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Abstract

Deep Gradient Leakage (DGL) is a highly effective attack that recovers private
training images from gradient vectors. This attack casts significant privacy chal-
lenges on distributed learning from clients with sensitive data, where clients are
required to share gradients. Defending against such attacks requires but lacks
an understanding of when and how privacy leakage happens, mostly because
of the black-box nature of deep networks. In this paper, we propose a novel
Inversion Influence Function (I°F) that establishes a closed-form connection be-
tween the recovered images and the private gradients by implicitly solving the
DGL problem. Compared to directly solving DGL, I%F is scalable for analyz-
ing deep networks, requiring only oracle access to gradients and Jacobian-vector
products. We empirically demonstrate that I2F effectively approximated the DGL
generally on different model architectures, datasets, modalities, attack imple-
mentations, and perturbation-based defenses. With this novel tool, we provide
insights into effective gradient perturbation directions, the unfairness of privacy
protection, and privacy-preferred model initialization. Our codes are provided in
https://github.com/illidanlab/inversion-influence-function.

1 Introduction

With the growing demands for more data and distributed computation resources, distributed learning
gains its popularity in training large models from massive and distributed data sources (McMahan
etal., 2017; Gemulla et al., 2011). While most distributed learning requires participating clients to
share only gradients or equivalents and provides data confidentiality, adversaries can exploit such
information to infer training data. Deep Gradient Leakage (DGL) showed such a real-world risk
in distributed learning of deep networks (Zhu et al., 2019; Jin et al., 2021). Only given a private
gradient and the corresponding model parameters, DGL reverse-engineers the gradient and recovers
the private images with high quality. The astonishing success of the DGL started an intensive race
between privacy defenders (Sun et al., 2020; Wei et al., 2021; Gao et al., 2021; Scheliga et al., 2022)
and attackers (Geiping et al., 2020; Zhao et al., 2020; Jin et al., 2021; Jeon et al., 2021; Zhu and
Blaschko, 2021; Fowl et al., 2022).

A crucial question to be answered behind the adversarial game is when and how DGL happens,
understanding of which is fundamental for designing attacks and defenses. Recent advances in
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theoretical analysis shed light on the question: Balunovi¢ et al. (2022) unified different attacks into
a Bayesian framework, leading to Bayesian optimal adversaries, showing that finding the optimal
solution for the DGL problem might be non-trivial and heavily relies on prior knowledge. Pan et al.
(2022); Wang et al. (2023b) advanced the understanding of the leakage in a specific class of network
architectures, for example, full-connected networks. However, it remains unclear how the privacy
leakage happens for a broader range of models, for example, the deep convolutional networks, and
there is a pressing need for a model-agnostic analysis.

In this paper, we answer this question by tracing the recovered sample by DGL algorithms back to
the private gradient, where the privacy leakage ultimately derives from. To formalize the optimal
DGL adversary without practical difficulties in optimization, we ask the counterpart question: what
would happen if we slightly change the private gradient?

Answering this question by perturbing the gradient and re-evaluating the attack can be prohibitive
due to the difficulty of converging to the optimal attack in a highly non-convex space. Accordingly,
we propose a novel Inversion Influence Function (IF) that provides an analytical description of the
connection between gradient inversion and perturbation. Compared to directly solving DGL, the
analytical solution in I2F efficiently scales up for deep networks and requires only oracle access
to gradients and Jacobian-vector products. We note that I°F shares the same spirit of the influence
function (Koh and Liang, 2017; Hampel, 1974) that describes how optimal model parameters would
change upon the perturbation of a sample and IF can be considered as an extension of the influence
function from model training to gradient inversion.

The proposed I2F characterizes leakage through the lens of private gradients and provides a powerful
tool and new perspectives to inspect the privacy leakage: (1) First, we find that gradient perturbation
is not homogeneous in protecting the privacy and is more effective if it aligns with the Jacobian
singular vector with smaller singular values. (2) As the Jacobian hinges on the samples, the variety of
their Jacobian structures may result in unfair privacy protection under homogeneous Gaussian noise.
(3) We also examine how the initialization of model parameters reshapes the Jocabian and therefore
leads to quite distinct privacy risks.

These new insights provide useful tips on how to defend DGL, such as perturbing gradient in specific
directions rather than homogeneously, watching the unfairness of protection, and carefully initializing
models. We envision such insights could lead to the development of fine-grained privacy protection
mechanisms. Overall, our contributions can be summarized as follows. (1) For the first time, we
introduce the influence function for analyzing DGL; (2) We show both theoretical and empirical
evidence of the effectiveness of the proposed I2F which efficiently approximates the DGL in different
settings; (3) The tool brings in multiple new insights into when and how privacy leakage happens and
provides a tool to gauge improved design of attack and defense in the future.

2 Related Work

Attack. Deep Gradient Leakage (DGL) is the first practical privacy attack on deep networks (Zhu et al.,
2019) by only matching gradients of private and synthetic samples. As accurately optimizing the
objective could be non-trivial for nonlinear networks, a line of work has been developed to strengthen
the attack (Zhao et al., 2020). Geiping et al. (2020) introduce scaling invariance via cosine similarity.
Balunovic et al. (2022) summarizes these attacks as a variety of prior choices. The theorem is echoed
by empirical studies that show better attacks using advanced image priors (Jeon et al., 2021). It was
shown that allowing architecture modification could weigh in higher risks in specific cases (Zhu and
Blaschko, 2021; Fowl et al., 2022). Besides the study of gradient leakage in initialized models, recent
evidence showed that the well-trained deep network can also leak the private samples (Haim et al.,
2022). Yet, such an attack still requires strict conditions to succeed, e.g., small dataset and gradient
flow assumptions. Though these attacks were shown to be promising, exactly solving the attack
problem for all types of models or data is still time-consuming and can be intractable in reasonable
time (Huang et al., 2021).

Defense. Most defense mechanisms introduce a perturbation in the pipeline of gradient computation.
1) Gradient Noise. Since the DGL is centered on reverse engineering gradients, the straightforward
defense is to modify the gradient itself. Zhu et al. (2019) investigated a simple defense by Gaussian
noising gradients or pruning low-magnitude parameters-based defense. The Gaussian noise was
motivated by Differential Privacy Gradient Descent (Dwork, 2006; Abadi et al., 2016), which



guarantees privacy in an aggregated gradient. Except for random perturbation, the perturbation could
also be guided by representation sensitivity (Sun et al., 2020) or information bottleneck Scheliga et al.
(2022). 2) Sample Noise. The intuition of sample noise is to change the source of the private gradient.
For example, Gao et al. (2021) proposed to seek transformations such that the transformed images are
hard to be recovered. Without extensive searching, simply using strong random data augmentation,
e.g., MixUp (Zhang et al., 2017), can also help defense (Huang et al., 2021). If public data are
available, hiding private information inside public samples is also an alternative solution (Huang et al.,
2020). Though the defenses showed considerate protection against attacks in many empirical studies,
the security still conceptually relied on the expected risks of a non-trivial number of evaluations.
Explanation of how well a single-shot protection, for example, noising the gradient, is essential yet
remains unclear.

Understanding DGL. There are many recent efforts in understanding when noise-based mechanisms
help privacy protection. Though Differential Privacy (DP) provides a theoretical guarantee for general
privacy, it describes the worst-case protection and does not utilize the behavior of DGL, motivating a
line of studies to understand when and how the DGL happens. Sun et al. (2020) connected the privacy
leakage to the representation, which aligns with later work on the importance of representation
statistics in batch-normalization layers (Hatamizadeh et al., 2021; Huang et al., 2021). Balunovié
et al. (2022) unified different attacks in a Bayesian framework where existing attacks differ mainly
on the prior probability. Chen and Campbell (2021) investigated the model structure to identify
the key reasons for gradient leakage. Hatamizadeh et al. (2021); Huang et al. (2021) evaluated the
DGL in practical settings and showed that BN statistics is critical for inversion. There are efforts
advancing theoretical understandings of DGL. Pan et al. (2022) studied the security boundary of
ReLU activation functions. In a specific class of fully-connected networks, Wang et al. (2023b)
showed that a single gradient query at randomized model parameters like DP protection can be used
to reconstruct the private sample. Hayes et al. (2023); Fan et al. (2020) proposed an upper bound of
the success probability of the data reconstruction attack and the relative recovery error, respectively,
which is considered as the least privacy risk. Instead, we consider the worst-case privacy risk.

Though many useful insights are provided, existing approaches typically focus on specific model
architectures. This work provides a new tool for analyzing the DGL without assumptions about the
model architectures or attacking optimization. Independent of the model architectures, our main
observation is that the Jacobian, the joint derivative of loss w.r.t. input and parameters, is the crux.

3 Inversion Influence Function

In this section, we propose a new tool to unravel the black box of DGL. We consider a general loss
function L(x, ) defined on the joint space of data X and parameter ©. For simplicity, we assume z
is an image with oracle supervision if considering supervised learning. Let x( be the private data
and go = VgL(z0,0) be its corresponding gradient which is treated as a constant. An inversion
attack aims at reverse engineering go to obtain zy. Deep Gradient Leakage (DGL) attacks by directly
searching for a synthetic sample « to reproduce the private gradient g by Vo L(z, ) (Zhu et al., 2019).
Formally, the DGL is defined as a mapping from a gradient g to a synthetic sample x:

7y = Grlg) 2 argmin { Ly(a:9) 2 | VoL(,0) - g|*} . M
TeEX

where Ly is the inversion loss matching two gradients, ||-|| denotes the ¢5-norm either for a vector or
a matrix. The Ly-norm of a matrix A is defined by the induced norm || Al| = sup, .o (| Az|| / [|z[])-
The Euclidean distance induced by ¢>-norm can be replaced by other distances, e.g., cosine similar-
ity (Geiping et al., 2020), which is out of our scope, though.

Our goal is to understand how the gradient of a deep network at input =y encloses the information
of z¢. For a linear model, e.g., L(x, ) = ', the gradient is 2 and directly exposes the direction
of the private sample. However, the task gets complicated when a deep neural network is used
and L(z, ) is a nonlinear loss function. The complicated functional makes exactly solving the
minimization in Eq. (1) highly non-trivial and requires intensive engineering in hyperparameters and
computation (Huang et al., 2021). Therefore, analyses tied to a specific DGL algorithm may not be
generalizable. We introduce an assumption of a perfect attacker to achieve a generalizable analysis:

Assumption 3.1. Given a gradient vector g, there is only a unique minimizer for Li(x; g).



Since Vg L(z, 0) is a minimizer for G, (Vg L(z, 6)), Assumption 3.1 implies that G,. (Vg L(z, 0)) is
a perfect inversion attack that recovers = exactly. The assumption of a perfect attacker considers the
worst-case. It allows us to develop a concrete analysis, even though such an attack may not always
be feasible in practice, for example, in non-linear deep networks. To start, we outline the desired
properties for our privacy analysis. (1) Efficiency: Privacy evaluation should be efficient in terms of
computation and memory; (2) Proximity: The alternative should provide a good approximation or a
lower bound of the risk, at least in the high-risk region; (3) Generality: The evaluation should be
general for different models, datasets, and attacks.

3.1 Perturbing the Private Gradient

To figure out the association between the leakage and the gradient g, we formalize a counterfactual:
what kind of defense can diminish the leakage? A general noise-based defense can be written as
g = VoL(x,0) + 0 where ¢ is a small perturbation. According to Assumption 3.1, a zero 0 is not
private. Instead, we are interested in non-zero  and the recovery error (RE) of the recovered image:

RE(z0, Gr(go +0)) = [lwo = Gr(go + 9) @
For further analysis, we make two common and essential assumptions as follows.

Assumption 3.2. L(z,0) is twice-differentiable w.r.t.  and 9, i.e., J = V,VyL(x,0) € Rd=>de
exist, where d,, and dgy are the dimensions of x and 0, respectively.

Assumption 3.3. J.J " is invertible.

We then approximate G,.(go + d) by the first-order Taylor expansion:

oG, (90) 8Gr(90)
G, (go+90) =G, 4+ ——0) = xg + ——226. 3
(90 +9) (90) 996 To B0 3

By the implicit function theorem, we can show that 8%7;50) = (JJT)~1J (proof in Appendix B.1).
Thus, for a small perturbation §, we can approximate the privacy leakage through DGL by

Inversion Influence Function (I°F): || G.(go + 6) — zo| & Z(8;m0) = |[(JJT) 16|, (@)

The I°F includes a matrix inversion, computing which may be expensive and unstable for singular
matrixes. Thus, we use a tractable lower bound of I2F as:

T\-1 [179]]
777 8 = 5

N (TT 1) £ T (63 20), (5)

where \pax(A) denotes the maximal eigenvalues of a matrix A. Computing the maximal eigenvalue is
usually much cheaper than the matrix inversion. We note that the approximation uses Assumption 3.1
and provides a general risk measurement of different attacks.

The lower bound describes how risky the gradient is in the worst case. This follows the similar
intuition of Differential Privacy (DP) (Dwork, 2006) to bound the max chance (worst case) of
identifying a private sample from statistic aggregation. The proposed lower bound differentiates
the DP worst case in that it leverages the problem structure of gradient inversion and therefore
characterizes the DGL risk more precisely.

Efficient Evaluation. The evaluation of Z or its lower bound 7y, is non-trivial due to three parts:
computation of the Jacobian, the matrix inversion, and eigenvalue. The former two computations can
be efficiently evaluated using established techniques, for example, (Koh and Liang, 2017). 1) Efficient
evaluation of JJ. Instead of computing the dense Jacobian, an efficient alternative is to leverage
the Jacobian-vector product, which is similar to the Hessian-vector product. We can efficiently
evaluate the product of Jacobian and ¢ by rewriting the product as J§ = V,(V, L(xo, 0)d). Since
V4 L(x,0)d is a scalar, the second derivative w.r.t. z can be efficiently evaluated by autograd tools,
e.g., PyTorch. The computation complexity is equivalent to two times of gradient evaluation in
addition to one vector production. 2) Efficient matrix inversion. We can compute b = (J.J T)~1.J4 by
solving miny, % Hd —J Tb| 2, whose gradient computation only contains two Jacobian-vector products.

There are other alternative techniques, for example, Neumann series or stochastic approximation,
as discussed in (Koh and Liang, 2017). For brevity, we discuss these alternatives in Appendix A.




In this paper, we use the least square trick and solve the minimization by gradient descent directly.
3) Efficient evaluation of privacy with the norm of Jacobian. Because that ||.J|| = v/ Amax(JJ ), we

need to compute the maximum eigenvalue of .J.J T, which can be done efficiently by power iteration
and the trick of Jacobian-vector products.

Complexity. Suppose the computation complexity for evaluating gradient is a constant in the order
O(d) where d is the maximum between the dimension of # and . Then evaluating the Jacobian-
vector product is of complexity O(d). By the least square trick with T iterations, we can compute Z
in O(dT') time. The lower bound 7, replaces the computation of matrix inversion with computation
on the max eigenvalue. By T”-step power iteration, the complexity is O(d(T + T")).

Case study on Gaussian perturbation. Gaussian noise is induced from DP-SGD (Abadi et al.,
2016) where gradients are noised to avoid privacy leakage. Assuming the perturbation follows a
standard Gaussian distribution, we can compute the expectation as follows:

E[RE2 (20, G, (go + 0))] ~ E[Z*(S)] = Y

NI, (©6)

where \;(J " J) is the i-th eigenvalue of J " J. The above illustrates the critical role of the Jacobian
eigenvalues. For a perturbation to offer a good defense and yield a large recovery error, the Jacobian
should have at least one small absolute eigenvalue. In other words, the protection is great when the
Jacobian is nearly singular or rank deficient. The intuition for the insight is that a large eigenvalue
indicates the high sensitivity of gradients on the sample, and therefore an inaccurate synthesized
sample will be quickly gauged by the increased inversion loss.

3.2 Theoretic Validation

The proposed I?F assumes that the perturbation is small enough for an accurate approximation, and
yet it is interesting to know how good the approximation is for larger . To study the scenario,
we provide a lower bound of the inversion error on a non-infinitesimal J, using weak Lipschitz
assumptions for any two samples x and .

Assumption 3.4. There exists py > 0 such that ||V, VoL(z,0) — V,VoL(z',0)|| < py ||z — 2/
Assumption 3.5. There exists g, > 0 such that ||V L(z,0) — VoL(2',0)| < pg ||z — 2|
Theorem 3.1. If Assumption 3.4 and 3.5 hold, then the recovery error satisfies:

1761l
pr TN+ 2 llgo + 6117

lzo — Grlgo + )| = M

where J =V Vo L(x0,0).

The proof is available in Appendix B.2. Similar to I?F, the inversion error could be lower bound
using the Jacobian matrix. Eq. (7) matches our lower bound Zy, in Eq. (5) with an extra term of
gradients. The bound implies that our approximation could be effective as a lower bound even for
larger §. Besides, the lower bound provide additional information when § is large: when ||J]| gets
infinitely large, the bound converges to Q(||J6|| /(1.5 ||6]])), which does not scale up to infinity. The
intuition is that the z is not necessarily unbounded for matching an unbounded ‘gradient’.

4 Empirical Validation and Extensions

We empirically show that our metric is general for different attacks with different models on different
datasets from different modalities.

Setup. We evaluate our metric on two image-classification datasets: MNIST (LeCun, 1998) and CI-
FAR10 (Krizhevsky et al., 2009). We use a linear model and a non-convex deep model ResNet18 (He
et al., 2015a) (RN18) trained with cross-entropy loss. We evaluate our metric on two popular attacks:
the DGL attack (Zhu et al., 2019) and the GS attack (Geiping et al., 2020). DGL attack minimizes
the Lo distance between the synthesized and ground-truth gradient, while the GS attack maximizes
the cosine similarity between the synthesized and ground-truth gradient. We use the Adam optimizer
with a learning rate of 0.1 to optimize the dummy data. Per attacking iteration, the dummy data is
projected into the range of the ground-truth data [0, 1] with the GS attack. When the DGL attack
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Figure 1: Value comparisons attacking ResNet18 on MNIST by DGL, where the grey line indicates
the equal values and darker dots imply smaller Gaussian perturbation §. In (a), the y-axis is calculated
as defined in Eq. (4) and Zy;, is calculated as defined in Eq. (5). IF lower bound (Z;,) provides a good
approximation to the exact value with matrix inversion and to the root of mean square error (RMSE)
of recovered images. Instead, removing the denominator in Z results in overestimated risks.
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Figure 2: I2F works under different settings: datasets, attacks, and models. The grey line indicates
the equal values, and darker dots imply smaller Gaussian perturbation 6.

cannot effectively recover the data, e.g., on noised linear gradients, we only conduct the GS attack
to show the highest risk. We use the root of MSE (RMSE) to measure the difference between the
ground-truth and recovered images. All the experiments are conducted on one NVIDIA RTX A5000
GPU with the PyTorch framework. More details and extended results are attached in Appendix C.

Extension to singular Jacobians. We consider the JJ T be singular, which often happens with
deep neural networks where many eigenvalues are much smaller than the maximum. In this case,
the inversion of .J.J T does not exist or could result in unbounded outputs. To avoid the numerical
instability, we use H (JJ T 4el )_1J 1) H with a constant e. In our experiments, the € is treated as a
hyperparameter and will be tuned on samples to best fit the linear relation between RMSE and 7.

Batch data. In practice, an attacker may only be able to carry out batch gradient inverting,
| 2377 VoL(x;,0) — L 377 gi]|, which can be upper bounded by L >~ [[VyL(x;,6) — g;||. Such
decomposition can be implemented following (Wen et al., 2022), which modifies the parameters of
the final layer to reduce the averaged gradient to an update of a single sample. Thus, we only consider
the more severe privacy leakage by individual samples instead of a batch of data.

How well are the influence approximations? In Fig. 1(a), we compare the two approximations
of I?F. T, relaxes the matrix inversion in Z to the reciprocal of HJ JT H Thom further drops the
denominator and only keep the nominator ||.J§||. The two figures show that Zy, serves as a tight
approximation to the real influence while 7., is much smaller than the desired value. In Fig. 1(b),
we see that the relaxation Zy, is also a good approximation or lower bound for the RMSE.

Validation on different models, datasets, and attacks. In Fig. 2, we show that I°F can work
approximately well in different cases though the approximation accuracy varies by different cases.
(1) Attack: In Figs. 2(a) and 2(b), we compare DGL to the Gradient Similarly (GS) (Geiping et al.,
2020) that matches gradient using cosine similarity instead of the Lo distance. We see that different
attacks do not differ significantly. (2) Dataset: As shown in Figs. 2(b) and 2(c), different datasets
could significantly differ regarding attack effectiveness. The relatively high RMSE implies that
CIFARI10 tends to be harder to attack due to more complicated features than MNIST. Our metric
suggests that there may exist a stronger inversion attack causing even lower RMSE. (3) Model:
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Figure 3: Evaluation of I°F on ResNet152 and ImageNet. (a): Darker color means larger noise
variance. LPIPS is used to evaluate the semantic information of the recovered and original images.
I is a good estimator of the semantic distance between the recovered images and original images.
(b): Original (top) and recovered (bottom) images with their corresponding I2F and LPIPS. Images
with a lower I2F also have a smaller LPIPS, which implies a better reconstruction.

Comparing Figs. 2(c) and 2(d), the linear model presents a better correlation than the ResNet18
(RN18). Because the linear model is more likely to be convex, the first-order Taylor expansion in
Eq. (3) can approximate its RMSE than one of the deep networks.

Results on Large Models and Datasets. We also evaluate our I?F metric on ResNet152 with
ImageNet. For larger models, the RMSE is no longer a good metric for the recovery evaluation. Even
if state-of-the-art attacks are used and the recovered image is visually similar to the original image in
Fig. 3(a), the two images are measured to be different by RMSE, due to the visual shift: The dog
head is shifted toward the left side. To capture such shifted similarity, we use LPIPS (Zhang et al.,
2018) instead, which measures the semantic distance between two images instead of the pixel-to-pixel
distance like RMSE. Fig. 3(a) shows that I2F is correlated to LPIPS using large models and image
scales. This implies that I2F is a good estimator of recovery similarity. In Fig. 3(b), original images
with a lower I2F also have a smaller LPIPS, which means a better reconstruction. Recovered images
on the right (the German shepherd and the panda) cannot be recognized while those on the left (the
owl and the beagle) still have enough semantic information for humans to recognize.

Results on Language Models and Datasets. Since the input space of language models is not
continuous like images, current attacks on images cannot be directly transferred to text. Besides,
continuously optimized tokens or embeddings should be projected back to the discrete text, which
induces a gap between the optimal and the original text. Thus, the investigation of privacy risks in
text is an interesting yet non-trivial problem. We evaluate the proposed I?F metric on BERT (Devlin
et al., 2018) and GPT-2 (Radford et al., 2019) with TAG attack (Deng et al., 2021), which minimizes
Ly and L, distance between gradients of the original and recovered images. We use ROUGE-L (Lin,
2004) and Google BLEU (Wu et al., 2016) to measure the semantic similarity between the original
text and the recovered text. More experimental details and results with ROUGE-1 and feature MSE
are provided in C.2. The results are presented in Fig. 4. A darker color indicates a larger noise
variance. Since the ROUGE-L and Google BLEU measure the semantic similarity of the text pair
while our metric estimates the difference, two semantic metrics are negatively correlated to Z;;,. The
results demonstrate the effectiveness of our metric in evaluating the privacy risks of discrete data.

S When Does Privacy Leakage Happen?

Guided by the formulation of I?F, we provide insights on when privacy leakage happens based
on the proposed metric. Our insights are rooted in the properties of Jacobian. Since we want to
consider the whole property of the Jacobian matrix, we choose a shallow convolutional neural network
LeNet (LeCun et al., 1998) to trade off the utility and efficiency of experiments by default.

5.1 Perturbations Directions Are Not Equivalent

Implication on choosing §. Eq. (4) clearly implies that the perturbation is not equal in different
directions. Decomposing J = UXV T using Singular Value Decomposition (SVD), we obtain
Z(6;z0) = ||[US™'V T 6||. Thus, 0 tends to yield a larger I?F value if it aligns with the directions of

small eigenvalues of .J.J .
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Figure 4: Evaluation of Z;;, on BERT (a-b) and GPT-2 (c-d). A darker color means a larger noise
variance. ROUGE-L and Google BLEU are used to evaluate the semantic similarity between the
original text and the recovered text. Zp, is linearly correlated to the two semantic metrics, which
means Zj, can be used to estimate the privacy risk of the private text.
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Singular values of Jacobian of deep networks. In Fig. 5, we examine
the eigenvalues of LeNet on the MNIST and CIFAR10 datasets. On
both datasets, there are always a few eigenvalues of .J.J T (around 10~?)
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that are much smaller than the largest one (> 1). Observing such a 10
large gap between J.J | eigenvalues, it is natural to ask: how do the 00 02 04 06 08 10
maximal/minimal eigenvalues affect the DGL attacks? normalized index

Comparing eigenvectors in defending DGL. We consider a special case Figure 5: The distribu-
of perturbation by letting & be an eigenvector of .J.J T . Then the I?’F will tion of eigenvalues of
be 1/ where ) is the corresponding eigenvalue. We conjecture 1/\  JJ T of two datasets on
could predict the MSE of DGL attacks. To verify the conjecture, we the LeNet model.
choose 4 eigenvectors with distinct eigenvalues per sample. The results

for the LeNet model are present in Fig. 6. We see that the MSE decreases by A. For the MNIST
dataset, the MSE-\ relation is very close to the predicted 1/A. Though the curve is biased from
the ground truth for CIFAR10, we still can use 1/ to lower bound the recovery error. The bias in
CIFARI10 is probably due to the hardness of recovering the more complicated patterns than the digit
images. The recovered images in Fig. 6 suggest that even with the same perturbation scale, there exist
many bad directions for defense. In the worst case, the image can be fully covered. The observation is
an alerting message to the community: protection using random noise may leak private information.

5.2 Privacy Protection Could Be Unfair

Our analysis of the Gaussian perturbation in Eq. (6) indicates that the privacy risk hinges on the
Jacobian and therefore the sample. We conjecture that the resulting privacy risk will vary significantly
due to the sample dependence. In Fig. 7, we conduct fine-grained experiments to study the variance
of privacy protection, when Gaussian perturbation on gradients is used for protection. We use a
well-trained model which is thought to be less risky than initial models, for example, in (Balunovi¢
et al., 2022). Though the average of MSE implies a reasonable privacy degree as reported in previous
literature, the large variance delivers the opposite message that some samples or classes are not that
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Figure 7: The sample-wise and class-wise statistics of the DGL MSE on the MNIST dataset, when
gradients are perturbed with Gaussian noise of variance 10~3. The purple lines indicate the average
values. Large variances are observed among samples and classes. The original (top) and recovered

(bottom) images for the well- and poorly-protected classes are depicted on the right side.

safe. In the sense of samples, many samples are more vulnerable than the average. For the classes,
some classes are obviously more secure than others. Thus, when the traditional metric focusing on
average is used, it may deliver a fake sense of protection unfairly for specific classes or samples.

To understand which kind of samples could be more vulnerable to attack, we look into the Jacobian
and ask when J.J T will have larger eigenvalues and higher risks in Fig. 7. Consider a poisoning
attack, where an attacker aims to maximize the training loss by adding noise d,, to the sample x.
Suppose the parameter is updated via 6’ (x40, ) = 0 — Vg L(x+9,,0). Let Js = V. Vo L(x1+d:,0)
and we can derive the maximal loss amplification on a test sample z; when perturbing x as:

e B (L1, 6/(@ + 8)] & max Ep, [L(a,0'(2)] +En, [6] Vo Liz1.0/(@)

= max 8, JsE,, [Ve L(z1,0)]
152 1<1

= [|JsEa, [Vor L(z1, 0]

< N5l 1B, [Vor L1, 6] -
As shown by the inequality, the sample with large ||J5|| may significantly bias the training after mild
perturbation ¢,,. If Assumption 3.4 holds, then ||.J|| can be associated with ||Js|| by ||| J|| — || Js]| | <
w.y. Now we can connect the privacy vulnerability to the data poisoning. With Eq. (6), samples that
suffer high privacy risks due to large ||.J|| could also be influential in training and can be easily used
to poison training.

5.3 Model Initialization Matters

Since Jocabian leans on the parameters, we hypothesize that the way we initialize a model can also
impact privacy. Like previous work (Sun et al., 2020; Balunovic¢ et al., 2022; Zhu et al., 2019), we
are interested in the privacy risks when a model is randomly initialized without training. Unlike
previous work, we further ask which initialization strategy could favor privacy protection under the
same Gaussian perturbation on gradients.

Case Study: One-layer network. A
one-layer network with nonlinear activation
o(+) is a simple yet sufficient model for
analyzing initialization. Let L(z,0) =

MSE

° € Sem
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(1) Apparently, a well-trained 6 with sult in distinct MSEs.

(0(0Tx) — b) = 0 will cause J to be a rank-one matrix. Note that the gradient will be zero in
such a case and no longer provide any information about the private sample. Consistent with our
theoretical results, where the inverse Jacobian makes 7 infinite, the gradient will be perfectly private
at any perturbation. (2) If o(6 T ) — b is non-zero, the singular values of .J will depends on how close
E[o (6T z)] is to b. If E[o(0 " x)] approaches b at initialization, then .J will be approximately singular,
and therefore the initialization enhances privacy preservation.



Comparing initialization. To evaluate the effect of initialization on the inversion, we conduct
experiments of the LeNet model on MNIST and CIFAR10 datasets with DGL and GS attacks.
We add Gaussian noise to the gradients, which implies an expected MSE should be proportional
to E[Z?] = 3, \;! as proved in Eq. (6). Here, we evaluate how the initialization will change
eigenvalues of .J.J T and thus change the MSE of DGL. Four commonly used initialization techniques
are considered here: uniform distribution in range [—0.5, 0.5], normal distribution with zero mean
and variance 0.5, kaiming (He et al., 2015b) and xavier (Glorot and Bengio, 2010) initialization.
For each initialization, the same 10 samples are used to conduct the attack three times. The results are
shown in Fig. 8. We observe a significant gap between initialization mechanisms. Using uniform
initialization cast serious risks of leaking privacy under the same Gaussian defense. Though not
as significant as uniform initialization, the normal initialization is riskier than rest two techniques.
kaiming and xavier methods can favor convergence in deep learning and here we show that they
are also preferred for privacy. A potential reason is that the two methods can better normalize the
activations to promote the Jacobian singularity.

In parallel with our work, Wang et al. (2023a) also finds that the initialization is impactful on inversion
attacks. Despite their analysis being based on a different metric, the layer-wise variance of the model
weights, their work and ours have a consistent conclusion that models initialized with a uniform
distribution face higher privacy risks than that with a kaiming distribution

6 Conclusion and Discussion

In this paper, we introduce a novel way to use the influence functions for analyzing Deep Gradient
Leakage (DGL). We propose a new and efficient approximation of DGL called the Inversion Influence
Function (I2F). By utilizing this tool, we gain valuable insights into the occurrence and mechanisms
of DGL, which can greatly help the future development of effective defense methods.

Limitations. Our work may be limited by some assumptions and approximations. First, we worked
on the worst-case scenario where a strong attack conducts perfect inversion attacks. In practice, such
an assumption can be strong, especially for highly complicated deep networks. The gap between
existing attacks and perfect attacks sometimes leads to a notable bias. However, we note that recent
years witnessed many techniques that significantly improved attacking capability (Geiping et al.,
2020; Jeon et al., 2021; Zhao et al., 2020), and our work is valuable to bound the risks when the
attacks get even stronger over time. Second, similar to the traditional influence function, I?F can
be less accurate and suffers from large variance in extremely non-convex loss functions. Advanced
linearization techniques (Bae et al., 2022) can be helpful in improving the accuracy of influence. Then
extending our analysis to bigger foundation models may bring intriguing insights into the scaling law
of privacy.

Future Directions. As the first attempt at influence function in DGL, our method can serve multiple
purposes to benefit future research. For example, our metric can be used to efficiently examine the
privacy breach before sending gradients to third parties. Since I?F provides an efficient evaluation
of the MSE, it may be directly optimized in conjunction with the loss of main tasks. Such joint
optimization could bring in the explicit trade-off between utility and privacy in time. In comparison,
traditional arts like differential privacy are complicated by tuning the privacy parameter for the
trade-off. Furthermore, we envision that many techniques can be adopted to further enhance the
analysis. For example, unrolling-based analysis leverages the iterative derivatives in the DGL to
uncover the effectiveness of gradient perturbations (Pruthi et al., 2020).

Broader Impacts. Data privacy has been a long-term challenge in machine learning. Our work
provides a fundamental tool to diagnose privacy breaches in the gradients of deep networks. Under-
standing when and how privacy leakage happens can essentially help the development of defenses. For
example, it can be used for designing stronger attacks, which leads to improved defense mechanisms
and ultimately benefit the privacy and security of machine learning.
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A Method

A.1 Other Efficient Evaluation Techniques

The techniques for efficiently evaluating implicit gradients can be referred to (Koh and Liang, 2017;
Grazzi et al., 2020). As computing the inverse second-order derivatives is the most computation-
intensive operation, we will focus on it. Here, we briefly summarize two supplementary techniques
introduced in Section 3.1.

Conjucate gradient. In Section 3.1, we use the trick of least square to compute the (J.J " )~1.J4.
When JJ T = 0, we can solve the least square problem by the conjugate gradient (CG) method, which
only needs O(d) time to converge. However, the algorithm will be unstable when the matrix .J.J " is
ill-conditioned. As observed in Fig. 5, the JJ T is likely to be ill-conditioned for deep networks. But
here we provide this alternative for linear models such that J can be evaluated faster.

Neumann series. We can leverage the Neumann series to compute the matrix inverse. By the
Neumann series, we have (JJT)71J§ = limy o0 ZEZO(I — JJT)JS. Let s, = ZEZO(I -
JJT)1J6 and s = J§. Then the computation can be done by iteration s;4 1 = (I — JJ T )s; + J§
which only includes Jacobian-vector products.

B Proofs
B.1 Proof of the Approximation by Implicit Gradients

Here, we provide the proof for %g(fo) = (JJT)~1J. Recall Eq. (1) as

" = G,(g) = argmin L (z; 9) £ | VoL(w,0) — g ®
x
The stationary condition of the minimization gives
OLi(z"9) _
ox* ’
Given a small perturbation A, — 0 on the gradient, we can estimate corresponding perturbation

: : dx* A, .
Ag+ — 0 as a function of A,. Thus, we can approximate 0—2 by 5 A Use Taylor expansion to

show approximately
OLi(a*:g)  O°Li(z%:g) o O*Li(a*:g)

A =
ox* 0gox* g Ox*? | 0
0°Ly(z*9)\ " OLi(z*;g)
A =~ — A
* ( Ox*? > ox* g
duy  (0%Li(z*;9)\ " 9°Li(z*;g) )
dg Ox*? dgox*

where we drop higher-order perturbations. The above derivations can be rigorously proved using the
Implicit Function Theorem. Since % = 2(VgL(z*,0) — g)V,VgL(z*,0), we can derive

W = =2V, VoL(z",0)
and
% = 2(VyL(z",0) — 9)VEVyL(x*,0) + 2V, VyL(z",0)(VoVoL(z*,0))T.
As wg = 2" = Gy (go) and go = VyL(z",0), we can substitute them to obtain
W = —2V,VyL(xg,0) := =2J(z"(g0),0), (10)
W =2(go — 9)V2VyL(x0,0) +2JJ . an
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Let g = gog. Combine Eqs. (9) to (11) to get

aGr(QO) Ty—1
——=(JJ J.
a0 (JJ )

B.2 Proof of Theorem 3.1

Before we prove our main theorem, we prove several essential lemmas as below.
Lemma B |V, [VoL(z.0)|> = Vo VoL@ 0)°| < (o |VaVoLiw,0)| +
pr VoL (', 0)]) |z — 2]

Proof.
|V 9L (@, 0)* = 7. VoL, )|
= ||V$VQL(SE, Q)V(;L(x, 0) - sz(;L(LC, Q)V(;L(l'/, @)
+V$V9L(x, Q)VQL(l‘/, 9) - VwVQL(JJ/, Q)VQL(l‘/, 9) H
< VaVoL(x,0)[ [VoL(x,0) = VoL(x',0)|| + [|V2VeL(2',0) = VaVeL(x,0)| [VoL(z',0)] -
Using Assumption 3.4 and 3.5 directly lead to
|92 IV L@ 0)I = 962", 0) ]| < (2 1V VL@, 0)]| + s VoL, 0)]) flo = ']

O
Lemma B2. |[V,(V] L(z.0)g) — V(Y] L(z',0)9)|| < i ] | — '|
Proof. By Assumption 3.4, we have
IV2(Vg L(z,0)g9) — Va (Vg L(2',0)g)]|
< [[VaVoL(z,0) — Vo VoL(z',0)|| |g]
< pollglllle ="
O

Lemma B.3. The inversion loss Li(x;g) defined satisfies ||VyLi(x;g) — VaoLi(2';9)|| <
wl|lz — 2’|| where

w(@,2",0,9) = pr Ve VoL (@, 0)| + 1y Vo L(',0)|| + s llgll - (12)
Proof. Since
=2V, ||VoL(z,0)|* - 2V, VoL(,0)g,
we can derive
IVaLi(w;9) = VoLi(2'; 9)||
—2 Hvx VoL (z,0)|> — V. [[VoL (', 0)|* — [V Vg L(z,0) — V.V, L(z',0)] gH
< 2|V IVoL(@,0) = Vo | VoL, 0)|| +2||[V. V5 L(z,6) - V.V L', 60)] g
By Lemma B.1 and Lemma B.2, we have
V2 VoL@, O = Vo VoL, )| < pur o = '],
|9:(V5 Lz, 0)g) ~ Vo (V] (s 0)g)]| < i [l2 — )]

where i1 = pr, [V Vo L(z,0)|| + s [[VoL(2', 0)|| and pio = pus [|g]|- Let = 2u1 + 2p2. Then
we can get

IVoLi(zig) = VoLi(a'sg)| < pllz =2/
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Theorem B.1 (Restated from Theorem 3.1). Let xq be the private data and gy = VgL(xq,0) be
its corresponding gradient which is treated as a constant. If Assumption 3.4 and 3.5 hold, then the
square root of the recovery RMSE satisfies:

13|

zo — Gr(go +9)|| > ,
| 90+ = 7T+ 20 oo 7 01

(13)

where J =V ;VgL(xo,0).

Proof. Utilize the stationary condition V. L;(z}; g) = 0 and Lemma B.3 to obtain
IVeLi(z; )|l < w(z, 25,0, 9) ||z — x|, Va.
As xq is the private sample whose gradient is gg = VyL(z0, §), then we have

1
:u(an x;0+5a 6) 90 + 5)

o — Grlgo + )] > IV L1 (o: go + )|

Because
VaLi(xo; 90+ 0) = 2V, VeL(x0,0)(VeL(xo,0) — go — 9)
=2V, VyL(xg,0)d,

we can attain
2
|zo — Gr(g0 + 9)|| > m VaVeL(zo,0)d] .
With Vo L(z} ,s5,0) = go + d, we can obtain

(o, 75 15,0, 9o + 0) = 2L [[Va Ve L(xo, )| + 245 | VoL (w15, 0)|| + 27 190 + 6|
=2pr ||J| + 4 [|g0 + 6| -

C Experiments

C.1 Experimental Details

Model architectures. The linear model we use is a matrix that maps the input data into a vector. The
LeNet model is a convolutional neural network with 4 convolutional layers and 1 fully connected
layer. We use the modified version following previous privacy papers Sun et al. (2020), whose
detailed structure is in Table 1. ResNet18 is a popular deep convolutional network in computer vision
with batch-normalization and residual layers (He et al., 2015a). Cross entropy loss is used as the loss
function in all the experiments.

Experimental settings. We conduct two kinds of attacks in our paper: DGL and GS attacks. The
learning rate of the two attacks is 0.1 and we use Adam as the optimizer. To consider a more powerful
attack, only a single image is reconstructed in each inversion. When inverting LeNet, we uniformly
initialize the model parameters in the range of [—0.5, 0.5] as (Sun et al., 2020) to get a stronger attack.
When inverting ResNet18, we use the default initialization method in PyTorch and follow Huang
et al. (2021) to use BN statistics as an additional regularization term to conduct a stronger attack.

Table 1: A modified version of LeNet. Conv represents a convolutional layer. FC means a fully-
connected layer.

Layers

Conv(in_channels=3, out_channels=12, kernel_size=5)
Conv(in_channels=12, out_channels=12, kernel_size=5)
Conv(in_channels=12, out_channels=12, kernel_size=5)
Conv(in_channels=12, out_channels=12, kernel_size=5)

Flattern
FC(out_features=10)
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Figure 9: Evaluation of Zj;, on BERT (top) and GPT-2 (bottom). A darker color means a larger noise
variance. Four metrics are used to evaluate the semantic similarity between the original text and the
recovered text. Zy;, is linearly correlated to the four semantic metrics, which means Z;;, can be used to
estimate the privacy risk of the private text.

C.2 Empirical Validation on Language Data

We evaluate the proposed I°F metric on BERT (Devlin et al., 2018) and GPT-2 (Radford et al.,
2019), which are popular language models in natural language processing. We use TAG (Deng
et al., 2021), which is an attack on Transformer-based language models based on the L; and Lo
distance between the original gradient and the dummy gradient, and follow the code in https:
//github.com/JonasGeiping/breaching. We use the default setting in the code and iteratively
update the input embedding 12,000 times. We randomly sample 70 sentences from WikiText-
103 (Merity et al., 2016) as the private text. We use ROUGE-1, ROUGE-L (Lin, 2004), Google
BLEU (Wu et al., 2016) and feature MSE to measure the semantic similarity between the original text
and the recovered text. ROUGE-1 measures the overlap of 1-grams in the original and recovered text,
while ROUGE-L measures the length of the longest common subsequence between two sentences.
While ROUGE metrics calculate the reconstruction recall, the Google BLEU score uses as the output
the smaller value of the precision and recall of the original and recovered text and has a broader range
of the overlap of n-grams, where n = 1, 2, 3, 4. Since the above three metrics are discrete and not
consistent with our assumptions, we include a continuous metric, the feature MSE, which measures
the distance between the final layer’s feature of the original and recovered text.

The results are presented in Fig. 9. A darker color indicates a larger noise variance. For each
noise variance, we randomly sample the perturbation from a zero-mean Gaussian distribution 5
times and repeat this for 3 different random seeds. It shows that I?F is correlated to these four
metrics, which means I2F can be used to estimate the privacy risk of text datasets with large language
models. The correlation of BERT and GPT-2 between the four metrics has a similar mode. Though
ROUGE-1, ROUGE-L and Google BLEU measure the structural similarity of sentences, which
consists of discrete tokens, I°F presents a clear correlation. For the feature MSE, although I?F has a
less distinguished correlation with feature MSE, it can still be utilized to estimate the privacy risk.

C.3 Efficiency

To show the efficiency of computing the I°F values, we compare it with the GS attack on randomly-
picked CIFAR10 images with ResNetl8. As the major complexity comes from evaluating the
maximal eigenvalue via the power iteration method, we compare the time required for the power
iteration against the inversion loss of GS to converge. We notice that the convergence depends on the
initialization of the power iteration and the learning rate for DGL. Thus, we repeat power iteration with
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direct inversion attacks.

3
10°| mmm T 103 W= 1)
m inversion B inversion
2.8 33
1

10°

=
o
.
=
o
©

time (sec)
time (sec)

=
o
4
=
o
4

(a) DGL attack (b) GS attack

Figure 11: Comparison of the efficiency of computing Z;;, (our method) by power iteration and
inversion attack by minimizing inversion loss (Ly). Blue bars indicate the time of computing Z;;
while orange bars indicate the time of minimizing inversion loss by DGL and GS. The time ratio
of computing Zj;, versus minimizing inversion loss is present above the orange bars. The x-axis are
model-dataset pairs sorted by the model scales: MLP-MNIST, MLP-CIFAR10, LeNet-MNIST, LeNet-
CIFAR10, RN18-MNIST, RN18-CIFAR10, RN34-CIFAR10, RN50-CIFAR10, RN101-CIFAR10,
RN152-CIFAR10, RN152-ImageNet. For large models and datasets, where minimizing inversion
loss needs a huge computation overhead, Z;;, can provide an efficient estimation of the privacy risk.

5 different seeds. For the inversion attack, we evaluate multiple learning rates (1, 0.5,0.1,0.05,0.01)
to show the fastest convergence. Each experiment is repeated 5 times with different random seeds.
As shown in Fig. 10, the power iteration method can converge to the maximal eigenvalue within 50
iterations (5 seconds at most). In comparison, the inversion loss demands 3000 more iterations in
150 seconds to fully converge, which is 20 times larger than the power iteration method. Thus, our
method can give an accurate and fast approximation of the recovery MSE without the exhaustive
whole inversion process.

In Fig. 11, we compare the computation cost of computing Z;;, with minimizing inversion loss. We
show that for almost all the models and datasets we evaluate, the time ratio is larger than 1, which
means it is more efficient to compute Z;;, than minimize the inversion loss. It indicates that our
method is a more efficient way to estimate the privacy risk for most models and datasets, than the
empirical inversion attack. Another key point is that, for large models and datasets, such as models
larger than RN18 with CIFAR10 or ImageNet, the time ratio is even much larger than 500. When the
time consumption of inversion attacks on these models and datasets is huge (about 16 minutes or even
longer), our method significantly reduces the computation overheads for estimating the privacy risks.
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Figure 12: Same perturbation sizes but different protection effects by different eigenvectors of LeNet.
Recovered CIFAR10 images associated with different eigenvectors are present. When perturbing
with eigenvectors with smaller eigenvalues, the recovered images are more noisy.
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Figure 13: Same perturbation sizes but different protection effects by different eigenvectors of
ResNet18. Recovered CIFAR10 images associated with different eigenvalues are present. When
perturbing with eigenvectors with smaller eigenvalues, the recovered images are more noisy and lack
some semantic information.

C.4 More Visual Results

More images of unequal perturbations. We present in Fig. 12 the recovered CIFAR10 images
when perturbing the gradient with eigenvectors with different eigenvalues. When perturbing with
eigenvectors with smaller eigenvalues, the recovered images are more noisy, which is consistent with
our former observation.

We also present the unequal perturbations with different eigenvectors of ResNet18 on the CIFAR10
dataset in Fig. 13. Even with the same perturbation scale, the eigenvectors with larger eigenvalues
provide stronger protection, where the corresponding recovered images are more noisy and lose some
semantic information.

More images of unfair privacy protection. We show more results of unfair privacy protection in
Fig. 14. The images of digits 5 and 8 can still be recognized by their outlines, while images of digits
7 and 9 are unrecognizable noise.

We also show the unfair privacy protection of ResNet18 on the CIFAR10 dataset in Fig. 15. In
this experiment, we also observe a large variance of recovery MSE among samples, indicating
sample-wise unfairness. At the class level, we still can find gradients of a few classes to be easily
inverted. For example, class 8 has most MSEs lower than the average value.

D I’F with Gradient Pruning Defense

We present the relationship between the RMSE and Z;;, in Fig. 16. The y-axis is RMSE and the x-axis
is Zyp. It shows Zp;, can be used to estimate the worst-case privacy risk with gradient pruning defense.

E Comparison of I’F with More Metrics

MSE is a pixel-wise distance that lacks semantic and structural information. To evaluate the effec-
tiveness of I°F on more metrics, we consider SSIM and LPIPS (Zhang et al., 2018) to measure the
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Figure 14: Original (top) and corresponding recovered (bottom) images of LeNet on the MNIST
dataset. The gradients are perturbed with Gaussian noise of variance 10~3. The defense is unfair as
images of digit 5 and digit 8 can be recognized by the outline.
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Figure 15: The sample-wise and class-wise statistics of the GS MSE on the CIFAR10 dataset of
ResNet18. The purple lines indicate the average values. Large variances are observed among samples.
The original (first row) and recovered (second row) images for the well- and poorly-protected classes
are depicted at the bottom. The defense is unfair as some classes, e.g., class 7 (horse) and class 8
(ship), are more vulnerable to inversion attacks.
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Figure 16: RMSE (y-axis) vs. 7y, (x-axis) with gradient pruning. A darker color indicates a smaller
pruning ratio. It shows that Zj;, is a good estimator of RMSE.
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structural similarity and semantic distance between the original and recovered images, respectively.
The relationship between SSIM and LPIPS is shown in Fig. 17. Since Z;; aims to lower bound the
privacy risk in terms of RMSE, Zj;, does not have the same scale as SSIM and LPIPS. Nevertheless,
T1p also has a positive correlation between SSIM and LPIPS, which implies that it is a good estimator
for the structural similarity and semantic distance between the original and recovered images.
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Figure 17: Zj; is positively correlated with these two metrics and is a good estimator for the structural
similarity and semantic distance between the original and recovered images. Darker color indicates
higher variance. Top ((a)-(d)): SSIM (y-axis) vs. Z;; (x-axis). Bottom ((e)-(h)): LPIPS (y-axis) vs.
Ty (x-axis). A higher SSIM and a lower LPIPS indicate a higher privacy risk.

F Dynamics of Z;;, During Training

Previous existing empirical results show that privacy risk decreases by training epochs (Balunovié
et al., 2022; Geiping et al., 2020). We evaluate the dynamics of Z;;,, RMSE with DGL attack and
RMSE during training in Fig. 18. It shows that as the training epoch increases, the Zj; also has an
increasing trend. While the RMSE of RN18 on the CIFAR10 dataset has a similar trend as Z;;, that
of LeNet on the MNIST dataset has a significant rise at the epoch 60, which is due to the slower
learning speed of LeNet than RN18. Moreover, almost for all the epochs, there is a sample with low
Ty, which again emphasizes the unfairness in privacy protection.

G The Impact of ¢ on Efficient Matrix Inversion

In Fig. 19, we study the impact of € on efficient matrix inversion proposed in Section 4. We evaluate
the impact on the LeNet with the MNIST dataset. The y-axis is the RMSE. Z (matrix inversion) is
calculated as defined in Eq. (4). Z;;, (matrix norm) is calculated as defined in Eq. (5). It shows with
€ € [1,10], Zp, is a lower bound of the RMSE. It also shows that Z;;, is an accurate estimator of I’F.
Thus, we can directly use Zj;, in practice to lower bound the privacy risk to avoid fine-tuning the e.

H Discussion

H.1 Validity of Assumption 3.4-3.5

We make assumptions about the Lipschitz continuous Jacobian and gradient in Assumption 3.4 and
Assumption 3.5, respectively. These two assumptions are not necessary for I2F but are only used to
provide a theoretical validation of I?F when the noise J is not infinitesimal. To discuss the validity of
these two assumptions in practice, we calculate the value of 1y and i, of LeNet with two datasets.
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Figure 18: Privacy risks decrease by training epochs (x-axis). Different colors indicate different
samples. The y-axis from left to right: Z;;,, RMSE w/ DGL attack, RMSE w/ GS attack whose smaller
values indicate lower risks. The blue line indicates the mean value and the shadow is the variance
(some outliers are dropped). The noise is sampled from a Gaussian distribution with a mean zero and
variance 1073,

For the CIFAR10 dataset, yu;, = 0.5014 and 11y = 1.7 x 10~ 3. For the MNIST dataset, 1.7, = 0.7192
and y1; = 3.7 x 1073, These values are not so large that they are reasonable in practice.

H.2 Extension of I2F to the GS Attack

The derivation of I?F is considered in the DGL attack as defined in Eq. (1), but I?F can also be applied
to the GS attack. Note that the minimizer of the DGL attack is one solution to the GS attack. That
means the GS attack can be attained by an optimal DGL attack which is our assumption. Therefore,
the DGL attack-based theorem is applicable to the GS attack.

Empirically, we evaluate Z;;, on GS attack in Figs. 2 and 16. It shows that 7y, is linearly correlated to
the metrics of RMSE, which proves the utility of I?F under GS attack.

H.3 Extension of I°’F with Prior Knowledge

Our theorem of I2F can be extended to take into account the prior knowledge. Consider the inversion
optimization problem with prior knowledge as min, L (z;9) = Li(z;9) + Ic(x) where Io(x)
constrains x in the prior space C' and L;(z;g) = ||VoL(z;0) — g|| defined in Eq. (1). Then the
optimization problem can be rewritten as min,cc Ly(z; g). Thus, as long as the original image x
is in the feasible region defined by I¢(x), our Assumption 3.1 and theorems are also applicable.
Intuitively, a good regularization should satisfy the requirement, otherwise, it will unreasonably reject
the correct recovery.
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Figure 19: The impact of the value of ¢ is evaluated on LeNet with the MNIST dataset. The y-axis is
the RMSE. (a)(b)(c)(d): DGL attack. (e)(f)(g)(h): GS attack. It is observed that Z (matrix inversion)
is effective with € € [1,10] but not € = 0.1. It shows that (1) there exists a range of € where Z;;, can
lower bound the RMSE; (2) 7y, is an accurate estimator of IF, thus we can avoid fine-tuning e.

H.4 Discussion with Prior Works

Closest to our work, Hannun et al. (2021) provided a second-order worst-case metric for analyzing
privacy attacks. However, our work provides novel contributions both on technique and implications
which essentially root from the proposed I?F metric.

Technical difference. First, we focus on a different scope against (Hannun et al., 2021). Hannun
et al. (2021) proposed Fisher information loss (FIL) to measure the information leakage risk in the
context of model inversion and attribute inference, e.g., only the attribute inference is considered in
their experiments. Instead, we evaluate the privacy risk under gradient inversion attacks. Second, our
metric is more scalable and applicable to large models. For example, in Eq. (18) in (Hannun et al.,
2021), the inverse of the Hessian matrix needs to be calculated even when quantifying the information
leakage of only one sample, which is inefficient and intractable for large models. Because of the
computation inefficiency, only linear regression and logistic regression models are considered in
their theories and experiments. Instead, we verify the feasibility of I?F in much larger models like
ResNet152 on ImageNet in Fig. 3.

Our new findings. First, though the unfairness of information leakage of different samples was
discussed in (Hannun et al., 2021), we investigate the issue in a different attack method and justify
the commonness of the unfairness in different attacks. Second, we additionally provide other insights
than (Hannun et al., 2021). For instance, the influence on gradient inversion of different initialization
methods is studied. We also find the influence of perturbations is not equivalent even in the same noise
scale. We believe these insights are also critical to the privacy and security community, especially in
the area of gradient inversion.

Besides, (Guo et al., 2022; Hayes et al., 2023) propose to bound the reconstruction attack in terms
of the attack success rate and the expectation of the Lo distance between the recovered and original
image. Nevertheless, their conclusions are based on the differential privacy (DP) quantification
framework so it is hard to analyze the influence of other defense mechanisms such as gradient
pruning and arbitrary noise. Also, they bound the privacy risk from the statistical sense raised by the
randomness of DP, while our work can evaluate the sample-wise worst-case privacy risk at any time
during the model training. Moreover, they assume the access of the attacker to the remaining samples
(except for the privacy sample) or the multi-round gradient, which is not practical in real gradient
inversion scenarios.
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H.5 Discussions about the Worst-case Assumption

Our work is mainly built upon the Assumption 3.1 that there is only a unique minimizer for L;(z; g)
given a gradient vector g. Because of the hardness of optimizing a non-linear objective in attack
(Eq. (1)), the worst-case may not be reachable in practice. Here, we discuss when the assumption
has to be relaxed and why our method is still applicable. In addition, we emphasize that a stronger
attacker exists theoretically, resulting in the necessity of a worst-case assumption.

Non-bijective inversion mapping G,.(g). G, (g) could be non-bijective when the loss function is
non-convex. In other words, given the same g, the output of G..(g) could include multiple choices.
We want to argue that this case does not conflict with our assumption. Consider an attack given the
exact gradient of a sample. Note that the sample itself is a solution to Eq. (1). Thus, given the exact
gradient of a sample, the attack can exactly recover the sample. Even if the solution is non-unique,
we can still essentially assume the attack can attain the sample in the worst case.

Optimizing the gradient inversion objective may not converge to the original image. Note that
the original image is always an optimal solution for the inversion loss in Eq. (1). Even though the
convergence is not guaranteed, there always exists an algorithm that can converge to the original
image. To our best knowledge, there is no evidence to show the attack cannot approach the worst case
where the original input is recovered. Instead, empirical results have shown that the images can be
recovered almost perfectly (Geiping et al., 2020). Thus, due to the sensitivity of privacy, a worst-case
assumption is necessary to strictly bound possible privacy risks with arbitrary strong attacks, which is
commonly imposed by the literature (Dwork, 2006; Abadi et al., 2016).

I Realistic Impact

Federated learning (FL) (McMahan et al., 2017) is a popular distributed training paradigm that
benefits from the data and computation sources from multiple clients. As a principle of FL, clients
will upload the local gradient based on the private data to the server for the concerns of data privacy
and safety, instead of directly sharing the private data of each client. However, recent works (Geiping
et al., 2020; Zhu et al., 2019) show that an attacker, who has access to the local gradient (e.g., a
malicious server), can leverage the local gradient to recover the private data of the clients, which we
call Deep Gradient Leakage (DGL). Even with large models like Transformer, the attacker can still
successfully recover the private data given the gradient (Hatamizadeh et al., 2022).

Auditing potential privacy risks is essentially desired for privacy-sensitive applications, including
but not limited to finance (Long et al., 2020), healthcare (Antunes et al., 2022; Xu et al., 2021), and
clinical data (Dayan et al., 2021; Roth et al., 2020). Such privacy concerns have been discussed
extensively in previous work. For instance, Zhang et al. (2023) raises the privacy concern of FL in
financial crime detection while (Kaissis et al., 2021; Li et al., 2023) discusses it in the medical and
healthcare applications, respectively.

To echo the demands for privacy risk auditing, we provide a fundamental tool for bounding the
worst-case risks of DGL. We show multiple insights, for example, the unfairness of privacy protection
using random noise defense. Thus, we expect our work can call the attention of the community to the
privacy concern raised by DGL, especially the worst-case instance-level privacy risk. Moreover, We
expect I°F to be a keystone for designing more powerful defense mechanisms.
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