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Abstract—Wildland fire simulation is a useful tool for studying
wildland fires and for developing new technologies to help
wildland fire management. This paper presents an effort of
developing wildland fire simulation as a service that is accessible
to broader users. The developed simulation service supports fire
spread simulation, fire suppression simulation, and prescribed fire
simulation with dynamic ignitions, and is accessible through a
graphic user interface and an application programming interface
(API). We present the underlying DEVS-FIRE simulation model,
the design of the cloud-based wildland fire simulation service, and
some preliminary results.
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I. INTRODUCTION

Wildfires are natural disasters that damage natural resources,
destroy homes and properties, and threaten human lives and
safety. The occurrences of catastrophic wildfires have increased
in recent years in the United States and around the world [1]. For
example, the 2023 Hawaii wildfires on the island of Maui
burned 17,000+ acres, destroyed 2,207 structures, and caused
101 deaths. Besides wildfires, there is also a need to study
prescribed fires (also known as prescribed burns or controlled
burns), which refer to the controlled application of fire by a team
of fire experts under specified conditions to restore health to
ecosystems that depend on fire [2]. Prescribed fires can serve
multiple purposes, including removing hazardous fuels to
reduce wildfire risk, and helping farming and grazing by
replenishing soil and protecting prairies from invasive
overgrowth. Prescribed fires are often differentiated from
wildfires as they are planned fires ignited intentionally to
achieve specific management results while wildfires generally
refer to unplanned fires. This paper refers to both wildfire and
prescribed fires as wildland fires.

The growing risk of catastrophic wildfires prompts
increasing demands for new technologies, tools, and strategies
for wildland fire management. Simulation of wildland fire is
considered a key technology to help modernize wildland
firefighting [3]. Simulations of wildfires can be used to
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analyze/predict wildfire spread to support decision makings of
fire suppression and evacuation. Simulations of prescribed fires
can provide useful information for planning prescribed burn
operations. Wildland fire simulation is also a valuable tool for
learning and understanding fire behavior and for training
firefighters and fire operators. Furthermore, it is an important
technology to support development of new technologies in
wildland fire management. For example, when developing
Unmanned Aircraft Systems (UAS) for monitoring wildfires,
wildfire spread simulation allows researchers/developers to test
UAS’ path planning algorithms in a simulated environment in a
cost-effective and safe manner.

Despite the many usages of wildland fire simulation, there is
a lack of wildland fire simulation service on the market. Existing
wildfire simulation tools and models that are publicly available
can be grouped into two categories: stand-alone software and
open-source project. Examples of stand-alone software includes
FlamMap [4], which integrates the wildfire spread simulation
software FARSITE [5] and is a fire analysis tool that can
simulate fire behavior characteristics (spread rate, flame length,
fireline intensity, etc.) and fire growth and spread. Another
example is BehavePlus [6], which supports simulation of
wildfire behavior under various terrain, fuels, and weather
conditions. These stand-alone software tools are desktop
applications, which are not easy to be integrated into other
projects. For example, it would be difficult to program these
tools to support a research project that needs to find optimal
ways of creating fire breaks to minimize fire spread risk. Besides
stand-alone software, there also exist several open source
projects for wildfire spread simulations. For example, Fire
Dynamics Simulator [7] is an open source project that supports
large-eddy simulation (LES) for low-speed flows, with an
emphasis on smoke and heat transport from fires. The ForeFire
[8] is an open source fire spread model for large scale fire
simulation that allows for integration of new model
formulations. These open source projects can be integrated into
other projects. Nevertheless, they require extensive knowledge
and programming skills in order to use their code. Both the
stand-alone software tools and open source projects have



another major limitation: they require users to download and
install the software/code on their local computers. This can be a
significant barrier for users due to the computer
hardware/software requirement and runtime environment
constraints. Currently, there is a lack of robust wildland fire
simulation service that is easily accessible to broader users.

This paper presents an effort of developing a cloud-based
service-oriented solution for providing wildland fire simulation
service to broader users. The proposed simulation service is
based on the DEVS-FIRE simulation model [9, 10, 11, 12]. It
supports cloud-based simulation that covers wildfire spread
simulation, wildfire suppression simulation, and prescribed fire
simulation with dynamic ignitions. The developed simulation
service is accessible through two types of interfaces: 1) a
Graphic User Interface (GUI) that allows general users to use
the service through a map-based web application; and 2) an
Application Programming Interface (API) that allows
developers and researchers to integrate wildland fire simulation
into their own applications. The cloud-based simulation service
will be implemented using the microservice architecture that
allows different instances of simulation runs to be set up in
containers. This paper presents the DEVS-FIRE model that
supports the simulation service and the design of the cloud-
based simulation service, as well as some preliminary results.

II. THE DEVS-FIRE MODEL

A cloud-based wildland fire simulation service needs the
support of an underlying wildland fire simulation model. In this
work, we develop the wildland fire simulation service based on
the DEVS-FIRE model [9, 10, 11, 12] that has been developed
in previous research. DEVS-FIRE is a discrete event wildland
fire simulation model built on the Discrete Event System
Specification (DEVS) formalism [13]. It has several sub-models
to support different types of wildland fire simulations, including
fire spread simulation, fire suppression simulation, and
prescribed fire simulation with dynamic ignitions. The fire
spread model [9, 10] is the core of DEVS-FIRE, which uses a
cellular space to model a wildland area and employs
Rothermel’s Behave model [14] to compute the fire rate of
spread. Built on top of the fire spread model, the fire suppression
model supports fire suppression simulation with different tactic,
e.g., direct attack, parallel attack, and indirect attack [11]. The
prescribed fire simulation model supports prescribed fire
simulation with different ignition techniques such as backfire,
head fire, spot head fire, and ring fire [12]. Fig. 1 shows an
overview of the DEVS-FIRE model, where the components
supporting fire suppression simulation are colored in blue; the
components supporting prescribed fire simulation are colored in
red; and the rest of the components are for fire spread simulation.

In DEVS-FIRE, the fire area is modeled as a two-
dimensional cell space, which is divided into rectangular cells
whose dimensions depend on the resolution of the GIS fuel and
terrain data. Each cell has a coordinate denoting its location in
the cell space, and uses fuel and terrain data corresponding to its
location. Cells are coupled with their neighbors according to the
Moore neighborhood (except for the boundary cells), in which a
central cell has eight surrounding neighbors. All cells are
coupled to a weather model to receive weather data (wind speed
and wind direction) that can change over time. In DEVS-FIRE,

the fire spread is modeled as a propagation process as burning
cells ignite their unburned neighbors. A cell, once ignited,
calculates its rate of spread and spread direction using
Rothermel’s fire behavior model based on its fuel, slope, aspect,
and weather data. The rate of spread is then decomposed into
eight directions corresponding to its eight neighbor cells based
on an elliptical shape, which is computed by the mid flame wind
speed and the fire spread rate. A screenshot of a fire spread
simulation scenario is given in Fig. 2(a). In the figure, red cells
are burning cells; black cells are burned cells; and cells in other
colors represent unburned cells with different fuel types.
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Fig. 1. Overview of the DEVS-FIRE model
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DEVS-FIRE was validated by comparing with other
wildland fire simulation tools [15, 10] and was used to simulate
historical wildfires [16]. Based on the DEVS-FIRE model, data
assimilation algorithms have been developed to assimilate real-
time observation data collected from active wildfires to support
real-time simulation-based predictions of fire spread [17]. A
post-frontal combustion heat model was also developed to
model the heat released from a burning wildfire [18], which is
then used to support coupled fire-atmosphere modeling of
wildland fire spread [16]. These works demonstrate the validity,
robustness, and the various utilities of the fire spread model of
DEVS-FIRE.

(b) Fire suppression simulation

(a) Fire spread simulation

Fig. 2. Wildfire spread and suppression simulations using the DEVS-FIRE
model

The fire suppression model [11, 10] of DEVS-FIRE is built
on top of the fire spread model. An agent-based modeling
approach is used to model firefighting resources such as
bulldozers and firefighters. Fire suppression is modeled as a
process for firefighting agents to construct suppression firelines
to contain a burning fire. Three firefighting tactics [19] are
modeled, including: 1) direct attack that constructs fireline
directly on the flaming fire front; 2) parallel (indirect) attack that
constructs fireline parallel to, but at a safe distance (offset) away



from, the fire front; and 3) indirect attack that constructs fireline
according to a predetermined route. Each tactic can be further
configured using multiple teams and different team settings such
as deployment time, production rate, and suppression route. The
fire suppression model of DEVS-FIRE has been used to evaluate
firefighting resource deployment plans and to show the impact
of different firefighting tactics on suppression results [20]. Fig.
2(b) illustrates a scenario of fire suppression simulation using
indirect attack for the same fire shown in Fig. 2(a). In this
scenario, a team of firefighters (modeled by a firefighting agent)
builds a fireline (depicted in yellow) in a rectangle shape. The
production rate of the firefighting agent is large enough in this
scenario so that it fully contains the spreading fire.

The prescribed fire simulation model [12] is also built on top
of the fire spread model of DEVS-FIRE. A unique characteristic
of prescribed fires is that they are ignited dynamically by fire
setting teams while fires are spreading. This compares to
wildfires whose growth is mainly driven by the spread of fire
fronts. DEVS-FIRE models all the six basic ignition techniques
summarized in [21] that guide how a prescribed fire may be
ignited, including head fire, backfire, strip head fire, spot head
fire, flank fire, and center & ring fire. These ignition techniques
capture the different patterns regarding how to ignite a
prescribed fire. For example, backfire is lighted on the
downwind side and often used with other ignition techniques to
create a safe line to prevent the fire from jumping or spotting
across the line. On the other hand, head fire generally produces
the largest area burned per unit of time and is often used in clear
cut areas where wide firelines have been established. Besides the
patterns of ignition, other setting such as number of ignition
teams, teams’ ignition speeds, start and end locations and timing
of different ignition segments are also modeled. An ignition plan
specification is developed to systematically capture all the
ignition information, which is then carried out by fire-setting
agents to dynamically ignite a fire.

Fig. 3 shows a prescribed fire simulation using DEVS-FIRE
for a real prescribed fire event [22]. Fig. 3(a) shows the thermal
image of the prescribed fire. Fig. 3(b) shows the prescribed fire
simulation using two dynamic ignition routes (red lines AO and
BO) carried out by two teams of fire operators. In the figure, the
gray line is the initial fire perimeter line in the beginning of the
simulation; the green line is the simulated fire perimeter line; the
pink line is the actual fire perimeter extracted from the thermal
image shown in Fig. 3(a). As can be seen, the simulated fire
perimeter matches well with the actual fire perimeter.

(a) Thermal image of a prescribed fire

(b) Prescribed fire simulation
Fig. 3. Prescribed fire simulation using the DEVS-FIRE model

To summarize, the DEVS-FIRE model is a robust wildland
fire simulation model supporting fire spread simulation, fire
suppression simulation, and prescribed fire simulation with

dynamic ignitions. It has been used to simulate historical
wildfires and prescribed fires. This work uses the DEVS-FIRE
model to develop cloud-based wildland fire simulation service
for broader users.

III. CLOUD-BASED SERVICE-ORIENTED WILDLAND FIRE
SIMULATION

The cloud-based service-oriented wildland fire simulation
will be developed following a client-server architecture, as
shown in Fig. 4. The server side includes the three sub-models
of DEVS-FIRE for fire spread simulation, fire suppression
simulation, and prescribed fire simulation. These models use a
shared raster database hosting fuel, terrain, and weather data. A
microservice architecture is used to implement and deploy the
DEVS-FIRE-based simulations to provide simulation services.
The client side runs user applications using the simulation
service from the server side. We are developing two types of
interface for accessing the simulation services: a Graphic User
Interface (GUI) and an Application Programming Interface
(API). The GUI allows users to access the simulation services
through a map-based web application. The API allows
developers and researchers to integrate the simulation services
into their projects by programming using the API. Below we
describe the design of each component in detail.

Fire spread Fire suppression Prescribed fire
simulation service simulation service simulation service

Client ﬂ ﬂ ﬂ

side
Map-based Web App with Application Programming
Graphic User Interface (GUI) Interface (API)
Cloud-based Wildland Fire Simulation using the DEVS-FIRE
Server model
side 1
Fuel, terrain, weather data (shared database hosting
LANDFIRE raster data and user-defined data)

Fig. 4. Overall system architecture

A. Fuel, Terrain, and Weather Data

An essential component for wildland fire simulation is the
data that characterize the vegetation, terrain, and weather
conditions of a fire area. In wildland fire literature, vegetation is
described by fuels, which refer to the composite of variables
related to the vegetation through which the fire spreads. Terrain
is described by slope and aspect, where slope is the inclination
of a land surface and aspect is the direction the surface faces.
Compared with fuel and terrain, weather has a dynamic
influence on fire behaviors. The two components of weather that
greatly influence fire spread are wind speed and wind direction.
Corresponding to these factors that influence fire behavior, a
DEVS-FIRE simulation needs four types of data: 1) fuel data; 2)
slope data; 3) aspect data; and 4) weather data. The first three
are raster data that represent geo-spatial information as a matrix
of grids with attribute values. The weather data is temporal data
that is either provided by users or obtained from local weather
stations or online weather forecast services.

To support simulation services for broader users in the US,
araster database is established to store the fuel, slope, and aspect



data for the entire US. This raster database of fuel/slope/aspect
uses the datasets from LANDFIRE [23], which provides raster
fuel/slope/aspect data at a 30-meter resolution for wildland fire
simulation. These data are developed from field-collected plot
data, remote sensing data, and ecological modeling using
standardized methods. Our previous work [24] has shown the
feasibility of integrating the LANDFIRE fuel/slope/aspect data
with DEVS-FIRE simulation. Besides the raster database that
serves as the default source of information for fuel/slope/aspect
data in wildland fire simulations, users will also be able to
supply their own data or modify/customize the default raster
data to carry out simulation experiments. The user-customized
data will be stored in a separate user database that can be
reloaded and modified for future experiments.

B. Cloud-based Simulation

The cloud-based simulation services will be realized using a
microservice architecture, which allows the server-side
functions to be distributed across multiple microservices that
work together to provide simulation services for clients. Several
microservices will be developed, including a DEVS-FIRE Web
Server, a DEVS-FIRE API Server, a DEVS-FIRE Simulation
Server, and a DEVS-FIRE Socket-IO Server. The DEVS-FIRE
Web Server interacts with the client-side map-based web
applications (described later) to provide web service
requests/responses and to invoke simulation runs by calling the
APIs provided by the DEVS-FIRE API server. The DEVS-FIRE
API Server provides restful web service interfaces to configure
and run simulations. The API server sends simulation requests
to the DEVS-FIRE simulation server and returns results to the
DEVS-FIRE web server or user applications. The DEVS-FIRE
Simulation Server creates simulation jobs and run the
simulations. Each simulation job is created within a container,
the resources of which is released after the simulation is
finished. The DEVS-FIRE Socket-10 Server returns simulation
results to client-side web applications and user applications
through socket-I0 communication channels. This microservice-
based architecture makes the cloud-based simulation system
robust because the multiple microservices run independently
and are not subject to a single point of failure.

To handle simulation requests from different users,
simulation management will be developed to support simulation
job creation, scheduling, and simulation run control. The
simulation job creation is responsible for creating simulation
jobs and configuring them accordingly based on users’ requests.
The job scheduling is responsible for scheduling the simulation
jobs based on different types of simulations and their priorities.
For example, a batch-run job received from the API interface
will have a lower priority than a job originated from a user web
application. A job queue will be implemented to support the job
scheduling. The simulation run control is responsible for
carrying out the simulation runs within containers. This is
needed to synchronize with external programs and to carry out
batch runs.

C. User Interfaces

The wildland fire simulation services will be accessible
through two types of user interfaces: a graphic user interface
(GUI) and an application programming interface (API). The
GUI will be developed as a map-based web application that

allows users to carry out simulation exercises on a map through
a web browser. This map-based web application brings several
advantages, including: 1) it removes the need of downloading
and installing any software because users access the simulation
service through a web browser; and 2) it provides an intuitive
way for users to set up simulation experiments for any selected
areas on the map. For example, when a landowner wants to use
prescribed fire simulation to plan a prescribed burn for her own
land, she would scroll to the location of her land using the map
tool and then set up simulations on the map. This improves user
experience because a user can directly relate the simulation
outcomes to the specific land of her interest.

We are developing the map-based web application based on
the Mapbox platform [25], which is a provider of custom online
maps for websites and applications. Mapbox supports multiple
map styles (such as terrain map and satellite map) that can be
customized based on users’ preference. It provides a multi-layer
structure and a range of APIs, which can be used to support
displaying different data and simulation results on the map, such
as fuel, terrain, ignition routes, fireline locations, as well as fire
spread simulation results.

The other type of user interface is the application
programming interface (API). The goal of the API is to allow
developer and researchers to integrate the wildland fire
simulation into their own applications. For example, when
developing UAS’ path planning algorithms for monitoring
wildfires, it is challenging to test the algorithms on real fire
scenarios due to accessibility and safety concerns. The
developed API makes it possible to integrate wildfire spread
simulation into the research project for evaluating different path
planning algorithms. To support usability, the API will support
multiple programming languages on the user side.

A set of API methods are being developed to fully support
the different functions of the simulation service. An essential
group of the API methods is the simulation control. To work
with a broad range of user applications that may need to run
simulations in different ways, four modes of simulation control
will be supported: 1) Master-slave mode that allows a user
program to have a fine-grained control of a simulation execution
by running simulation in a step-by-step fashion, where a step is
defined according to the next event or the next time step; 2)
Synchronous model that allows a user program to run a
simulation to a pre-defined simulation time while waiting for the
completion of the simulation; 3) Asynchronous mode that allows
a user program to start a simulation without waiting for its
completion. The user program works on other tasks while the
simulation is running, and will be notified when the simulation
is finished. 4) Batch simulation mode that supports large-scale
batch simulation runs, covering Monte Carlo simulations and
simulation experiments using parameter sweeping.

IV. PRELIMINARY RESULTS

We have implemented a web application called FireMapSim
(http://firesim.cs.gsu.edu:3000/) to provide an initial version of
the graphic user interface for accessing the simulation service.
A snapshot of a fire spread simulation scenario using
FireMapSim is shown in Fig. 5, which displays the simulation
result in two different map views (to save space the GUI for
setting up the simulation is not shown in the figure). In this



http://firesim.cs.gsu.edu:3000/

scenario, the fire was ignited using a line ignition shown in the
middle; the outside blue rectangle is the fireline boundary that
blocks fire spared. As can be seen, the fire spread inside the
fireline boundary is also influenced by the road on the east side
and the water area on the south side due to the unburnable fuel
data associated with the road and water.
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Fig. 5. Snapshot of a fire spread simulation using the FireMapSim web
application. Top: terrain map view; bottom: satellite map view.

A preliminary version of the API server is also developed
that allows users to set up simulations and obtain simulation
results by programming to a small set of API methods.
Information about how to use the API can be found at
https://sims.cs.gsu.edu/sims/research/ DEVSFIRE APLhtml,
which also includes a Java programming example of using the
API. This example includes multiple steps: 1) Step 1: connect to
the DEVS-FIRE API server and obtain a key, which is needed
for future API calls. 2) Step 2: set wind condition for the
simulation. 3) Step 3: set location of the fire area using the
latitude and longitude info, which decides what fuel and terrain
data from the LANDFIRE database will be used. 4) Step 4: set
ignition point. 5) Step 5: start simulation run by providing a
simulation time. The simulation result of burning cells' ignition
time is returned as a string. A visualization tool (a Java class) is
also provided to allow users to visualize the simulation result.

V. CONCLUSION

This paper presents an effort of developing a cloud-based
service-oriented wildland fire simulation system that provides
wildfire fire simulation services for broader users. The DEVS-
FIRE model that supports the simulation services is described.
A design of the cloud-based simulation, including the data (fuel,
terrain, and weather), implementation of cloud-based
simulation, and two types of user interfaces are presented.
Future work includes fully implementing the cloud-based
simulation services, evaluating their validity and performance,
and extending the GUI and API for accessing the simulation
services.
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