
Learning Sequential Acquisition Policies
for Robot-Assisted Feeding

Priya Sundaresan, Jiajun Wu, Dorsa Sadigh
Stanford University

United States
priyasun@stanford.edu, {jiajunwu, dorsa}@cs.stanford.edu

Abstract: A robot providing mealtime assistance must perform specialized
maneuvers with various utensils in order to pick up and feed a range of food
items. Beyond these dexterous low-level skills, an assistive robot must also plan
these strategies in sequence over a long horizon to clear a plate and complete a meal.
Previous methods in robot-assisted feeding introduce highly specialized primitives
for food handling without a means to compose them together. Meanwhile, existing
approaches to long-horizon manipulation lack the flexibility to embed highly
specialized primitives into their frameworks. We propose Visual Action Planning
OveR Sequences (VAPORS), a framework for long-horizon food acquisition.
VAPORS learns a policy for high-level action selection by leveraging learned
latent plate dynamics in simulation. To carry out sequential plans in the real world,
VAPORS delegates action execution to visually parameterized primitives. We
validate our approach on complex real-world acquisition trials involving noodle
acquisition and bimanual scooping of jelly beans. Across 38 plates, VAPORS
acquires much more efficiently than baselines, generalizes across realistic plate
variations such as toppings and sauces, and qualitatively appeals to user feeding
preferences in a survey conducted across 49 individuals. Code, datasets, videos,
and supplementary materials can be found on our website.

Keywords: Deformable Manipulation, Dexterous Manipulation

1 Introduction
Millions of people are impacted logistically, socially, and physically by the inability to eat
independently due to upper mobility impairments or age and health-related changes [1, 2, 3]. Robot-
assisted feeding has the potential to greatly improve the quality of life for these individuals while
reducing caregiver burden. However, realizing a performant system in practice remains challenging.
For instance, humans eat spaghetti noodles as shown in Fig. 1 using nuanced fork-twirling motions.
Dishes like ramen require even more diverse strategies like scooping soup or acquiring meat and
noodles. Thus, not only must an autonomous feeding system employ various utensils and strategies
to handle different foods and quantities, but it must also operate over long horizons to finish a meal.

Figure 1: Visual Action Planning OveR Sequences (VAPORS) employs a high level policy πH to select
amongst discrete manipulation strategies h, such as grouping and twirling, and a low-level vision-parameterized
policy πL to execute these actions at for long-horizon dexterous food acquisition.

https://sites.google.com/view/vaporsbot

Prior assistive feeding work has focused on learning individual low-level vision-parameterized
primitives for food manipulation. Examples include separate policies for skewering [4, 5, 6],
scooping [7], bite transfer [8, 9, 10], cutting [11, 12, 13], and pushing food piles [14]. While
highly specialized, these policies cannot reason over an extended horizon or make use of multiple
strategies for more effective plate clearance. Humans, on the other hand, interleave acquisition
and rearrangement actions with ease—pushing multiple peas together before scooping instead of
painstakingly acquiring each individual pea or gathering noodles closer to each other before twirling
with a fork. Replicating this long-horizon foresight in robotic feeding has yet to be demonstrated.

Recent work in skill-based reinforcement learning (RL) provides a natural way to model long-horizon
manipulation sequences hierarchically. This entails first learning a high-level policy for composing
skills [15, 16, 17], and then optionally inferring the parameters of low-level skills separately [18,
19, 20]. These approaches tend to favor learning from simulation to scale data collection [21], but
current state-of-the-art simulators lack high-fidelity models for food deformation, visuals, and cutlery
interaction. This complicates learning food manipulation policies in simulation and transferring
them to real [13]. Existing hierarchical approaches also assume that the low-level skills come from a
general-purpose library of primitives such as grasping and path planning [19, 22, 18, 15, 23], limiting
their applicability to the food domain which requires highly specialized behaviors. Thus, we seek to
find an appropriate layer of abstraction for feeding, which can leverage the benefits of (1) hierarchical
planning for long-horizon manipulation and (2) vision-based primitives for fine-grained control. Our
key insight is that learning from simulated experience only at a high-level, which need not capture the
intricacies of food dynamics, and incorporating visual planning to instantiate low-level specialized
primitives, yields a powerful approach to dexterous, multi-step food manipulation.

In this work, we present VAPORS: Visual Action Planning OveR Sequences, a unified framework
for food manipulation. Our approach is decoupled into a high-level planner, which sequentially
composes low-level primitives. We first learn a policy in simulation that models latent dynamics of
plates from images. Specifically, we use segmented image observations as a representation space,
which captures the distribution of food items and is transferable between simulation and reality for
high-level plans. We train the policy using model-based RL with a reward that encourages both
acquisition and rearrangement. Separately, we instantiate a library of specialized primitives in the real
world from learned food pose estimation and segmentation. Finally, we use the learned high-level
planner on segmented real food images to plan sequences of primitives for long-horizon acquisition.

We experimentally validate our approach on two real food manipulation tasks: robotic noodle
acquisition and bimanual scooping. Across both real-world trials and a comprehensive user study
of 49 users, VAPORS achieves the highest efficiency, plate clearance, and qualitative user ratings
compared to heuristic and single-primitive baselines, all while generalizing to unseen plates.

2 Related Work

Robot-Assisted Feeding. Recently, a number of devices for mealtime assistance have become
available on the market [24, 25], but are limited in functional reach due to reliance on pre-programmed
trajectories or teleoperation by users. While bite transfer of a food item to a user’s mouth is the
eventual goal of autonomous feeding [9, 8, 10], we focus on bite acquisition as a primary initial
step for downstream feeding. Prior work in bite acquisition demonstrates the effectiveness of visual
planning for precise manipulation. Feng et al. [6], Gordon et al. [5, 26] and Sundaresan et al. [4]
leverage bounding box localization, food pose estimation, and visual servoing to geometrically plan
precise fork skewering motions. Similarly, Grannen et al. [7] and Suh and Tedrake [14] plan bimanual
scooping and grouping actions, respectively, for segmented food piles. These works focus only on
developing a specialized individual primitive for food manipulation. In isolation, this does not capture
many long-horizon real-world feeding scenarios with multiple utensils and strategies.

Long-Horizon Planning and Control. Several recent frameworks tackle long-horizon manipulation
by separating motion-level decision-making from sequential plans. Traditionally, task-and-motion-
planning (TAMP) approaches tend to assume extensive domain knowledge including after-effects
of actions and fixed task plans [27, 28, 29, 30, 31, 28]. In feeding, plate dynamics can be highly

2

uncertain, and state estimation is notoriously challenging, rendering these approaches ineffective.
An alternative approach is model-based planning and control, with recent impressive results on
complex tasks like dough manipulation [16, 32, 33]. This family of methods leverage learned
environment dynamics over visual states like images [34, 35, 36, 37, 33], keypoints [38], or particle-
based representations [16, 32] to sample and plan action sequences that maximize predicted rewards.
However, these methods do not scale well to high-dimensional continuous action spaces such as that
of food acquisition. To address this, hierarchical RL decouples policies into a high-level planner
which selects amongst discrete but parameterized low-level primitives [39]. These works have
demonstrated promising results on simulated long-horizon tabletop manipulation [18, 19, 15], but
have yet to consider (1) real-world deployment beyond carefully controlled experimental setups,
or (2) complex manipulation beyond commonplace primitives like pick-place, path-planning, and
grasping. In contrast, we consider highly diverse plates requiring specialized primitives and tools.

Learning and Control for Manipulation in the Real World. A large body of robotics research
focuses on learning real-world policies for manipulation either through sim-to-real transfer or
exclusively from real interactions. With sufficient domain randomization, sim-to-real transfer has
proven effective for tasks involving rigid objects or a limited set of deformable items like cloth, which
state-of-the-art simulators support [40, 41, 42]. However, adapting these simulators to modeling
food appearance and deformation is highly non-trivial. Meanwhile, learning exclusively from real
data has been shown to work well in challenging domains such as semantic grasping [43] or cable
untangling [44, 45, 46]. These approaches rely on state representations that are scalable to learn,
such as descriptors learned from self-supervised interaction [43] or keypoints learned from a small
amount of manually annotated images [47, 48, 49, 50]. In our setting, it is difficult to scale real-world
data collection across the range of food shapes, appearances, and properties a robot may encounter.
Self-supervised learning is also complicated due to resets and utensil interchange. We instead take a
hybrid approach which takes advantage of simulation for modeling high-level plate dynamics from
large-scale interactions, but leverages visual planning at the low level for precise real manipulation.

3 Problem Statement
We formalize the long-horizon food acquisition setting by considering an agent interacting in a
finite-horizon Partially Observable Markov Decision Process (POMDP). This is defined by the tuple
(S,O,A, T ,R, T, ρ0). We assume access to plate image observations ot ∈ RW×H×C

+ = O of
unknown plate states S, with the initial state distribution given by ρ0. Here, W , H , and C denote
the image dimensions. A denotes the action space, and T : S × A → S represents the unknown
transition function mapping states and actions to future states. The time horizon T denotes the
discrete budget of actions to clear the plate andR(s, a) refers to the reward which measures progress
towards plate clearance. Our goal is to learn a policy π(at|ot) that maximizes expected total return:
Eπ,ρ0,T [

∑︁
t R(st, at)], with t ≤ T .

To do so, we decouple π into separate high and low-level sub-policies. We assume access to K discrete
manipulation primitives hk, k ∈ {1, . . . ,K}, and learn a high-level policy πH which selects amongst
these primitives. Additionally, we learn a low-level policy πL which continuously parameterizes a
selected primitive according to visual input. The components we aim to learn are summarized below,
where hk denotes a discrete primitive type and at denotes its continuous low-level instantiation:

High-level policy : πH(hk|o≤t, a≤t−1) Low-level policy : πL(at|ot, hk)

We consider low-level actions at, parameterized by the position of the tip of a utensil (x, y, z) and
utensil roll and pitch (γ, β). Here, β = 0◦ corresponds to an untilted fork handle, for instance, and
γ = 180◦ corresponds to the fork tines being horizontal when viewed top-down (Fig. 2).

3.1 State-Action Representations

In this section, we outline the visual state and action representations which are at the core of our
learning approach introduced in Section 4.

Visual State Space. Our approach makes use of RGB-D images and segmented plate observations,
It ∈ RW×H×3

+ , Dt ∈ RW×H , Mt ∈ RW×H
+ at different levels of abstraction. We leverage binary

3

segmentation masks to capture the spread of food items on a plate, informing high-level planning
with πH , and RGB-D observations as input to πL which better capture fine geometric details of food.

Action Parameterization. We consider an agent that may either perform acquisition or
rearrangement actions, parameterized below. Acquisition actions attempt to pick up a bite of
food, and rearrangement actions consolidate items. For example, as a plate of noodles becomes more
empty, the robot may need to employ a rearrangement action by pushing multiple strands together
before twirling (acquiring) for a satisfactory bite size.

Figure 2: Action Parameterization: We
parameterize acquisition and rearrangement
actions relative to the densest (xd, yd, zd) and
furthest (xf , yf , zf) regions on the plate, as well
as the utensil roll γ and pitch β.

In acquisition, a robot with a utensil-mounted end-
effector approaches the position (xd, yd, zd) in the
workspace, and executes an acquisition motion
parameterized by roll γ and pitch β (i.e. twirling,
skewering, scooping, etc.). Here, (xd, yd, zd) denotes
the densest location of the plate, where food is most
closely packed to encourage a high-volume bite.
Specifically, at,acquis = (xd, yd, zd, γ, β) (1).

The intent of rearrangement is to bring food items
from the sparsest plate region to the densest by
pushing from (xf , yf , zf) ro (xd, yd, zd), while
maintaining contact with the plate throughout. As
this is a planar push, we simply orient the tool orthogonal to the push direction, such that
γ = arctan

(︂
yf−yd

xf−xd

)︂
, and is untilted (β = 0◦): at,rearrange = (xd, yd, zd, xf , yf , zf) (2).

4 VAPORS: Visual Action Planning OveR Sequences
Within the visual state and action space outlined in Section 3.1, we present our approach VAPORS
for tackling long-horizon food acquisition. First, VAPORS learns a policy πH , detailed in Section 4.1,
to select amongst high-level strategies for long-horizon plate clearance via model-based planning.
Finally, VAPORS learns a low-level policy πL, which leverages visually-parameterized primitives to
carry out generated sequential plans for real-world food acquisition detailed in Section 4.2.

4.1 Learning High-Level Plans from Simulation

Our goal is to first learn a policy πH for selecting amongst K discrete acquisition or rearrangement
strategies without concern for the low-level action parameters. To do so, we learn a latent dynamics
model of the plate from segmented image observations, and instantiate πH(hk|M≤t, a≤t−1), k ∈
{1, . . . ,K} with model-based planning over this learned dynamics model. In this section, τ denotes
the running counter of high-level primitives executed so far, and t denotes the current timestep.

Figure 3: Simulation vs. Real: We visualize the task of
bimanual scooping of jelly beans. Due to the sim-to-real
gap, we merely leverage simulation to learn high-level
food dynamics, and leave low-level action planning to
real vision-parameterized primitives.

Simulator Overview. We train πH entirely in
simulation, where interactions can be collected
at scale as opposed to the real world where
manual plate resets and potential food waste are
prohibitively expensive. As current simulators
lack out-of-the-box support for many feeding
scenarios, we develop a custom simulated
food manipulation environment, visualized in
Figure 3 in Blender 2.92 [40], further detailed
in Appendix C.1. The simulator exposes RGB
images It, binary food segmentation masks
Mt, and food item positional states st =
{(xi, yi, zi)}i∈(1,...,N). Using this information, we design rewards for food acquisition in terms
of ground truth plate state and collect transitions to train πH .

Reward Design. With access to a simulated testbed for feeding, we train πH to select amongst
strategies via model-based reinforcement learning (RL). Our goal of efficient plate clearance can be

4

specified with a reward that incentivizes either (1) successfully picking up food, or (2) reducing the
spread of items on a plate. Optimizing for the first objective alone might lead to plate clearance, but
at a slow pace of taking low-volume bites. The second objective encourages rearrangement when the
plate is sparse to aid downstream acquisition. Concretely, we express this as a weighted reward with
tunable weight α ∈ [0, 1]: rt = α(PICKUP GAIN) + (1 − α)(COVERAGE LOSS) (3). Here, PICKUP
measures the quantity of food items picked up. COVERAGE measures the spread of items on the plate,
illustrated in blue in Fig. 2). We provide the details for computing both in Appendix C.2.

Figure 4: Latent Plate Dynamics Model: We learn
a latent dynamics model of the plate comprised of an
encoder q, transition model p(zτ |zτ−1, h

k
τ−1), and a

reward model p(rt|zt). We use this model to select
action sequences that maximize future rewards.

Learning Latent Plate Dynamics. With
a means of measuring task progress via rt
and access to plate observations Mt, we
propose a model-based agent that learns
plate dynamics from segmented observations
and uses the learned model to plan actions
that maximize reward. We achieve this
by training a multi-headed latent dynamics
model with the following (Fig. 4): (1)
An encoder q(zt|M≤t, a≤t−1) compressing
high-dimensional segmented images Mt to
compressed latent states zt, (2) A transition
function over the latent states p(zτ |zτ−1, h

k
τ−1) with which to imagine rollouts, and (3) A decoded

reward model given by p(rt|zt), such that at test time, we can sample action sequences and determine
which maximize predicted rewards. We note that the transition function learns to predict high-level
plate state changes between τ − 1 and τ as a result of executing a primitive hk

τ , rather than between
individual timesteps t− 1 and t due to at.

During training, we collect simulated transitions consisting of the masked image, high-level primitive,
low-level action, and reward {(Mt, h

k
τ , at, rr)}. We train each head of this network using the

objectives detailed in Appendix D.1.

We note that this approach is highly related to [37] with several crucial design choices. First, we
learn plate dynamics over segmented image observations Mt of food items on a plate, as opposed
to raw RGB observations. This allows the dynamics model to attend to food items rather than the
whole plate, provides an easily transferable representation between simulation and reality, and eases
pressure for latent representations to capture irrelevant details in pixel space. Additionally, we learn a
policy within an action space of discrete but continuously parameterized primitives as opposed to a
high-dimensional space like joint-motor commands. This encourages actions that induce meaningful
and perceptible plate changes likely to be encountered in downstream feeding.

Model-Based Planning. Once trained, we leverage the learned encoder, transition model, and
reward model towards instantiating πH as an MPC-style planner with a receding T -step horizon.
At timestep t, we enumerate all KT future candidate action sequences for the small library of
primitives K. Conditioned on a history of observations M1:t and actions a1:t−1, we imagine the
future latent states zτ :τ+T+1 under each action sequence hk

τ :τ+T via the transition function. Next,
we predict decoded rewards according to the reward model p(rt|zt) for each candidate sequence:

R =
∑︁τ+T+1

i=τ+1 E [p(ri|zi)]. Given the sequence of actions (ĥ
k

τ , ĥ
k

τ+1, . . . , ĥ
k

T) which maximizes

predicted cumulative reward R, we take πH(M≤t, a≤t−1) = ĥ
k

τ , the first primitive in the predicted
sequence. After executing this action, we replan with πH , terminating when τ = T . Details of the
full planning pipeline, adapted from [37], are provided in Appendix D.2.

4.2 Visual Policies for Low-Level Real Manipulation

Our learned simulated task dynamics model from Section 4.1 relies on segmented images Mt as an
observation space and parameterized primitives as an action space. In this section, we describe the
visual state estimation pipelines we use to instantiate our state-action representations on real data.

5

(a) Spaghetti (b) Jelly Beans

Figure 5: Across 10 trials for spaghetti (a) and jelly bean (b) acquisition, we visualize the cumulative amount
acquired across individual trials (left) and averaged overall (right). Shading denotes the standard error.
Food Segmentation. To define acquisition and rearrangement actions relative to the poses of food,
we learn to segment food items on a plate as shown in Fig. 1. We learn a binary segmentation
model fseg : RW×H×3

+ → RW×H
+ , where for a real image It ∈ R+

W×H×3, fseg(It) yields a binary
segmentation mask M̂ t which serves as input to πH . To train fseg, we require a paired dataset of
real plate images and ground truth segmentation masks. However, manually labeling pixel-level
segmentation annotations on images is a painstaking and time-consuming process for real plates
of food. Instead, we use a self-supervised annotation process which starts by taking an image of
an empty plate, gradually adding food items to the plate, and using the absolute frame difference
between the empty plate image and current observation to obtain the food segmentation mask. We
implement fseg as a fully convolutional FPN (Feature Pyramid Network) and train it according to the
procedure detailed in Appendix D.3.

Food Orientation. Although segmentation provides a means to sense global positional information
about food on the plate, we also care about precisely orienting a utensil with respect to the local
geometry of a food item. For instance, using a fork to pick up a group of noodles requires orienting
the fork tines opposite the grain of the strands. This is crucial to preventing slippage during twirling
(Fig. 12), which tends to occur when the tines and strands run parallel. To address this, we also
learn a network fori : R+

W ′×H′×3 → R mapping a local RGB crop of a food item of dimensions
W ′ ×H ′ to the desired roll orientation of the utensil γ. Prior work has shown that acquiring a food
item orthogonal to its main principal axis, such as skewering a carrot against its length-wise axis
rather than width-wise, can improve acquisition stability [4, 6]. Thus, we implement fori as a fully
convolutional network with a ResNet backbone and train it from a small amount of real food item
crops (200), manually annotated with keypoints defining the principal food item axis as in [4].

Action Instantiation. With the visual state estimation pipelines fseg and fori trained offline, we can
instantiate πL(at|ot, hk) for real-world manipulation. Given an RGBD image observation It, Dt, we
first infer the segmentation mask M̂ t = fseg(It). Next, we query πH to obtain a selected primitive

ĥ
k
= πH(M̂≤t, â

(H)
≤t−1).

If ĥ
k

is an acquisition primitive, we instantiate the continuous action at,acquis according to Eq. (1)
by estimating the densest plate region (x̂d, ŷd, ẑd) and utensil orientation γ̂. To do so, we apply a

standard 2D Gaussian kernel over M̂ t yielding M̂
′

t. This blurs the image such that high-density
regions in the original segmentation mask remain saturated but sparse regions have lower intensity.

From this, we take the 2D argmax ûd, v̂d = argmax
(u,v)∈M̂

′
t

M̂
′

t[u, v] to be the densest pixel in

the image, deprojected to a 3D location (x̂d, ŷd, ẑd) via Dt and known camera intrinsics. Given a
food item crop centered at the densest pixel, I

′

t (Fig. 2) we also infer the utensil orientation with
γ̂ = fori(I

′

t). For a rearrangement primitive, we parameterize at,rearrange according to Eq. (2). In
addition to sensing the densest plate region, we sense the furthest region (x̂f , ŷf , ẑf) by finding the
lowest intensity pixel in M ′ˆ

t. This yields the following instantiations:

πL(ot, h
k,acquis) = (x̂d, ŷd, ẑd, γ̂)

⃓⃓⃓
πL(ot, h

k,rearrange) = (x̂d, ŷd, ẑd, x̂f , ŷf , ẑf)

Finally, VAPORS operates in a perception-action loop using πH to generate sequential plans and πL

to execute them. The full algorithm can be found in Algorithm 1 of the Appendix.

6

5 Experiments

We seek to evaluate VAPORS ability to clear plates, by effectively leveraging diverse strategies
and planning over long horizons. Thus, we compare against a single-strategy baseline with no
long-horizon reasoning and a multi-strategy approach that plans long-term actions heuristically rather
than via learned plate dynamics. We consider two challenging real-world feeding scenarios to test the
capabilities of VAPORS compared to other approaches: noodle acquisition and bimanual scooping.

Experimental Setup: In noodle acquisition (Fig. 10), a Franka robot with a wrist-mounted
custom motorized fork and RGBD camera must decide amongst twirling (acquisition) or grouping
(rearrangement) to clear a plate of noodles. In bimanual scooping (Fig. 11), two Franka robots
operating from overhead RGBD cameras must select amongst scooping (acquisition) or grouping
(rearrangement) to clear a plate of jelly beans. For both tasks, we consider a half-full initial plate
distribution (50 g. noodles, 15 jelly beans) and a hard count of τ = 10 actions for spaghetti and
τ = 8 actions for jelly beans, encouraging the acquisition of multiple items at once to finish a
plate. For both tasks, we assume access to hand-eye calibration between the RGB-D camera and
robot end-effector. In Appendix E we outline the hardware setup and control stack, low-level action
instantiations, and training details for each task.

Baselines: Acquire-Only is identical to VAPORS in terms of πL, but does not perform any long-
horizon reasoning. Instead, at each timestep, this approach only acquires via twirling or scooping,
with no rearrangement in between. Heuristic also utilizes πL in the same manner, but replaces πH

with a naı̈ve group-then-acquire strategy. This method senses the COVERAGE, as defined in Eq. (3),
over M̂ t to heuristically determine when acquiring or rearrangement is appropriate. When the area
exceeds a pre-defined threshold, the policy defaults to rearrangement and otherwise acquires.

Figure 6: Likert Ratings: We administer a 7-point
Likert survey to users after observing 10 trials
per method. VAPORS elicits the most positive
feedback across all criteria. ‘*’ indicates statistical
significance (p < 0.05).

Plate Clearance Results: We evaluate VAPORS,
Acquire-Only, and Heuristic on clearing plates across
10 trials for each task (Fig. 5). We see that
VAPORS achieves the most efficient and highest
cumulative plate clearance. As expected, Acquire-
Only optimizes only for acquisition in the current
instant, without exploiting the benefits of grouping
for a more substantial pickup of multiple items at
once. Scooping one jelly bean at a time or attempting
to twirl just a few strands of noodles repeatedly
leads to the observed slow rate of overall clearance.
Heuristic’s greedy group-then-acquire approach plans
based on detected coverage thresholds, which we
find is brittle in practice especially for any artifacts
in segmentation mask predictions. This naive metric
also does not encourage acquiring any bite-sized piles
that may form intermittently, but rather aims to amass
everything into one large pile before acquiring. This
delays acquisition gains and wastes the action budget.

User Evaluation: Additionally, we conducted a user
study with 49 non-disabled participants (age range
27.0± 9.5, 46.9% female and 53.1% male) to gauge user preferences across methods. Of this pool,
77.6% reported prior experience interacting with robots before, 75.5% reported having fed someone
before, and 28.6% reported having been fed as an adult. We hypothesized: H1. Compared to
baselines, VAPORS use of multiple strategies and long horizon foresight will lead to more preferable
feeding in terms of quantitative and qualitative metrics.

We used a within-subjects design where we presented each participant with videos of all 10
plate clearance trials per each of the three methods, for either noodle acquisition or bimanual
scooping. For each participant, we randomized the method order, the order of trials per

7

method, and the food group. In the study, we ask participants to rate efficiency, bite
size, similarity to human feeding, practicality, likelihood for reuse, safety, and generalization.

Figure 7: Noodle Acquisition Tiers of Difficulty:
Tier 1 consists of plain noodle varieties: Dan Dan,
Udon, and Pappardelle noodles. Tier 2 includes
Tier 1 plates along with soy sauce, marinara sauce,
and garnishes such as parsley or cilantro. Tier 3
plates include noodle dishes such as pesto pasta
and chow mein ordered from DoorDash.

After watching all trials, we provided users with a
7-point Likert survey to assess these criteria (Fig. 6).
VAPORS incurs the highest qualitative user ratings
across criteria, compared to the Acquire-Only and
Heuristic baselines, and with statistical significance
for certain categories (p < 0.05, denoted ‘*’). Users
noted that VAPORS “mimicked natural feeding,” and
“showed a capacity for clustering as the plate got more
and more empty, which felt like a great and efficient
approach,” while Heuristic and Acquire-Only “seem
like extreme policies, where [Acquire-Only] never
tries to cluster and [Heuristic] focus too much on
making big piles.” These results align with the hypothesis that VAPORS’ use of multiple strategies
and ability to reason over long horizons benefits a user’s mealtime experience. We provide additional
user study findings in Appendix E.

Generalization Testing: Finally, we stress-test VAPORS’ generalization capabilities by
experimenting with noodle dishes prepared with sauces and garnishes as well as ordered from
DoorDash (Fig. 7). We conduct 18 additional trials of plate clearance on unseen plates, separated
into three tiers of difficulty with 6 trials per tier. We summarize our findings in Table 1.

Failure Categorization
Tier Description % Cleared A B C D Failure Rate

1 Plain Noodles 90% ± 6% 2 7 2 0 18%
2 Noodles w/ Sauce 68% ± 16% 2 8 1 4 25%
3 DoorDash Noodles 64% ± 13% 3 5 2 4 23%

Table 1: OOD Results and Categorization of Failure Modes:
(A) Misperception, (B) Wrong Action, (C) Imprecision, (D) Slip.

VAPORS achieves near full plate
clearance for Tier 1 noodles,
demonstrating generalization to
noodle shapes and sizes (Table 1).
While VAPORS is still able to
make decent progress towards
plate clearance in Tier 2, we observe the occurrence of more slip failures (D) and misplanned actions
(A, B) due to the addition of sauce and distractor food items. Somewhat surprisingly, the performance
gap between Tier 2 and Tier 3 is minimal, with VAPORS being able to clear well over half the
noodles for a fully out-of-distribution plate. The main challenges include misperceiving cabbage for
noodles in the chow mein, as well as dropping twirled noodles heavily coated in pesto or soy sauce
(D) (Fig. 12). Regardless, VAPORS demonstrates promising signs of zero-shot generalization.

6 Discussion

We present VAPORS, which to our knowledge is the first framework to address the multi-step food
acquisition problem in robot-assisted feeding. Our hybrid approach leverages simulation to learn
to model high-level plate dynamics at scale, and uses visual pose estimation in order to perform
dexterous maneuvers for complex low-level food pickup. We experimentally validate VAPORS on a
complex suite of real-world food acquisition tasks such as noodle acquisition and bimanual scooping
of beans. VAPORS demonstrates the ability to clear plates efficiently over non-learned baselines
while appealing to the feeding preferences of real users.

Limitations and Future Work. The largest current limitation is a lack of user testing on individuals
with mobility impairments that affect their ability to eat independently, discussed in detail in Appendix
A. Additionally, although this work highlights promising initial results toward generalization across
food variations such as shape, sauces, and toppings, we acknowledge that our library of low-level
primitives is currently limited. One actionable future direction is expanding our library with prior
work on skewering, cutting, and even toppling unstable items to tackle a more expansive set of
plates. Our initial prototypes for dexterous food acquisition, such as the motorized fork, also open up
interesting possibilities for future designs of dexterous interchangeable utensils which would enable

8

rapid strategy switching. Currently, the system also executes primitives in an open-loop fashion, but
we hope to use reactive control in the future to adapt online to slippage or imprecision.

9

Acknowledgments
This work is in part supported by funds from NSF Awards 2132847, 2006388, 2218760, as well as Stanford
HAI, the Office of Naval Research, AFOSR YIP FA9550-23-1-0127, and Ford. We thank Lorenzo Shaikewitz
for designing the motorized fork used in this work which made real-world experimentation possible. We also
thank Rajat Kumar Jenamani, Suneel Belkhale, Jennifer Grannen, Yuchen Cui, and Yilin Wu for their helpful
feedback and suggestions. Priya Sundaresan is supported by an NSF GRFP.

References
[1] M. W. Brault et al. Americans with disabilities: 2010. US Department of Commerce, Economics and

Statistics Administration, US . . . , 2012.

[2] S. W. Brose, D. J. Weber, B. A. Salatin, G. G. Grindle, H. Wang, J. J. Vazquez, and R. A. Cooper. The
role of assistive robotics in the lives of persons with disability. American Journal of Physical Medicine &
Rehabilitation, 89(6):509–521, 2010.

[3] V. Maheu, P. S. Archambault, J. Frappier, and F. Routhier. Evaluation of the jaco robotic arm: Clinico-
economic study for powered wheelchair users with upper-extremity disabilities. In 2011 IEEE International
Conference on Rehabilitation Robotics, pages 1–5. IEEE, 2011.

[4] P. Sundaresan, S. Belkhale, and D. Sadigh. Learning visuo-haptic skewering strategies for robot-assisted
feeding. In 6th Annual Conference on Robot Learning, 2022. URL https://openreview.net/forum?
id=lLq09gVoaTE.

[5] E. K. Gordon, X. Meng, T. Bhattacharjee, M. Barnes, and S. S. Srinivasa. Adaptive robot-assisted feeding:
An online learning framework for acquiring previously unseen food items. In 2020 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), pages 9659–9666. IEEE, 2020.

[6] R. Feng, Y. Kim, G. Lee, E. K. Gordon, M. Schmittle, S. Kumar, T. Bhattacharjee, and S. S. Srinivasa.
Robot-assisted feeding: Generalizing skewering strategies across food items on a plate. In The International
Symposium of Robotics Research, pages 427–442. Springer, 2019.

[7] J. Grannen, Y. Wu, S. Belkhale, and D. Sadigh. Learning bimanual scooping policies for food acquisition.
In 6th Annual Conference on Robot Learning, 2022. URL https://openreview.net/forum?id=
qDtbMK67PJG.

[8] L. Shaikewitz, Y. Wu, S. Belkhale, J. Grannen, P. Sundaresan, and D. Sadigh. In-mouth robotic bite transfer
with visual and haptic sensing. arXiv preprint arXiv:2211.12705, 2022.

[9] S. Belkhale, E. K. Gordon, Y. Chen, S. Srinivasa, T. Bhattacharjee, and D. Sadigh. Balancing efficiency
and comfort in robot-assisted bite transfer. In 2022 International Conference on Robotics and Automation
(ICRA), pages 4757–4763. IEEE, 2022.

[10] D. Gallenberger, T. Bhattacharjee, Y. Kim, and S. S. Srinivasa. Transfer depends on acquisition: Analyzing
manipulation strategies for robotic feeding. In 2019 14th ACM/IEEE International Conference on Human-
Robot Interaction (HRI), pages 267–276. IEEE, 2019.

[11] M. Sharma, K. Zhang, and O. Kroemer. Learning semantic embedding spaces for slicing vegetables. arXiv
preprint arXiv:1904.00303, 2019.

[12] K. Zhang, M. Sharma, M. Veloso, and O. Kroemer. Leveraging multimodal haptic sensory data for robust
cutting. In 2019 IEEE-RAS 19th International Conference on Humanoid Robots (Humanoids), pages
409–416. IEEE, 2019.

[13] E. Heiden, M. Macklin, Y. Narang, D. Fox, A. Garg, and F. Ramos. Disect: A differentiable simulator for
parameter inference and control in robotic cutting. arXiv preprint arXiv:2203.10263, 2022.

[14] H. Suh and R. Tedrake. The surprising effectiveness of linear models for visual foresight in object pile
manipulation. In International Workshop on the Algorithmic Foundations of Robotics, pages 347–363.
Springer, 2020.

[15] L. X. Shi, J. J. Lim, and Y. Lee. Skill-based model-based reinforcement learning. arXiv preprint
arXiv:2207.07560, 2022.

[16] X. Lin, C. Qi, Y. Zhang, Z. Huang, K. Fragkiadaki, Y. Li, C. Gan, and D. Held. Planning with spatial-
temporal abstraction from point clouds for deformable object manipulation. In 6th Annual Conference on
Robot Learning, 2022. URL https://openreview.net/forum?id=tyxyBj2w4vw.

10

https://openreview.net/forum?id=lLq09gVoaTE
https://openreview.net/forum?id=lLq09gVoaTE
https://openreview.net/forum?id=qDtbMK67PJG
https://openreview.net/forum?id=qDtbMK67PJG
https://openreview.net/forum?id=tyxyBj2w4vw

[17] Z. Cao, E. Bıyık, W. Z. Wang, A. Raventos, A. Gaidon, G. Rosman, and D. Sadigh. Reinforcement learning
based control of imitative policies for near-accident driving. arXiv preprint arXiv:2007.00178, 2020.

[18] M. Dalal, D. Pathak, and R. R. Salakhutdinov. Accelerating robotic reinforcement learning via
parameterized action primitives. Advances in Neural Information Processing Systems, 34:21847–21859,
2021.

[19] S. Nasiriany, H. Liu, and Y. Zhu. Augmenting reinforcement learning with behavior primitives for
diverse manipulation tasks. In 2022 International Conference on Robotics and Automation (ICRA), pages
7477–7484. IEEE, 2022.

[20] C. Agia, T. Migimatsu, J. Wu, and J. Bohg. Taps: Task-agnostic policy sequencing. arXiv preprint
arXiv:2210.12250, 2022.

[21] A. Kumar, Z. Fu, D. Pathak, and J. Malik. Rma: Rapid motor adaptation for legged robots. arXiv preprint
arXiv:2107.04034, 2021.

[22] S. Bahl, A. Gupta, and D. Pathak. Hierarchical neural dynamic policies. arXiv preprint arXiv:2107.05627,
2021.

[23] L. Shao, T. Migimatsu, Q. Zhang, K. Yang, and J. Bohg. Concept2robot: Learning manipulation concepts
from instructions and human demonstrations. The International Journal of Robotics Research, 40(12-14):
1419–1434, 2021.

[24] Meet Obi. Meet Obi. https://meetobi.com/, 2022. [Online; accessed 6-June-2022].

[25] Meal-Mate. Meal-Mate - Made2Aid. https://www.made2aid.co.uk/productprofile?productId=
8&company=RBF%20Healthcare&product=Meal-Mate, 2022. [Online; accessed 6-June-2022].

[26] E. K. Gordon, S. Roychowdhury, T. Bhattacharjee, K. Jamieson, and S. S. Srinivasa. Leveraging post hoc
context for faster learning in bandit settings with applications in robot-assisted feeding. In 2021 IEEE
International Conference on Robotics and Automation (ICRA), pages 10528–10535. IEEE, 2021.

[27] L. P. Kaelbling and T. Lozano-Pérez. Hierarchical planning in the now. In Workshops at the Twenty-Fourth
AAAI Conference on Artificial Intelligence, 2010.

[28] S. Srivastava, E. Fang, L. Riano, R. Chitnis, S. Russell, and P. Abbeel. Combined task and motion planning
through an extensible planner-independent interface layer. In 2014 IEEE international conference on
robotics and automation (ICRA), pages 639–646. IEEE, 2014.

[29] C. R. Garrett, R. Chitnis, R. Holladay, B. Kim, T. Silver, L. P. Kaelbling, and T. Lozano-Pérez. Integrated
task and motion planning. Annual review of control, robotics, and autonomous systems, 4:265–293, 2021.

[30] R. Chitnis, D. Hadfield-Menell, A. Gupta, S. Srivastava, E. Groshev, C. Lin, and P. Abbeel. Guided search
for task and motion plans using learned heuristics. In 2016 IEEE International Conference on Robotics
and Automation (ICRA), pages 447–454. IEEE, 2016.

[31] C. R. Garrett, T. Lozano-Pérez, and L. P. Kaelbling. Ffrob: An efficient heuristic for task and motion
planning. In Algorithmic Foundations of Robotics XI, pages 179–195. Springer, 2015.

[32] H. Shi, H. Xu, Z. Huang, Y. Li, and J. Wu. Robocraft: Learning to see, simulate, and shape elasto-plastic
objects with graph networks. arXiv preprint arXiv:2205.02909, 2022.

[33] X. Lin, Z. Huang, Y. Li, J. B. Tenenbaum, D. Held, and C. Gan. Diffskill: Skill abstraction from
differentiable physics for deformable object manipulations with tools. arXiv preprint arXiv:2203.17275,
2022.

[34] C. Finn and S. Levine. Deep visual foresight for planning robot motion. In 2017 IEEE International
Conference on Robotics and Automation (ICRA), pages 2786–2793. IEEE, 2017.

[35] F. Ebert, C. Finn, S. Dasari, A. Xie, A. Lee, and S. Levine. Visual foresight: Model-based deep
reinforcement learning for vision-based robotic control. arXiv preprint arXiv:1812.00568, 2018.

[36] D. Hafner, T. Lillicrap, J. Ba, and M. Norouzi. Dream to control: Learning behaviors by latent imagination.
arXiv preprint arXiv:1912.01603, 2019.

[37] D. Hafner, T. Lillicrap, I. Fischer, R. Villegas, D. Ha, H. Lee, and J. Davidson. Learning latent dynamics
for planning from pixels. In International conference on machine learning, pages 2555–2565. PMLR,
2019.

11

https://meetobi.com/
https://www.made2aid.co.uk/productprofile?productId=8&company=RBF%20Healthcare&product=Meal-Mate
https://www.made2aid.co.uk/productprofile?productId=8&company=RBF%20Healthcare&product=Meal-Mate

[38] Y. Li, A. Torralba, A. Anandkumar, D. Fox, and A. Garg. Causal discovery in physical systems from
videos. Advances in Neural Information Processing Systems, 33:9180–9192, 2020.

[39] S. Pateria, B. Subagdja, A.-h. Tan, and C. Quek. Hierarchical reinforcement learning: A comprehensive
survey. ACM Computing Surveys (CSUR), 54(5):1–35, 2021.

[40] T. Roosendaal. Blender foundation. The essential Blender: guide to 3D creation with the open source
suite Blender, 2007.

[41] E. Coumans and Y. Bai. 2019. pybullet, a python module for physics simulation for games, robotics and
machine learning, 2016.

[42] V. Makoviychuk, L. Wawrzyniak, Y. Guo, M. Lu, K. Storey, M. Macklin, D. Hoeller, N. Rudin, A. Allshire,
A. Handa, et al. Isaac gym: High performance gpu-based physics simulation for robot learning. arXiv
preprint arXiv:2108.10470, 2021.

[43] P. R. Florence, L. Manuelli, and R. Tedrake. Dense object nets: Learning dense visual object descriptors
by and for robotic manipulation. arXiv preprint arXiv:1806.08756, 2018.

[44] V. Viswanath, K. Shivakumar, J. Kerr, B. Thananjeyan, E. Novoseller, J. Ichnowski, A. Escontrela,
M. Laskey, J. E. Gonzalez, and K. Goldberg. Autonomously untangling long cables. arXiv preprint
arXiv:2207.07813, 2022.

[45] P. Sundaresan, J. Grannen, B. Thananjeyan, A. Balakrishna, J. Ichnowski, E. Novoseller, M. Hwang,
M. Laskey, J. E. Gonzalez, and K. Goldberg. Untangling dense non-planar knots by learning manipulation
features and recovery policies. arXiv preprint arXiv:2107.08942, 2021.

[46] J. Grannen, P. Sundaresan, B. Thananjeyan, J. Ichnowski, A. Balakrishna, M. Hwang, V. Viswanath,
M. Laskey, J. E. Gonzalez, and K. Goldberg. Untangling dense knots by learning task-relevant keypoints.
arXiv preprint arXiv:2011.04999, 2020.

[47] L. Manuelli, Y. Li, P. Florence, and R. Tedrake. Keypoints into the future: Self-supervised correspondence
in model-based reinforcement learning. arXiv preprint arXiv:2009.05085, 2020.

[48] W. Gao and R. Tedrake. kpam 2.0: Feedback control for category-level robotic manipulation. IEEE
Robotics and Automation Letters, 6(2):2962–2969, 2021.

[49] M. Shridhar, L. Manuelli, and D. Fox. Cliport: What and where pathways for robotic manipulation. In
Conference on Robot Learning, pages 894–906. PMLR, 2022.

[50] A. Zeng, P. Florence, J. Tompson, S. Welker, J. Chien, M. Attarian, T. Armstrong, I. Krasin, D. Duong,
V. Sindhwani, et al. Transporter networks: Rearranging the visual world for robotic manipulation. In
Conference on Robot Learning, pages 726–747. PMLR, 2021.

[51] D. Seita, A. Ganapathi, R. Hoque, M. Hwang, E. Cen, A. K. Tanwani, A. Balakrishna, B. Thananjeyan,
J. Ichnowski, N. Jamali, et al. Deep imitation learning of sequential fabric smoothing from an algorithmic
supervisor. In 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pages
9651–9658. IEEE, 2020.

[52] H. Ha and S. Song. Flingbot: The unreasonable effectiveness of dynamic manipulation for cloth unfolding.
In Conference on Robot Learning, pages 24–33. PMLR, 2022.

12

Learning Sequential Acquisition Policies
for Robot-Assisted Feeding

Please refer to our website for videos, code, and supplementary material, as well as the ’Additional
Experiments’ page for supplementary ablations and a comparison to additional baselines. We first
include a discussion around VAPORS’ greatest current limitations in the larger context of robot-
assisted feeding (Section A). In the subsequent sections, we also provide an overview of the main
design choices behind VAPORS and a thorough overview of implementation and experimental
details.

A Limitations and Risks
In this work, we evaluate VAPORS quantitatively in plate clearance experiments and qualitatively
in user studies. However, the largest current limitation is a lack of comprehensive user testing on
individuals with mobility impairments that affect their ability to eat independently. These individuals
are not represented in the demographic of individuals surveyed as per Section 5, and we are actively
working on expanding our pool of participants to include such users. We fully acknowledge that
performing user studies with non-disabled participants is neither representative of the experience
of individuals with difficulties eating, nor in any way a replacement for the feedback and insights
these individuals could offer towards improving assistive feeding research. We also note that plate
clearance success is not on its own an indicative metric of how useful or effective a system like
VAPORS would be for assisting real users with eating difficulties. Extending VAPORS as part of
a user-facing system for feeding would require several changes and considerations not explored in
this work, such as taking into account different feeding preferences, mobility levels, involuntary
head or body movements, comfort levels, and preferences surrounding shared versus full autonomy
across different users. A full-stack feeding system would also need to carefully consider how to do
in-mouth bite transfer safely, comfortably, and reliably. None of these considerations is exhaustive
in any way; we merely see VAPORS as a step towards addressing challenges surrounding dexterity
and long-horizon reasoning within bite acquisition, and we only speculate this having an impact for
assistive feeding down the line. Towards this goal, we provide additional results below containing
initial feedback from users with mobility impairments.

Figure 8: Likert Ratings for Users with and without Mobility Impairments: Error bars indicate standard
error, and ‘*’ indicates statistical siginficant findings via 1-way ANOVA testing. Users with and without mobility
impairments favor VAPORS in terms of all criteria, but especially efficiency, bite size, and generalizability,
suggesting the promise of our approach. For more user-facing considerations, such as practicality and whether
users would reuse VAPORS given a choice, we find a small drop in average ratings between users without and
with mobility impairments. In Section A, we discuss additional considerations to improve VAPORS in these
aspects. We note that the larger error bars and lack of statistical significant findings for users with mobility
impairments is due to the small sample size of users tested (3) as compared to 49 users without mobility
impairments. We are actively working to increase this pool for larger-scale user testing in the future.

B Feedback from Users with Mobility Impairments
Although we have yet to physically evaluate VAPORS alongside users with mobility impairments,
We seek to understand how these users perceive VAPORS currently. To do so, we conduct a user
study via the same interface from Section 5 involving watching videos of food acquisition and
providing Likert ratings as feedback. This study was approved by the Institutional Review Board of

13

https://sites.google.com/view/vaporsbot

Stanford University. In a survey sent out to users, we received three responses from participants (2
female, 1 male with ages in the range of 31-44). All participants reported difficulties and/or mobility
impairments that affect their ability to eat independently, including a C5 quadriplegic injury with no
finger or wrist function, and other impairments causing limited use of arms and hands.

We ask all users to evaluate the spaghetti acquisition trials from Section 5. In Figure 8, we visualize
the average Likert ratings for users without versus with mobility impairments. We find that users with
eating difficulties still rate VAPORS high in terms of efficiency, bite-size, and generalizability, and
comparatively much higher than baselines. We do see that these users ratings for other considerations
of a feeding system, such as practicality and reuse, are lower on average than users without mobility
impairments, but VAPORS is still favored. Users reported that the twirling primitives occasionally
struggled when there were very few strands of noodles left on the plate, or noodles were located at
plate edges, which could lead to messy bites in practice.

Thus, while promising in terms of its algorithmic effectiveness, we fully acknowledge that VAPORS
requires further refinement and ample testing to be a truly effective assistive feeding system, discussed
in Appendix Section A. We further acknowledge that the sample size of users with mobility
impairments is very small, and in the future, we hope to expand to a much larger pool of users
to fully understand VAPORS’ capabilities.

C Simulator Details
C.1 Simulator Design

Figure 9: Blender Food Simulation Environment: We implement a custom food manipulation simulator in
Blender 2.92 with an Open AI gym-style environment. The simulator supports softbody objects, such as noodles
in different shape variations, as well as rigid, granular piles of items. We implement cutlery with arbitrary utensil
meshes such as forks and spoons, and implement actions using the keyframing feature of Blender to control the
position and orientation of a tool across frames.

We use Blender 2.92, a physics and rendering engine, to develop a custom feeding environment
supporting deformable items, rigid items, and cutlery interactions. To instantiate deformable items
like noodles (Fig. 9), we represent each item as a group of particles simulated with soft body physics.
We treat granular piles of food such as jelly beans as separate rigid bodies. Additionally, we provide
support for mesh-based utensils including a fork, spoon, and pusher tool, where we programatically
keyframe the position and orientation of the tool across simulation frames to implement actions.

C.2 Reward Design

In this section, we describe the implementation of the reward function given in Eq. (3). For a set
of known food item states in simulation st = {(xi, yi, zi)}i∈(1,...,N), PICKUP measures the quantity
of food items picked up out of N total items. We detect a picked up food item in simulation by
thresholding the z position of all items before and after an action, relative to plate height. Analogous
to task progress metrics in cloth smoothing work [51, 52], we use COVERAGE to measure of spread of
items on the plate. We compute this via the area of the convex hull of {(xi, yi)}i∈(1,...,N), depicted
in Fig. 2, via the Scipy Python library.

D Details of Learning-Based Methods
D.1 Latent Dynamics Training Details

We implement the latent plate dynamics model using the recurrent state space model from [37], with
64× 64 input images and 30-dimensional diagonal Gaussian latent variables. This is a multi-headed

14

deep recurrent network comprised of a learned encoder, transition model, and reward model. We
supervise each head of the network with the following objectives:

• For the encoder q(zt|M≤t, a≤t−1), we use an auxiliary decoder head that upsamples latent
variables zt to predicted images M̂ t and take the mean-squared error between (M̂ t,Mt) as
a standard reconstruction objective. This encourages the learned latent representations to
preserve the notion of food spread captured in segmented image observations.

• We supervise the transition function p(zτ |zτ−1, h
k
τ−1) head using the KL-divergence for

multi-step predictions as defined in [37].
• Finally, for the reward model given by p(rt|zt), we take the mean-squared error between

predicted rewards and ground truth rewards (r̂t, rt). This objective promotes accurately
decoding rewards of future states to inform planning at test-time.

D.2 Planning with Learned Dynamics Model
Once trained, we use an MPC-style loop to sample and plan actions that maximize predicted rewards
under the learned reward model.

At time τ , we can enumerate all KT future candidate action sequences for the small library of
primitives K, where T is the planning horizon. Conditioned on a history of observations M1:t and
actions a1:t−1, we imagine the future latent states zτ :τ+T+1 under each action sequence hk

τ :τ+T :

zt:t+T+1 ∼ q(zτ |M1:t, a1:t−1)

τ+T+1∏︂
i=τ+1

p(zi|zi−1, h
k
i−1), (4)

where q(zt|M≤t, a<t−1) is the learned encoder and p(zτ |zτ−1, h
k
τ−1) is the learned transition model.

Next, we predict decoded rewards according to the reward model p(rt|zt) for each candidate sequence:

R =

i+T+1∑︂
i=τ+1

E [p(ri|zi)] . (5)

Next, we select the sequence of actions (ĥ
k

τ , ĥ
k

τ+1, . . . , ĥ
k

T) which maximizes predicted cumulative

reward R. The final step of the MPC planning loop is we take πH(M≤t, a≤t−1) = ĥ
k

τ , which is
simply the first primitive in the predicted sequence. After executing this action, we replan with πH ,
thus obtaining a second action and so on until τ = T (Algorithm 1).

Algorithm 1 Planning with VAPORS

1: for τ ∈ {1, . . . , T} do
2: It, Dt ← Get current RGBD image observation
3: M̂ t = fseg(It) // Infer segmentation mask

4: ĥ
k

τ = πH(M̂1:t, a1:t−1) // Select high-level action

5: Execute πL(M̂ t, ĥ
k

τ)

D.3 Food Segmentation Training Details

Self-Supervised Dataset Generation. To circumvent the painstaking process of pixel-level
segmentation annotation for real food images, we design a self-supervised annotation procedure.
First, we record a grayscale RGB image of an empty plate, Iempty ∈ RW×H

+ . Next, we manually
place food items on the plate at random without changing the position of the plate, yielding a new
grayscale observation It. Let Idiff = |It − Iempty|, the framewise absolute difference between the
full and empty plate. We initialize the ground truth segmentation mask Mt corresponding to It as a
2D array of zeros, and then assign Mt[Idiff > THRESH] = 1. In practice, we find that THRESH = 20
reasonably separates the foreground from the background to detect food. With this procedure, we

15

can scalably collect 280 paired RGB food images and segmentation masks in real within an hour
and a half of data collection. This includes plate resets, food placement, image capture, and offline
background subtraction post-processing.

Augmentation. We augment this dataset 8X by randomizing the linear contrast, gamma contrast,
Gaussian blur amount, saturation, additive Gaussian noise, translation, and rotation of each
RGB image, applying only the affine component of these same transformations to the associated
segmentation masks.

Training Objective. We train fseg, implemented as a fully convolutional FPN (Feature Pyramid
Network) using Dice loss:

Ldice = 1− 2× TP

2× TP+ FN+ FP
(6)

This objective encourages high overlap between predicted and ground truth masks, as TP, FN, FP

denote the number of pixel-level true positives, false negatives, and false positives in a prediction M̂ t

compared to ground truth Mt.

E Experimental Details
E.1 Noodle Acquisition Hardware Setup
Using a Franka Panda 7DoF robot, we aim to clear a plate of cooked noodles within a horizon of
T = 10 actions. We fit the end-effector with a custom 3D-printed mount consisting of a RealSense
D435 camera and a fork. To enable autonomous twirling and scooping capabilities, we extend the
fork’s range of motion via two servo motors (Dynamixel XC330-M288-T). We control the robot
with a Cartesian impedance controller, where the programmable servos are integrated in the forward
kinematics chain for positional control of the fork tip. The action space consists of either group
(rearrangement) or twirl (acquisition) actions, instantiated according to the learned segmentation and
pose estimation models detailed in Section 4.2.

A group action consolidates a sparsely distributed plate by sensing the furthest and densest points,
(x̂f , ŷf , ẑf) and (x̂d, ŷd, ẑd), and executing a planar push from the furthest to densest point. In a
twirl action, we infer the densest point and appropriate insertion angle γ̂, roughly orthogonal to the
grain of majority of the noodles. We use positional control to insert the fork into the densest noodle
pile, and execute a fixed twirling motion by making two rotations at 6 radians per second. Finally, the
fork scoops upward until nearly horizontal (β = 80◦) and the robot brings the acquired noodles to a
neutral position in the workspace.

For all trials, we use a non-slip plastic dinner plate, and mimick a bite successfully taken by a user
after twirling by autonomously untwirling onto a discard plate.

E.2 Bimanual Scooping Hardware Setup
We assume access to two Franka Panda robots, equipped with a pusher tool and a metal spoon,
respectively, and an external RealSense D435 camera for perception. With this setup, we aim to
acquire granular items on a plate using either group (rearrangement) or scoop (acquisition) actions,
with a total action budget of T = 8 actions. In particular, we evaluate our system on the task of
scooping jelly beans, but VAPORS is agnostic to the exact choice of food. Following the experimental
setup of Grannen et al. [7], the spoon is mounted at an angle to the robot end-effector (β = 30◦).
The pusher is a concave 3D-printed tool intended to push piles of items into the spoon and maintain
contact during lifting so as to prevent spillage.

Grouping actions are unimanual and use the pusher tool to push the sensed furthest item to the densest
region on the tray. In a scoop action, we sense the densest pile and execute a parameterized motion in
which the pusher and spoon move towards each other synchronously at a fixed γ = 180◦. Once they
arms are within a fixed threshold apart, the spoon scoops by tilting to β = 80◦ and lifting to a neutral
workspace position.

We conduct all trials on a standard cooking tray due to the enlarged manipulation workspace for two
arms. To simulate a user’s bite between actions, we manually discard the spoon contents after a scoop
action.

16

Figure 10: Noodle Acquisition Rollout: We visualize 6 actions performed by VAPORS on the task of
clearing an initially half-full plate of Tier 3 noodles. As the distribution of noodles on the plate becomes
sparse (t = 0, 42, 54), VAPORS employs grouping strategies (black) to push noodles in close proximity. Once
consolidated, VAPORS employs twirling (t = 12, 66, 86), as shown in red, for efficient plate clearance, where t
denotes the clock time in seconds.

Figure 11: Bimanual Scooping Rollout: Using a bimanual setup with two Franka Emika Panda robots,
VAPORS performs 6 actions consisting of grouping (black arrows) and scooping (red arrows) to acquire jelly
beans on a tray. By grouping when the tray is sparse and acquiring when a bite-sized clump forms, VAPORS
demonstrates efficient acquisition. The annotated timestamps denote clock time in seconds.

E.3 Implementation Details

For each task, we use the following training procedures. We train πH on simulated segmentation
observations of size 64× 64 for 2, 250 update steps, where we collect 1 episode every 150 update
steps. We instantiate the reward as per Eq. (3) with α = 0.66, and train each model using the Adam
optimizer with with a learning rate of 10−3 , ϵ = 10−4, and gradient clipping norm of 1000 with
batch size B = 32, based on the training procedure from [37]. Each model takes approximately 1
hour to train on an Nvidia RTX A4000 GPU. To instantiate πL, we train fseg and fori from real data.
For segmentation, we collect 280 paired examples of images and binary segmentation masks using
the self-supervised annotation process from Section 4.2, where we use cooked noodles of randomized
shape and sauce variations as well as jelly beans of randomized colors. We augment each dataset 10X
and train for 50 epochs, which takes approximately 3 hours on an NVIDIA GeForce RTX 2080 GPU.
In order to instantiate the twirl primitive for noodle acquisition, we additionally train fori to predict
fork tine orientation γ from 280 manually annotated crops of noodles as per Section 4.2, augmented
8X. The train time for fori is approximately 1 hour on an NVIDIA GeForce RTX 2080 GPU. For
deployment, we use an Intel NUC 7 for inference and robot control via a ROS 2-based control stack.

E.4 Additional Experimental Results

In this section, we supplement the experimental findings from Section 5 with additional results.

Figure 12: VAPORS Failure Modes: We illustrate the 4 most commonly observed failure modes with VAPORS
on noodle acquisition. Misperception (A) occurs when πL erroneously senses vegetables, sauce, or plate glare
as a noodle due to false positives with fori, leading to a misplanned action such as grouping in that region.
Occasionally, πH may acquire when rearrangement is more appropriate, leading to a low-volume bite (B). In
terms of action execution, food acquisition requires care so as to not miss food (C), as seen in the grouping
motion which fails to group singular noodle strands due to system imprecision. Finally, slippage (D) can happen
during acquisition with hard-to-model items such as those coated in sauce.

17

Plate Clearance: Fig. 10 and Fig. 11 visualize two rollouts of VAPORS on plate clearance. We
note that visually, VAPORS tends to favor grouping as the plates become sparser and otherwise
acquires when there is a reasonably sized bite available.

VAPORS Failure Mode Categorization: In addition to evaluating the percentage of the plate
cleared, we observe the occurrence of a few failure modes, as depicted in Fig. 12. A misplanned
action (A) can occur due to a perception error, such as accidentally perceiving sauce, a garnish,
a vegetable, or plate specularity for noodles and erroneously grouping or twirling in that region.
Alternatively, this can happen when (B) the robot twirls when grouping is more appropriate or vice
versa. A mis-executed action failure occurs when (C) the fork fails to group or acquire due to system
imprecision or (D) the noodles slip during acquisition due to sauce. In Table 1, we also report the
per-action failure rate, computed as the total number of failures over the total number of actions (60
= 6 trials × T = 10).

Qualitative User Study: In the Likert survey administered to gauge user preferences across
methods, we report in Fig. 6 the statistical findings which are significant. In Table 2, we indicate the
specific margin of significance for each of the criteria, obtained via 1-way ANOVA testing.

Table 2: 1-Way ANOVA Statistically-Significant Findings (p-value < 0.05)

Criterion Method 1 Method 2 p-value
Efficiency Heuristic VAPORS 0.0004
Efficiency Acquire Only VAPORS 0.0010
Bite Size Acquire Only VAPORS 0.0318

Humanlike Heuristic VAPORS 0.0003
Humanlike Acquire Only VAPORS 0.0044
Practicality Heuristic VAPORS 0.0012
Practicality Acquire Only VAPORS 0.0025

Reuse Heuristic VAPORS 0.0000
Reuse Acquire Only VAPORS 0.0008
Trust Heuristic VAPORS 0.0124
Trust Acquire Only VAPORS 0.0198

Generalizability Heuristic VAPORS 0.0478

Table 3: Noodle Acquisition

Criterion Method 1 Method 2 p-value
Efficiency Heuristic Acquire Only 0.0029
Practicality Heuristic Acquire Only 0.0091

Reuse Heuristic Acquire Only 0.0093
Efficiency Heuristic Acquire Only 0.0029
Efficiency Acquire Only VAPORS 0.0000
Bite Size Heuristic VAPORS 0.0029
Bite Size Acquire Only VAPORS 0.0002

Humanlike Acquire Only VAPORS 0.0094
Practicality Heuristic Acquire Only 0.0091
Practicality Acquire Only VAPORS 0.0001

Reuse Heuristic Acquire Only 0.0093
Reuse Acquire Only VAPORS 0.0001
Trust Acquire Only VAPORS 0.0438

Generalizability Acquire Only VAPORS 0.0481

Table 4: Bimanual Scooping

In addition to the user study outlined in Section 5, we administered a second part of the study, in
randomized order to the first, in which users were asked to pick a preferred method for feeding in
side-by-side comparisons of jelly bean acquisition trials. To control for the initial state of the jelly
beans, we purposely arrange 16 beans into a 4× 4 grid initially, and conduct two trials per method
which are randomly selected for the comparisons. Although we would like to include an analogous
side-by-side comparisons survey for noodle acquisition for completeness, we find in practice that
controlling for the initial state of noodles is nontrivial due to their highly deformable nature and
vast set of feasible initial configurations. This makes it difficult to present users with unbiased
comparisons across methods.

Thus, for bimanual scooping, we presented all permutations of pairs of the three methods, for a total
of six comparisons overall. Empirically, we find that VAPORS is the preferred method by a large
margin compared to both baselines (Fig. 13).

18

Figure 13: Overall Ratings Left: After observing all methods perform acquisition across 10 trials, we ask users
to rank all three methods from most to least preferable. We find the VAPORS is most consistently ranked the
best by a statistically significant margin (p < 0.05, denoted ‘*’) compared to the baselines. Right: For jelly
bean acquisition, we control for the initial state of the plate by arranging the beans in a 4× 4 grid, and ask users
to select their preferred method across 6 side by side acquisition videos of different methods. VAPORS is the
preferred method by a large margin compared to Heuristic and Acquire-Only.

19

	Introduction
	Related Work
	Problem Statement
	State-Action Representations

	VAPORS: Visual Action Planning OveR Sequences
	Learning High-Level Plans from Simulation
	Visual Policies for Low-Level Real Manipulation

	Experiments
	Discussion
	Limitations and Risks
	Feedback from Users with Mobility Impairments
	Simulator Details
	Simulator Design
	Reward Design

	Details of Learning-Based Methods
	Latent Dynamics Training Details
	Planning with Learned Dynamics Model
	Food Segmentation Training Details

	Experimental Details
	Noodle Acquisition Hardware Setup
	Bimanual Scooping Hardware Setup
	Implementation Details
	Additional Experimental Results

