Toward Grounded Commonsense Reasoning

Minae Kwon, Hengyuan Hu, Vivek Myers’, Siddharth Karamcheti, Anca Dragan’, Dorsa Sadigh

Stanford University,

UC Berkeley'

{mnkwon, hengyuan, skaramcheti, dorsa}@cs .stanford.edu,
{vmyers, anca}@berkeley.edu’

Abstract— Consider a robot tasked with tidying a desk
with a meticulously constructed Lego sports car. A human
may recognize that it is not appropriate to disassemble the
sports car and put it away as part of the ‘“tidying”” How
can a robot reach that conclusion? Although large language
models (LLMs) have recently been used to enable commonsense
reasoning, grounding this reasoning in the real world has been
challenging. To reason in the real world, robots must go beyond
passively querying LLMs and actively gather information from
the environment that is required to make the right decision.
For instance, after detecting that there is an occluded car,
the robot may need to actively perceive the car to know
whether it is an advanced model car made out of Legos or
a toy car built by a toddler. We propose an approach that
leverages an LLM and vision language model (VLM) to help
a robot actively perceive its environment to perform grounded
commonsense reasoning. To evaluate our framework at scale,
we release the MESSYSURFACES dataset which contains images
of 70 real-world surfaces that need to be cleaned. We addi-
tionally illustrate our approach with a robot on 2 carefully
designed surfaces. We find an average 12.9% improvement
on the MESSYSURFACES benchmark and an average 15%
improvement on the robot experiments over baselines that do
not use active perception. The dataset, code, and videos of our
approach can be found at

I. INTRODUCTION

Imagine you are asked to clean up a desk and you see a
meticulously constructed Lego sports car on it. You might
immediately recognize that the normative behavior is to leave
the car be, rather than taking it apart and putting it away as
part of the “cleaning”. But how would a robot in that same
position know that’s the right thing to do? Traditionally, we
would expect this information to be specified in the robot’s
objective — either learned from demonstrations [1], [2], [3] or
from human feedback [4], [5], [6], [7]. While a robot could
expensively query a human for their preferences on how to
clean the car, we explore a different question in this work:
how can we equip robots with the commonsense reasoning
necessary to follow normative behavior in the absence of
personalized input from the human? The ability to behave
in a commonsense, normative manner can be an effective
prior over robot behavior when personalized feedback is not
present. When feedback is present, having a good prior can
reduce the amount of human specification needed.

Recent work has demonstrated that large language models
(LLMs) trained on internet data have enough context for
commonsense reasoning [8], making moral judgements [9],
[10], or acting as a proxy reward function capturing human

preferences [11]. Rather than explicitly asking a human for
the answer, the robot could instead ask an LLM whether
it would be appropriate to clean up the car. But in real-
world environments, this is easier said than done. Tapping
into an LLM’s commonsense reasoning skills in the real-
world requires the ability to ground language in the robot’s
perception of the world — an ability that might be afforded
by powerful vision-and-language models (VLMs). Unfortu-
nately, we find that today’s VLMs cannot reliably provide
all the relevant information for commonsense reasoning.
For instance, a VLM may not describe that the sports car
is constructed from Legos, or that it contains over 1000
pieces — details that are key to making decisions. While
advanced multi-modal models might alleviate this problem,
a fundamental limitation is the image itself might not contain
all the relevant information. If the sports car is partially
occluded by a bag (as in), no VLM could provide
the necessary context for reasoning over what actions to
take. Such a system would instead need the ability to move
the bag — or move itself — to actively gather the necessary
information. Thus, in order to perform “grounded common-
sense reasoning” robots must go beyond passively querying
LLMs and VLMs to obtain action plans and instead directly
interact with the environment. Our insight is that robots
must reason about what additional information they need to
make appropriate decisions, and then actively perceive the
environment to gather that information.

Acting on this insight, we propose a framework to enable
a robot to perform grounded commonsense reasoning by
iteratively identifying details it still needs to clarify about
the scene before it can make a decision (e.g. is the model
car made out of intricate Lego pieces or MEGA Bloks?) and
actively gathering new observations to help answer those
questions (e.g. getting a close up of the car from a better
angle). In this paper, we focus on the task of cleaning up
real-world surfaces through commonsense reasoning. Our
framework is shown in . Given a textual description of
the desk, an LLM asks follow-up questions about the state
of each object that it needs in order to make a decision of
what the robot should do with that object. The robot actively
perceives the scene by taking close-up photos of each object
from angles suggested by the LLM. The follow-up questions
and close-up photos are then given to a VLM so that it can
provide more information about the scene.

This process can be repeated multiple times. The LLM
then decides on an action the robot should take to clean

https://minaek.github.io/grounded_commonsense_reasoning/
https://minaek.github.io/grounded_commonsense_reasoning/

1) Add Context Ct

VLM iter=1 The sports car is made of Legos.|

iter=0 There is a sports car and..

5) Pick Action Plan

(a)Leave as is

N

7

4) Ask VLM

il i
(imy, q3)

Is the sports
car made of

>

(@ “Clean the surface”

(b)Place the fallen model back
onto its stand

2) Ask Follow-up Questions Q'

(c)Arrange the remote-
controlled car, controller,
and cable neatly

Is the sports ‘b

LLM]| car made of

Legos?

LLM]

(d)Leave the collectible car in
its packaging

(e)Reattach loose parts

3) Actively Perceive Scene

Fig. 1.

Grounded Commonsense Reasoning Framework. We demonstrate our framework using the sports car. Blue boxes indicate the

model and yellow boxes indicate its output. Our framework takes an image of the scene and an instruction as input. 1) The VLM outputs
an initial description of the scene &0 from the initial image im®. 2) The LLM asks follow-up questions about each object in the scene,
2'. 3) The robot takes a close-up image i, of each object k. It is guided by an LLM that chooses the best angle that would help answer
the question. 4) We pair the close-up images with the follow-up questions and ask the VLM to answer them. Answers are appended to
the context. We repeat steps 1-4 to gather more information. 5) We query an LLM to choose the most appropriate way to tidy the object.

the object in an appropriate manner. For example, our robot
leaves the Lego sports car intact, throws a browning half-
eaten banana in the trash, but keeps an unopened can
of Yerba Mate on the desk. Furthermore, we release the
MESSYSURFACES dataset containing images of 70 surfaces
as well an evaluation benchmark that assesses how well a
robot can clean up each surface in an appropriate manner.
The dataset is available

We evaluate our framework on our benchmark dataset as
well as on a real-world robotic system. We examine each
component of our framework, asking whether the robot asks
useful follow-up questions, whether the robot chooses in-
formative close-up images, and whether the images actually
help a VLM more accurately answer questions. We find
an average 12.9% improvement on the MESSYSURFACES
benchmark and an average 15% improvement on the robot
experiments over baselines that do not use active perception.

II. RELATED WORK

a) Commonsense Reasoning: Large language models
are trained on internet-scale data, making them effective
commonsense reasoners [12], [13], [14], [15]. Prior works
have studied whether LLMs’ commonsense reasoning aligns
with human values [9], [10], [16], [11]. There is evidence
that when LLMs make moral or social judgements, they
align with the normative beliefs of the population that gen-
erated their training data [17]. In addition, prior work show
commonsense reasoning models can align with conventional
beliefs [18], [19], [20], [21]. Our approach is in line with
commonsense reasoning, instead of adapting to individual
preferences, we show we can take commonsense actions to
clean up a scene.

b) Learning Human Preferences: Past work on aligning
with human preferences has focused on using human feed-
back to infer rewards and policies by designing queries for

active preference learning [22], [4], [6], [23], performing in-
verse reinforcement learning [24], [25], or recovering reward
signals from language feedback [11], [26], [27], [28], [29].
Policies defined via LLMs have also been directly tuned with
language feedback by approaches like RLHF [30]. Instead
of querying humans, we leverage normative values from pre-
trained models. While some works use normative values from
LLMs in negotiations and games [31], these are not grounded
in the real world. In this work, we do not focus on particular
human preferences, though the normative responses of LLMs
could be fine-tuned for particular applications.

c) Active Perception: When robots must use common-
sense reasoning like humans, active information gathering
may be important [32]. Approaches like TidyBot actively
zoom-in on objects to better categorize them [33]. Other
approaches such as Inner Monologue seek out additional en-
vironment information, but need aid from a human annotator
or assume access to simulators [34], [35]. VLMs have also
been used for active perception in navigation [36], [37], [38].
In this work, we show that active perception is necessary for
grounded commonsense reasoning, enabled by the semantic
knowledge in an LLM.

d) LLMs for Robotics: Past work uses semantic knowl-
edge in LLMs for task planning. Methods like SayCan
decompose natural language tasks into primitive action plans
[39], [40], [41]. In addition, approaches such as Code as
Policies [42], [43] use LLMs to write Python programs that
plan with executable robot policy code. Other approaches
use multimodal sequence models to reason about language-
conditioned manipulation [44], [45], [46], [47]. We use the
semantic awareness of an LLM to reason about action plans.
Unlike the above works, an LLM interactively queries an off-
the-shelf VLM to ground the scene.

https://sites.google.com/view/social-grounding

ITI. GROUNDING COMMONSENSE REASONING

We propose a framework that combines existing founda-
tion models in a novel way to enable active information
gathering, shown in . Our framework makes multiple
calls to an LLM and VLM to gather information. The
LLM plays a number of distinct roles in our framework
that we distinguish below: generating informative follow-up
questions, guiding active perception, and choosing an action
plan. In every call, the LLM takes in and outputs a string
LLM:A* — A*, and the VLM takes in an image, string pair
and outputs a string VLM : . X A* — A*, where A* is the set
of all strings and .# is the set of all images. The context
%' € A* contains information about the scene that the robot
has gathered up to iteration i of the framework. Initially, the
inputs to our framework are an image of the scene im® € &
(i.e., an unblurred image from) and an instruction (e.g.,
“clean the surface”).

VLM Describes the Scene. Our framework starts with
the VLM producing an initial description € of the scene
from the scene image im°. The description can contain
varying amounts of information — in the most uninformative
case, it may simply list the objects that are present. In our
experiments, this is the description that we use.
LLM Generates Follow-Up Questions. To identify what
information is missing from ¢, we use an LLM to generate
informative follow-up questions as shown in stage (2) of
. We prompt an LLM with %° and ask the LLM to
produce a set of follow-up questions 2' = {q},...,q%} for
the K objects. LLMs are apt for this task because of their
commonsense reasoning abilities. We use Chain-of-Thought
prompting [48] where we first ask the LLM to reason about
the appropriate way to tidy each object before producing a
follow-up question (see examples in the supplementary). For
example, the LLM could reason that the sports car should be
put away if it is a toy but left on display if someone built it.
The resulting follow-up question asks whether the sports car
is built with Lego blocks. We assume that the information
in €0 is accurate (i.e., correctly lists the names of all the
objects) to prevent the LLM from generating questions based
on inaccurate information.
Robot Actively Perceives the Scene. At this stage, one
might normally query the VLM with the original scene image
im®. However if the object-in-question is obstructed or too
small to see, the scene image might not provide enough
information for the VLM to answer the follow-up question
accurately (e.g., the sports car is obstructed in).
Instead, we would like to provide an unobstructed close-up
image im}; € . of the object k to “help” the VLM accurately
answer the generated questions. Taking informative close-
up images requires interaction with the environment —
something we can use a robot for.

To actively gather information, the robot should proceed
based on some notion of “informativeness” of camera
angles. To determine “informativeness”, we can again
rely on the commonsense knowledge of LLMs. Although
LLMs don’t have detailed visual information about the

object, they can suggest reasonable angles that will be,
on average, informative. For instance, an LLM will
choose to take a photo from the top of an opaque mug,
instead of its sides, to see its content. In practice, we
find that this approach works well and can improve the
informativeness of an image by 8%. We query an LLM to
choose a close-up angle of the object from a set of angles
{<FRONT>, <BACK>, <LEFT>, <RIGHT>, <TOP>}
that would give an unobstructed view. We then pair the close-
up images with their questions {(im},q}),...,(im},q%)} and
query the VLM for answers to these questions in step (4)
of our framework. We concatenate the VLM’s answers for
each object and append them to our context €" to complete
the iteration. To gather more information about each object,
steps 1 —4 can be repeated where the number of iterations
is a tunable parameter.

LLM Chooses an Action Plan. In the final step, for each
object, we prompt the LLM with the context ¥ and a
multiple choice question that lists different ways to tidy
an object. The LLM is then instructed to choose the most
appropriate option. The multiple choice options come from
the MESSYSURFACES benchmark questions, a bank of 308
multiple-choice questions about how to clean up real-life
objects found on messy surfaces. For example, in , the
LLM chooses to leave the sports car as is because it infers
that the sports car must be on display. To map the natural
language action to robot behavior, we implement a series of
hand-coded programmatic skill primitives that define an API
the LLM can call into. See for more details.

IV. THE MESSYSURFACES DATASET

To assess a robot’s ability to perform commonsense rea-
soning in grounded environments, we introduce the MESSY-
SURFACES dataset. The dataset consists of images of 308
objects across 70 real-world surfaces that need to be cleaned.
An average of 68% of objects are occluded in scene-level
images', so we also provide 5 close-up images as a way for
the robot to “actively perceive” the object, see for
an example. MESSYSURFACES also includes a benchmark
evaluation of multiple choice questions for each object where
each option corresponds to different ways to tidy the object.
Through a consensus of 5 human annotators, we determine
which one of the choices is the most appropriate. To do well,
a robot must reason about the appropriate way to clean each
object from the images alone. Since no human preferences
are given, the robot must identify relevant attributes of each
object from the images (e.g., is the sports car built out of
Legos or MEGA Bloks?) and then reason about how to tidy
the object using this information. MESSYSURFACES contains
45 office desks, 4 bathroom counters, 5 bedroom tables, 8
kitchen counters, 4 living room tables and 4 dining tables.

a) Data Collection Process: We recruited 51 partici-
pants to provide images of cluttered surfaces. Each partici-
pant was asked to pick 4 — 6 objects on a surface. They were

'Computed as the average number of times annotators indicated a
question cannot be answered by the scene image.

Example Images for ‘cup’

Right

it
Back Left

Fig. 2.

Benchmark Question for ‘cup’

State: The cup is clean and empty
() Action: Leave the cup as is

b State: The cup is filled with a beverage
(b) Action: Place cup on coaster

State: The cup is empty but has dried residue inside
(9) Action: Clean and dry the cup

State: The cup is filled with pens and office supplies
(CY Action: Organize the supplies in the cup

State: The cup is chipped or cracked
(e) Action: Dispose of the cup

MESSYSURFACES Example. Each object in MESSYSURFACES is represented by a scene image and 5 close-up images. Each

object also has a benchmark question that presents 5 options to tidy the object; each option is constructed by producing a cleaning action

conditioned on a hypothetical object state.

then asked to take a photo of the scene-level view as well as
close-up photos of each object from the top, right, left, front,
and back angles — the offline equivalent of having a robot
actively navigate a scene. The task took approximately 15 —
30 minutes. After receiving the photos, we post-processed
each image and cropped out any identifiable information.

b) Benchmark Evaluation: The benchmark questions
consist of 5 LLM-generated multiple choice options about
how to manipulate each object to clean the surface in an
appropriate manner. To make the options diverse, we asked
the LLM to first identify 5 states the object could be in and
then queried it to come up with a cleaning action for each of
those states (see for an example). For each question,
we recruited 5 annotators to choose the correct state-action
pair based on the scene and close-up images of the object.
Annotators were also given an option to indicate if none of
the choices were a good fit. We used the majority label as
our answer and omitted 16 questions (out of 324) where a
majority thought none of the choices were a good fit. For
questions that had two equally popular answers, we counted
both as correct. Our annotators agreed on average 67% of the
time. To evaluate the quality of our multiple choice options,
we asked annotators to rate how appropriate each cleaning
action is for each object state. Annotators gave each option
an average rating of 4.1 out of 5. The average rating for
the correct option was 4.4 out of 5. Annotators. In total, we
recruited 350 English-speaking annotators from Prolific that
were based in the U.S. or U.K. with an approval rating of at
least 98%. Our study is IRB-approved.

V. EXPERIMENTS

We examine how well our approach can perform grounded

commonsense reasoning on the MESSYSURFACES dataset as
well as a real-world robotic system.
Primary Metric. We use accuracy on the benchmark ques-
tions as our primary metric. Each benchmark question
presents S options on how to tidy the object, with accuracy
defined as the percentage by which our framework selects
the most appropriate option (as indicated by our annotators).
Baselines. Key to our approach (ll Ours-LLM) is the ability
to supplement missing information by asking questions and
actively perceiving the environment. To evaluate this, we
compare the following:

Oracle VLM Zero-Shot VLM
0le—e—o—e—2 (le—o—o o

Q
E
g 0.4 0.4
<
0.2 T T T — 0.2 T T T T
1 2 3 4 5 1 2 3 4 5
Iterations [terations

—e— OQurs-Front

—e— Baseline Questions

—o— Oracle
—o— OQOurs-LLM

—e— No Active Perception
No Questions

Fig. 3. MESSYSURFACES Benchmark Accuracy. For both the
Oracle VLM and InstructBLIP, on average, our approach outper-
forms all baselines on the MESSYSURFACES benchmark. Accuracy
is given by the percentage by which our framework selects the most
appropriate (as indicated by our annotators) way to tidy each object.

o [l Oracle. We ask a human annotator to answer the
benchmark questions where they can actively perceive
the scene using all angles.

o [l Ours-LLM. Our approach as described in

e [@ Ours - Front. Inspired by TidyBot [33], this is a
variant of our approach wherein we simulate “zooming”
into the image, using the “front” angle image as input
to the VLM. The “front” angles can be the most
informative angle in many cases, making it an effective
heuristic.

« [Baseline Questions. This baseline evaluates the need
for normative commonsense reasoning by asking more
factual questions (e.g., “What color is the cup?”).

« [l No Active Perception. This baseline evaluates the
need for active perception in our framework by allowing
the robot to ask questions that are answered solely from
the scene image.

o [] No Questions. This baseline requires the robot
to perform grounded commonsense reasoning from an
initial description of the scene. The robot does not ask
questions or actively perceive the environment, instead
operating in an open-loop fashion akin to methods like
SayCan [39].

Implementation Details. We use GPT-4 with temperature
0 as our LLM and InstructBLIP [49] (Flan-T5-XXL) as
our VLM. We also report “oracle” results where a human

answers questions instead of the VLM to simulate results
our approach could achieve if the VLM were near-perfect
(denoted as the “Oracle VLM”). Further implementation
details (e.g., prompts, model usage) are in the supplementary.

A. Evaluation on MESSYSURFACES

We evaluate our method on the 308 benchmark questions
across 5 iterations of our framework. After each iteration,
the robot is evaluated on the information it has accumulated
up until that point. We measure accuracy on each question
and report results using both the Oracle VLM and zero-shot
performance on InstructBLIP. Although No Question and
Oracle are “open-loop” methods that do not require iteration,
we plot their results as a constant for comparison.

After 5 iterations, for both the Oracle VLM and In-
structBLIP, our approaches outperform all baselines: No
Question, No Active Perception, and Baseline Questions.
Notably, Ours-LLM significantly outperforms No Question
by an average of 27.7% across the two VLM types, p < 0.01.
Ours-LLM also outperforms Baseline Questions by an av-
erage of 5% across the VLM types, p > 0.05 and outperforms
No Active Perception by an average of 6%, p > 0.05. Using
an Oracle VLM allows Ours-LLM to close the gap with the
Oracle by an average of 5% more than using InstructBLIP.
Although our approach outperforms baselines using both
VLMs, we suspect that InstructBLIP gives lower accuracies
because the MESSYSURFACES images — especially the close-
up images — are out of distribution. For this reason, we
presume that our approach gives a smaller advantage over
other baseline methods when using InstructBLIP.

These results suggest that asking questions and actively
perceiving the environment can enable grounded common-
sense reasoning; with better VLMs, we can reach close to
human-level performance. However, we were puzzled why
the human Oracle was not more accurate. We hypothesize
that in some situations, it is unclear what the most appropri-
ate way to clean an object would be — our annotators agreed
67% of the time. To obtain higher accuracy, commonsense
reasoning may sometimes not be enough and we must
query user preferences to personalize the cleaning action;
we explore this further in and the supplementary. We
now analyze each component of our framework.

Does the LLM Ask Good Follow-Up Questions? We first
evaluate the LLM’s follow-up questions and the reasoning
used to produce those questions. On average, 82% of users
agreed that the reasoning was valid and 87% agreed that the
reasoning was appropriate. To evaluate the follow-up ques-
tions, we asked users to rate each question’s usefulness and
relevance for tidying the surface on a 5-point Likert scale. We
compared against Baseline Questions, where we removed
the constraint that LLM-generated questions must be relevant
for commonsense reasoning about normative values. An
example baseline question is, “Does the cup have a logo?”
All prompts and example questions are in the supplementary.
Users rated our questions to be significantly more useful
and relevant for tidying surfaces compared to the baseline
(p <0.01,). However, across iterations, the average

usefulness and relevance of our questions decreased. This
result may be because there are not many useful and relevant
questions to ask about simple objects such as a keyboard
without interacting with them or people in the room.

Does the LLM Suggest Informative Close-Up Angles?
We next focus on whether the close-up angles suggested by
the LLM are informative. For each object, we asked users
whether the object’s follow-up question is answerable from
the close-up angle chosen by the LLM by showing them
the corresponding close-up image. We also do this for the
“front” angle. As our main baseline, we ask users whether
questions are answerable from the scene-level view. Addi-
tionally, we compare against angles that the LLM did not
choose (“Non-LLM Angles”), as well as non-front angles.
Across 5 iterations we find that, on average, 35.5% more
questions are answerable by LLM-chosen angles and
31% more questions are answerable by the front angles
compared to the scene, p < 0.01. The LLM-chosen angles
and front angle are also significantly more informative
than the non-LLM-chosen angles and non-front angles
respectively. This trend holds for each iteration ().
Do Our Close-Up Angles Improve VLM Accuracy? Using
VLMs for grounded commonsense reasoning pose challenges
when there are obstructions in the image (e.g., a bag blocking
the sports car) or when they are not able to describe relevant
details. We hypothesized that providing a close-up image
would “help” a VLM answer follow-up questions more
accurately. We evaluate whether close-up images can actually
improve VLM accuracy on follow-up questions. From the
results in , we see that having access to close-up
angles greatly improves the zero-shot prediction accuracy
for both VLM variants. More importantly, the front angles
and the LLM proposed angles generally outperform other
angles. These results show that it is beneficial to have both
active perception and correct angles for our tasks.

B. Evaluation on Real-World Robotic System

To assess the performance of our system on a real-world
robot, we assemble 2 surfaces with 11 objects that require
complex commonsense reasoning to tidy up. Importantly, we
design these surfaces so that the commonsense way to tidy
each object would be unambiguous. The first surface resem-
bles a child’s play area, with toys of ranging complexities
(e.g., a MEGA Bloks structure, a partially built toy train
set, and a to-scale Lego model of an Italian sports car). The
robot must understand which toys to clean up and which toys
should be left on display. The second surface, shown in $C,
consists of trash that a robot must sort through and decide
whether to recycle, put in landfill, or keep on the desk.
Grounding Language in Robot Behavior. Following the
active perception component of our framework, we use
a robot arm (equipped with a wrist camera) to servo to
angles produced by the LLM and take photos. To map
the LLM-produced angles and natural-language action plans
to robot behavior, we implement a series of programmatic
skill primitives (e.g., relocate (*‘block’’)). In this
work, each “view” and “action” primitive is defined assuming

How Useful is the Question?
Average Across 5 Iterations Per Iteration
3.96

. 4.0
2.82 With
—e— Commonsense
35 Reasoning (Ours)
Baseline
Questions
3.0

Baseline 1 2 3 4 5
Questions Iterations

'S

* p<0.01

w

Average Rating
— N

W. Commonsense
Reasoning (Ours)

Average Rating

How Relevant is the Question?
Per Iteration

Avera%e Across 5 Iterations
4 3.8

* p<0.01

w

[N}

Baseline
Questions

_

0

Baseline i é é 21 é
Questions Iterations

W. Commonsense
Reasoning (Ours)

Fig. 4. How Good are the Follow-Up Questions? Users rated our questions to be significantly more useful and relevant compared to
baseline questions, p < 0.01. However, the average usefulness and relevance of questions decreased over iterations.

TABLE I
VLM MULTIPLE-CHOICE PREDICTION ACCURACY (ZERO-SHOT) UNDER DIFFERENT ANGLES OVER 5 ITERATIONS

Scene Non-front Angles Front Angle Non-LLM Angles LLM Angle
InstructBLIP (Vicuna) 47.98 51.06 52.64 50.94 53.21
InstructBLIP (Flan-T5) 51.95 53.99 56.74 54.08 56.30

Average Across 5 Iterations Per Iteration

) 0.67
0.7 0.6 0.63 0.7

2

= 05

&

” 0.51

203

g

<
01 0.31 \\/\1

Iterations

—o— Ours-LLM —o— Qurs-Front

—e— Non-Front Angles

—e— Scene
Non-LLM Angles

Fig. 5. Do We Choose Informative Close-Up Angles? An average
of 33.25% more questions are answerable by the LLM-chosen
angles and front angles compared to the scene, p < 0.01. The
LLM-chosen angles and front angle are also significantly more
informative than the non-LLM-chosen angles and non-front angles
respectively.

access to the ground-truth object class and position. These
programmatic skill primitives define an API that the LLM
can call into, similar to the process introduced by [42]. Each
action plan is translated to a sequence of these programmatic
skills, which are then executed in an open loop (further
implementation details are in the supplementary).

Benchmark Evaluation Results. To evaluate our method,
we designed benchmark questions for each of the 11 objects
in a similar manner to that outlined in . We recruited
5 annotators on Prolific to choose the correct answer and
took the majority label. We report results for both the Oracle
VLM and InstructBLIP after running 5 iterations of our
framework (see Figure in the supplementary). Across both
types of VLMs, Ours-LLM beats Baseline Questions
by an average of 13.5%, beats No Active Perception
by an average of 18%, and beats No Questions by an
average of 13.5%. With the Oracle VLM, we achieve Oracle
performance. With InstructBLIP, our method produces a

smaller advantage over baselines.

VI. DISCUSSION

The purpose of this work is to equip robots with basic
grounded commonsense reasoning skills to reduce the need
for human specification. These reasoning skills can later
be personalized towards an individual’s preferences. To this
end, we conduct a preliminary study to explore how we can
add personalization on top of our framework. We analyzed
questions that the human Oracle got incorrect in and
found that object attributes such as “dirtiness” can indeed
be subjective. This may have caused the Oracle to incor-
rectly answer some questions. We experimented with adding
personalization information to 8 questions where both the
Oracle and our framework chose the same incorrect answer.
We found an average 86% improvement in accuracy, sug-
gesting that preference information helps further enable
grounded commonsense reasoning. See the supplementary
for more details.

Limitations and Future Work. While our work presents a
first step towards actively grounded commonsense reasoning,
there are some limitations to address. One limitation is
our reliance on heuristics to guide our active perception
pipeline — while the five specified angles are enough for
most of the questions in the MESSYSURFACES dataset, there
are cases where objects may be occluded, or otherwise
require more granular views to answer questions; future work
might explore learned approaches for guiding perception
based on uncertainty, or developing multi-view, queryable
scene representations [50], [51]. Similarly, we are limited
by an inability to interact with objects dynamically — e.g.,
opening boxes, removing clutter. Finally, while we focus on
commonsense behaviors, there are times where the “right”
thing to do is to ask for human preferences.
Acknowledgements. This work was supported by DARPA
YFA, NSF Award #2006388, #2125511, #2218760, AFOSR
YIP, JP Morgan, ONR, and TRI.

[1]

[2]
[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

(1]

[12]

[13]
[14]

[15]

[16]

(17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

REFERENCES

S. Ross, G. Gordon, and D. Bagnell, “A reduction of imitation learning
and structured prediction to no-regret online learning,” in Proceedings
of the Fourteenth International Conference on Artificial Intelligence
and Statistics. JMLR Workshop and Conference Proceedings, 2011,
pp. 627-635.

D. S. Brown, W. Goo, and S. Niekum, “Better-than-demonstrator im-
itation learning via automatically-ranked demonstrations,” Oct. 2019.
M. Palan, N. C. Landolfi, G. Shevchuk, and D. Sadigh, “Learning
Reward Functions by Integrating Human Demonstrations and Prefer-
ences,” June 2019.

D. Sadigh, A. D. Dragan, S. S. Sastry, and S. A. Seshia, “Active
preference-based learning of reward functions,” in Proceedings of
Robotics: Science and Systems (RSS), July 2017.

M. Li, A. Canberk, D. P. Losey, and D. Sadigh, “Learning human
objectives from sequences of physical corrections,” in 2021 IEEE
International Conference on Robotics and Automation (ICRA). 1EEE,
2021, pp. 2877-2883.

E. Biyik, D. P. Losey, M. Palan, N. C. Landolfi, G. Shevchuk, and
D. Sadigh, “Learning Reward Functions from Diverse Sources of
Human Feedback: Optimally Integrating Demonstrations and Prefer-
ences,” 2021.

T. Fitzgerald, P. Koppol, P. Callaghan, R. Q. Wong, R. Simmons,
O. Kroemer, and H. Admoni, “INQUIRE: INteractive Querying for
User-aware Informative REasoning.”

A. Talmor, O. Yoran, R. L. Bras, C. Bhagavatula, Y. Goldberg, Y. Choi,
and J. Berant, “CommonsenseQA 2.0: Exposing the limits of Al
through gamification,” arXiv preprint arXiv:2201.05320, 2022.

L. Jiang, J. D. Hwang, C. Bhagavatula, R. L. Bras, J. Liang, J. Dodge,
K. Sakaguchi, M. Forbes, J. Borchardt, S. Gabriel, et al., “Can
Machines Learn Morality? The Delphi Experiment,” July 2022.

D. Hendrycks, C. Burns, S. Basart, A. Critch, J. Li, D. Song, and
J. Steinhardt, “Aligning ai with shared human values,” arXiv preprint
arXiv:2008.02275, 2020.

M. Kwon, S. M. Xie, K. Bullard, and D. Sadigh, “Reward design with
language models,” arXiv preprint arXiv:2303.00001, 2023.

T. Brown, B. Mann, N. Ryder, M. Subbiah, J. D. Kaplan, P. Dhariwal,
A. Neelakantan, P. Shyam, G. Sastry, A. Askell, et al., “Language
Models are Few-Shot Learners,” 2020.

C. M. Rytting and D. Wingate, “Leveraging the Inductive Bias of
Large Language Models for Abstract Textual Reasoning.”

B. Zhang and H. Soh, “Large Language Models as Zero-Shot Human
Models for Human-Robot Interaction,” Mar. 2023.

X. Zhou, Y. Zhang, L. Cui, and D. Huang, “Evaluating Commonsense
in Pre-Trained Language Models,” Proceedings of the AAAI Confer-
ence on Artificial Intelligence, vol. 34, no. 05, pp. 9733-9740, Apr.
2020.

Z. Jin, S. Levine, F. Gonzalez Adauto, O. Kamal, M. Sap, M. Sachan,
R. Mihalcea, J. Tenenbaum, and B. Scholkopf, “When to Make
Exceptions: Exploring Language Models as Accounts of Human Moral
Judgment,” Advances in Neural Information Processing Systems,
vol. 35, pp. 28458-28473, Dec. 2022.

K. C. Fraser, S. Kiritchenko, and E. Balkir, “Does Moral Code Have
a Moral Code? Probing Delphi’s Moral Philosophy,” May 2022.

P. Ammanabrolu, L. Jiang, M. Sap, H. Hajishirzi, and Y. Choi,
“Aligning to Social Norms and Values in Interactive Narratives,” May
2022.

D. Hendrycks, M. Mazeika, A. Zou, S. Patel, C. Zhu, J. Navarro,
D. Song, B. Li, and J. Steinhardt, “What Would Jiminy Cricket Do?
Towards Agents That Behave Morally,” Feb. 2022.

D. Hendrycks, C. Burns, S. Basart, A. Critch, J. Li, D. Song, and
J. Steinhardt, “Aligning AT With Shared Human Values,” Feb. 2023.

R. Zellers, Y. Bisk, A. Farhadi, and Y. Choi, “From Recognition to
Cognition: Visual Commonsense Reasoning,” Mar. 2019.

R. Akrour, M. Schoenauer, and M. Sebag, “April: Active preference
learning-based reinforcement learning,” in Joint European Confer-
ence on Machine Learning and Knowledge Discovery in Databases.
Springer, 2012, pp. 116-131.

M. Cakmak, S. S. Srinivasa, M. K. Lee, J. Forlizzi, and S. Kiesler,
“Human preferences for robot-human hand-over configurations,” in
2011 IEEE/RSJ International Conference on Intelligent Robots and
Systems, 2011, pp. 1986-1993.

B. D. Ziebart, A. L. Maas, J. A. Bagnell, and A. K. Dey, “Maximum
entropy inverse reinforcement learning.” in Aaai, vol. 8, 2008, pp.
1433-1438.

[25]

[26]

[27]

(28]

[29]

[30]

[31]

[32]

[35]

[36]

(371

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

(471

(48]

N. D. Ratliff, J. A. Bagnell, and M. A. Zinkevich, “Maximum margin
planning,” Pittsburgh, Pennsylvania, 2006.

L. Fan, G. Wang, Y. Jiang, A. Mandlekar, Y. Yang, H. Zhu, A. Tang,
D.-A. Huang, Y. Zhu, and A. Anandkumar, “MineDojo: Building
Open-Ended Embodied Agents with Internet-Scale Knowledge,” June
2022.

S. Singh and J. H. Liao, “Concept2Robot 2.0: Improving Learning of
Manipulation Concepts Using Enhanced Representations.”

L. Shao, T. Migimatsu, Q. Zhang, K. Yang, and J. Bohg, “Con-
cept2Robot: Learning manipulation concepts from instructions and hu-
man demonstrations,” The International Journal of Robotics Research,
vol. 40, no. 12-14, pp. 1419-1434, Dec. 2021.

S. Mirchandani, S. Karamcheti, and D. Sadigh, “Ella: Exploration
through learned language abstraction,” Oct. 2021.

D. M. Ziegler, N. Stiennon, J. Wu, T. B. Brown, A. Radford,
D. Amodei, P. Christiano, and G. Irving, “Fine-Tuning Language
Models from Human Preferences,” Jan. 2020.

H. Hu and D. Sadigh, “Language instructed reinforcement learning for
human-ai coordination,” in 40th International Conference on Machine
Learning (ICML), 2023.

J. Bohg, K. Hausman, B. Sankaran, O. Brock, D. Kragic, S. Schaal,
and G. Sukhatme, “Interactive Perception: Leveraging Action in Per-
ception and Perception in Action,” IEEE Transactions on Robotics,
vol. 33, no. 6, pp. 1273-1291, Dec. 2017.

J. Wu, R. Antonova, A. Kan, M. Lepert, A. Zeng, S. Song, J. Bohg,
S. Rusinkiewicz, and T. Funkhouser, “TidyBot: Personalized Robot
Assistance with Large Language Models,” May 2023.

W. Huang, F. Xia, T. Xiao, H. Chan, J. Liang, P. Florence, A. Zeng,
J. Tompson, I. Mordatch, Y. Chebotar, et al., “Inner Monologue:
Embodied Reasoning through Planning with Language Models,” July
2022.

X. Zhao, M. Li, C. Weber, M. B. Hafez, and S. Wermter, “Chat
with the Environment: Interactive Multimodal Perception using Large
Language Models,” Mar. 2023.

J. Yu, Y. Xu, J. Y. Koh, T. Luong, G. Baid, Z. Wang, V. Vasudevan,
A. Ku, Y. Yang, B. K. Ayan, et al., “Scaling autoregressive models
for content-rich text-to-image generation,” arXiv, 2022.

C. Huang, O. Mees, A. Zeng, and W. Burgard, “Visual Language Maps
for Robot Navigation,” Mar. 2023.

D. Shah, B. Osinski, B. Ichter, and S. Levine, “LM-Nav: Robotic
Navigation with Large Pre-Trained Models of Language, Vision, and
Action,” July 2022.

M. Ahn, A. Brohan, N. Brown, Y. Chebotar, O. Cortes, B. David,
C. Finn, C. Fu, K. Gopalakrishnan, K. Hausman, et al., “Do As I
Can, Not As I Say: Grounding Language in Robotic Affordances,”
Aug. 2022.

M. Attarian, A. Gupta, Z. Zhou, W. Yu, I. Gilitschenski, and A. Garg,
“See, Plan, Predict: Language-guided Cognitive Planning with Video
Prediction,” Oct. 2022.

W. Huang, P. Abbeel, D. Pathak, and I. Mordatch, “Language Models
as Zero-Shot Planners: Extracting Actionable Knowledge for Embod-
ied Agents,” Mar. 2022.

J. Liang, W. Huang, F. Xia, P. Xu, K. Hausman, B. Ichter, P. Florence,
and A. Zeng, “Code as Policies: Language Model Programs for
Embodied Control,” May 2023.

D. Suris, S. Menon, and C. Vondrick, “ViperGPT: Visual Inference
via Python Execution for Reasoning,” Mar. 2023.

A. Brohan, N. Brown, J. Carbajal, Y. Chebotar, J. Dabis, C. Finn,
K. Gopalakrishnan, K. Hausman, A. Herzog, J. Hsu, et al., “RT-1:
ROBOTICS TRANSFORMER FOR REAL-WORLD CONTROL AT
SCALE,” Dec. 2022.

D. Driess, F. Xia, M. S. M. Sajjadi, C. Lynch, A. Chowdhery,
B. Ichter, A. Wahid, J. Tompson, Q. Vuong, T. Yu, et al., “PaLM-
E: An Embodied Multimodal Language Model,” Mar. 2023.

S. Reed, K. Zolna, E. Parisotto, S. G. Colmenarejo, A. Novikov,
G. Barth-maron, M. Giménez, Y. Sulsky, J. Kay, J. T. Springenberg,
et al., “A Generalist Agent,” Transactions on Machine Learning
Research, Nov. 2022.

Y. Jiang, A. Gupta, Z. Zhang, G. Wang, Y. Dou, Y. Chen, L. Fei-
Fei, A. Anandkumar, Y. Zhu, and L. Fan, “VIMA: General Robot
Manipulation with Multimodal Prompts,” Oct. 2022.

J. Wei, X. Wang, D. Schuurmans, M. Bosma, B. Ichter, F. Xia, E. Chi,
Q. Le, and D. Zhou, “Chain of thought prompting elicits reasoning in
large language models,” arXiv, 2022.

[49]

[50]

[51]

[52]

[53]

[54]

W. Dai, J. Li, D. Li, A. M. H. Tiong, J. Zhao, W. Wang, B. Li, P. Fung,
and S. Hoi, “Instructblip: Towards general-purpose vision-language
models with instruction tuning,” arXiv preprint arXiv:2305.06500,
2023.

B. Mildenhall, P. P. Srinivasan, M. Tancik, J. T. Barron, R. Ramamoor-
thi, and R. Ng, “Nerf: Representing scenes as neural radiance fields
for view synthesis,” Communications of the ACM, vol. 65, no. 1, pp.
99-106, 2021.

J. Kerr, C. M. Kim, K. Goldberg, A. Kanazawa, and M. Tancik,
“LERF: Language Embedded Radiance Fields,” Mar. 2023.

M. A. Research, “Polymetis: A real-time pytorch controller manager,”
https://github.com/facebookresearch/fairo/tree/main/polymetis, 2021—
2023.

J. Carpentier, G. Saurel, G. Buondonno, J. Mirabel, F. Lamiraux,
O. Stasse, and N. Mansard, “The pinocchio c++ library — a fast and
flexible implementation of rigid body dynamics algorithms and their
analytical derivatives,” in IEEE International Symposium on System
Integrations (SII), 2019.

J. Carpentier, F. Valenza, N. Mansard, et al., “Pinocchio: fast forward
and inverse dynamics for poly-articulated systems,” https://stack-of-
tasks.github.io/pinocchio, 2015-2023.

APPENDIX
A. Data Collection

Our data collection consists of three components:

1) Collecting the MESSYSURFACES dataset photos.

2) Asking crowdworkers to choose the most appropriate

action in our benchmark questions.

3) Asking crowdworkers to evaluate parts of our frame-

work.

1) Survey Interface: We show the survey interface we
used to complete the 2nd and 3rd crowdsourcing components
below:

The survey consists of a set of questions that we ask about
each object, with a single page per object. An example page
for the “mug” object is shown in and . The first
part of the survey asks users to rate the follow-up questions
generated by the LLM; results are reported in Section 5 —
Experiments in main body of the paper, under “Does the
LLM Ask Good Follow-Up Questions?” The second part of
the survey asks users to evaluate the informativeness of each
close-up angle; results are also reported in Section 5, under
“Does the LLM Suggest Informative Close-Up Angles?” The
third part of the survey asks users to give ground truth
answers to the follow-up questions based on all six images
collected of the object; these answers are used as the Oracle
VLM when evaluating our framework. The final part of the
survey asks users to evaluate the appropriateness of each
multiple choice option in the MESSYSURFACES benchmark
and asks them to indicate the most appropriate way to tidy
the object. These results are used to determine the correct
answer for our benchmark questions as described in Section
4 of the main paper. We designed our survey using Flask
and Python and hosted it on an AWS server.

2) Prolific Details: We recruited crowdworkers from Pro-
lific to complete our study. The study took an average of 10
minutes and each crowdworker was paid $2 ($12/hour). We
required workers to be fluent English speakers, based in the
U.S. or U.K., and have a minimum approval rating of 98%.
Each worker was in charge of answering survey questions
about all objects belonging to a desk. We have a total of
70 desks and ran our framework 5 times, resulting in the
recruitment of 350 Prolific workers.

B. Framework Implementation Details

In this section, we describe the design choices and imple-
mentation details of our framework.
Generating the Initial Description. In the first step of our
framework (Section 3 in the main paper), we generate an
initial description of the scene and append it to our context
. The initial description is a list of all the objects in
the scene. To ensure that we list the objects accurately, we
generate the initial description using ground truth names of
objects (see for an example).

nun

> These are the objects on the desk:

4

‘scrunchie', ‘lotion‘, ‘vaseline‘, ‘brush‘.

nnn

Listing 1. Example Initial Description

Structuring Follow-Up Questions. In the second step of our
framework, we prompt an LLM to generate follow-up ques-
tions about information that it is missing in its context. We
structure our follow-up questions to be yes-or-no questions
where the LLM also has an option to choose “Cannot answer
from image”. We choose a yes-or-no question format to make
it easier to evaluate the VLM’s answers to these question.
See for the actual prompts used for the
LLM.

Eliciting Informative Close-Up Angles from an LLM.
In the third step of our framework, we prompt an LLM
to generate informative close-up angles that guide a photo-
taking robot. We restrict the close-up angles the LLM
can choose to a set of 5 angles: <FRONT>, <BACK>,
<LEFT>, <RIGHT>, <TOP>. When querying the LLM,
we format the prompt as a multiple choice question where the
options are the five specified angles. See

for further prompting details.

C. Real-World Robot Evaluation

When implementing our grounded commonsense reason-
ing system on physical robot hardware (), there are
two operating modes, reflecting the active perception and
skill execution components of our approach respectively. As
a preliminary, for the real-robot experiments, we assume
that the object poses (in the coordinate frame of the robot’s
end-effector) are known a priori. While in this work we
assume these poses are hand-specified by an expert, one
could also use off-the-shelf perception systems that predict
6-DoF object poses or bounding boxes directly, as in prior
work [33].

Active Perception Primitives. The active perception com-
ponent of our framework requires the robot to execute
on two types of behaviors, which we codify as func-
tional primitives move_<direction> (<object>) and
take_photo (). While the latter behavior is well-defined
(capture an image at the robot’s current position), the direc-
tional movement primitives vary per-object. As each object
in our experiments is of different scale and composition,
we manually define a set of pose transformations pgi; €
SE(3) for each object and direction <FRONT>, <BACK>,
<LEFT>, <RIGHT>, <TOP>. Given this dictionary of
pose offsets, we implement move_direction for a spec-
ified object and desired direction by planning and executing
a min-jerk trajectory from the robot’s current location to the
resulting pose after applying pgir to the known object’s pose.
Implementing Object-Centric Manipulation Skills. Simi-
lar to the perception primitives, we define each manipulation
skill on a per-object basis as well; this is both due to the
variety in object scale and properties, but also due to the
variance in grasp locations for different desired behaviors.
For example, the location where the robot should grasp an
object such as a soda can may differ greatly depending on
whether we want to throw the soda can away into a recycling
bin (in which case the robot should grasp the soda can across
the top), or if we want to relocate the can to a shelf (in
which case the robot should grasp the soda can along the

Object 1/5: 'mug” 2.Evaluate the Close-.up Photos

you can Qu each photo below.
zoomed out ject i ion i to see) or

The robot's goal is to clean up the “mug in a socially appropriate manner. To do this, it first needs to gather more
information about the object. Evaluate the robot's attempt to gather information below. Important: Please answer the cuestions below as carefully as possible. We use th asan d to refect your
workif your answers below are objectively incorrect.

Question1: Is the “mug’ empty?

1. Evaluate the Follow-up Questions

The robot has reasoned that:

Can you answer the question from this photo?
Choose. v

You should determine whether the “mug" is empty to see if we should take it away o leave it on the desk

Is this a valid line of reasoning for cleaning the object? Choose. v e oS
Is this line of reasoning socially appropriate? Ghoose. v
Can you answer the question from this photo?
Choose.. ~
The robot has come up with the following two follow-up questions that can be answered from a photo of the object (no interaction with the object is
allowed):
Question 1: Is the “mug” empty?
- Can you answer the question from this photo?
Choose.. ~
Rate the question's usefulness for cleaning the desk. Choose. v
Rate the question's relevance for cleaning the desk. Choose. v —
Can you answer the question from this photo?
Question 2: Is there liquid inside the mug? Choose.. v
Rate the question's usefulness for cleaning the desk Ghoose. v = -
Rate the question's relevance for cleaning the desk. Ghoose. - [Can you answer the question from this photo?
Choose...

Part 1/4 Part 2/4

Fig. 6. Parts 1 and 2 of Survey Interface.

4. Evaluate the Action Plan

‘The robot has thought about different states the “mug" could be in and came up with a plan to clean the object for each state. Rate how appropriate
‘each action is for each hypothetical object state.

3. Answer the Question

‘State: The mug is clean and empty. Choose. -
Action: Leave clean, empty mug in a designated area or cabinet.

State: The mug is clean but filed with a beverage. Choose. v
Action: Empty beverage, clean mug, and place in a designated area or cabinet.

‘State: The mug has a small amount of leftover beverage residue inside. Choose. v
Action: Rinse to remove residue, clean, and place in a designated area or cabinet.

‘State: The mug is dirty with dried beverage residue inside. Choose. -

Action: Clean dirty place ina d cabinet

‘State: The mug is chipped or cracked and needs to be discarded Ghoose. -
‘Action: Dispose of chipped o cracked mug in a trash bin.
What is the correct answer to Question 17

Question 1: Is the “mug’ empty?

Provide your answer based on all the images above. If you have answered "No" to all the previous questions about answerability, you must select "Cannot
answer from image”.

Choose... v

What is the correct answer to Question 2?

Question 2: Is there liquid inside the mug?

Now based on allof the images above, determine the true state of the “mug" and choose the most socially appropriate way to tidy the “mug’.

Choose. v I there isn't an answer choice that its fine, just, "None of the above" if you really, really must.

Choose. 5

Part 3/4 Part 4/4

Fig. 7. Parts 3 and 4 of Survey Interface.

take_photo() move_right(“banana”) take_photo() cleanup(“banana”)

LE

I 1) Get Initial Description |
' There is a banana, bottle, Is the banana partially
- eaten or peeled?

| 3) Actively Perceive 4) Query VLM

r

"GRY> Yes, the banana is partially ok Throw the banana in
LVLMJ eaten or peeled. -'LLM recycling bin

VLM APPle .. S
5 5) Execute
2 (st % Best angle to answer this Action

LLM question is right.

Fig. 8. Real-World Commonsense Reasoning. We outline the steps of our framework with a robot. Notably, the LLM generates questions
and “angles” for the arm to servo to (e.g., right of the banana). We also use the LLM to generate an action plan for each object — each
plan is converted to a sequence of skill primitives that are then executed by the robot.

side, to aid in insertion). To formalize this, we define a functions for each skill — for example, relocate () and
fixed interface depicted in . The provided API defines cleanup () — at the object-level, with a stateful function

set_designated () that provides a compositional way to
set target locations (i.e., “receptacles”). (Right) shows
the actual invoked API calls for the Kitchen Cleanup Desk
depicted in

We implement each object-oriented skill — relocate ()
and cleanup () — for a given object o; and receptacle r;
as a tuple of pick-and-place waypoints defined as (pick, €
SE(3), place,, € SE(3); each pick/place point is defined as a
transformation relative to the origin of the robot’s reference
frame. To execute on a “pick” waypoint, we plan a collision-
free min-jerk trajectory to the given pose, and execute a
blocking grasp action; similarly, to execute on a ‘“place”
waypoint, we plan a similar trajectory to the given receptacle
pose, and execute a blocking open-gripper action. We run
all experiments with a 7-DoF Franka Emika Panda robot
manipulator equipped with a Robotiq 2F-85 gripper, using
Polymetis [52] to facilitate real-time control and Pinocchio
[53], [54] for trajectory planning.
Grounding Language to Skills. While the API definition
deterministically defines robot behavior and skill execution
in a given environment, we need a way of mapping
natural langauge action plans generated by the LLM to
sequence of API calls — for example, mapping the language
action “dispose of the coffee cup” to the corresponding
API calls robot.set_designated('‘recycling
bin’’); robot.cleanup('‘coffee cup’’);
robot .done (). To do this, we follow a similar procedure
as in prior work using LLMs for code generation, prompting
an LLM with the API definition, a series of in-context
examples, and a continuation prompt for generating a valid
sequence of API calls. The continuation prompt contains
the set of known objects in the environment and valid
receptacles defined for each skill, following prior work [39],
[42]. The full prompt is in .
Evaluation. We add to supplement our results
described in Section 5 of the main paper.

D. VLM Details

We use pretrained visual-and-language models (VLMs)
trained on massive internet scale images and texts to answer
the questions generated by LLM. Following $B, we prompt
the LLM so that it generates queries that can be easily
answered by yes, no or unknown; these queries (and the
respective images) are the inputs to the VLM.

To make it easier to parse the predictions of the VLM
question-answerer, we rank the three answer options condi-
tioned on the image and text input, rather than allowing the
VLM to generate free-form responses. Specifically, we set
the text prompt following . We use InstructBLIP [49]
as our VLM and select the output with the highest predicted
probability P(answer | prompt,image) for answer €
{yes, no, unknown} as the final answer. As InstructBLIP can
use multiple LLM backbones, we evaluate both the Vicuna-
13B and Flan-T5-XXL (11B) variants, finding Flan-T5-XXL
to work better for our tasks. We have also experimented
with further finetuning InstructBLIP on the in-domain data
from the MESSYSURFACES dataset, but have not seen any

noticeable performance gains; as a result, we use the off-the-
shelf pretrained models in this work.

E. Personalization Analysis

We explore the hypothesis that incorporating personal
preferences on how to clean objects can lead to a higher
accuracy on our benchmark, as discussed in Sections 5
and 6 of the main paper. We studied questions that the
human Oracle got incorrect in Section 5 of the main paper.
Qualitatively, we found that some attributes of an object
such as its “dirtiness” can be subjective, lending support
to our hypothesis. This may have caused the Oracle to
incorrectly answer some questions. For instance, in Question
6 of , the Oracle did not consider a keyboard that
had a small amount of dust on it to be “dirty” enough and
chose to “leave it as is”. However, the majority of annotators
preferred that the keyboard “should be cleaned”.

We explored whether adding preferences would improve
our framework’s accuracy. We selected 9 questions where
both the Oracle and our framework, LLM-Ours, chose the
same incorrect answer. The full list of questions is shown
in and . We recruited a participant and, for
each question, asked them whether the Oracle could have
chosen the incorrect answer because of a lack of preference
information. If the participant agreed that there was as lack of
preference information, we asked them what the preference
would be. For instance, in Question 6 of , the user
noted that the disagreement between the human Oracle and
human annotators could have been due to a lack of preference
information, such as “It’s not acceptable for objects to have
any signs of dirtiness”. The participant indicated that the
Oracle could have incorrectly answered 8 out of the 9
questions due to a lack of preference information. Question 9
in is an example of a question where the user thought
the Oracle was incorrect due to noise.

For the remaining 8 questions, our goal was to see if
adding preferences to the LLM’s prompt would help the
LLM choose the “correct” action plan as indicated by the
annotators’ majority label. We used 1 question to tune the
prompt and evaluated the LLM on the remaining 7 questions
(Questions 2 — 8 in and). We prompted the
LLM by appending preference information to the prompt for
choosing an action plan (described in). An
example prompt is shown in

nun

> The owner of the object has a preference on how you

should tidy the ‘candle‘: Don’t trim the wick.

It doesn’t matter whether the burnt part of
the candle wick is excessively long because I
can still light it.

The best option is:

sonnn

Listing 2. Example Prompt for Generation an Action Plan with Preference
Information

We found an average 86% improvement in accuracy,
lending support to the hypothesis that preference in-
formation helps further enable grounded commonsense
reasoning.

5

6

8

interface RobotManipulationInterface {

func leave_alone(obj

t: str) -> None;

func set_designated(receptac

: str) -> None;
Func‘“ r"c“lo’cl}‘to(oh](l!: str) *>‘Nt>v“(';
func cleanup(object: str) -> None:
fine done0)s

robot = RobotManipulationInterface();

Fig. 9.

// "Clean up the kitchen counter”

objects = ["cardboard", "banana", "tissue", "bottle", "apple", "can"]

: {"relocate”: "countertop”, "cleanup”: "recycling bin"},
: {"relocate": "countertop®, "cleanup”: "trash can"},

// "Skill Execution"
robot.set_designated("recycling bin"); robot.cleanup("cardboard");
robot.set_designated("trash can"); robot.cleanup("banana");

robot.set_designated("trash can"); robot.cleanup("tissue
robot.set_designated("recycling bin") ot.cleanup("
robot.set_designated("trash can"); robot.

ttle");
s

robot. leave_alone("can");

robot.done();

Code as Policies Interface for Real-Robot Execution. We define a simple programmatic interface for specifying robot skill primitives on in an

object-oriented fashion. The interface is stateful; for robot primitives such as cleanup () and relocate (), the robot sets a designated receptacle via
the special function set_designated (). On the right, we provide the actual execution trace produced by the LLM for the Kitchen Cleanup Desk (see

).

Accuracy (Oracle VLM

)
08y 091 091

0.|73

0.64 0.64

No
Questions

No Active
Perception

Fig. 10.

Baseline
Questions

Accuracy (Zero-Shot VLM)
0.

0.64 0.64 073 s 073

Ours-
LLM

Ours-
- Front

Il Oracle

Real Robot Benchmark Accuracy. We construct benchmark questions for objects used with the real robot in similar manner

to Section 4 in the main paper. Across both types of VLMs, our Ours-LLM beats Baseline Questions by an average of 13.5%, beats
No Active Perception by an average of 18%, and beats No Questions by an average of 13.5%.

2> Given the image, please answer the following
3 question in yes, no, or unknown.
i Question: Is the bagel sandwich partially eaten?

5 Answer:
wun

Fig. 11.

FE. Prompts & In-Context Examples for LLM Inference 9

In this section, we provide the comprehensive set of
prompts used to elicit the desired behavior from the LLM
(via the OpenAl API) across the multiple functionalities
described in our approach, from generating follow-up ques-
tions, to synthesizing code for real-robot execution.

1) Prompt for Generating Follow-Up Questions: In the
second step of our proposed framework (see Section 3 of
the main paper), we one-shot prompt the LLM to generate
follow-up questions about a list of objects on a surface using
the prompt in

<

These are the objects on the desk:
‘scrunchie', ‘lotion‘, ‘vaseline‘, ‘brush‘.

Your goal is to tidy the desk in a socially
appropriate manner. 9

Ask a new follow-up question about each object to
gather 10

more information. Only ask questions that can be 11
answered by 12

taking a picture of the object. For example, DO NOT 13

ask whether

Example of VLM Text Prompt and Image Input.

the object is currently being used.

Listing 3. Instruction For Generating Follow-Up Questions

To guide follow-up question generation, we provide the
following () as the sole in-context example before
having the LLM generate a continuation:

These are the objects on the desk:
‘apple‘', ‘charging cable‘', ‘empty water bottle?,
‘book ', ‘calendar‘, ‘coffee cup‘.

Your goal is to tidy the desk in a socially
appropriate manner.

Ask a new follow-up question about each object to
gather

more information.
answered by

taking a picture of the object.
ask

whether the object is currently being used.

Only ask questions that can be

For example, DO NOT

- ‘Apple:
Socially motivated reasoning: You should throw
away the

Question 1: ‘tablet" (used as ”training example” to tune prompt)

Oracle/LLM Answer

Detach accessories, put in sleep mode, and place tablet and
accessories in a designated area.

Annotator Majority
Answer (Correct Label)

Ensure the tablet in sleep mode is in a designated area.

Disagreement Due to
Lack of Preferences?

Yes

Missing Preference

I prefer to keep my tablet accessories attached so I can continue
charging them.

Question 2: ‘cup’

Oracle/LLM Answer

Wash and dry the cup with residue or stains.

Annotator Majority
Answer (Correct Label)

Leave the empty, clean cup as is.

Disagreement Due to
Lack of Preferences?

Yes

Missing Preference

Leave cups that don’t appear visibly dirty.

Question 3: ‘controller’

Oracle/LLM Answer

Clean the controller with a soft cloth or cleaning solution, then
place it in a designated area.

Annotator Majority
Answer (Correct Label)

Leave the controller as is on the stand or designated area.

Disagreement Due to
Lack of Preferences?

Yes

Missing Preference

It’s acceptable to have some dust on objects.

Question 4: ‘keyboard®

Oracle/LLM Answer

Leave the properly placed and connected keyboard as is.

Annotator Majority
Answer (Correct Label)

Clean the dirty or dusty keyboard and place it in a convenient
location.

Disagreement Due to
Lack of Preferences?

Yes

Missing Preference

It’s not acceptable for objects to have any signs of dirtiness.

Question 5: ‘mouse’

Oracle/LLM Answer

Leave the properly placed and connected mouse as is.

Annotator Majority
Answer (Correct Label)

Clean the dirty or dusty mouse and place it in a convenient
location.

Disagreement Due to
Lack of Preferences?

Yes

Missing Preference

It’s not acceptable for objects to have any signs of dirtiness.

Question 6: ‘keyboard®

Oracle/LLM Answer

Leave keyboard as is, ensuring it is placed neatly.

Annotator Majority
Answer (Correct Label)

Clean the dirty keyboard and place it neatly.

Disagreement Due to
Lack of Preferences?

Yes

Missing Preference

It’s not acceptable for objects to have any signs of dirtiness.

Fig. 12. Questions Used for Personalization Analysis (1/2). We display questions where both Oracle and Ours-LLM chose the same incorrect answer.
We recruited a participant to indicate whether the Oracle could have incorrectly answered these questions due to a lack of preference information, and if
so, what the preference would be.

Question 7: “Tamp®

Oracle/LLM Answer

Turn on the lamp if needed.

Annotator Majority
Answer (Correct Label)

Set the turned-off lamp upright.

Disagreement Due to
Lack of Preferences?

Yes

Missing Preference

It’s better to keep the light off!

Question 8: ‘candle’

Oracle/LLM Answer Trim the burnt wick and place the used candle in a designated
area.
Annotator Majority Leave the clean, unlit candle as is and place it in a designated area.

Answer (Correct Label)

Disagreement Due to
Lack of Preferences?

Yes

Missing Preference

It doesn’t matter whether the burnt part of the wick is excessively
long because I can still light it.

Question 9: ‘papers’ (omitted)

Oracle/LLM Answer Flatten crumpled papers or trim torn edges, organize, and store
them in a designated area.
Annotator Majority Gather, organize, and store the scattered papers in a designated

Answer (Correct Label)

area.

Disagreement Due to
Lack of Preferences?

No, the Oracle/LLM answer is incorrect

Missing Preference

N/A

Fig. 13. Questions Used for Personalization Analysis (2/2). We display questions where both Oracle and Ours-LLM chose the same incorrect answer.
We recruited a participant to indicate whether the Oracle could have incorrectly answered these questions due to a lack of preference information, and if
so, what the preference would be.

15

16

S

‘apple' if it is partially eaten, but not if it

is intact.

Resulting question (that can be answered by

taking a

picture of object): Is the ‘apple‘' partially
eaten?

(a) Yes (b) No (c) Cannot answer from image

- ‘Charging cable‘:

Socially motivated reasoning: You should coil the
‘charging cable' and store it neatly if it is
not in use,
but leave it in place if it is connected to a
device that
needs charging.

Resulting question (that can be answered by

taking a

picture of object): Is the
connected to a device?

‘charging cable’®

(a) Yes (b) No (c) Cannot answer from image

Listing 4. In-Context Example For Generating Follow-Up Questions

Notably, we use Chain-of-Thought prompting to encour-

age the LLM to generate questions that are motivated by
commonsense reasoning. We also encourage the LLM to ask

questions that can be answered by an image of the object.
Prompt for Generating Baseline Follow-Up Questions.
To generate baseline questions, we use the following

prompt ():

Ask one yes-or-no question for each object on the
desk. Only ask

yes—-or—-no questions that can be answered by taking
a picture of the object.

These are the objects on the desk:

‘scrunchie', ‘lotion‘, ‘vaseline‘, ‘brush‘.

\

Format your answer in the following format:

object_name‘: question
nmwn

Listing 5. Instruction For Generating Baseline Follow-Up Questions

In our baseline question prompt, we do not specify that

the goal for the LLM is to tidy the desk nor do we require
the LLM to generate commonsense-motivated questions.
2) Prompt for Choosing a Close-Up Angle: In the third

LLM to generate informative close-up angles that would
guide a robot. In the prompt, we include a list of objects
on the current surface, the follow-up question about an

object, and a multiple choice question with options corre-

sponding to the five predefined close-up angles: <FRONT>,
<BACK>, <LEFT>, <RIGHT>, <TOP>.We use the fol-
lowing prompt ():

These are the objects on the desk:
‘cup', ‘computer wires?',

Description:
‘computer monitor?‘,
apple*.

\

34

35

56

66

3 Response:

5 Response:

Follow-up Question: Are the
connected to anything?
(a) Yes (b) No

‘computer wires®

You are instructing a robot to take a close-up
picture of the object
to help answer the follow-up question.

Which of the following angles would yield a close-—
up picture that can
best answer the question?

) Top of the object

) Right side of the object
) Left side of the object
) Front of the object

) Behind the object

P20y

Response: A top-down view would give an unoccluded
view since the

wires might be tangled.

(a) Top of the object

These are the objects on the desk:
‘stack of papers', ‘cups’.

Description:
‘monitor?t,
Are the

Follow—up Question: ‘cups®

(a) Yes (b) No

empty?

You are instructing a robot to take a close-up
picture of the object

> to help answer the follow-up question.

Which of the following angles would yield a close-
up picture that can
best answer the question?

) Top of the object

) Right side of the object
) Left side of the object
) Front of the object

) Behind the object

20Ty

The cups might be opaque so the best
angle would be

(a) Top of the object

Description: These are the objects on the desk:
‘keyboard', ‘whiteboard marker‘, ‘stack of
papers‘', ‘vase'.

Follow-up Question: Are the

straightened?

(a) Yes (b) No

‘stack of papers’

You are instructing a robot to take a close-up
picture of the object

s+ to help answer the follow-u uestion.
step of our proposed framework, we few-shot prompt the _ e bd

Which of the following angles would yield a close-—
up picture that can
best answer the question?

) Top of the object

) Right side of the object
) Left side of the object
) Front of the object

) Behind the object

P20y

The stack would best be viewed from its
side.

(d) Front of the object

68

w o =

Listing 6. Prompt for Generating Informative Close-Up Angles

3) Prompt for Choosing an Action Plan: As the ultimate
step of our framework, we prompt the LLM to answer
our benchmark questions by choosing the most socially
appropriate action to tidy each object. When prompting the
LLM, we first include the context accumulated so far: the
follow-up questions and their VLM-generated answers (see

for an example).

Here is some information about the ‘scrunchie‘' in

question-answer format.

Is the ‘scrunchie' neatly placed on the desk? Yes
Does the ‘scrunchie' have any stains? Yes

Does the ‘scrunchie' have any loose threads? No
nmwn

Listing 7. Example of Context for Action Plan Generation

We append the benchmark question to the prompt and have
the LLM generate an appropriate tidying action:

Based on the information above, what is the most
appropriate
way to tidy the ‘scrunchie'?
Choose the best option.
(a) The scrunchie is neatly coiled and placed on
the desk.
—-> Leave the neatly coiled scrunchie as is in a
designated area.
The scrunchie is stretched out and tangled with
other
items on the desk.
-> Untangle, coil neatly,
designated area.
The scrunchie is dirty or stained and needs to
be cleaned.
—-> Clean, dry, and place in a designated area.
(d) The scrunchie is partially unraveled or damaged

(b)

and place in a

(c)

—> Repair or replace, and place in a designated

area.

The scrunchie is being used to hold together a

bundle

of cables or cords on the desk.

—-> Remove from cables, coil neatly,
a designated area.

(e)
and place in
f?f best option is:

Listing 8. Prompt For Generating Answers to Benchmark Questions

4) Prompt for Generating MESSYSURFACES Benchmark
Questions: As described in Section 3 of the main paper,

we prompt an LLM to generate multiple choice options for -

the question “What is the most appropriate way to tidy the

object?” for each object in the MESSYSURFACES dataset. To |

generate each set of multiple choice options, we first prompt
the LLM to list five possible states each object could be in:

These are the objects on the desk:
‘scrunchie', ‘lotion‘, ‘vaseline‘, ‘brush‘.
Your goal is to tidy each but there is

not

‘object ' up,

8

9
10
11

13

)

\

enough information about each object. For each
object?,

list 5 possible states the object could be in that
would

affect how you tidy it up.

Make sure each state is
Remember

Label the 5 states (a)-(e).

significantly different from each other.
that

all the objects are placed on the desk.

Listing 9. Example Prompt For Generating Benchmark Questions (1/2)

After receiving the LLM’s response, we ask it to generate
a cleaning action for each state. The purpose of first asking
it to generate object states is so that the LLM can generate
diverse cleaning actions:

For each state tell me how you would tidy

the

(a)=(e),
‘object .

3 Make sure each answer choice is significantly

4

different from each
other. Include an option to ’leave the object as is

’

\

Each object should be in apostrophes like so:
object ‘.

Listing 10. Example Prompt For Generating Benchmark Questions (2/2)

5) Prompt for Real-Robot Code Generation from Lan-
guage: Following $C, we use the LLM to generate valid API
calls for a given natural language action (e.g., “dispose of
the coffee cup”). To do this, we use the following instruction
prompt for GPT-3 that defines the interface formally:

INITIAL_INSTRUCTION = (

nmnn

Translate each of the following language
instructions to a

sequence of predefined API calls that will be
executed by

a robot manipulator to help
workspace.

When generating code,
provided below:

nun

"clean up" a

make sure to use the API

ROBOT_API

nun

=

interface RobotManipulationInterface {
// Leaves the <object> alone
func leave_alone (object: str) -> None;

// Sets the "designated receptacle" for

// following actions —--> *statefulx
func set_designated (receptacle: str) ->
None;

// Relocates / gathers the <object> and
moves it to the

// designated receptacle

func relocate (object: str) -> None;

// Discards the <object> by placing it in
the

// designated receptacle

func cleanup (object: str) -> None;
// Signals end of execution
func done () —> None;

)

20

29

API

)

Listing 11.

// Create a ‘robot‘' (callable instance of
interface)
robot = RobotManipulationInterface();

nun

_DOCS = (

nun

You can invoke a given function on the
calling

‘robot.<func> ("object name"). For example:
‘robot.set_designated_area ("recycling bin") ‘.

robot by

The API also enables multiple function
invocations (separated
by newlines) .

Note that each call to
smust* be preceded
by a call to ‘set_designated' to be wvalid!

‘relocate' and ‘cleanup'

To terminate execution for a given action, call

‘robot .done () ‘.
wwn

Prompt for Generating Real-Robot API Calls from Natural

Language Actions

In addition to this API definition, we provide three in-
context examples in the prompt, as follows:

ICL_INSTRUCTION = (

nun

Here are some examples of translating language
instructions to

API calls. Each instruction defines two
variables:

1) a list of interactable
obj2", ...]"

——> these should be the only "object" arguments
to the
‘relocate’?

‘Objects: ["objl", "

and ‘cleanup‘' API calls!

\

2) a mapping of objects to receptacles

Receptacles:
{"obj": {"relocate": "<receptacle>", "
cleanup": "<receptacle>"}}?

——> these should be the only "receptacle"
arguments for the
‘set_designated' API calls!

Note that if there is xnotx a good API call
that reflects the

desired behavior,
wwn

it is ok to skip!

EXAMPLE_ONE = (

nun

Instruction:
organize them
tidily in the designated container."
Objects: ["crayons", "colored pencils", "
notebook", "eraser",

"crumpled up napkin"]
Receptacles: {

"Retrieve all the crayons and

"crayons": {"relocate": "art box", "cleanup":

"trash"},

"notebook": {"relocate": "desk", "cleanup": "
recycling"},

"eraser": {"relocate": "art box", "cleanup":
"trash"},

"crumpled up napkin": {"relocate": "desk", "
cleanup": "trash"}

£

48

51

63

65

66

67
68

69

72
73

74

76

}

Program:
robot.set_designated ("art box");
robot.relocate ("crayons") ;

robot .done () ;

LRRTRY

nun

EXAMPLE_TWO = (

nun

Instruction: "Throw away the half-eaten apple."
Objects: ["apple", "orange", "half-eaten peach
n
"coffee cup", "pink plate"]

Receptacles: {

"apple": {"relocate": "counter", "cleanup": "
trash"},

"orange": {"relocate": "counter", "cleanup":
"trash"},

"half-eaten peach": {"relocate": "counter", "
cleanup": "trash"},

"coffee cup": {"relocate": "counter", "
cleanup": "recycling"},

"pink plate": {"relocate": "counter", "
cleanup": "sink"}
}
Program:

LRRTRY

robot.set_designated ("trash can");
robot.cleanup ("apple");

robot .done () ;

ARRTRY

nun

» EXAMPLE_THREE = (

nun

Instruction: "Leave the castle as is in a
designated area, then

put away the removeable parts in
a continer."

Objects: ["toy castle", "castle parts", "
figurine", "cheerios"]
Receptacles: {

"toy castle": {"relocate": "shelf", "cleanup
". lltoy box" } ,

"castle parts": {"relocate": "play mat", "
cleanup": "toy box"},

"figurine": {"relocate": "shelf", "cleanup":
"toy box"},

"cheerios": {"relocate": "play mat", "cleanup
": lltrashll}
}
Program:
robot.leave_alone ("toy castle");
robot.set_designated ("toy box");
robot.cleanup ("castle parts");
robot .done () ;

Listing 12. In-Context Examples for Real-Robot Code Generation

Finally, we produce the following continuation string that
we use to seed the LLM completion; the {, } denote variables
that are filled in programmatically at runtime:

CONTINUATION = (
"
Instruction: {instruction}
Objects: {objects}
Receptacles: {receptacles}

Program:

n +
"""< LIM CONTINUATION >"""

Listing 13. Continuation Prompt for Code Generation

G. Examples

We list several examples our dataset and framework below.

Children’s Play Desk (Real Robot Experiments)

scene blocks car

sports car toy train set track pieces
Iteration 1 Iteration 2

Social You should store the “toy train set” in a Social You should check if the ‘toy train set" is complete
Reasoning | designated area if it is not being actively played Reasoning | or if any pieces are missing, as it may need to be
- with, but leave it on the desk if it is in use.— - reassembled or stored properly.—
Question Are the "toy train set’ pieces connected and Question Are all the toy train set’ pieces present?

arranged in a layout? LLM Angle | Top
LLM Angle | Top VLM Yes
VLM Yes Answer

Answer Bl Question | Is the toy train set battery-operated?

Bl Question | Is the toy train set made of plastic?

Iteration 3 Iteration 4

Social You should check if the "toy train set" has a Social You should check if the “toy train set’ has any
Reasoning | designated storage container or area, as it may Reasoning | battery-operated components, as batteries may
- need to be stored properly when not in use.— - need to be removed or replaced for proper
Question Does the “toy train set have a designated storage Question storage or maintenance.—

container or area? Does the “toy train set’ have any battery-operated
LLM Angle | Front components?
VLM No LLM Angle | Top
Answer VLM No

Answer

Bl Question | Are there any passenger cars in the toy train set?

Bl Question | Is there a caboose at the end of the toy train set?

Iteration 5

Benchmark Question

Social You should check if the ‘toy train set’ has any
i iti i hat shouls v
Iieasonmg ;gfet;r;aolgiiﬁisrs‘?;tf tohr ::gg;;?:gt;etr at should (a) Leave the arranged train set as is in a designated area.™
Question organization and storage.— (b) Connect disconnected pieces and arrange neatly in a
Does the “toy train set' have any additional designated area.
accessories or components? (c) Assemble scattered pieces and arrange neatly in a
LLM Angle | Top designated area.
VM v (d) Leave the train set in its packaging in a designated area.
s e) Repair or replace damaged pieces and arrange neatly in a
Answer P P ged p & y

designated area.

Bl. Question | Does the toy train set have any cargo cars?

Fig. 14. Children’s Play Desk (Real-Robot Experiments). Example photos of each object (from a top-down angle). We also provide examples of our
framework’s outputs for the toy train set for all 5 iterations using InstructBLIP.

Kitchen Cleanup Desk (Real Robot Experiments)

Iteration 1

banana

cardboard

Iteration 2

Social You should throw away the ‘banana’ if it is Social You should check if the ‘banana’ is overripe, as it
Reasoning | partially eaten or the peel is discarded, but not if Reasoning | may need to be thrown away or used soon.—

- it is intact.—> - Is the "banana’ overripe?

Question Is the "banana’ partially eaten or peeled? Question

LLM Angle | Right LLM Angle | Front

VLM Yes VLM Yes

Answer Answer

BI. Question

Is the banana ripe (yellow)?

BI. Question

Is the banana's peel intact (no bruises)?

Iteration 3

Iteration 4

Social You should check if the ‘banana’ is starting to Social You should check if the ‘banana’ has any mold, as
Reasoning | brown, as it may need to be consumed soon or Reasoning | it may need to be discarded immediately.—

- used in a recipe..— - Does the ‘banana’ have any mold?

Question Is the ‘banana’ starting to brown? Question

LLM Angle | Front LLM Angle | Top

VLM Yes VLM No

Answer Answer

BI. Question

Are there any brown spots on the banana's peel?

BI. Question

Is the banana's peel starting to split open?

Iteration 5

Social You should check if the ‘banana’ has any fruit

Reasoning flies around it, as it may need to be discarded or

- stored properly..—

Question Are there any fruit flies around the ‘banana'?

LLM Angle | Top

VLM No

Answer

Bl Question | Is there any visible stringiness on the banana's
exposed flesh?

Fig. 15.

Benchmark Question

(a) Throw in recycling bin.
(b) Throw in landfill bin.

(c) Leave as is

Kitchen Cleanup Desk (Real-Robot Experiments). Example photos of each object (from a top-down angle). We also provide examples of our
framework’s outputs for the banana for all 5 iterations using InstructBLIP.

	Introduction
	Related Work
	Grounding Commonsense Reasoning
	The MessySurfaces Dataset
	Experiments
	Evaluation on MessySurfaces
	Evaluation on Real-World Robotic System

	Discussion
	References
	Appendix
	Data Collection
	Survey Interface
	Prolific Details

	Framework Implementation Details
	Real-World Robot Evaluation
	VLM Details
	Personalization Analysis
	Prompts & In-Context Examples for LLM Inference
	Prompt for Generating Follow-Up Questions
	Prompt for Choosing a Close-Up Angle
	Prompt for Choosing an Action Plan
	Prompt for Generating MessySurfaces Benchmark Questions
	Prompt for Real-Robot Code Generation from Language

	Examples

