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Abstract: Gestures are a fundamental and significant mode of non-verbal com-
munication among humans. Deictic gestures (e.g. pointing), in particular, offer
valuable means of efficiently expressing intent in situations where language is
inaccessible, restricted, or highly specialized. As a result, it is essential for robots
to comprehend gestures in order to infer human intentions and establish more ef-
fective coordination with them. Prior work often rely on a rigid hand-coded library
of gestures along with their meanings. However, interpretation of gestures is often
context-dependent, requiring more flexibility and common-sense reasoning. In
this work, we propose a framework, GIRAF, for more flexibly interpreting gesture
and language instructions by leveraging the power of large language models. Our
framework is able to accurately infer human intent and contextualize the meaning
of their gestures for more effective human-robot collaboration. We instantiate the
framework for interpreting deictic gestures in table-top manipulation tasks and
demonstrate that it is both effective and preferred by users, achieving 70% higher
success rates than the baseline. We further demonstrate GIRAF’s ability on reason-
ing about diverse types of gestures by curating a Gesturelnstruct dataset consisting
of 36 different task scenarios. GIRAF achieved 81% success rate on finding the
correct plan for tasks in Gesturelnstruct. Project website:
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1 Introduction

Gestures are an important form of communication that we frequently use in our everyday activities
such as at traffic intersections, restaurants, and department stores. They are used to disambiguate and
communicate our intent especially when language is not available or limited (e.g., waving at a car
to pass through), or when language is too specialized (e.g. pointing at hex screwdriver vs cross slot
screwdriver instead of referring to them by their name as shown in ). The ability to understand
human gestures is thus critical for autonomous robots to predict human intent, and be able to respond
effectively. While prior work has studied how gestures can be beneficial in human-robot interaction,
these approaches are often rigid, requiring extensive engineering effort for predefining a library of
fixed gestures accompanied with their corresponding meaning [ !, 2, 3, 4]. This not only is expensive,
but also assumes a fixed mapping between gestures and their meaning. However, interpretation
of gestures can be highly dependent on the context and may require situated reasoning leading to
different human intents. For example, pointing at a cup calls for potentially different actions, such as
picking up the cup or pouring into the cup given different contexts and history.

Recent works have demonstrated that foundation models such as large language models (LLMs)
trained on internet data have enough context for commonsense reasoning [5, 6, 7, 8], making moral
judgements [9, 10, 1 1], or reward design [12, 13]. Similarly, we expect LLMs to be able to reason
about and interpret gestures under the assumption that they are prompted with a textual description of
the gesture and the context. Addressing this assumption is often referred to as the grounding problem.
However, grounding gestures is not as simple as recognizing the gesture class (e.g., thumbs-up,
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Figure 1: GIRAF System Diagram. GIRAF consists of 1) grounding modules including a scene descriptor
Dscene, @ human descriptor Dyuman and a set of perception API; and an LLM task planner that is prompted with
few-shot demonstrations to reason about the high-level multiomodal task specification and generate code calling
functions from other modules. Grounding modules are colored brown, and reasoning modules are colored yellow.
As an example, a human user provides language instruction “give me that tool” along with a pointing gesture to
specify the particular tool they want. GIRAF process information about the objects in the scene with Dscene and
grounds the human input with Dyyman. The LLM task planner is prompted to interpret the multimodal instruction
and produce policy code that commands the robot to complete the human’s request.

waving, or pointing), as it also requires detecting the context the gesture is presented in such as the
referent of deictic gestures (i.e. what the person pointing at).

While recent work shows that vision-language models (VLMs) can provide some amount of grounding
by describing the scene, these models are limited in two key ways: First, many of them focus on
describing the objects but not the state of the human, and thus their context is limited to the scene
but not the history of human actions or intents. Second, even if one could extend VLMs to go
beyond the scene and describe humans, existing VLMs lack enough geometric reasoning capabilities
to accurately interpret gestures. The absence of geometric reasoning in pre-trained VLMs is not
surprising since it falls outside the scope of their original objectives. Furthermore, fine-tuning VLMs
to capture geometric reasoning about gestures requires considerable amounts of 3D data [14].

Instead of only relying on VLMs to fully reason about gestures, our insight is to leverage a combina-
tion of existing pre-trained vision models along with other contextual information such as language
instruction to ground LLM:s to reason about human gestures and accurately infer their intent. We pro-
pose a system, GIRAF (Gesture-Informed Robot Assistance via Foundation-Models), that leverages
expert models for identifying gestures, and prompts an LLM for reasoning about gesture-language
instructions and generating robot policies. Specifically the LLM will directly generate robot code, for
both perceiving and acting, given the language and gesture descriptions. An overview of the system
is shown in . In this example, the user wants a tool that they do not know how to describe in
language and use gesture to specify what tool the robot should grasp. The user provides a language
and gesture specification, in this case “Give me that tool” along with pointing gestures towards the
tool to disambiguate the language instruction. Our framework consisting of a Human Descriptor and
a Scene Descriptor detect the pointing gesture and objects in the scene. Then our LLM Task Planner
reasons about the task and uses a Perception API to detect the object being referred by the gesture.
The LLM then directly generates motion primitives such as picking up and handing over the item.

To evaluate the effectiveness of our system, we instantiate GIRAF for instruction following in table-
top manipulation settings. We first conduct a user study focusing on interpreting deictic pointing
gestures, showcasing how language alone can be inefficient or ineffective for specifying a task. Our
user study shows that users significantly prefer GIRAF over a language-only baseline and are also
better at achieving task goals when using GIRAF with more than 70% higher success rates. We then
construct a Gesturelnstruct dataset to demonstrate the capability of LLMs to reason about gestures
in various contexts in zero- or few-shot manner. GIRAF achieved 81% success rate on finding the
correct plan for tasks in Gesturelnstruct.



2 Related Work

Gestures for Human-Robot Interaction. As an important mode of non-verbal communication,
gestures have been studied both within and outside the context of human-robot interaction (HRI).
The full literature is out of the scope of this paper and we refer the readers to the survey work of
Vuletic et al. [15] on gestures in HRI. In this section we focus on the most relevant literature of
interpreting speech-related gestures or co-verbal gestures [15]. Prior work on incorporating gestures
for HRI often relies on defining a fixed set of gesture vocabulary and hand-coding their mappings to
robot actions [ 1, 2, 3, 4]. One major limitation of these rule-based methods is that the human user
needs to learn which gestures to use for eliciting which robot response within predefined context.
Prior work has also explicitly focused on understanding deictic gestures such as pointing. Matuszek
etal. [16] and Chen et al. [17] take a data-driven approach for interpreting natural deictic gestures.
Whitney et al. [ 18] propose a multimodal Bayes filter for interpreting referential expressions. These
methods are specialized referent detectors that require either large amounts of in-domain training
data or extensive engineering effort for each novel task domain. In contrast, GIRAF offloads fusion
of multimodal instructions to LLMs and implements a heuristic-based referent detection module
leveraging VLMs and simple geometry so that it can perform referent detection in a zero-shot manner.

LLM-based Planning for Robotics. Large language models have been adapted as the user interface
for various robotics applications. LLMs have shown promising performance in a variety of complex
reasoning tasks [5, 6, 10, 12]. Multiple efforts have demonstrated planning capabilities of LLMs in
robotics, including zero-shot generation of high-level task plans [19], reasoning about the state of
the task from various sources of feedback [20], planning with contextually appropriate and feasible
actions [21, 22], and directly producing robot code [23, 24]. These works ground task scenes using
VLMs but do not explicitly model the presence of the human beyond providing language instructions
and feedback. However, LLMs and VLMs are not pretrained for complex geometric reasoning and
therefore these systems fail in tasks where there are multiple semantically similar objects or the
user just does not have the right language to describe an item. GIRAF bypasses complex geometric
reasoning from language alone by incorporating a human descriptor that grounds human gestures for
providing richer feedback for LLM reasoning.

3 Gesture-Informed Robot Assistance via Foundation Models

Problem Statement. We define the problem of embodied multimodal instruction following as: given a
task specification in the form of synchronized speech S and visual gestures V, a robot needs to output
a control policy 7 that satisfies this task specification. We assume access to a set of parameterized
robot action primitives A = {a'(61),...,a"(6,)}. The robot policy 7 needs to return a sequence of
action primitives with parameters specifying object locations.

The key insight of our system is that we can leverage LLMs pretrained on large-scale human-generated
text corpus for reasoning about such multimodal instructions, and effectively turning the instruction
following problem into two sub-problems: 1) the grounding problem of translating the raw human
input S, V and scene observations O into a form that LLMs can consume, and 2) the prompting
problem of enabling LLMs to reason about the grounded context for producing a robot policy 7.

We propose an LLM-based framework for multimodal instruction following, named gesture-informed
robot assistance via foundation models (GIRAF). The system diagram of GIRAF is shown in

In the rest of this section, we discuss how we approach each of the sub problems in multimodal
instruction following, and provide implementation details for GIRAF.

3.1 Grounding Speech, Gestures, and Scene

For the grounding problem, we introduce different descriptors to separately ground the scene and the
human in the scene. The scene descriptor Dscene provides information about objects while the human
descriptor Dyyman textualizes the speech instruction and the gesture provided. At the same time,
instead of passively detecting all possible objects and gesture-related information and feeding them



to the LLM planner, we prompt the LLM to first reason about the speech and gesture instructions,
and then decide which perception tools to use for detecting necessary information. The perception
tools include expert gestures models that extract gesture information for different gesture classes.

Scene Descriptor. D, is used to describe object categories and locations in the scene. Given an
image of the scene, Dgcene performs Object Segmentation using Segment Anything[25], and then
compute object centers (Object Localization) by de-projecting 2D pixels to 3D positions using depth
information. We use OpenCLIP [26] to find object labels by comparing the similarity between the
embedding of the segmented object image with a list of all possible object labels. This list of all
possible labels can be provided by object detectors or the human user. In our experiments, we use
ground truth object lists to minimize error introduced by object detectors. (Object Classification).
The scene descriptor outputs object information as a set O = {(c1,p1), ..., (cjo}, Pjo|)} Where ¢;
and p; are the label and 3D position of object ¢ respectively.

Human Descriptor. The goal of Dyyman is to textualize human speech and gesture. For speech
recognition, GIRAF processes audio input and turns speech into text with each word marked with
its timing. The timing information is used for determining which visual frames to process for
aligning with gesture information. We employ Microsoft Azure [27] for this purpose. Gestures
can be described with different levels of details or fidelity. For example, a “pointing” gesture can
also be described as “index finger extends out and others curl inward”, or even numeric values of
the relative position of each finger tips with respect to the wrist. In addition, gestures can be static
(e.g. thumbs-up, pointing at an object) or dynamic (e.g. waving, drawing a circle over a group of
objects). It is non-trivial to design a universal gesture detector based on hand information only due
to the context-dependant nature of gestures. We find LLMs are capable of reasoning about gesture
representations with different level of fidelity but perform best with human-annotated gesture labels
when they are available and can be reliably detected (more details in ).

In our instantiation of GIRAF, we employ off-the-shelf MediaPipe [28] hand detector to extract hand
features and train deep neural networks to predict a set of selected gesture classes. We train supervised
classification models (one for static gestures, another for dyanmic ones) to classify gestures using
data from EgoGesture [29]. Specifically, we extract the 1) keypoints of detected hands in image
coordinates, 2) keypoints of detected hands in world coordinates, and 3) confidence of detected hands
from the output of MediaPipe hand detector and concatenate them as the input feature to gesture
classification models. We train separate models with different architectures for classifying static and
dynamic gestures. For the static gesture model, we use a three-layer multilayer perceptron (MLP)
with ReLu as the activation function. For the dynamic gesture model, we input the preprocessed
landmark features into a recurrent neural network (RNN) with an LSTM unit. We then feed the
output of the RNN to a linear layer. We find stat-of-the-art VLMs can also provide promising gesture
classification results on static gestures but often fail to detect the correct referent (see for
more details) and therefore we design specialized referent detection module.

The output of Dyyman are two lines of code in comment (as shown in the bottom left box of )—
one for language instruction, the other for gesture—which we then feed to the LLM task planner.

Perception API. In this work, we mainly focus on deictic gestures, where in addition to detecting
the gesture, our system needs to detect the referent the gesture is referring to. The task planner will
decide whether the deictic gesture is referring to an object, a location, or a direction. To find the
referred object, the referent detection function takes an object name Orger and a timing Zgesture for
gesture frame as inputs. We first query semantic filter with ogree to get a set of candidate object
classes C. We implement semantic filter by prompting the LLM to return a list of candidate object
names given a label to harness LLM’s capability of reasoning about object semantics. For example,
when the user says “Give me that tool”, C will only contain labels that can be classified as “tool”
(subject to the LLM). We then filter a list of candidate object instances O using C:

@:{(Cmpkﬂ(cmpk) € Qandc; € C} 1)

Next, we index the visual frames using tgegwre, leverage MediaPipe [28] to detect hand keypoints, and
de-project 2D keypoints to 3D keypoints. We then find the pointing ray that starts at the detected



index finger tip pyp and goes in the direction of the vector from index finger pip joint py;, to the tip
(denoted as 7 in ). Let 7ﬁnger denote the unit vector from ppi, to pgp. The pointing ray is
7 = (ptip, 7ﬁnger) . To identify the referred object, we use a heuristic that returns the object in O
that is closest to the pointing ray:

(Clargetaplarget) = arg mir} [D (pia ?)] 2

(cipi) €0

To find a referred position, we follow a similar procedure as above, but instead of considering the
positions corresponding to objects, we find the point in the entire point cloud that is closest to I
the user use pointing for referring to a direction, we return 7ﬁnger as the referred direction.

3.2 Prompting LLMs for Task Planning

To adapt LLMs for planning, we take the approach from the work of Liang et al. [23] and directly
prompt the LLM to generate language model programs (LMPs) in Python by providing perception
APIs, motion primitive APIs, and demonstrating how to use each of these functions. The LLM we
use in our experiments is GPT-3.5 (text-davinci-003) with O temperature. An example plan generated
by LLM for the instruction “give me that tool" with a pointing gesture is shown in . The LLM
planner first reasons about the instructions and realizes this is a deictic gesture, therefore leverages
perception APIs to locate human hand and the referred object. The LLM then sequences the motion
primitives to pick up the detected referent and hand it over to the human. We show below another
example plan generated by the LLM planner for a similar task. Here the human breaks up the
instruction into two steps and request the robot to pick up the object first and then hand it over. To
show that the LLM planner can also reason with gestures of different fidelity level, we use detailed
description of the gesture shape instead of a high-level gesture label in this example:

# Instruction O: pick up the water jug

# Gesture: index finger extends out while others curl inward
water_jug_pos = detect_referred_obj_pos('water jug')
pick_up_obj_at_pos(water_jug_pos)

# Instruction 1: hand it to me

# Gesture: an open palm faces upward
target_pos = detect_hand_center_pos()
move_gripper_to_pos(target_pos); open_gripper ()

Note that we removed code for confirmation and error detection in these examples to highlight
LLM’s reasoning capability for interpreting gestures. In our implementation of GIRAF, we leverage
Microsoft Azure [27] text-to-speech functionality and include examples in the prompt such that the
robot would 1) confirm with the user by repeating the instruction it receives, 2) report error if it cannot
produce bug-free code or failed to detect a gesture (when it thinks the speech should accompany
a gesture), and 3) ask the user if it took a correct first movement to decide whether to continue
executing or abort. For example, before picking up anything, the robot will move to the object, “point”
at the predicted target object with its gripper, and ask the human if it has located the correct target. If
the human responds “no”, then the robot will abort the picking up action. This level of transparency
adds some overhead to the interaction but asserts that the robot will not make unexpected moves,
which is important for ensuring safety when we do not have full control over what the LLM outputs.

4 Experiments

4.1 Can GIRAF enable instruction following robots to be more natural and efficient?

We hypothesize that incorporating gesture information, especially deictic pointing gestures, would
make task specification easier and more natural for the human, outperforming prior language-only
approaches to instruction following. Concretely, we make the following hypotheses:
e H1. GIRAF is preferred by human users compared to a language-only instruction following
method for specifying goals that are ambiguous or hard to describe.
* H2. GIRAF is quantitatively more effective compared to the language-only instruction following
method for specifying goals that are ambiguous or hard to describe.



B CaP CaP (execution)

GIRAF GIRAF (execution)
6
l 094
. | 085
2
024
0 n T -
instruction is referent executed easy to trust will use again  frustrated success rate
understood identified  successfully communicate
6
l 088
; I
1
I 052
2
2 K B - [0.09] 0.09
T2. Fetch Tools ,){’ instruction is referent executed easy to trust will use again ~ frustrated success rate

understood identified  successfully communicate

Figure 2: User Study Results. GIRAF is rated higher by users and enables better performance than baseline
language-only method CaP [23]. Note that for performance we report both planning success rates (identifying
the correct referent) and execution success rates.

To test H1 and H2, we conduct a user study with two table-top manipulation tasks where the user
instructs a 7-DoF Franka Panda robot arm to manipulate specific objects on the table while there are
multiple instances of semantically the same or similar objects in the scene. We compare our method
with the baseline language-only method CaP [23]. Specifically, we designed two tasks shown on the
left side of Fig. 2:

e T1: Open Drawers In this task, there are 64 drawers in a cabinet and the user needs to specify one
for the robot to open. Here, we expect language to not be an efficient modality, as a language-only
method would require the user to specify the exact row and column of the drawer.

e T2: Fetch Tools In this task, a user is asking the the robot the hand over a tool they would
like to use. These tools require the human to use specialized language to refer to them, and are
additionally difficult for the VLM to classify correctly.

We recruited 11 participants for the user study (6 female, 5 male). 6 out of the 11 participants are
native English speakers. Each user participated in the two different task settings as described above.
For each task, they select three different target objects, resulting in about 30 tests in total, and for
each object, they have at most 3 trials (speech recognition failures do not count towards trials). This
study is IRB approved. More details are included in Appendix C and implementation of the motion
library is included in Appendix D.

Gestures provide an easier mode of communication when interacting with robots. As shown
in Fig. 2, users rated GIRAF higher (except for frustration, which lower is better) than the baseline
across our qualitative measures and GIRAF scored highest for “easy to communicate" (supporting H1
with p < .01). We also see that the baseline is rated lower for fetch tools task than in open drawers
task as we expected. Most users could count and describe the position of drawers they want but lack
the language to specify the tools.

Gestures enable higher success rate in instruction following. The rightmost plots of Fig. 2 show
the success rates of baseline method CaP and GIRAF for both tasks in our user study (supporting
H2 with p < .01). We plot both the planning success rate and the execution success rate defined in
Appendix C. GIRAF achieves higher success rates on both tasks, and we also find out one major
limitation for the baseline to identify the correct object purely from language lying in the fact that
existing LLMs are not good at geometric reasoning such as understanding relative positions.

4.2 Can GIRAF reason about diverse types of gestures?

We evaluate the LLM planner’s capability of reasoning about diverse types of unseen gestures in
HRI settings in a zero- or few-shot manner. We curated the dataset Gesturelnstruct with 36 different
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Figure 4: Long horizon interaction with multiple gestures. We visualize a long-horizon interaction using
GIRAF that involves multiple different gestures unseen in the prompt, and pointing gestures that refer to object,
location, or direction depending on context.

speech-gesture task scenarios in human-robot interaction settings (the complete dataset along with
annotations is on our website). We generated each task scenario under four different communicative
gesture types—symbolic, semaphoric, iconic and deictic—and include both static and dyanmic
gestures (see details in Appendix B). Symbolic gestures are conventional gestures used to convey a
fixed meaning and can replace language (e.g. thumbs-up). Semaphoric gestures are gestures that
human design for specific purposes and associate meaning by telling the robot what it means, then
they would use them again like symbolic gestures (e.g. ask the robot to turn around on a snapping
gesture). Deictic gestures are gestures used to physically refer to an object, a location, or a direction
(e.g. pointing with index finger). Iconic gestures are gestures that are used to represent objects,
actions, intents, and abstract concepts (e.g. use two hands opening and closing to represent book).

Each task scenario in Gesturelnstruct consists of an image or sequences of images showing the
visual gesture, a high-level gesture label, an accompanying language instruction (except for symbolic
gestures), an interaction context (e.g. robot state and the scene), and a description of the human
intent in the form of goal state. An example task scenario in Gesturelnstruct is using iconic gesture
‘hammering’, and ask the robot to “give me the tool that does this” in the context of “robot sees a
screwdriver, a wirecutter and a hammer”. The LLM task planner needs to infer the correct type of
gesture and call the corresponding function to handle detection and grounding of iconic gestures
in order to find the correct tool. Additional examples of gesture-speech instruction-following task
scenarios under each gesture type are shown in Fig. 3 (left) and the full dataset is on our website.

GIRATF is able to reason about a diverse set of gestures in zero-shot manner. Our results show
that GIRAF achieves 80.6% success rates across all task scenarios in Gesturelnstruct dataset. Fig. 3
(right: dark orange bars) shows the results under each gesture type and we find that GIRAF performs
better on object-related gestures (deictic and iconic) comparing to symbolic or semaphoric gestures.
Our conjecture is that both symbolic and semaphoric gestures are not accompanied by language, so
the reasoning needs to purely rely on the gesture itself. Since LLM does not actually see the gesture,



its ability to reason about these gestures is limited. We also implement the full pipeline of GIRAF
to show its reasoning capabilities for various gestures in a long horizon task. This long-horizon
interaction is visualized in , demonstrating that GIRAF is able to reason about symbolic gestures,
iconic gestures, and deictic gestures referring to different entities in a single interaction. We provide
additional example use cases in the Appendix.

4.3 Can GIRAF reason with different representations of gestures?

To understand what is the best way to ground gestures, we investigate what kind of representation
enables high reasoning performances. Gestures can be represented differently with varying level of
fidelity. We define three levels of representation fidelity for gestures with respect to hand pose and
motion. Low-fidelity representations are gesture labels annotated by humans (e.g. “hammering”),
while high-fidelity representations are numerical values of hand joint positions or motion trajectories
(e.g. trajectory of the hand center in 3D space) that usually are output representations of automatic
hand detection systems. Mid-fidelity representations are human textual descriptions of hand shapes or
hand motion (e.g. fist moving up and down). We evaluate LLM’s ability to reason at different fidelity
levels of gesture representation with a focus on textual representations (mid- and low-level fidelity.
We initiliazed Gesturelnstruct using low-fidelity gesture class labels, and then populated them with
mid-fidelity textual representations by describing the hand shape and motion of the gesture in detail.

GIRAF can reason about gestures with textual representations of different levels of fidelity.

shows the results of GIRAF reasoning with both gesture labels (low-fidelity) and gesture
descriptions (mid-fidelity). GIRAF is able to achieve 75% success rates on deictic gestures and
about 50% success rates on both iconic and semaphoric gesture. Semaphoric gestures are one-shot
generalization scenarios (human defines what to do in speech once and the robot needs to learn to
do that again next time without speech) so we expect LLM to perform the same with either type of
gesture representation. Unexpectedly, the LLM planner completely fails to correctly reason about
symbolic gestures when we use gesture descriptions while ChatGPT is able to describe these gestures
in our preliminary experiments. Further investigation is needed to understand this behavior.

5 Discussion

Summary. In this work, we propose the GIRAF framework that incorporates gesture information for
multimodal instruction following in human-robot interaction settings. We demonstrate instantiations
of GIRAF enable more-favorable and better-performing robots (70% higher success rate) than
language-only methods with a user study in two table-top manipulation tasks. We also evaluate
GIRAF on the Gesturelnstruct dataset and show that it is able to reason about a diverse set of gestures.

Limitations and Future Work. In this work, the instantiation of GIRAF can only handle static
gestures. While we show our reasoning module can handle dynamic gestures, we lack a model that
can robustly detect dynamic gestures. One can build a specialized dynamic gesture detector through
collecting supervised training data or leverage VLMs. While the VLMs we had access to do not take
multiple images as input, we expect video-based VLMs can describe human dynamic gestures in the
near future. As for the types of gesture descriptions, in our preliminary results we found that GIRAF
cannot achieve non-zero performance with high-fidelity numerical representations of gestures (i.e.
hand joint positions, 3D motion trajectories). Our conjecture is that existing LLMs lack the level of
geometric reasoning required to understand complex numerical representations of gestures. We leave
full investigation of this for future work. For similar reasons, GIRAF as a framework still cannot
solve tasks that require complex reasoning about the motion of the gestures, such as manipulative
gestures (e.g. human user demonstrates a task and says “do this”), which is an interesting open
problem for future work. Finally, we focus on hand gestures in this work while human full-body
gestures could also be informative and useful for human-robot interactions, which we consider as
promising future extensions of GIRAF.
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A Gesture Types

We reference the gesture classification in Vuletic et al. [15] for gestures in HRI and adopt the gestures
types that are most relevant and merged a few types that are tightly related and makes no difference
for detecting purposes. E.g. we merged metaphoric gestures with iconic gestures as it is defined as
iconic gestures for abstract concepts. We summarize the gesture classes in . Below, we list
example gestures of each type in

*  Symbolic: thumbs-up for OK; rubbing index finger and thumb to mean money.

* Semaphoric: gestures used in sign language; gestures used for commanding animals.
* Pictographic Iconic: gesture a circle to mean a round object.

* Spatiographic Iconic: gesture up and down and emphasize the object’s location.

* Kinematographic Iconic: rolling hand motion to refer to a rolling object.

* Metaphoric Iconic: a cutting gesture to indicate a decision has been made.

» Deictic: pointing gestures used to indicate an object; palm-open indicating a desire to receive
something.

B Gesturelnstruct Dataset: Task Scenarios

We generated a total of 36 different gesture-speech instruction-following task scenarios and list them
out in and . We do not distinguish the sub-types of gestures under iconic gesture.
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Table 1: Classification of Communicative Gestures

. Speech
Gesture Type Definition P
Dependency
. represent an object or concept, have conventional meaning
Symbolic . .
and can be directly translated into words .
- - - independent
. used to trigger a predefined action, defined in a
Semaphoric . o2 .
formalized dictionary, developed for specific purpose
represent meaning closely related to the semantic
content of the speech, illustrate what is being said
Tconic Pictographic represent shape
Spatiographic represent spatial relation
Kinematographic represent action of an object dependent
Metaphoric represent abstract concepts
Deictic refer to an entity that is being said

To call that LLM reasons successfully on a task scenario, it needs to call the correct action primitive
with the correct arguments in the generated plan. Take the fist gesture in semaphoric category as an
example. The goal state is “robot moves to the hand position,” so it is considered a successful trial if
the LLM generated code looks like this:

# Instruction O: move over here

# Gesture: fist

target_pos = detect_hand_center_pos()
move_gripper_to_pos(target_pos)

Since Gesturelnstruct is designed solely for the purpose of evaluating if LLM has zero-shot reasoning
capability for these types of gestures, we took a top-down approach of exemplifying gesture types
when constructing dataset. However, a bottom-up approach of collecting a suite of gesture-language
instructions from real applications would be preferred in practice.

Table 2: Gesturelnstruct Dataset - part 1: Symbolic and Semaphoric Gestures

Gesture gesture gesture language .
Type label description instruction context intent / goal state
thumb extends out and points upward robot gripper open .
thumbs up while other fingers curl inward ) and above cup handle robot picks up the cup
. thumb extends out and points robot gripper open robot asks human
1 -
Symbolic thumbs down down while other fingers curl inward and above cup handle how to make corrections
thumb and index finger forms robot gripper open e
OK a circle while others extend out . and above coffee pod robot picks up the coffee pod
sto) an open palm faces outward - robot moving robot stops
stop pen p towards the person P!
an open palm faces inward, robot is far awa
beckoning and the whole hand moves - y robot moves towards person
. from the person
inward and outward repeatedly
fist a closed palm come over here - robot move to hand position
. . an open palm first faces upward, . .
Semaphoric pick up and then all fingers curl inward grasp it robot picks up the coffee pod
release aclosed palm ﬁf st faces downward, drop it - robot releases the coffee pod
and then all fingers extend out
circlin index finger extends out while
. 2 others curl inward, and the whole hand turn around - robot turns around
horizontally . . . .
moves in a circular motion horizontally
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Table 3: Gesturelnstruct Dataset - part 2: Iconic and Deictic Gestures

Gesture esture esture language :
8 8 - . 8 g context intent / goal state
Type label description instruction
. . ive me the bowl there are a square
circle two hands forms a circle 8 . . d robot hand over the round bowl
that shaped like this bowl and a round bow
. . robot add water in cup with
measuring thumb and index finger extend . . . . . L .
. N . . add this much water robt is holding a water jug height similar to the size
with two fingers out while others curl inward < N
between human’s two fingers
thumb and index finger extend out while robot eripper open
pinching others curl inward first, and then thumb do this sripper op robot picks up the coffee pod
" and above coffee pod
and index finger touch each other
thumb and index finger extend out
. . and touch each other while others curl . . .
Iconic spreading . N do this robot is holding a coffee pod robot releases the coffee pod
inward first, and then thumb
and index finger separate
thumb and index finger extend out . . .
L X . . robot gripper is on robot twists the bottle cap
twisting while others curl inward, do this .
a bottle of water to open it
and the whole hand rotates
. an open palm faces outward, . . . robot push the block
shin, his T gripper is on a w n block . A
pushing and the whole hand moves outward dot obot gripper is on a wooden bloc towards a specified direction
o an open palm faces upward, . . . robot lifts the bottle of
lifting pen p P do this robot is holding a bottle of water .
and the whole hand moves upward water off the ground
fingers gently curl inward while thumb
. is on the other side first, and then . robot is holding a lemon
squeezing N do this . . . robot squeezes the lemon
all fingers move closer and its gripper is above a cup
to become a closed palm
. a closed palm, and the . robot sees hammer, screwdriver,
hammering P I am looking for a tool . robot hand over the hammer
whole hand moves up and down and wirecutter on the table
index and middle finger extend out
. while others curl inward, . robot sees hammer, screwdriver, .
cutting . . N Tam looking for a tool . robot hand over the wirecutter
© and index and middle finger and wirecutter on the table
repeatedly touch each other and separate
. a closed palm, and the whole give me the tool robot sees hammer, screwdriver,
hammering . B robot hand over the hammer
hand moves up and down that does this and wirecutter on the table
index and middle finger extend out
cuttin while others curl inward, give me the tool robot sees hammer, screwdriver, robot hand over the wirecutter
e and index and middle finger repeatedly that does this and wirecutter on the table
touch each other and separate
. ive me the tool robot sees hammer, screwdriver, .
screwing a closed palm, and the whole hand rotates & . . robot hand over the screwdriver
that does this and wirecutter on the table
index finger extends out while robot just drew a square
circling vertically others curl inward, and the whole hand again Just d robot draws another square
. . . Ny on a piece of paper
moves in a circular motion vertically
thumb and other fingers form robot sees various obiects
smoking a curved shape, and the whole hand bring me this s 00y robot hand over a cigarrete
. on the table
is near the mouth
two closed palms are on robot sees beanie and caj
putting on a beanie two sides of the head, and both hands can you give me this o P robot brings a beanie
on the rack
moves downward
two open palms first face each other, . .
. . . robot sees various objects
opening a book and then they slowly move apart bring this to me robot hand over a book
- on the table
and both face upward
fingers gently curl inward while thumb robot sees various obiects
drinking is on the other side, and the whole hand I need this e S objects robot hand over a drink
o on the kitchen counter
first faces upward and then tilts inward
fingers gently curl inward while
opening a door thumb is on the other side, and the whole | can you help me with this robot is in a room with a human robot opens the door
hand faces outward and rotates
pointing index finger extends out . . . . . . .
. .. . Wi g
(object) while others curl inward pick up this water jug robot gripper is empty robot picks up the water jug
ointing index finger extends out . . . . robot place down the water ju,
pointing . 8 . put it over here robot is holding a water jug P . ater jug
(location) while others curl inward at the pointed location
Diectic ointin, index finger extends out . L . . . robot moves
pointing . s . move a little bit this way robot is holding a water jug . . -
(driection) while others curl inward in pointed direction
pointing index finger extends out throw away robot see multiple objects robot throw away the referred
(multiple objects) while others curl inward this, this, and this on a dirty table items into trash can
handover an open palm faces upward place it over here robot has a tool in hand robot hand over tool
. . an open palm faces downward, . . . . robot picks up
uching an N . ick his i gripper is em .
touching an object and the whole hand is on an object pickup obot gripper is empty the touched object
. index finger extends out while others . robot is holding a pencil robot draws a similar
drawing X draw this . !
curl inward, and the whole hand moves on a piece of paper shape on the paper
circling index finger extends out while others throw all the trash . . robot throw all the referred
. . N . robot gripper is embpy .
(dynamic pointing) curl inward, and the whole hand moves into the trash can trash into the trash can
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C User Study

C.1 Definition of Success

As shown in , we consider two types of success rates in this user study:

1. Success rate:

This refers to the planning success rate. We count a test successful if the robot finds the
correct object (e.g. drawer, tool) that the user wants within 3 trials. This measures how good
the task planner and referent detection heuristic is, which is the focus of this work.

2. Success rate (execution):

This refers to the full task success rate. We count a test successful if the robot can complete
the task (e.g. open the correct drawer, fetch the correct tool) within 3 trials. This measures
the performance of the whole system, including the robot execution.

C.2 Instructions

We provide the instructions we present to the user below:

In this study you will interact with a robot arm to complete 2 different table-top manipulation tasks
and each in 2 different scenarios. The study will take approximately 45 minutes to complete. Please
open the survey and fill out the first section before continuing.

Task: Open Cabinet Drawers In this task, you will ask the robot to open a few drawers of the
cabinet for you. Pick 3 drawers (within the highlighted area) you want to ask the robot to open and
mark them in this image (mark the order you want to have them opened): <image> You will repeat
this task in two different scenarios:

* Scenario M: You use language to describe which drawer to open.
* Scenario N: You use both language and pointing gestures for specifying the target drawer to open.

When you are ready to initiate a task, step once on the foot pedal and issue an instruction for the robot.
The robot will confirm your instruction by repeating what it heard. You have 3 trials for each task
(speech detection failure does not count as a trial). Please fill out the corresponding survey questions
after each scenario.

Task: Fetch Tools In this task, you will ask the robot to fetch a few tools for you. Pick 3 tools
(randomly) for the robot to fetch and mark them with the order you’d like to have them in this picture:
<image> You will repeat this task in two different scenarios:

* Scenario M: You use language to describe which tool to fetch.
» Scenario N: You use both language and pointing gestures for specifying the target tool to fetch.

When you are ready to initiate a task, step once on the foot pedal and issue an instruction for the
robot. The robot will confirm your instruction by repeating what it heard. The robot will try to hand
the tool over to you. You have 3 trials for each task (speech detection failure does not count as a trial).
Please fill out the corresponding survey questions after each scenario.

C.3 Survey Questions

For each task, the user fill out the following survey for each scenario by rating how much the agree
with each statement:

» The robot is able to understand my instruction.

» The robot is able to identify the correct item I wanted.

* The robot is able to successfully execute the task.

* It is easy to communicate with the robot what I wanted.
* I feel frustrated after interactions with the robot.
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R: Is this the correct one?

Figure 5: User Study Task Rollouts

» I trust the robot for completing tasks I specified for it.
* I would use this robot again in the future for similar tasks.

C.4 Rollouts

Example trajectories of the two user study task are shown in Fig. 5. We record all the task specification
language and RGB-D images of the scene from 3 calibrated camera views and will release this data
on our website as well.

D Motion Primitives

We adopt the method from Sundaresan et al. [30] and implement a library of parameterized motion
primitives for the tasks in our experiments. All of these motion primitives are parameterized with a 3D
position in the robot’s reference frame. For example, the primitive for picking up an object takes the
center point of the object as parameter and the placing primitive takes the target location as parameter.
The depth cameras are fixed and calibrated so that the detected object positions can be mapped to
the robot’s reference frame. For simple pick-and-place motions, we hand code motion primitives
that command the gripper to move to the input target position with a fixed (upright) orientation.
For complex manipulation motions such as opening the drawer and picking up non-concave objects
(tools), we use waypoint-based motion primitive models. To train each motion primitive model, we
collected supervised gripper pose data conditioned on a pointcloud input and a 3D point on the object
de-projected from a 2D point annotated by the user. At test time, the detected object centers output
from the scene descriptor will be used as input to these motion primitive models.

E Prompting LLM

We prompt LLM for tasking planning, including reasoning about what to perceive. We also implement
a language program to filter target objects. For our basline implementation, we also prompt the
LLM to reason about spatial relationships between objects with examples. Full prompts used in our
experiments can be found on our project website: tinyurl.com/giraf23
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Input Image
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Truth Label

[ Counting from the top left corner, the drawer pointed by the user is on which row and which column? }

PaLl [ 1st row, 2nd column J [ 1st row, 2nd column J [ 1st row, 2nd column ]

InstructBLIP [ right J [ right J [ right ]

The drawer being pointed The drawer that the user is The drawer being pointed to
ChatGPT4-V by the user is on the 4th row pointing at is on the 5th row by the user is on the 5th row
and 6th column counting and 4th column counting and 8th column counting
from top left corner. from the top left corner from the top left corner

=)

T1. Open Drawers (=)

Input Image

with Ground
Truth Label
tdle screwdriye wire cutter
O Prompt : ; -
) P Which tool is the user pointing to?

PaLI [ screwdriver ] [ pegboard ] [ pegboard }
InstructBLIP [ hammer J [ hammer } [ hammer }
ChatGPT4-V The user is pointing to a The user is pointing to the The user is pointing to a pair

screwdriver. hammer on the pegboard. of needle-nose pliers.

T2. Fetch Tools %€

Figure 6: VLM as referent detector. Examples of running referent detection with PaLLI [31], InstructBLIP [32],
and chatGPT4-V demonstrate that existing VLMs still struggle with fine-grained geometric reasoning.

F VLM for Grounding Gestures

We investigate VLM’s capability of both 1) grounding gesture class and 2) detecting the referent of a
pointing gesture. We test 3 state-of-the-art models: PaLI [3 1], InstructBLIP [32], and chatGPT4-V.

VLMs take the full scene image as input and therefore have more context to reason about the gesture
type than an end-to-end gesture classifier trained with only hand keypoints features and therefore has
the potential to replace data-driven gesture classifiers. We prompt InstructBLIP [32] to classify static
gestures in the Gesturelnstruct dataset and it can achieve around 80% zero-shot accuracy.

17



However, VLMs are not good at predicting referent of the pointing gesture, as shown in Fig. 6: none
of the three models can output the correct drawer instance in the open drawers task as it requires
complicated geometric reasoning: chatGPT4-V struggles to identify the exact location of the drawer,
PaLI gets the answer format correct but outputs the same answer for different input images, while
InstructBLIP does not even output reasonable answers); all three models can predict reasonable
output in the fetch tools task (chatGPT4-V and PaLI generating plausible responses in all cases) but
lack the sensitivity for precise referent detection.

G Realistic Use Cases

While we designed the tasks for user study to highlight the benefits of combining gesture under-
standing when following language instructions, we believe the problems GIRAF addresses broadly
exist in many realistic scenarios. For example, the Fetch-Tool task represents tasks where the human
user does not know the name of the target item or the robot cannot detect the objects as the human
recognizes them. From the user’s end, this is common when English is not their native language.
From the robot’s end, this may very well happen when it encounters rare objects or objects with
unusual appearance. If the user could realize the robot doesn’t understand what they are referring to,
they would want to point at the target instead.

H Demos of Additional Use Cases

We show additional use cases of GIRAF including (1) using multiple gestures in a single instruction:
opening multiple drawers (Fig. 7), and picking and placing a tool (Fig. 8); (2) specifying grasp point
on an object (Fig. 9); and (3) instructing the robot to perform a long-horizon sorting task (Fig. 10).

“Please open this one and that one.” ]

pointing N &

“Open this drawer, this one, and that one.” ]

pointing N7 4

Figure 7: Open multiple drawers at once.
I Failure Modes

We summarize error modes of each module in the system below. We generally take two measures
to account for different error modes. The first one is to make the system as transparent as possible
so we can catch the error before it propagates to the next level (e.g. robot will announce the action
it plans to take and confirm the target with the human user before it takes any action). The second
measure is to catch exceptions in the code and detect simple failures (e.g. syntactic errors and grasp
failures). For code error, the robot will announce its failure and ask the user to try again, for grasping
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“Pick up this tool and place it over here.” ]

4 ')
S
pointing 4 S /]

“Now pick up this wrench and place it here.”

e 2
pointing

Figure 8: Fetch and place tool.
“Pick up this toy over here.”

pointing

[ “Use this point to pick up the elephant.” ]

pointing

Figure 9: Pick up object from a specific point.

failure the robot will adjust its motion primitive parameters and try again. While we do not directly
tackle low-level action primitive failures, our system allows the user to fix low-level execution errors
by incorporating directional pointing gestures. In one of our long-horizon tasks (Fig.4 in the paper),
we show that the robot missed the grasping point of the mug handle by a bit and the user can point in
the direction they want the robot to move in order to fix it.

1. Human description:
(a) Speech (Azure API [27]):
* Misrecognized words:

This happens more often for non-native English speakers than the native ones as

we observed in our user study. On average, this happens to native speakers 0.27

times per instruction and non-native speakers 0.46 times per instruction. When the

user’s instruction is misrecognized, we ask the user to give the instruction again, so

this error would not propagate into the system.

(b) Gesture:
On average, gesture is not detected 0.07 times per instruction, and we further discuss
different reasons of failure below.
i. Hand detector (MediaPipe [28]):

* Hand not detected:
This happens more often when the image is taken from the side of the hand
instead of the back or front of the hand. When this happens, we ask the user to
give the instruction again, so this error would not propagate into the system.

¢ Incorrect hand keypoints:
For example, it might label the joints of the thumb as joints of the index finger.
This happens more often when some hand joints are occluded in the image, such
as doing a fist gesture, and if this happens, we would still feed those keypoints
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“Pick up that towel.” “Throw it into that basket.”

(a) More/ Less Detected Objects. (b) Incorrect Object Labels.

Figure 11: Scene Descriptor Failure Modes.

into the gesture classifier because we don’t have the groundtruth to verify whether
the keypoints are correctly labeled. This kind of error might hurt the accuracy of
the gesture classifier and referent detection module because both of them directly
take hand keypoints as input instead of raw images.

ii. Gesture classifier
¢ Predict as unknown gesture:

In this case, we would treat it as no gesture detected and ask the user to give the
instruction again, so this error would not propagate.

* Predict as another gesture:

For example, the gesture classifier might predict a pointing gesture as a fist
gesture. In this case, we would still feed the predicted gesture to the reasoning
module as we don’t have the groundtruth. This kind of error can hurt the
performance of the LLM task planning module. For example, when the user says
“move over here” while the gesture classifier predicts a pointing gesture as a fist
gesture, LLM would tell the robot to move to the hand center instead of moving
to the pointing location.

2. Scene description:

* More/ less detected objects:
As shown in the orange regions in Fig. | 1a, the scene descriptor might predict more
or less drawers than the actual number, but this is generally not problematic in our
experiments because users don’t usually point at those misclassified objects.

* Incorrect object labels:

Another case of failure is when the scene descriptor gives objects wrong labels. This
would hurt the performance of the referent detection module as it would apply a
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semantic filter to just consider a subset of objects given object labels and the user’s
instruction. For example, when the user says “pick up the leftmost screwdriver,” the
referent detection module would only consider the two orange points in that
are labeled as screwdrivers to be candidates that the user might point at. Therefore,
even if the user is pointing at the leftmost screwdriver, our system would think the
middle one is the one being pointed at.

3. LLM task planning:

* Bugs (semantic and logic errors in generated code):

Bugs happen mainly because of its confusion about Python list and Numpy array. As a
result, the generated code might try to call a Numpy array function on a Python list,
resulting in an inexecutable piece of code. Bugs would also be generated when the
language instruction is out-of-distribution. One example during our user study is when
the user said “on the third row take the third drawer.” Since it differs from the sentences
we put in the prompts too much, the generated code tries to feed more arguments into
the action primitive. Specifically, the action primitive for opening a drawer takes one
argument of the drawer’s 3D position, but in this example, the generated code wants to
feed the function with an additional 3D position corresponding to the third row. On
average, bugs happen 0.02 times per instruction.

Incorrect gesture interpretation:

LLM might also fail to understand the meaning of some gestures. For example, LLM
fails to call the correct function navigate_following_user () given the gesture
“beckoning.”

4. Referent detection:

On average, referent detection fails 0.2 times per instruction. Besides being affected by
accumulated errors from other components, we also observe another case of failure that is
related to user’s behavior.

 User’s different behavior (unreliable pointing):

We observed one interesting case where some users tend to use gestures as a vague
indicator of their attention and still rely on language to provide the accurate description.
For example, one user gave the instruction “open the drawer on the second row and
second column” while vaguely pointing toward that direction. Therefore, for this kind
of users, our heuristic fails more often because their pointing gesture might not actually
point at the object, but we also found out these cases happen more at the start of their
user studies as they were able to adapt to our system by pointing more accurately
through a few trials.

J Influence of Distance on Referent Detection

Close Neutral

Figure 12: Setup for Testing Referent Detection Accuracy.
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Table 4: Referent Detection Accuracy under Different Setups.

Close Neutral Far

Compact  2/3 2/3 2/3
Neutral ~ 2/3 3/3 3/3
Sparse 3/3 3/3 3/3

To further test how our referent detection heuristic works as the user standing further away, we ran a
small experiment varying the user’s distance to the objects and how close the objects are. The setup
is shown in . As shown in , our heuristic can still work even when the user points
from further away, and as the distance between objects becomes larger, the accuracy of our heuristic
improves because it is less likely to be affected by noise in the detected hand keypoints.

22



	 
	Introduction
	Related Work
	Gesture-Informed Robot Assistance via Foundation Models
	Grounding Speech, Gestures, and Scene
	Prompting LLMs for Task Planning

	Experiments
	Can GIRAF enable instruction following robots to be more natural and efficient?
	Can GIRAF reason about diverse types of gestures?
	Can GIRAF reason with different representations of gestures?

	Discussion
	Appendix

	 Appendix
	Gesture Types
	GestureInstruct Dataset: Task Scenarios
	User Study
	Definition of Success
	Instructions
	Survey Questions
	Rollouts

	Motion Primitives
	Prompting LLM
	VLM for Grounding Gestures
	Realistic Use Cases
	Demos of Additional Use Cases
	Failure Modes
	Influence of Distance on Referent Detection


