ASSIMILATING UAV-BASED OBSERVATION DATA FOR WILDFIRE SPREAD
SIMULATION

ABSTRACT

Wildfire spread simulation simulates the dynamic spread of wildfires by modeling fire spread behavior
under various fuel, terrain, and weather conditions. To achieve real-time fire spread prediction using
wildfire spread simulation models, it is essential to assimilate real-time observation data from active fires
into the simulation models. Unmanned Aerial Vehicle (UAV) has been increasingly used to collect data
from wildfires. This paper presents a data assimilation method that assimilates UAV-based observation data
for wildfire spread simulation. We define the data assimilation problem that works with a discrete event
wildfire spread simulation model and UAV-based observation data. A particle filter-based data assimilation
algorithm is developed to carry out the data assimilation task. Experiment results show the effectiveness of
the developed data assimilation method for assimilating UAV-based data for wildfire spread simulation.

Keywords: wildfire spread simulation, data assimilation, UAV, real-time observation data, particle filter.

1 INTRODUCTION

In recent years, wildfire has attracted people’s attention as a serious nature hazard that causes severe impacts
on environment and human society. According to National Interagency Fire Center (NIFC) [1], since 2000
an average of 72400 wildfires have burned approximately 7 million acres of the land each year. Wildfire
spread simulation has been used to help researchers and practitioners to study wildfire behavior and analyze
wildfire risk. It also holds the potential to simulate/predict real-time wildfire spread for supporting real-
time decision making in wildfire management. To achieve real-time simulation/prediction of wildfire
spread, it is essential to assimilate real-time observation data into the simulation models. The real-time data
carries information about the real-time conditions of active fires. This allows a simulation to be aligned
with the real fires to achieve more accurate simulation results.

Collecting real-time wildfire data is a challenging task. Traditional wildfire data collection methods include
satellite systems, manned aircrafts, and ground fire sensors. Each of them has its own limitations. For
example, satellite data typically has a low time frequency and a coarse spatial resolution; manned aircrafts
have limitations in terms of mission duration, mission safety, and cost; and ground fire sensors are difficult
to deploy on-demand and can be damaged by fires. In contrast, Unmanned Aerial Vehicle (UAV)
technologies have advanced rapidly in recent years and show great potential for wildfire monitoring and
data collection. The advantage of UAVs include (but are not limited to): flexible deployment that can be
dynamically adjusted based on wildfire spread, data collection in high spatial and temporal resolution
compared to satellite systems, safety and low cost compared to manned aircrafts.

The increasing availability of real-time data collected from UAV asks for effective methods to assimilate
UAV-based observation data for wildfire spread simulation. Data assimilation is a statistical technique used
for state estimation. It integrates observation data with a dynamic model and offers effective adjustment on
the model to revise model error and generate more accurate simulation results. While a UAV brings many
advantages in wildfire data collection, the UAV-based observation data have several unique features that
makes assimilating them for wildfire spread simulation a challenging task. First, a UAV typically has
limited field of views that cover relatively small areas on the ground. This results in partial observations of
large wildfires because at any time a UAV can only observe a portion of the wildfire area. As a wildfire
dynamically spreads, there is a need to estimate the whole fire front of the fire based on the partial
observations from UAYV data. Second, UAV data typically has a lot of noise due to the challenging operating
environments and limited sensor capabilities. For example, the oscillation of a UAV’s body caused by
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turbulence makes the thermal camera mounted on the UAV have unstable viewing angles, which leads to
noisy sensor data.

This paper presents a data assimilation method to effectively assimilate UAV-based observation data for
wildfire spread simulation. We define and formulate the data assimilation problem that works with a
discrete event wildfire spread simulation model and the UAV-based observation data. The data assimilation
provides state estimation of the dynamically evolving fire front of an active fire based on partial and noisy
UAV data. The state space formulation of the data assimilation problem includes a state transition model
that is based on the wildfire spread simulation using the DEVS-FIRE model [2, 3], and a measurement
model that is based on fire front sensing using the UAV’s thermal camera. A particle filter-based data
assimilation algorithm is developed to carry out the data assimilation task. To work with UAV-based
observation data that provides partial observations and has a lot of noise, special treatments are developed
to add process noise to the fire front state in state transition model and to compute particles’ weights using
the UAV data. These special treatments exploit the spatial dependency and locality features of UAV-based
observation data to effectively support data assimilation. Multiple experiments are designed to evaluate the
effectiveness of the developed data assimilation method for assimilating UAV-based observation data for
wildfire spread simulation.

The remainder of this paper is as followed: Section 2 describes the related work. Section 3 presents the data
assimilation problem for assimilating UAV-based observation data into DEVS-FIRE-based wildfire spread
simulation. Section 4 describes the particle filter algorithm for carrying out the data assimilation task.
Section 5 describes the experiment results. Section 6 concludes this work and discusses potential future
work.

2 RELATED WORK

As a systematic method, wildfire simulation and modeling brings benefits in the wildfire study. Multiple
wildfire simulation models have been developed, and have made great contribution in wildfire study. For
example, FARSITE [4], BEHAVE-Plus [5], DEVS-FIRE [2,3] are all powerful tools for wildfire simulation
and provide perspectives in static and dynamic fire spreading modeling. Rothermel’s model [6] as an
empirical fire behavior models, describes the fire midflame behavior and it is widely used in fire spreading
rate and direction calculations in the wildfire simulation tools as the physical model.

Remote sensing techniques are effective tools in wildfire monitoring and data retrieving. Satellite sensing
as a traditional technique has been widely used in wildfire detection and tracking in the world-wide areas
[7, 8, 9]. UAV as a novel sensing technique has a great potential on wildfire monitoring. The state of the
art on UAV based wildfire remote sensing has been studied [10]. UAVs have the advantage of being
maneuverable, automatic, easy deploying and cost friendly which make UAV prominent in wildfire
management [11]. The easy deployment and low cost of UAV comes with the benefit that fire data
collection becomes convenient and fast. For example, UAV equipped with visible and infrared cameras are
applied in real fire monitoring, using the captured data for image fusion [12]. UAV with thermal camera
deployment is applied for both real-world wildfire monitoring [13, 14] and prescribed fire monitoring [15].
Infrared UAV images are used in LSTM model to predict forest fire spread rate [16]. The relevant works
shows that UAV brings convenience in fire monitoring and the fire information can be efficiently retrieved.
However, UAV sensors also have some weakness. A recent study demonstrates that UAV sensing camera
has a limited scope of view with environment noise that only a portion of fire data could be retrieved. This
way, the sensor data needs to be stitched and filtered to reconstruct the fire map [17].

Data assimilation has been popular in system state analysis with valid observation data. The Particle Filter
(PF) [18], one of the popular data assimilation methods, outstands in non-Gaussian and dynamic system
calibration. Much research has been done combining data assimilation technique and wildfire modeling
benefits wildfire prediction. PF is applied with temperature sensing for fire shape simulation based on
DEVS-FIRE [19]; A spatial partition-based particle filtering framework is also applied on wildfire
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simulation [20]. Focusing on the complexity of the dynamic system, Dynamic Data-Driven Simulation
(DDDS) is proposed to calibrate online data and solves the issue of over-time characteristics changing in
dynamic state prediction using PF [21, 22, 23]. There are other data assimilation method for example
Kalman Filtering is developed when the system holds the properties of being linear and gaussian. For
example, a reaction-diffusion model and a semi-empirical fire propagation model combining Ensemble
Kalman Filter is proposed for wildfire forecasting [24]. Ensemble Kalman Filter on FARSITE for wildfire
simulation is incorporated with data assimilation [25].

3 THE DATA ASSIMILATION PROBLEM

3.1 The state space formulation

Data assimilation typically uses a state space formulation that includes a state transition model and a
measurement model. To carry out data assimilation using UAV-based observation data for wildfire spread
simulation, we formulate the data assimilation problem using the state space formulation as shown below:

State transition model: fire,,; = DEVS_FIRE(fire;) + v¢, (1)
Measurement model: m; = UAV _Sensing(fire;, P) + {;, (2)

The state transition model (1) describes how the system state (i.e., the fire state) evolves over time, where
fire; and fire,,, are the fire states at data assimilation step t and t+1, respectively. The DEVS_FIRE()
represents the DEVS-FIRE simulation model that captures how the fire state evolves over time, and y; is
the process noise. The DEVS-FIRE model will be discussed in the next section. The process noise is
necessary to capture the model error and the uncertainty that exist in fire spread. The measurement model
(2) describes the mapping from the system state to the observation data. In this work, the observation data
m; includes the observed fire front locations. The fire state is mapped to the observation data m;, based on
how the UAV senses the fire state, denoted by UAV _Sensing (), which takes the fire state fire, and UAV’s
position P as inputs. The ; is the measurement noise that captures the noise involved in the UAV-based
sensing. Details about the UAV-based sensing and the associated noise are described in Section 3.3.

3.2 The state transition model

The state transition model is defined by the DEVS-FIRE [2] wildfire spread simulation model plus process
noise. DEVS-FIRE model is applied to formulate the state transition in fire spreading. DEVS-FIRE is a
discrete event simulation model based on the Discrete Event System Specification (DEVS) formalism. The
fire cell space in DEVS-FIRE is two-dimensional, in which each fire cell is the most basic element and is
coupled with other fire cells to form the cell space. As an empirical physical model, DEVS-FIRE uses
Rothermel model as the fire behavior model. Environment data such as GIS data, fuel data and weather
data also becomes necessary system input to support the simulation.

There are in total three possible fire cell states based on the coordinate position: {unburned, burning,
burned}. Figure 1 (a) shows an example of a screen shot from the DEVS-FIRE-based wildfire simulation.
Green shows the unburned cells under a different fuel bed condition; red shows the burning cells; black
shows the burned cells. Each fire cell is surrounded by other 8 cells in directions of {north-west, north,
north-east, east, south-east, south, south-west, west} unless it hits the cell space boundary which might be
less than 8. Once the simulation is triggered, {unburned}cells that receives an igniting signal change the
fire states to {burning}, burning cells calculate the spread direction and speed, and send igniting signals to
their neighbor cells, and after a period of burning time they change the states to {burned}; burned cells are
always passive for the rest of the simulation time and the states of them are no longer change.
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Figure 1: (a) DEVS-FIRE visualization; (b) Process noise illustration

The fire simulation follows the fire physical behavior without environment error. One important process in
data assimilation is to process state noise treatment to have adjustment on the system states if environment
errors appear. Thus, as shown in the system transition model (1), processing state noise y; on the fire states
is an important step. In our work, state noise (or process noise) treatment is defined as additional segments
of fire cells added to the original fire state and replace the original fire states. The state noise is a consistent
segment, and it forms an enclosed shape with the original fire shape to form the new “noise fire shape”
representing the processed fire states. The purpose of generating noise fire states is to make adjustment on
the imprecise fire states caused by DEVS-FIRE model when the system contains error. Comparing to the
fire states directly generated by DEVS-FIRE model, noise fire states holds potential to more accurately
express the fire states.

The process noise is applied by referring to observation data. The detailed steps of adding state noise to the
fire states are introduced in a prior work [19]. Considering the UAV observation data holds special
properties, we apply similar steps of adding state noise but considering the local-spatial property of UAV
observation data and applying gaussian-distributed noise. We extract the fire front, the outmost layer of the
burning cells, out of the fire states, and divide the fire front into different segments for processing state
noise. We apply local-spatial process noise. In this way, only the fire states in the segments with observation
data detected will be adjusted by adding states noise to accommodate the error caused by the system. An
appropriate utilization of UAV observation data is important to be established. In our work UAV
observation data might be detected at any direction of the simulation cell space. We utilize its “angle-based
division” on the fire front, which is defined as the angles that are evenly divided starting at the centroid of
the fire front shape and forms n angle scopes. The direction converted to degrees are defined as: north — 0
degrees; east — 90 degrees; south — 180 degrees; west — 270 degrees. To process state noise, a special
treatment we apply is that we only add the states noise on the fire front segments at the angle scopes have
pieces of UAV observation data detected. For example in Figure 1 (b), A8, ... A8, represent n different
angle scopes, in which only A@; and A6,, detect UAV observation data pieces (shown in red lines). Thus,
we only process states noise for the fire front segments that fall in angle scope Af; and A8, to form the
noise fire segments (shown in blue lines) and the original fire segments (shown in the green lines) are
replaced by the noise fire segments. In this way, the state transitions are in reasonable control. The fire front
segments with no state noise applied are fully driven by the DEVS-FIRE model until if any observation
data is detected in the later steps. The segments processed with states noise becomes a potential adjustment
on the fire front shape.

3.3 The measurement model

The measurement model describes how the UAV-based sensing works. To develop the measurement model,
it is important to understand how the UAV-based observation data is obtained. In this work, we consider
fire front sensing using UAV’s thermal camera, and thus the observation data is the fire front location data.
The thermal camera of a UAV takes thermal images that use different colors to represent different relative
temperatures of objects. For the wildfire application, fire fronts are the locations where the fire is actively
burning and thus have higher temperatures. These high temperature locations are reflected in the thermal
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images as brighter colors. Thus, given a thermal image, one can identify the bright pixels in the thermal
images that correspond to the fire front locations.

An important feature of the UAV-based sensing is that the thermal camera has limited field of view, and
thus can cover only a relatively small region of a large wildfire. This means when the UAV flies around the
fire area, the thermal images from the UAV at different time instants cover different parts of the fire area.
Our work uses a position-based approach to compute the location of the fire area covered by the UAV’s
thermal images. Figure 3(a) illustrates this approach, where the light blue area represents the area covered
by a thermal image taken by the UAV’s thermal camera. This approach assumes the fire area is a flat area
on the ground. It also assumes the UAV’s position (X,qv, Yuavs Zuay) and the orientation angle of the
thermal camera at any time instant is known, where z,,4,, is the flying height of the UAV. The position
(Xuav» Yuav» Zuav) can be obtained from the UAV’s GPS sensor; the orientation angle of the thermal camera
can be derived from the Roll, Pitch, and Yaw angles of the UAV as well as the mount angle of the thermal
camera on the UAV’s body. For simplicity, Figure 3(a) only illustrates the computation on the x-z plane,
where 6 is the corresponding angle of the thermal camera’s orientation on the x-z plane. Let x¢,,, be the x
coordinate of the center of the UAV’s field of view on the ground. Then Xf4, = Xyqp + Zyqp * tand.
Similarly, the yfo, can be computed. The computed (xfqy, Yror) represents the center of the field of view
on the ground that is covered by the thermal image. We note that in order to obtain high quality observation
data it is better to make the orientation angle 6 small, i.e., making the thermal camera face downward.

UAV
UAV »

Figure 3: (a) UAV field of view’s location; (b) UAV’s observation data at different time

After the location of the area covered by a thermal image is known, using the relative positions of the
identified fire front pixels on the thermal image, one can then extract the specific locations the fire fronts
captured by the thermal image. When a UAYV flies around the fire area, its thermal camera takes thermal
images in a certain frequency (e.g., every 1 second). Based on these thermal images, using the approach
described above, the corresponding observation data are then computed.

The above description assumes perfect knowledge about the UAV’s position and the facing angle of the
thermal camera. In reality, GPS sensor has noise and the sensors measuring UAV’s Roll, Pitch, and Yaw
angles are not perfect either. This is especially true in a wildfire environment as there exist constant
turbulence and updraft that brings challenges to UAV’s flight. This imperfect knowledge brings inaccuracy
to the computed fire front locations. For example, when x4, is inaccurate, the computed x¢,,, would be
inaccurate, which cause the extracted fire front locations to be shifted from the actual locations of the fire
front. Similarly, the orientation angle errors of the thermal camera cause the extracted fire front locations
to have a rotation error from the actual locations of the fire front. These errors need to be modeled by using
the measurement noise.

Based on the above descriptions, we develop the measurement model (a) as a mapping function from the
fire state to fire front locations that includes three steps. Step 1 is to compute the location of the thermal
camera’s field of view based on the UAV’s position and the orientation angle of its thermal camera. In this
work, we assume the orientation angle is facing down all the time, and uses the measurement noise
(described in Step 3) to account for inaccuracy of the orientation angle. Step 2 is to extract the fire front
segments within the field of view based on the fire state. Step 3 is to add measurement noise {;. Specifically,
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we model {; as a Gaussian noise with two terms: 1) a Gaussian-based shift noise that shifts the extracted
fire front locations with a Gaussian-based distance; and 2) a Gaussian-based rotation noise that rotates the
fire front locations (around the center of the field of view) with a Gaussian-based angle.

Figure 3(b) illustrates the UAV’s observation data at three different time instances as the UAV flies in the
fire area. In the figure, the red line represents the fire front; the dotted circles represent the UAV’s field of
view on the ground, and the fire front measurement data are shown by the fire segments below the red
arrows. When the UAV is at location P1, its field of view covers a continuous segment of the fire front.
When the UAYV is at location P2, its field of view covers two segments of the fire front due to the limited
field of view. When the UAYV is at location P3, its field view cover no fire front. We note that due to the
noise factors, the observation data at each position is not the same as the fire segment within the
corresponding field of view due to the measurement noise that are added. Also note that at location P3, the
observation data has no fire front data.

4 PARTICLE FILTER-BASED DATA ASSIMILATION

Particle filter (PF) is utilized as the data assimilation method in our work. The PF algorithm is a sample-
based data assimilation method used on non-linear system calibration based on Bayesian inference and
stochastic sampling techniques. The purpose of using PF is to estimate posterior density for all particles
based on system states and observation data then make the best selection on the particles. PF includes
sampling, weight calculation function, resampling as the main steps. In our work, sampling , weight
calculation functions and resampling are all related to wildfire simulation and UAV observation data. In
the sampling phase, system transition model is applied for transiting the fire states with process noise to
generate diversity of fire states. The weight calculation function is applied for calculating and assigning the
importance weights based on the fire states and UAV observation data. PF proceeds resampling based on
the importance weights to select and keep offspring of particles of the sampled fire states.

PF is processed by steps based on a specific time interval. In every PF time interval, PF uses all sensor data
within the time interval to process the data assimilation. If sensor data is retrieved constantly, the longer
the time interval is, the more sensor data is within the time interval. However, this comes an issue that the
sensor data within a time interval does not belong to the same time snapshot. Thus, the existence of time
lag issue in the sensor data impacts the PF performance. To properly utilize the UAV observation data, a
special treatment on the PF time interval is approached by significantly reducing the PF step time interval
that the PF model has a much higher frequent adjustment of the fire shapes. The UAV observation data in
a very short PF time interval could be considered approximately within the same time snapshot. Therefore,
the PF model works more reasonably on the UAV observation data and reduces the impact of time lag issue.

The weight calculation function in PF is utilized to compare the system states with the observation data and
provides importance weights for particles. Trajectory similarity methods, which are used to measure the
overlap of two geography paths, are effective to assess the difference between UAV observation data and
the fire front. One Way Distance (OWD) trajectory similarity algorithm is utilized in the weight calculation
function. The OWD is defined as the integral of the distance from discrete points of a trajectory T; to
another trajectory T»[26], which is equivalent to the area shaped by the discrete points of T; to T,. Figure
4 illustrates how the OWD works. In the figure, the black line represents the trajectory Ti; red points py, ...,
ps represent the discrete points that are averagely sampled from T;. Area sy, ..., ssrepresents the area that
shaped by the discrete points of T; with trajectory T, in different segments (represented in different colors),
which are averagely divided to the same number with the discrete points in trajectory T;. The OWD
trajectory similarity from T; to T is the summation of area D,,, 4 (T, T,) = X7 S;.
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Figure 4: Illustration of OWD trajectory similarity

Similar to the process noise, the weight calculation function is also applied the special treatment due to
local-spatial property of UAV observation data. Angle-based division of the fire shape can also be applied
on calculating the trajectory similarity. Due to the UAV observation has a property of being shifted, there
might be pieces of UAV observation exist and forms a cluster within an angle scope. For example, in Figure
5 red lines represent UAV observation data, and in angle scope A8, there are several pieces of UAV
observation being captured. Therefore, we sample the centroid of the clusters of UAV observation in each
angle scope. The trajectory similarity D,,,q4 in each angle scope is the area that formed by the centroids of
UAV observation clusters and the corresponding fire front segments. In each valid angle scope Af;,
trajectory similarity D; is calculated as area s;. Figure 5 as an example, in angle scope Af; the sampled
centroid point of UAV observation cluster is c;; trajectory similarity D; is calculated as area s;. Similarly
in A, the sampled centroid is ¢, and trajectory similarity D,, is calculated as area s,,. For each particle i,
the fire front shape is divided by n angle scopes 8% = [A; ... AB,], the trajectory similarity Dowdi =
[s1 ... s,] represents a set of areas that calculated in each angle scope and it is utilized to generate OWD-
based independent weights wi, = [Wg e Wgn] based on gaussian distribution. The particle’s importance

weight is calculated as a cumulative multiplication weight w! = [T wy_.
n
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Figure 5: Illustration on the OWD calculation based on UAV observation data
The description of the proposed PF algorithm is provided in the Table 1.

Table 1: Implementation of PF algorithm

Algorithm 1: Particle filter in wildfire simulation using UAV observation data

1. Initialization, time step k = 0
e Fori=1,..,N,sample f ireéi) from DEVS-FIRE as the initial fire states.
e Increment the time step by setting k = 1

2. Sampling:

e For each fire state in {f ire,@1 N ., draw a sample using the system transition model described
in section 3 including DEVS-FIRE model and process noise model, and generate noise fire
states, donated by {m,g_)l 1iv=1.

3. Importance weight calculation:

e For each noise fire states {m,gi_)l N, calculate its importance weight {w,

to UAV observation data using OWD.

(i)}?’ﬂ, according
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. (D)
e Normalize the importance weights: W,EL) == ""7(]-)
j=1Wk

4. Resampling
e Resample noise fire states {f lre,gl_)1 N | according to {W,El)}?’:l.
5. Update the time step and loop the previous steps (except initialization step):

e Set time step k to k + 1, then go to step 2.

5 EXPERIMENT DESIGN AND EXPERIMENT RESULTS

To evaluate the performance of PF, identical twin experiment [23] is applied in our work. Identical twin
experiment is a methodology testing the simulation outputs between a perfect system and a system with
imperfect data. An identical twin experiment includes a set of two experiments: a real experiment and a
twin experiment. These two experiments run under different system parameters and generate different
system states. A data assimilation process is applied only on the twin experiment to process states
adjustment and generates filtered states. In our work, true states, twin states, and filtered states indicate real
fire states, twin fire states, and PF fire states respectively. PF is aimed to integrates the UAV observation
data to adjust and re-predict the fire states to improve the simulation results when system error appears.

To validate the effectiveness of the PF-based data assimilation using UAV observation data on wildfire
simulation, we design the experiments such that the twin weather data is different from the real weather
data. The experiment results demonstrate the effectiveness of the proposed PF approach in aspects of
dealing with both UAV observation noise and system error. In the two sets of experiments, we used DEVS-
FIRE-based UAV sensing model to simulate and generate the UAV observation data. We applied
coordinated single UAV path planning that the UAV always follows the fire front to retrieve the fire front
information. The experiments are deployed on a 200%200 cell space with each cell is in size of 30m. The
cell space is filled up with 3 different types of fuel which are evenly distributed in strips that the fire
spreading rate are different on the 3 fuels.

In the first set of experiments, we validate that the proposed PF approach has great effect when the UAV
observation data contains noise. The fire is ignited at cell (150, 170) for 13000 seconds of simulation time.
Having the north direction as 0 degree, the real wind data is in speed of 22 + 5 m/s and in direction of 43
+ 25 degree, and the twin wind data is in speed of 20 + 5 m/s and in direction of 57 + 25 degree. Figure 6
(a) and (b) show the real fire front (green) and the twin fire front (yellow). The UAV starts being deployed
at 240s after the fire is ignited and data retrieving range is at 3 cells radius with a 1 second reporting rate.
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Figure 6: Experiment set 1 (a) Fire front shapes for UAV data with small noise; (b) Fire front shapes for
UAYV data with large noise. (Green: Real fire front; Yellow: Twin fire front; Red: PF fire front)

The experiment is designed to demonstrate effectiveness of the proposed PF approach on various UAV
observation noise. We validated two sets of UAV observation data in small observation noise and big
observation noise, which are shown in pink cells in Figure 7 (a) (b) respectively. We applied a gaussian
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noise with smaller standard deviation and a small rotation on the UAV for small noise observation; while
a larger gaussian standard deviation and rotation for big noise observation. We applied 200 particles with
a 30s PF time interval on the twin experiments. The visualized experiment results are provided in Figure 6
that the PF filtered fire fronts are shown in red. The results shows that in both experiments, the twin fire
front shapes are properly adjusted and the PF filtered fire front shapes have a good match with the real fire
front shape. However, due to the larger noise variance, the PF filtered fire shape based on large UAV sensor
noise is less accurate and has more mismatched fire segments on the real fire shape.

Figure 7: Experiment set 1: (a) UAV observation data with small noise; (b) UAV observation data with
big noise. (Green: Real fire front shape; Pink: UAV observation data )

A quantitative result is provided to analyze the performance of PF over time in Figure 8. As a comparison,
we applied convex hull algorithm as a base method. Without system or states information, convex hull
straightforwardly connects the centroid of UAV observation data within PF time intervals and reconstructs
the fire front. For both PF and convex hull, after a fire front is reconstructed, the fire front is assigned
{burning} states and the cells within the fire front are assigned {burned} states. Mismatched cell rate is used
as the error metric after the fire front is reconstructed to describe the number of mismatched
{burning/burned} cells divided by the real fire’s {burning/burned} cells. Figure 8 (a) shows that PF is
effective dealing both small and big observation noise that the two experiment results have similar
decreasing trends. The mismatched cell rates constantly decrease over time and eventually reduce to around
10%. Figure 8 (b) shows that with the simulation time increases, the number of mismatched cells increase
at the beginning as the fire are spreads larger but eventually become convergent. Comparing PF and convex
hull, when the observation noise is small, convex hull performs better but shows an unstable behavior with
the time increases. When the observation noise is large, PF shows an obvious advantage on the stable
performance and accuracy. Plus, PF can show stable performances in both noise scenarios. Since convex
hull simply just takes the maximum coverage of the observation data as the fire shape, the more precise the
observation data is, the more accurate convex hull can reconstruct the fire shape. However, if the
observation data gives more noise information, convex hull no longer well estimates the coverage of fire
shape; while PF can still consistently and stably outperform in adjusting the fire states during time.

Mismatched cell rate over time Number of Mismatched Cells over time

AEN_Average_SmallNoise

AEN_Average_BigNoise

AEN_numOfCells_SmallNoise

AEN_numOfCells_BigNoise

ConvexHull_SmallNoise =~ ———— ConvexHull_BigNoise Convex_numOfCells_SmallNoise ———— Convex_numOfCells_BigNoise

Figure 8: Experiment 1 quantitative results: (a) Mismatched cell rate; (b) Number of Mismatched cells
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In the second sets of experiments, we validate the effectiveness of the proposed PF approach on different
system error. In our experiments, the weather difference between real fire and twin fire is considered to be
the system error. In experiment 2, we increase the weather difference between real fire and twin in order to
generate larger system errors. We design 3 sets of experiment to demonstrate that the proposed PF approach
is effective in small, middle and large weather data error incorporating noise UAV observation data. In the
3 sets of experiments, the fire is ignited at cell (150, 50) for 12000 seconds. The real wind data is set up in
speed of 22 + 7 m/s and in direction of 132 + 25 degree. For the twin wind speeds, small, middle, large
weather error is set in speed of 20 £ 5 m/s, 18 = 5 m/s and 16 £ 5 m/s respectively. The twin wind
directions are all set to be the same in 147 + 25 degree. The real fire front and the twin fire shapes are
shown in Figure 9 (a). A single UAV is deployed at 300s after the fire is ignited the UAV observation range
is also at 3 cells radius with also a 1 second reporting rate. The UAV observation noise we applied as the
big noise corresponding to experiment 1 and is shown in Figure 9 (b).

Figure 9: Experiment set 2: (a) Fire front shapes in different weather conditions. Green: Real weather;
Yellow: Small weather error; Blue: Middle weather error; Black: Big weather error. (b) UAV observation
data with noise (Green: Real fire front; Pink: UAV observation data ).

We also applied 200 particles with 30s PF time interval for each twin experiment. The visualized results of
each PF fire front are shown in Figure 10 in red. The results shows that PF is effective adjusting the fire
front in all 3 twin weather conditions but with the weather error increases the PF fire front shows in more
unstable shapes. The quantitative results are shown in Figure 11. From Figure 11 (a) and (b) we can see
that the PF has great performance of reducing the mismatch cell rate over time in all weather conditions.
However, due to the reason that when the weather error increases, PF needs to process larger state noise for
the noise fire states to accommodate the weather difference then have a potential to reduce the state-to-
observation difference. Thus, results of small weather error and middle weather error are both good since
these two weather errors are considered relatively small. The results for big weather error shows that a big
weather error has impact on reducing the PF performance.

Figure 10: Experiment set 2 PF fire front: (a) Twin small weather error; (b) Twin middle weather error (c)
Twin big weather error. (Green: Real fire front; Red: PF fire front; Other: Twin fire fronts)
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Mismatched cell rate over time Number of mismatched cell over time

Figure 11: Experiment 2 quantitative results: (a) Mismatched cell rate; (b) Number of Mismatched cells

6 CONCLUSION AND DISCUSSION

In conclusion, in this paper our contribution includes formulating the wildfire simulation problem with state
transition and UAV-based observation, and proposing a particle filtering approach which effectively
assimilating the UAV based observation data to make adjustment on the fire states. The proposed particle
filter approach properly handles with the constraints of UAV observation data being noisy and partially and
utilizes the advantage of the high collection frequency to enhance the PF performance. The proposed
particle filter approach also demonstrates the effectiveness when the simulation contains system error.

The possible future study needs to be focus on solving the constraints of the current PF approach, including
different deployments of UAV data collection and improvement on PF performance. For example, when
UAV observation data are collected in different path plannings, it is possible to happen that UAV data is
collected with a big time gap or even with data loss. In this way, system transition model needs to be revised
to deal with the scenarios and weight generation function needs to be properly developed to evaluate the
particles if there is no UAV observation. Different fire front division strategies, for example space-grid
based division, become feasible approaches to be applied on process noise and weight calculation function
which might generate more precise evaluations, while the computational cost and the complexity of
implementation might become tradeoffs. PF parameter estimation and particle selection both become
potential directions help improve the PF performance to lead more accurate and more stable experiment
results, which is also a popular topic in general PF studies.
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