considers a variance-reduced version of Adam by combining Adam and SVRG (Johnson and Zhang,
2013) and only obtains asymptotic convergence in the non-convex setting. Similar to Adam, our gradient
complexity for VRAdam is dimension free but its dependence on » is O(»22). Another limitation is that, the
dependence on the failure probability · is polynomial, worse than the poly-log dependence in Theorem 4.1
for Adam.
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7 Conclusion and future works

In this paper, we proved the convergence of Adam and its variance-reduced version under less restrictive as-
sumptions compared to those in the existing literature. We considered a generalized non-uniform smoothness
condition, according to which the Hessian norm is bounded by a sub-quadratic function of the gradient norm
almost everywhere. Instead of assuming the Lipschitzness of the objective function as in existing analyses
of Adam, we use a new contradiction argument to prove that gradients are bounded by a constant along the
optimization trajectory. There are several interesting future directions that one could pursue following this
work.

Relaxation of the bounded noise assumption. Our analysis relies on the assumption of bounded noise
or noise with sub-Gaussian norm. However, the existing lower bounds in (Arjevani et al., 2023) consider the
weaker bounded variance assumption. Hence, it is not clear whether the O(ë24) complexity we obtain for
Adam is tight in this setting. It will be interesting to see whether one can relax the assumption to the bounded
variance setting. One may gain some insights from recent papers such as (Faw et al., 2022; Wang et al., 2023)
that analyze AdaGrad under weak noise conditions. An alternative way to show the tightness of the O(ë24)
complexity is to prove a lower bound under the bounded noise assumption.

Potential applications of our technique. Another interesting future direction is to see if the techniques
developed in this work for bounding gradients (including those in the the concurrent work (Li et al., 2023))
can be generalized to improve the convergence results for other optimization problems and algorithms. We
believe it is possible so long as the function class is well behaved and the algorithm is efficient enough so
that f(xÇ )2 f7 can be well bounded for some appropriately defined stopping time Ç .

Understanding why Adam is better than SGD. We want to note that our results can not explain why
Adam is better than SGD for training transformers, because (Li et al., 2023) shows that non-adaptive SGD
converges with the same O(ë24) gradient complexity under even weaker conditions. It would be interesting
and impactful if one can find a reasonable setting (function class, gradient oracle, etc) under which Adam
or other adaptive methods provably outperform SGD.
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A Probabilistic lemmas

In this section, we state several well-known and useful probabilistic lemmas without proof.

Lemma A.1 (Azuma-Hoeffding inequality). Let {Zt}tg1 be a martingale with respect to a filtration {Ft}tg0.
Assume that |Zt 2 Zt21| f ct almost surely for all t g 0. Then for any fixed T , with probability at least 12 ·,

ZT 2 Z0 f

√

√

√

√2
T
∑

t=1

c2t log(1/·).

Lemma A.2 (Optional Stopping Theorem). Let {Zt}tg1 be a martingale with respect to a filtration {Ft}tg0.
Let Ç be a bounded stopping time with respect to the same filtration. Then we have E[ZÇ ] = E[Z0].

B Proofs related to (ρ, L0, LÃ) smoothness

In this section, we provide proofs related to (Ã, L0, LÃ) smoothness. In what follows, we first provide a formal
proposition in Appendix B.1 showing that univariate rational functions and double exponential functions
are (Ã, L0, LÃ) smooth with Ã < 2, as we claimed in Section 3.2.1, and then provide the proofs of Lemma 3.4,
Lemma 5.1, and Corollary 5.2 in Appendix B.2, B.3 and B.4 respectively.

B.1 Examples

Proposition B.1. Any univariate rational function P (x)/Q(x), where P,Q are two polynomials, and any
double exponential function a(b

x), where a, b > 1, are (Ã, L0, LÃ) smooth with 1 < Ã < 2. However, they are
not necessarily (L0, L1) smooth.

Proof of Proposition B.1. We prove the proposition in the following four parts:

1. Univariate rational functions are (Ã, L0, LÃ) smooth with 1 < Ã < 2. Let f(x) = P (x)/Q(x) where
P and Q are two polynomials. Then the partial fractional decomposition of f(x) is given by

f(x) = w(x) +

m
∑

i=1

ji
∑

r=1

Air

(x2 ai)r
+

n
∑

i=1

ki
∑

r=1

Birx+ Cir

(x2 + bix+ ci)r
,

where w(x) is a polynomial, Air, Bir, Cir , ai, bi, ci are all real constants satisfying b2i 2 4ci < 0 for each
1 f i f n which implies x2 + bix + ci > 0 for all x * R. Assume Aiji 6= 0 without loss of generality. Then
we know f has only finite singular points {ai}1fifm and has continuous first and second order derivatives
at all other points. To simplify notation, denote

pir(x) :=
Air

(x 2 ai)r
, qir(x) :=

Birx+ Cir

(x2 + bix+ ci)r
.

Then we have f(x) = w(x) +
∑m

i=1

∑ji
r=1 pir(x) +

∑n
i=1

∑ki

r=1 qir(x). For any 3/2 < Ã < 2, we know that
Ã > r+2

r+1 for any r g 1. Then we can show that

lim
x³ai

|f 2(x)|Ã
|f 22(x)| = lim

x³ai

∣

∣p2iji(x)
∣

∣

Ã

∣

∣p22iji(x)
∣

∣

= >, (10)

where the first equality is because one can easily verify that the first and second order derivatives of piji
dominate those of all other terms when x goes to ai, and the second equality is because

∣

∣p2iji (x)
∣

∣

Ã
=

O
(

(x2 ai)
2Ã(ji+1)

)

,
∣

∣p22iji(x)
∣

∣ = O
(

(x2 ai)
2(ji+2)

)

, and Ã(ji + 1) > ji + 2 (here we assume ji g 1 since
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otherwise there is no need to prove (10) for i). Note that (10) implies that, for any LÃ > 0, there exists
·i > 0 such that

|f 22(x)| f LÃ |f 2(x)|Ã , if |x2 ai| < ·i. (11)

Similarly, one can show limx³>
|f 2(x)|ρ
|f 22(x)| = >, which implies there exists M > 0 such that

|f 22(x)| f LÃ |f 2(x)|Ã , if |x| > M. (12)

Define

B := {x * R | |x| fM and |x2 ai| g ·i, "i} .

We know B is a compact set and therefore the continuous function f 22 is bounded within B, i.e., there exists
some constant L0 > 0 such that

|f 22(x)| f L0, if x * B. (13)

Combining (11), (12), and (13), we have shown

|f 22(x)| f L0 + LÃ |f 2(x)|Ã , "x * dom(f),

which completes the proof of the first part.

2. Rational functions are not necessarily (L0, L1) smooth. Consider the ration function f(x) = 1/x.
Then we know that f 2(x) = 21/x2 and f 22(x) = 2/x3. Note that for any 0 < x f min{(L0 + 1)21/3, (L1 +
1)21}, we have

|f 22(x)| = 1

x3
+

1

x
· |f 2(x)| > L0 + L1 |f 2(x)| ,

which shows f is not (L0, L1) smooth for any L0, L1 g 0.

3. Double exponential functions are (Ã, L0, LÃ) smooth with 1 < Ã < 2. Let f(x) = a(b
x), where

a, b > 1, be a double exponential function. Then we know that

f 2(x) = log(a) log(b) bxa(b
x), f 22(x) = log(b)(log(a)bx + 1) · f 2(x).

For any Ã > 1, we have

lim
x³+>

|f 2(x)|Ã
|f 22(x)| = lim

x³+>
|f 2(x)|Ã21

log(b)(log(a)bx + 1)
= lim

y³+>
(log(a) log(b)y)

Ã21
a(Ã21)y

log(b)(log(a)y + 1)
= >,

where the first equality is a direct calculation; the second equality uses change of variable y = bx; and the
last equality is because exponential function grows faster than linear function. Then we complete the proof
following a similar argument to that in Part 1.

4. Double exponential functions are not necessarily (L0, L1) smooth. Consider the double exponen-
tial function f(x) = e(e

x). Then we have

f 2(x) = exe(e
x), f 22(x) = (ex + 1) · f 2(x).

For any x g max {log(L0 + 1), log(L1 + 1)}, we can show that

|f 22(x)| > (L1 + 1)f 2(x) > L0 + L1 |f 2(x)| ,

which shows f is not (L0, L1) smooth for any L0, L1 g 0.
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B.2 Proof of Lemma 3.4

Before proving Lemma 3.4, we need the following lemma that generalizes (a special case of) Grönwall’s
inequality.

Lemma B.2. Let u : [a, b] ³ [0,>) and 3 : [0,>) ³ (0,>) be two continuous functions. Suppose
u2(t) f 3(u(t)) for all t * (a, b). Denote function Ç(w) :=

∫

1
3(w) dw. We have for all t * [a, b],

Ç(u(t)) f Ç(u(a)) 2 a+ t.

Proof of Lemma B.2. First, by definition, we know that Ç is increasing since Ç2 = 1
3 > 0. Let function v be

the solution of the following differential equation

v2(t) = 3(v(t)) "t * (a, b), v(a) = u(a). (14)

It is straightforward to verify that the solution to (14) satisfies

Ç(v(t)) 2 t = Ç(u(a))2 a.

Then it suffices to show Ç(u(t)) f Ç(v(t)) "t * [a, b]. Note that

(Ç(u(t)) 2 Ç(v(t)))2 = Ç2(u(t))u2(t)2 Ç2(v(t))v2(t) =
u2(t)

3(u(t))
2 v2(t)

3(v(t))
f 0,

where the inequality is because u2(t) f 3(u(t)) by the assumption of this lemma and v2(t) = 3(v(t)) by (14).
Since Ç(u(a))2 Ç(v(a)) = 0, we know for all t * [a, b], Ç(u(t)) f Ç(v(t)).

With Lemma B.2, one can bound the gradient norm within a small enough neighborhood of a given point
as in the following lemma.

Lemma B.3. Suppose f is (Ã, L0, LÃ) smooth for some Ã, Ã, L0, LÃ g 0. For any a > 0 and points x, y *
dom(f) satisfying ‖y 2 x‖ f a

L0+Lρ(‖'f(x)‖+a)ρ , we have

‖'f(y)‖ f ‖'f(x)‖ + a.

Proof of Lemma B.3. Denote functions z(t) := (12 t)x+ ty and u(t) := ‖'f(z(t))‖ for 0 f t f 1. Note that
for any 0 f t f s f 1, by triangle inequality,

u(s)2 u(t) f‖'f(z(s))2'f(z(t))‖ .

We know that u(t) = ‖'f(z(t))‖ is differentiable since f is second order differentiable2. Then we have

u2(t) = lim
s³t

u(s)2 u(t)

s2 t
f lim

s³t

‖'f(z(s))2'f(z(t))‖
s2 t

=

∥

∥

∥

∥

lim
s³t

'f(z(s))2'f(z(t))
s2 t

∥

∥

∥

∥

f
∥

∥'2f(z(t))
∥

∥ ‖y 2 x‖ f (L0 + LÃu(t)
Ã) ‖y 2 x‖ .

Let Ç(w) :=
∫ w

0
1

(L0+Lρvρ)‖y2x‖dv. By Lemma B.2, we know that

Ç (‖'f(y)‖) = Ç(u(1)) f Ç(u(0)) + 1 = Ç (‖'f(x)‖) + 1.

2Here we assume u(t) > 0 for 0 < t < 1. Otherwise, we can define tm = sup{0 < t < 1 | u(t) = 0} and consider the interval
[tm, 1] instead.
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Denote Ë(w) :=
∫ w

0
1

(L0+Lρvρ)dv = Ç(w) · ‖y 2 x‖. We have

Ë (‖'f(y)‖) fË (‖'f(x)‖) + ‖y 2 x‖
fË (‖'f(x)‖) + a

L0 + LÃ(‖'f(x)‖ + a)Ã

f
∫ ‖'f(x)‖

0

1

(L0 + LÃvÃ)
dv +

∫ ‖'f(x)‖+a

‖'f(x)‖

1

(L0 + LÃvÃ)
dv

=Ë(‖'f(x)‖ + a)

Since Ë is increasing, we have ‖'f(y)‖ f ‖'f(x)‖ + a.

With Lemma B.3, we are ready to prove Lemma 3.4.

Proof of Lemma 3.4. Denote z(t) := (1 2 t)x + ty for some y * R
d satisfying ‖y 2 x‖ f a

L0+Lρ(‖'f(x)‖+a)ρ .

We first show y * dom(f) by contradiction. Suppose y /* dom(f), let us define tb := inf{0 f t f 1 | z(t) /* X}
and zb := z(tb). Then we know zb is a boundary point of X . Since f is a closed function with an open
domain, we have

lim
t±tb

f(z(t)) = >. (15)

On the other hand, by the definition of tb, we know z(t) * X for every 0 f t < tb. Then by Lemma B.3, for
all 0 f t < tb, we have ‖'f(z(t))‖ f ‖'f(x)‖+ a. Therefore for all 0 f t < tb

f(z(t)) ff(x) +
∫ t

0

〈

'f(z(s)), y 2 x
〉

ds

ff(x) + (‖'f(x)‖ + a) · ‖y 2 x‖
<>,

which contradicts with (15). Therefore we have shown y * dom(f). We have

‖'f(y)2'f(x)‖ =

∥

∥

∥

∥

∫ 1

0

'2f(z(t)) · (y 2 x) dt

∥

∥

∥

∥

f‖y 2 x‖ ·
∫ 1

0

(L0 + LÃ ‖'f(z(t))‖Ã) dt

f‖y 2 x‖ · (L0 + LÃ · (‖'f(x)‖ + a)Ã)

where the last inequality is due to Lemma B.3.

B.3 Proof of Lemma 5.1

Proof of Lemma 5.1. Denote G := ‖'f(x)‖ and L := 3L0 + 4LÃG
Ã. Let y := x2 1

2L'f(x). Then we have

‖y 2 x‖ =
G

2L
=

G

6L0 + 8LÃGÃ
f min

{

1

5LÃGÃ21
,

1

5(LÃ21
0 LÃ)1/Ã

}

=: r,

where the inequality can be easily verified considering both cases of G f (L0/LÃ)
1/Ã and G g (L0/LÃ)

1/Ã.
Then based on Corollary 5.2, we have y * dom(f) and

f7 2 f(x) f f(y)2 f(x) f
〈

'f(x), y 2 x

〉

+
L

2
‖y 2 x‖2 =

3LG2

8
f LG2

3
,

which completes the proof.
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B.4 Proof of Corollary 5.2

Proof of Corollary 5.2. First, Lemma 3.4 states that for any a > 0,

‖y 2 x‖f a
L0+Lρ·(‖'f(x)‖+a)ρ =ó ‖'f(y)2'f(x)‖f(L0+LÃ · (‖'f(x)‖+a)Ã) ‖y 2 x‖ .

If ‖'f(x)‖ f G, we choose a = max{G, (L0/LÃ)
1/Ã}. Then it is straightforward to verify that

a

L0 + LÃ · (‖'f(x)‖ + a)Ã
g min

{

1

5LÃGÃ21
,

1

5(LÃ21
0 LÃ)1/Ã

}

=: r,

L0 + LÃ · (‖'f(x)‖ + a)Ã f 3L0 + 4LÃG
Ã =: L.

Therefore we have shown for any x, y satisfying ‖y 2 x‖ f r,

‖'f(y)2'f(x)‖ f L ‖y 2 x‖ . (16)

Next, let z(t) := (1 2 t)x+ ty for 0 f t f 1. We know

f(y)2 f(x) =

∫ 1

0

〈

'f(z(t), y 2 x
〉

dt

=

∫ 1

0

〈

'f(x), y 2 x
〉

+
〈

'f(z(t))2'f(x), y 2 x
〉

dt

f
〈

'f(x), y 2 x
〉

+

∫ 1

0

L ‖z(t)2 x‖ ‖y 2 x‖ dt

=
〈

'f(x), y 2 x
〉

+ L ‖y 2 x‖2
∫ 1

0

t dt

=
〈

'f(x), y 2 x
〉

+
1

2
L ‖y 2 x‖2 ,

where the inequality is due to (16).

C Convergence analysis of Adam

In this section, we provide detailed convergence analysis of Adam. We will focus on proving Theorem 4.1
under the bounded noise assumption (Assumption 3) in most parts of this section except Appendix C.6 where
we will show how to generalize the results to noise with sub-Gaussian norm (Assumption 4) and provide the
proof of Theorem 4.2.

For completeness, we repeat some important technical definitions here. First, we define

ët := m̂t 2'f(xt) (17)

as the deviation of the re-scaled momentum from the actual gradient. Given a large enough constant G

defined in Theorem 4.1, denoting F = G2

3(3L0+4LρGρ) , we formally define the stopping time Ç as

Ç := min{t | f(xt)2 f7 > F} ' (T + 1),

i.e., Ç is the first time when the sub-optimality gap is strictly greater than F , truncated at T + 1 to make
sure it is bounded in order to apply Lemma A.2. Based on Lemma 5.1 and the discussions below it, we know
that if t < Ç , we have both f(xt)2 f7 f F and ‖'f(xt)‖ f G. It is clear to see that Ç is a stopping time3

3Indeed, τ 2 1 is also a stopping time because 'f(xt) only depends on {ξs}s<t, but that is unnecessary for our analysis.
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with respect to {¿t}tg1 because the event {Ç g t} is a function of {¿s}s<t and independent of {¿s}sgt. Next,
let

ht :=
·:
v̂t + »

be the stepsize vector and Ht := diag(ht) be the diagonal stepsize matrix. Then the update rule can be
written as

xt+1 = xt 2 ht » m̂t = xt 2Htm̂t.

Finally, as in Corollary 5.2 and Lemma 5.3, we define the following constants.

r := min

{

1

5LÃGÃ21
,

1

5(LÃ21
0 LÃ)1/Ã

}

,

L := 3L0 + 4LÃG
Ã,

D := 2G/».

C.1 Equivalent update rule of Adam

The bias correction steps in Lines 7–8 make Algorithm 1 a bit complicated. In the following proposition, we
provide an equivalent yet simpler update rule of Adam.

Proposition C.1. Denote ³t = ³
12(12³)t and ³sq

t =
³sq

12(12³sq)t
. Then the update rule in Algorithm 1 is

equivalent to

m̂t = (12 ³t)m̂t21 + ³t'f(xt, ¿t),
v̂t = (12 ³sq

t )v̂t21 + ³sq
t ('f(xt, ¿t))2, (18)

xt+1 = xt 2
·:
v̂t + »

» m̂t,

where initially we set m̂1 = 'f(x1, ¿1) and v̂1 = ('f(x1, ¿1))2. Note that since 12 ³1 = 12 ³sq
1 = 0, there

is no need to define m̂0 and v̂0.

Proof of Proposition C.1. Denote Zt = 1 2 (1 2 ³)t. Then we know ³t = ³/Zt and mt = Ztm̂t. By the
momentum update rule in Algorithm 1, we have

Ztm̂t = (12 ³)Zt21m̂t21 + ³'f(xt, ¿t).

Note that Zt satisfies the following property

(12 ³)Zt21 = 12 ³ 2 (12 ³)t = Zt 2 ³.

Then we have

m̂t =
Zt 2 ³

Zt
· m̂t21 +

³

Zt
· 'f(xt, ¿t)

=(12 ³t)m̂t21 + ³t'f(xt, ¿t).

Next, we verify the initial condition. By Algorithm 1, since we set m0 = 0, we have m1 = ³'f(x1, ¿1).
Therefore we have m̂1 = m1/Z1 = 'f(x1, ¿1) since Z1 = ³. Then the proof is completed by applying the
same analysis on vt and v̂t.
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C.2 Useful lemmas for Adam

In this section, we list several useful lemmas for the convergence analysis. Their proofs are all deferred in
Appendix C.5.

First note that when t < Ç , all the quantities in the algorithm are well bounded. In particular, we have
the following lemma.

Lemma C.2. If t < Ç , we have

‖'f(xt)‖ f G, ‖'f(xt, ¿t)‖ f G+ Ã, ‖m̂t‖ f G+ Ã,

v̂t � (G+ Ã)2,
·

G+ Ã + »
� ht �

·

»
.

Next, we provide a useful lemma regarding the time-dependent re-scaled momentum parameters in (18).

Lemma C.3. Let ³t =
³

12(12³)t , then for all T g 2, we have
∑T

t=2 ³
2
t f 3(1 + ³2T ).

In the next lemma, we provide an almost sure bound on ët in order to apply Azuma-Hoeffding inequality
(Lemma A.1).

Lemma C.4. Denote ³t21 = (1 2 ³t)(ët21 + 'f(xt21) 2 'f(xt)). Choosing · f min
{

r
D ,

Ã³
DL

}

, if t f Ç ,

we have ‖ët‖ f 2Ã and ‖³t21‖ f 2Ã.

Finally, the following lemma hides messy calculations and will be useful in the contradiction argument.

Lemma C.5. Denote

I1 :=
8G

·»

(

∆1»+ 8Ã2

(

·

³
+ ·³T

)

+ 20Ã2·
√

(1/³2 + T )»

)

,

I2 :=
8GF

·
=

8G3

3·L
.

Under the parameter choices in either Theorem 4.1 or Theorem 4.2, we have I1 f I2 and I1/T f ë2.

C.3 Proof of Theorem 4.1

Before proving the main theorems, several important lemmas are needed. First, we provide a descent lemma
for Adam.

Lemma C.6. If t < Ç , choosing G g Ã + » and · f min
{

r
D ,

»
6L

}

, we have

f(xt+1)2 f(xt) f2 ·

4G
‖'f(xt)‖2 +

·

»
‖ët‖2 .

Proof of Lemma C.6. By Lemma C.2, we have if t < Ç ,

·I

2G
f ·I

G+ Ã + »
� Ht �

·I

»
. (19)

Since we choose · f r
D , by Lemma 5.3, we have ‖xt+1 2 xt‖ f r if t < Ç . Then we can apply Corollary 5.2
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to show that for any t < Ç ,

f(xt+1)2 f(xt) f
〈

'f(xt), xt+1 2 xt
〉

+
L

2
‖xt+1 2 xt‖2

=2 ('f(xt))¦Htm̂t +
L

2
m̂¦

t H
2
t m̂t

f2 ‖'f(xt)‖2Ht
2 ('f(xt))¦Htët +

·L

2»
‖m̂t‖2Ht

f2 2

3
‖'f(xt)‖2Ht

+
3

4
‖ët‖2Ht

+
·L

»

(

‖'f(xt)‖2Ht
+ ‖ët‖2Ht

)

f2 1

2
‖'f(xt)‖2Ht

+ ‖ët‖2Ht

f2 ·

4G
‖'f(xt)‖2 +

·

»
‖ët‖2 ,

where the second inequality uses (17) and (19); the third inequality is due to Young’s inequality a¦Ab f
1
3 ‖a‖

2
A + 3

4 ‖b‖
2
A and ‖a+ b‖2A f 2 ‖a‖2A + 2 ‖b‖A for any PSD matrix A; the second last inequality uses

· f »
6L ; and the last inequality is due to (19).

The following lemma bounds the sum of the error term ‖ët‖2 before the stopping time Ç . Since its proof
is complicated, we defer it in Appendix C.4.

Lemma C.7. If G g 2Ã and · f min
{

r
D ,

»3/2³

6L
:
G
, Ã³
DL

}

, with probability 12 ·,

Ç21
∑

t=1

‖ët‖2 2
»

8G
‖'f(xt)‖2 f 8Ã2 (1/³ + ³T ) + 20Ã2

√

(1/³2 + T ) log(1/·).

Combining Lemma C.6 and Lemma C.7, we obtain the following useful lemma, which simultaneously
bounds f(xt)2 f7 and

∑Ç21
t=1 ‖'f(xt)‖2.

Lemma C.8. If G g 2max{», Ã} and · f min
{

r
D ,

»3/2³

6L
:
G
, Ã³
DL

}

, then with probability at least 12 ·,

Ç21
∑

t=1

‖'f(xt)‖2 +
8G

·
(f(xÇ )2 f7)

f8G

·»

(

∆1»+ 8Ã2

(

·

³
+ ·³T

)

+ 20Ã2·
√

(1/³2 + T ) log(1/·)

)

.

Proof of Lemma C.8. By telescoping, Lemma C.6 implies

Ç21
∑

t=1

2 ‖'f(xt)‖2 2
8G

»
‖ët‖2 f 8G

·
(f(x1)2 f(xÇ )) f

8∆1G

·
. (20)

Lemma C.7 could be written as

Ç21
∑

t=1

8G

»
‖ët‖2 2 ‖'f(xt)‖2 f 8G

»

(

8Ã2 (1/³ + ³T ) + 20Ã2
√

(1/³2 + T ) log(1/·)
)

. (21)

(20) + (21) gives the desired result.

With Lemma C.8, we are ready to complete the contradiction argument and the convergence analysis.
Below we provide the proof of Theorem 4.1.
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Proof of Theorem 4.1. According to Lemma C.8, there exists some event E with P(E) g 1 2 ·, such that
conditioned on E , we have

8G

·
(f(xÇ )2 f7) f 8G

·»

(

∆1»+ 8Ã2

(

·

³
+ ·³T

)

+ 20Ã2·
√

(1/³2 + T ) log(1/·)

)

=: I1. (22)

By the definition of Ç , if Ç f T , we have

8G

·
(f(xÇ )2 f7) >

8GF

·
=

8G3

3·L
=: I2.

Based on Lemma C.5, we have I1 f I2, which leads to a contradiction. Therefore, we must have Ç = T + 1
conditioned on E . Then, Lemma C.8 also implies that under E ,

1

T

T21
∑

t=1

‖'f(xt)‖2 fI1
T

f ë2,

where the last inequality is due to Lemma C.5.

C.4 Proof of Lemma C.7

In order to prove Lemma C.7, we need the following several lemmas.

Lemma C.9. Denote ³t21 = (12 ³t)(ët21 +'f(xt21)2'f(xt)). If G g 2Ã and · f min
{

r
D ,

»3/2³

6L
:
G

}

, we

have for every 2 f t f Ç ,

‖ët‖2 f
(

12 ³t

2

)

‖ët21‖2 +
»³

16G
‖'f(xt21)‖2 + ³2

tÃ
2 + 2³t

〈

³t21,'f(xt, ¿t)2'f(xt)
〉

.

Proof of Lemma C.9. According to the update rule (18), we have

ët =(12 ³t)(ët21 +'f(xt21)2'f(xt)) + ³t('f(xt, ¿t)2'f(xt))
=³t21 + ³t('f(xt, ¿t)2'f(xt)). (23)

Since we choose · f r
D , by Lemma 5.3, we have ‖xt 2 xt21‖ f r if t f Ç . Therefore by Corollary 5.2, for

any 2 f t f Ç ,

‖'f(xt21)2'f(xt)‖ f L ‖xt 2 xt21‖ f ·L

»
‖m̂t21‖ f ·L

»
(‖'f(xt21)‖ + ‖ët21‖) , (24)

Therefore

‖³t21‖2 = ‖(12 ³t)ët21 + (1 2 ³t)('f(xt21)2'f(xt))‖2

f(12 ³t)
2 (1 + ³t) ‖ët21‖2 + (12 ³t)

2

(

1 +
1

³t

)

‖'f(xt21)2'f(xt)‖2

f(12 ³t) ‖ët21‖2 +
1

³t
‖'f(xt21)2'f(xt)‖2

f (12 ³t) ‖ët21‖2 +
2·2L2

»2³

(

‖'f(xt21)‖2 + ‖ët21‖2
)

f
(

12 ³t

2

)

‖ët21‖2 +
»³

16G
‖'f(xt21)‖2 ,
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where the first inequality uses Young’s inequality ‖a+ b‖2 f (1 + u) ‖a‖2 + (1+ 1/u) ‖b‖2 for any u > 0; the
second inequality is due to

(1 2 ³t)
2 (1 + ³t) = (12 ³t)(12 ³2

t ) f (12 ³t),

(1 2 ³t)
2

(

1 +
1

³t

)

=
1

³t
(12 ³t)

2 (1 + ³t) f
1

³t
(12 ³t) f

1

³t
;

the third inequality uses (24) and Young’s inequality; and in the last inequality we choose · f »3/2³

6L
:
G

, which

implies 2·2L2

»2³ f »³
16G f ³

2 f ³t

2 . Then by (23), we have

‖ët‖2 = ‖³t21‖2 + 2³t

〈

³t21,'f(xt, ¿t)2'f(xt)
〉

+ ³2
t ‖'f(xt, ¿t)2'f(xt)‖2

f
(

12 ³t

2

)

‖ët21‖2 +
»³

16G
‖'f(xt21)‖2 + ³2

tÃ
2 + 2³t

〈

³t21,'f(xt, ¿t)2'f(xt)
〉

.

Lemma C.10. Denote ³t21 = (12³t)(ët21 +'f(xt21)2'f(xt)). If G g 2Ã and · f min
{

r
D ,

Ã³
DL

}

, with

probability 12 ·,

Ç
∑

t=2

³t

〈

³t21,'f(xt, ¿t)2'f(xt)
〉

f 5Ã2
√

(1 + ³2T ) log(1/·).

Proof of Lemma C.10. First note that

Ç
∑

t=2

³t

〈

³t21,'f(xt, ¿t)2'f(xt)
〉

=
T
∑

t=2

³t

〈

³t211Çgt,'f(xt, ¿t)2'f(xt)
〉

.

Since Ç is a stopping time, we know that 1Çgt is a function of {¿s}s<t. Also, by definition, we know ³t21 is
a function of {¿s}s<t. Then, denoting

Xt = ³t

〈

³t211Çgt,'f(xt, ¿t)2'f(xt)
〉

,

we know that Et21[Xt] = 0, which implies {Xt}tfT is a martingale difference sequence. Also, by Assump-
tion 3 and Lemma C.4, we can show that for all 2 f t f T ,

|Xt| f ³tÃ ‖³t211Çgt‖ f 2³tÃ
2.

Then by the Azuma-Hoeffding inequality (Lemma A.1), we have with probability at least 12 ·,

∣

∣

∣

∣

∣

T
∑

t=2

Xt

∣

∣

∣

∣

∣

f 2Ã2

√

√

√

√2

T
∑

t=2

³2
t log(1/·) f 5Ã2

√

(1 + ³2T ) log(1/·),

where in the last inequality we use Lemma C.3.

Then we are ready to prove Lemma C.7.

Proof of Lemma C.7. By Lemma C.9, we have for every 2 f t f Ç ,

³

2
‖ët21‖2 f ³t

2
‖ët21‖2 f‖ët21‖2 2 ‖ët‖2 +

»³

16G
‖'f(xt21)‖2 + ³2

tÃ
2

+ 2³t

〈

³t21,'f(xt, ¿t)2'f(xt)
〉

.
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Taking a summation over t from 2 to Ç , we have

Ç
∑

t=2

³

2
‖ët21‖2 2

»³

16G
‖'f(xt21)‖2 f‖ë1‖2 2 ‖ëÇ‖2 + Ã2

Ç
∑

t=2

³2
t + 10Ã2

√

(1 + ³2T ) log(1/·)

f4Ã2(1 + ³2T ) + 10Ã2
√

(1 + ³2T ) log(1/·),

where the first inequality uses Lemma C.10; and the second inequality uses Lemma C.3 and ‖ë1‖2 =

‖'f(x1, ¿1)2'f(x1)‖2 f Ã2. Then we complete the proof by multiplying both sides by 2/³.

C.5 Omitted proofs for Adam

In this section, we provide all the omitted proofs for Adam including those of Lemma 5.3 and all the lemmas
in Appendix C.2.

Proof of Lemma 5.3. According to Lemma C.2, if t < Ç ,

‖xt+1 2 xt‖ f ·

»
‖m̂t‖ f ·(G+ Ã)

»
f 2·G

»
.

Proof of Lemma C.2. By definition of Ç , we have ‖'f(xt)‖ f G if t < Ç . Then Assumption 3 directly
implies ‖'f(xt, ¿t)‖ f G + Ã. ‖m̂t‖ can be bounded by a standard induction argument as follows. First
note that ‖m̂1‖ = ‖'f(x1, ¿1)‖ f G+ Ã. Supposing ‖m̂k21‖ f G+ Ã for some k < Ç , then we have

‖m̂k‖ f (12 ³k) ‖m̂k21‖+ ³k ‖'f(xk, ¿k)‖ f G+ Ã.

Then we can show v̂t � (G + Ã)2 in a similar way noting that ('f(xt, ¿t))2 � ‖'f(xt, ¿t)‖2 f (G + Ã)2.
Given the bound on v̂t, it is straight forward to bound the stepsize ht.

Proof of Lemma C.3. First, when t g 1/³, we have (12 ³)t f 1/e. Therefore,

∑

1/³ftfT

(12 (1 2 ³)t)22 f (12 1/e)22T f 3T.

Next, note that when t < 1/³, we have (1 2 ³)t f 12 1
2³t. Then we have

∑

2ft<1/³

(1 2 (12 ³)t)22 f 4

³2

∑

tg2

t2m f 3

³2
.

Therefore we have
∑T

t=2 ³
2
t f 3(1 + ³2T ).

Proof of Lemma C.4. We prove ‖ët‖ f 2Ã for all t f Ç by induction. First, note that for t = 1, we have

‖ë1‖ = ‖'f(x1, ¿1)2'f(x1)‖ f Ã f 2Ã.

Now suppose ‖ët21‖ f 2Ã for some 2 f t f Ç . According to the update rule (18), we have

ët =(1 2 ³t)(ët21 +'f(xt21)2'f(xt)) + ³t('f(xt, ¿t)2'f(xt)),

which implies

‖ët‖ f (22 ³t)Ã + ‖'f(xt21)2'f(xt)‖ .
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Since we choose · f r
D , by Lemma 5.3, we have ‖xt 2 xt21‖ f ·D f r if t f Ç . Therefore by Corollary 5.2,

we have for any 2 f t f Ç ,

‖'f(xt)2'f(xt21)‖ f L ‖xt 2 xt21‖ f·DL f Ã³t,

where the last inequality uses the choice of · and ³ f ³t. Therefore we have ‖ët‖ f 2Ã which completes the
induction. Then it is straight forward to show

‖³t21‖ f (12 ³t) (2Ã + ³tÃ) f 2Ã.

Proof of Lemma C.5. We first list all the related parameter choices below for convenience.

G g max
{

2», 2Ã,
√

C1∆1L0, (C1∆1LÃ)
1

22ρ

}

, ³ f min

{

1,
c1»ë

2

Ã2G
:
»

}

,

· f c2 min

{

r»

G
,
Ã»³

LG
:
»
,
»3/2³

L
:
G

}

, T =max

{

1

³2
,
C2∆1G

·ë2

}

.

We will show I1/I2 f 1 first. Note that if denoting W = 3L
»G2 , we have

I1/I2 =W∆1»+ 8WÃ2

(

·

³
+ ·³T

)

+ 20WÃ2
√

(·2/³2 + ·2T )»,

Below are some facts that can be easily verified given the parameter choices.

(a) By the choice of G, we have G2 g 6∆1(3L0 + 4LÃG
Ã) = 6∆1L for large enough C1, which implies

W f 1
2∆1»

.

(b) By the choice of T , we have ·³T f ·
³ + C2∆1G³

ë2 .

(c) By the choice of T , we have ·2T = max

{

(

·
³

)2

, C2·∆1G
ë2

}

f
(

·
³

)2

+ C2∆1Ã³
ë2 · ·

³ f 3
2

(

·
³

)2

+

1
2

(

C2∆1Ã³
ë2

)2

.

(d) By the choice of ·, we have ·/³ f c2Ã»
LG

:
»
, which implies WÃ2

:
» · ·

³ f 3c2Ã
3

G3 f 1
200 for small enough c2.

(e) By the choice of ³ and (a), we have WÃ2∆1G
:
»³

ë2 f Ã2G
:
»³

2»ë2 f 1
100C2

for small enough c1.

Therefore,

I1/I2 f1

2
+ 8WÃ2

(

2·

³
+
C2∆1G³

ë2

)

+ 20WÃ2:»

û

ý

√

5·2

2³2
+

1

2

(

C2∆1Ã³

ë2

)2
þ

ø

f1

2
+ 48WÃ2:» · ·

³
+

24C2WÃ2∆1G
:
»³

ë2

f1,

where the first inequality is due to Facts (a-c); the second inequality uses Ã f G, » g 1, and
:
a+ b f :

a+
:
b

for a, b g 0; and the last inequality is due to Facts (d-e).
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Next, we will show I1/T f ë2. We have

I1/T =
8G∆1

·T
+

64Ã2G

»³T
+

64Ã2G³

»
+

160Ã2G
:
»

»

√

1

³2T 2
+

1

T

f8ë2

C2
+

224Ã2G
:
»

»³T
+

64Ã2G³

»
+

160Ã2G
:
»

»
:
T

f8ë2

C2
+

450Ã2G
:
»³

»

=

(

8

C2
+ 450c1

)

ë2

fë2,

where in the first inequality we use T g C2∆1G
·ë2 and

:
a+ b f :

a +
:
b for a, b g 0; the second inequality

uses T g 1
³2 ; the second equality uses the parameter choice of ³; and in the last inequality we choose a large

enough C2 and small enough c1.

C.6 Proof of Theorem 4.2

Proof of Theorem 4.2. We define stopping time Ç as follows

Ç1 :=min{t | f(xt)2 f7 > F} ' (T + 1),

Ç2 :=min{t | ‖'f(xt)2'f(xt, ¿t)‖ > Ã} ' (T + 1),

Ç :=min{Ç1, Ç2}.

Then it is straightforward to verify that Ç1, Ç2, Ç are all stopping times.
Since we want to show P(Ç f T ) is small, noting that {Ç f T } = {Ç = Ç1 f T }*{Ç = Ç2 f T }, it suffices

to bound both P(Ç = Ç1 f T ) and P(Ç = Ç2 f T ).
First, we know that

P(Ç = Ç2 f T ) fP(Ç2 f T )

=P

û

ý

⋃

1ftfT

‖'f(xt)2'f(xt, ¿t)‖ > Ã

þ

ø

f
∑

1ftfT

P (‖'f(xt)2'f(xt, ¿t)‖ > Ã)

f
∑

1ftfT

E [Pt21 (‖'f(xt)2'f(xt, ¿t)‖ > Ã)]

f
∑

1ftfT

E

[

2e2
σ2

2R2

]

=2Te2
σ2

2R2

f·/2,

where the fourth inequality uses Assumption 4; and the last inequality uses Ã = R
√

2 log(4T/·).
Next, if Ç = Ç1 f T , by definition, we have f(xÇ )2 f7 > F , or equivalently,

8G

·
(f(xÇ )2 f7) >

8GF

·
=

8G3

3·L
=: I2.
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On the other hand, since for any t < Ç , under the new definition of Ç , we still have

f(xt)2 f7 f F, ‖f(xt)‖ f G, ‖'f(xt)2'f(xt, ¿t)‖ f Ã.

Then we know that Lemma C.8 still holds because all of its requirements are still satisfied, i.e., there exists
some event E with P(E) f ·/2, such that under its complement Ec,

Ç21
∑

t=1

‖'f(xt)‖2 +
8G

·
(f(xÇ )2 f7) f 8G

·»

(

∆1»+ 8Ã2

(

·

³
+ ·³T

)

+ 20Ã2·
√

(1/³2 + T )»

)

=: I1.

By Lemma C.5, we know I1 f I2, which suggests that Ec + {Ç = Ç1 f T } = ', i.e., {Ç = Ç1 f T } ¢ E . Then
we can show

P(E * {Ç f T }) f P(E) + P(Ç = Ç2 f T ) f ·.

Therefore,

P(Ec + {Ç = T + 1}) g 12 P(E * {Ç f T }) g 12 ·,

and under the event Ec + {Ç = T + 1}, we have Ç = T + 1 and

1

T

t
∑

t=1

‖'f(xt)‖2 f I1/T f ë2,

where the last inequality is due to Lemma C.5.

D Convergence analysis of VRAdam

In this section, we provide detailed convergence analysis of VRAdam and prove Theorem 6.2. To do that,
we first provide some technical definitions4. Denote

ët :=mt 2'f(xt)
as the deviation of the momentum from the actual gradient. From the update rule in Algorithm 2, we can
write

ët = (1 2 ³)ët21 +Wt, (25)

where we define

Wt :='f(xt, ¿t)2'f(xt)2 (12 ³) ('f(xt21, ¿t)2'f(xt21)) .

Let G be the constant defined in Theorem 6.2 and denote F := G2

3(3L0+4LρGρ) . We define the following

stopping times as discussed in Section 6.1.

Ç1 :=min{t | f(xt)2 f7 > F} ' (T + 1),

Ç2 :=min{t | ‖ët‖ > G} ' (T + 1), (26)

Ç :=min{Ç1, Ç2}.
It is straight forward to verify that Ç1, Ç2, Ç are all stopping times. Then if t < Ç , we have

f(xt)2 f7 f F, ‖'f(xt)‖ f G, ‖ët‖ f G.

Then we can also bound the update ‖xt+1 2 xt‖ f ·D where D = 2G/» if t < Ç (see Lemma D.3 for the
details). Finally, we consider the same definition of r and L as those for Adam. Specifically,

r := min

{

1

5LÃGÃ21
,

1

5(LÃ21
0 LÃ)1/Ã

}

, L := 3L0 + 4LÃG
Ã. (27)

4Note that the same symbol for Adam and VRAdam may have different meanings.
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D.1 Useful lemmas

We first list several useful lemmas in this section without proofs. Their proofs are deferred later in Ap-
pendix D.3.

To start with, we provide a lemma on the local smoothness of each component function f(·, ¿) when the
gradient of the objective function f is bounded.

Lemma D.1. For any constant G g Ã and two points x * dom(f), y * R
d such that ‖'f(x)‖ f G and

‖y 2 x‖ f r/2, we have y * dom(f) and

‖'f(y)2'f(x)‖ f L ‖y 2 x‖ ,
‖'f(y, ¿)2'f(x, ¿)‖ f 4L ‖y 2 x‖ , "¿,

f(y) f f(x) +
〈

'f(x), y 2 x
〉

+
1

2
L ‖y 2 x‖2 ,

where r and L are defined in (27).

With the new definition of stopping time Ç in (26), all the quantities in Algorithm 2 are well bounded
before Ç . In particular, the following lemma holds.

Lemma D.2. If t < Ç , we have

‖'f(xt)‖ f G, ‖'f(xt, ¿t)‖ f G+ Ã, ‖mt‖ f 2G,

v̂t � (G+ Ã)2,
·

G+ Ã + »
� ht �

·

»
.

Next, we provide the following lemma which bounds the update at each step before Ç .

Lemma D.3. if t < Ç , ‖xt+1 2 xt‖ f ·D where D = 2G/».

The following lemma bounds ‖Wt‖ when t f Ç .

Lemma D.4. If t f Ç , G g 2Ã, and · f r
2D ,

‖Wt‖ f ³Ã +
5·L

»
(‖'f(xt21)‖+ ‖ët21‖) .

Finally, we present some inequalities regarding the parameter choices, which will simplify the calculations
later.

Lemma D.5. Under the parameter choices in Theorem 6.2, we have

2∆1

F
f ·

4
,

»∆1³

·G2
f ·

4
, ·³T f »∆1

8Ã2
, · f »3/2

40L

√

³

G
.

D.2 Proof of Theorem 6.2

Before proving the theorem, we will need to present several important lemmas. First, note that the descent
lemma still holds for VRAdam.

Lemma D.6. If t < Ç , choosing G g Ã + » and · f min
{

r
2D ,

»
6L

}

, we have

f(xt+1)2 f(xt) f2 ·

4G
‖'f(xt)‖2 +

·

»
‖ët‖2 .

Proof of Lemma D.6. The proof is essentially the same as that of Lemma C.6.
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Lemma D.7. Choose G g max {2Ã, 2»}, S1 g 1
2³2T , and · f min

{

r
2D ,

»3/2

40L

√

³
G

}

. We have

E

[

Ç21
∑

t=1

³

2
‖ët‖2 2

»³

16G
‖'f(xt)‖2

]

f 4Ã2³2T 2 E[‖ëÇ‖2].

Proof of Lemma D.7. By Lemma D.4, we have

‖Wt‖2 f2Ã2³2 +
100·2L2

»2

(

‖'f(xt21)‖2 + ‖ët21‖2
)

f2Ã2³2 +
»³

16G

(

‖'f(xt21)‖2 + ‖ët21‖2
)

,

where in the second inequality we choose · f »3/2

40L

√

³
G . Therefore, noting that »³

16G f ³/2, by (25), we have

‖ët‖2 =(12 ³)2 ‖ët21‖2 + ‖Wt‖2 + (12 ³)

〈

ët21,Wt

〉

f(12 ³/2) ‖ët21‖2 +
»³

16G
‖'f(xt21)‖2 + 2Ã2³2 + (12 ³)

〈

ët21,Wt

〉

.

Taking a summation over 2 f t f Ç and re-arranging the terms, we get

Ç21
∑

t=1

³

2
‖ët‖2 2

»³

16G
‖'f(xt)‖2 f ‖ë1‖2 2 ‖ëÇ‖2 + 2Ã2³2(Ç 2 1) + (12 ³)

Ç
∑

t=2

〈

ët21,Wt

〉

.

Taking expectations on both sides, noting that

E

[

Ç
∑

t=2

〈

ët21,Wt

〉

]

= 0

by the Optional Stopping Theorem (Lemma A.2), we have

E

[

Ç21
∑

t=1

³

2
‖ët‖2 2

»³

16G
‖'f(xt)‖2

]

f 2Ã2³2T + E[‖ë1‖2]2 E[‖ëÇ‖2] f 4Ã2³2T 2 E[‖ëÇ‖2],

where in the second inequality we choose S1 g 1
2³2T which implies E[‖ë1‖2] f Ã2/S1 f 2Ã2³2T .

Lemma D.8. Under the parameter choices in Theorem 6.2, we have

E

[

Ç21
∑

t=1

‖'f(xt)‖2
]

f 16G∆1

·
, E[f(xÇ )2 f7] f 2∆1, E[‖ëÇ‖2] f

»∆1³

·
.

Proof of Lemma D.8. First note that according to Lemma D.5, it is straight forward to verify that the param-
eter choices in Theorem 6.2 satisfy the requirements in Lemma D.6 and Lemma D.7. Then by Lemma D.6,
if t < Ç ,

f(xt+1)2 f(xt) f2 ·

4G
‖'f(xt)‖2 +

·

»
‖ët‖2 .

Taking a summation over 1 f t < Ç , re-arranging terms, multiplying both sides by 8G
· , and taking an

expection, we get

E

[

Ç21
∑

t=1

2 ‖'f(xt)‖2 2
8G

»
‖ët‖2

]

f 8G

·
E[f(x1)2 f(xÇ )] f

8G

·
(∆1 2 E[f(xÇ )2 f7]) . (28)
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By Lemma D.7, we have

E

[

Ç21
∑

t=1

8G

»
‖ët‖2 2 ‖'f(xt)‖2

]

f 64GÃ2³T

»
2 16G

»³
E[‖ëÇ‖2] f

8G∆1

·
2 16G

»³
E[‖ëÇ‖2], (29)

where the last inequality is due to Lemma D.5. Then (28) + (29) gives

E

[

Ç21
∑

t=1

‖'f(xt)‖2
]

+
8G

·
E[f(xÇ )2 f7] +

16G

»³
E[‖ëÇ‖2] f

16G∆1

·
,

which completes the proof.

With all the above lemmas, we are ready to prove the theorem.

Proof of Theorem 6.2. First note that according to Lemma D.5, it is straight forward to verify that the
parameter choices in Theorem 6.2 satisfy the requirements in all the lemmas for VRAdam.

Then, first note that if Ç = Ç1 f T , we know f(xÇ )2 f7 > F by the definition of Ç . Therefore,

P(Ç = Ç1 f T ) f P(f(xÇ )2 f7 > F ) f E[f(xÇ )2 f7]

F
f 2∆1

F
f ·

4
,

where the second inequality uses Markov’s inequality; the third inequality is by Lemma D.8; and the last
inequality is due to Lemma D.5.

Similarly, if Ç2 = Ç f T , we know ‖ëÇ‖ > G. We have

P(Ç2 = Ç f T ) f P(‖ëÇ‖ > G) = P(‖ëÇ‖2 > G2) f E[‖ëÇ‖2]
G2

f »∆1³

·G2
f ·

4
,

where the second inequality uses Markov’s inequliaty; the third inequality is by Lemma D.8; and the last
inequality is due to Lemma D.5. where the last inequality is due to Lemma D.5. Therefore,

P(Ç f T ) f P(Ç1 = Ç f T ) + P(Ç2 = Ç f T ) f ·

2
.

Also, note that by Lemma D.8

16G∆1

·
gE

[

Ç21
∑

t=1

‖'f(xt)‖2
]

gP(Ç = T + 1)E

[

T
∑

t=1

‖'f(xt)‖2
∣

∣

∣

∣

∣

Ç = T + 1

]

g1

2
E

[

T
∑

t=1

‖'f(xt)‖2
∣

∣

∣

∣

∣

Ç = T + 1

]

,

where the last inequality is due to P(Ç = T + 1) = 12 P(Ç f T ) g 12 ·/2 g 1/2. Then we can get

E

[

1

T

T
∑

t=1

‖'f(xt)‖2
∣

∣

∣

∣

∣

Ç = T + 1

]

f 32G∆1

·T
f ·ë2

2
.

Let F :=
{

1
T

∑T
t=1 ‖'f(xt)‖

2
> ë2

}

be the event of not converging to stationary points. By Markov’s

inequality, we have

P(F|Ç = T + 1) f ·

2
.

Therefore,

P(F * {Ç f T }) f P(Ç f T ) + P(F|Ç = T + 1) f ·,

i.e., with probability at least 12 ·, we have both Ç = T + 1 and 1
T

∑T
t=1 ‖'f(xt)‖

2 f ë2.
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D.3 Proofs of lemmas in Appendix D.1

Proof of Lemma D.1. This lemma is a direct corollary of Corollary 5.2. Note that by Assumption 6, we
have ‖'f(x, ¿)‖ f G + Ã f 2G. Hence, when computing the locality size and smoothness constant for the
component function f(·, ¿), we need to replace the constant G in Corollary 5.2 with 2G, that is why we get
a smaller locality size of r/2 and a larger smoothness constant of 4L.

Proof of Lemma D.2. The bound on ‖mt‖ is by the definition of Ç in (26). All other quantities for VRAdam
are defined in the same way as those in Adam (Algorithm 1), so they have the same upper bounds as in
Lemma C.2.

Proof of Lemma D.3.

‖xt+1 2 xt‖ f · ‖mt‖ /» f 2·G/» = ·D,

where the first inequality uses the update rule in Algorithm 2 and ht � ·/» by Lemma D.2; the second
inequality is again due to Lemma D.2.

Proof of Lemma D.4. By the definition of Wt, it is easy to verify that

Wt = ³('f(xt, ¿t)2'f(xt)) + (12 ³)·t,

where

·t = 'f(xt, ¿t)2'f(xt21, ¿t)2'f(xt) +'f(xt21).

Then we can bound

‖·t‖ f ‖'f(xt, ¿t)2'f(xt21, ¿t)‖+ ‖'f(xt)2'f(xt21)‖
f5L ‖xt 2 xt21‖

f5·L

»
(‖'f(xt21)‖ + ‖ët21‖) ,

where the second inequality uses Lemma D.1; and the last inequality is due to ‖xt 2 xt21‖ f · ‖mt21‖ /» f
· (‖'f(xt21)‖+ ‖ët21‖) /». Then, we have

‖Wt‖ f ³Ã +
5·L

»
(‖'f(xt21)‖+ ‖ët21‖) .

Proof of Lemma D.5. These inequalities can be obtained by direct calculations.
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