
  

  

Abstract— In this paper, an observer-based event-triggered 

consensus control (OETCC) strategy is proposed for linear 

multiagent systems (MASs) under strongly connected network. 

Two event-triggering conditions (ETCs) are designed to trigger 

information transmitting and control update separately so that 

continuously applying these tasks is avoided. In addition, the 

triggering times for both tasks are unnecessarily to be the same. 

Since the triggering time for control input update is predictable, 

continuously monitoring the related ETC can be avoided. It is 

proved that under the proposed strategy, consensus can be 

achieved exponentially. Its effectiveness is also verified by a 

numerical example. 

I. INTRODUCTION 

In the past three decades, cooperative control of MASs has 
drawn more and more attention [1]. Since cooperative work of 
multiple simple vehicles has more advantages over the work 
by a single complicated vehicle [2], it has a wide range of 
applications such as monitoring forest fires, hazardous 
material handling, and so force [1,3,4]. Information consensus 
plays an important role during cooperative teamwork. Under 
distributed consensus algorithms, the agent in the system 
communicates with local neighbor(s) so that a common 
decision of the global system can be made. 

The consensus algorithms require each agent to sample its 
own state, access to the state of its neighbor(s) and update its 
control input. In practice, these control tasks are implemented 
on a digital platform at discrete times [5]. The time instants can 
be determined in a periodic or event-triggered way. The former 
strategy is conservative since the constant period has to 
guarantee consensus in the worst-case scenario, while the 
latter one is more natural and flexible, which presets triggering 
conditions that depend on agents’ real-time behaviors, and the 
control task is implemented once the related conditions are 
satisfied. Thus, under the event-triggered control law, more 
computation and energy resources as well as communication 
bandwidth can be saved. Recent results on event-triggered 
consensus algorithms are reviewed in [6,7]. 

Due to physical and cost constraints, agents may not be 
able to measure full states. In this case, an observer can be 
designed to estimate unmeasurable states via output feedback. 
The observer-based event-triggered linear consensus problem 
is investigated in [8,9]. In addition, fully distributed consensus 
strategy is proposed in [10] so that global network information 
is not required for each agent; Lipschitz and Lur’e nonlinear 
terms are added to the linear dynamics in [11,12] to represent 
more general physical systems; Consensus under bounded 
control inputs is investigated in [13]; The time delay and 
external disturbance are considered  in [14] and [10,15], 
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respectively, where the reset observer is introduced in [15] to 
improve the estimation performance; Consensus is guaranteed 
under Denial-of-Service Attacks in [16,17]. However, the 
foregoing results are based on the OETCC strategy with some 
limitations. In [8–10,12,15,17], although the event-triggered 
strategy avoids continuous communication, continuous 
control input update is required. This drawback is overcome in 
[11,13,14,16]. But the distributed control algorithm requires 
control inputs to be updated once each agent receives 
information. These limitations may cost extra communication, 
energy as well as computation resources. Moreover, in [8–17], 
the control input update and information transmission are 
triggered at the same time, which is not flexible. 

Motivated by the above discussions, an OETCC algorithm 
is proposed for linear consensus under strongly connected 
network. Two ETCs are designed to trigger information 
transmission and control input update separately. The main 
advantages are three-fold: First, under the proposed event-
triggering strategy, both continuous control input update and 
information transmission are not required. Second, the 
triggering times for both tasks are unnecessarily to be the same. 
In addition, when an agent receives information, neither of the 
control tasks is necessarily to be triggered immediately. 
Finally, the triggering time for control input update can be 
predictable so that continuously monitoring the related ETC 
can be avoided. 

II. PRELIMINARIES AND PROBLEM STATEMENT 

A. Notation and graph theory 

Let the network topology be represented by a directed 

graph (digraph) ( , )G V E= , where  
1

N

i i
V v

=
= is the node set, 

and E V V  is the edge set. ( , )i jv v E denotes that there is 

a directed edge from iv to jv , but not necessarily vice versa. In 

this case, iv is called an in-neighbor of jv , and jv is an out-

neighbor of iv . We assume ( , )i iv v E . Let  :i jv V= N

( , )j iv v E , and let  1 :
i j iI j N v=   N N . The 

adjacency matrix of the graph G is defined by [ ]G ijA a= , 

where 1ija = if ( , )j iv v E and 0ija = , otherwise. The 

Laplacian matrix is defined by [ ]ijL l= , where
1

N

ii ik

k

l a
=

=  and

ij ijl a= − if j i . G is strongly connected if for each pair

( , )i jv v , there is a directed path from iv to jv . 

Definition 1 [18] Given a strongly connected digraph G with 

the Laplacian matrix R
N NL  . Let ( )1col , , Nr r=r , 0ir  ,
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1 i N   satisfying T

10 NL =r and T 11N =r . The general 

algebraic connectivity is defined by 

( ) ( ) ( )
T

T T

0,

ˆmin
0

a G L R
= 

=
x r x

x x x x   

where ( )Tˆ 2L RL L R= + and ( )1, , NR diag r r= . 

B. Problem Statement 

Consider a system with N agents. The dynamics of agent i,
1 i N  , is described by 

 
( ) ( ) ( )

( ) ( )

i i i

i i

t A t B t

t C t

= +


=

x x u

y x
 () 

where ( ) R
n

i t x , ( ) R
m

i t u and ( ) r

i t  Ry represent the 

state, control input, and output of agent i, respectively, and
n nA  R , n mB  R , and r nC  R are constant matrices. 

Assume that each agent can only sample its own output data. 
This paper aims to design a distributed OETCC law such that 
consensus can be achieved. 

The following assumptions and lemmas are needed. 

Assumption 1 ( ), ,A B C is stabilizable and detectable. 

Assumption 2 The digraph G is strongly connected. 

Lemma 1 [19] If the matrix pair ( ),A B is stabilizable, for any 

number 1 2,  0   , and matrix 0Q  , the algebraic Riccati 

equation (ARE) T T

1 2PA A P PBB P Q + − = −  has a unique 

solution 0P  . 

Lemma 2 [18] Under Assumption 2, ( ) 0a G  . In addition, 

( )a G is the maximum of  , which satisfies ( )T ˆ 0S L R S− 

, where ( )1, , NR diag r r= and L̂ is defined in Definition 1, 

and
T

T

1
ˆ

N NS I r−
 = − r with  1 1

ˆ , , Nr r −=r . 

III. MAIN RESULTS 

In this section, an OETCC strategy is proposed to solve 
the consensus problem stated in Sec.II.B such that the Zeno 
behavior is excluded. 

For1 i N  , the dynamics of the observer state of agent i 
is described by 

           
( ) ( ) ( ) ( ) ( )

( ) ( )

1i i i i i

i i

t A t B t K t t

t C t

 = + + −   


=

x x u y y

y x
 () 

where ( ) n

i t  Rx  is the observer state, ( ) n

i t  Ry is the output 

of the observer, 1

n rK  R is the observer gain to be 

determined. 
 The distributed consensus control law is based on the 

disagreement among agent i and its in-neighbor(s) defined by 

 ( ) ( ) ( )
i

i i j

j I

t t t


 = − 
N

δ x x  () 

Note that consensus is achieved if for any1 i N  , ( ) 0i t →δ

as t → [20]. Let  
1

1

1: 0,1,
i

i

k it k = and  
2

2

2: 0,1,
i

i

k it k =  be 

the sequences of triggering times corresponding to information 
transmission and control input update of agent i, respectively.  

For
1 1

1 1

1[ , )
i i

i i

k kt t t + , 1 0,1,ik = , define ( )i tz satisfying 

 ( ) ( )i it A t=z z  (4) 

with initial ( ) ( )
1 1

1 1

i i

i i

i k i kt t=z x . Let the disagreement vector 

based on the estimated state be 

 ( ) ( ) ( )
i

i i j

j I

t t t


 = − 
N

 z z  (5) 

The OETCC law is designed as: 

 ( ) ( )2
ˆ

i it K t= u  (6) 

where
2

n mK  R is the control gain to be determined and

( ) ( )
2 2 2

2 2 2

1 2
ˆ ,  [ , ),   0,1,

i i i

i i i

i i k k k it t t t t k+=  =  . Define the 

measurement errors by 

 
( ) ( ) ( )

( ) ( ) ( )

1

2
ˆ

i i i

i i i

t t t

t t t

= −


= −

e x z

e  
 (7) 

Let
1 2

1 2 and 
i i

i i

k kt t be two latest triggering times of agent i. The 

next triggering time instant of agent i is determined by 

                  
( ) ( ) 

( ) ( ) 
1 1

2 2

1 1

1 1 1

2 2

1 2 2

inf :

inf :

i i

i i

i i

k k i i

i i

k k i i

t t t t f t

t t t t f t

+

+

 =  


=  

e

e
 (8) 

where ( )1if t and ( )2if t are the threshold functions to be 

determined. This means the triggering time is determined 

when the ETC ( ) ( )1 1i it f te or ( ) ( )2 2i it f te is satisfied. 

Let ˆ ˆ: , 1,2,k kt t k t k=  = be the sequence of time instants 

when each agent monitors ETCs and samples output. By 
choosing small enough t , it can be considered that the agent 

monitors ETCs and samples data continuously. The event-
triggering mechanism for agent i,1 i N  , is summarized as 

follows: At 0t t= , agent i samples ( )0i ty , sets ( )0 0i it =x x , 

computes ( )0i ty by (2); Agent i sets 1

0 0

it t= , ( )1

0 0

i

i it =z x , and 

sends it to its out-neighbor(s); Agent i receives ( )1

0 ,
i

j

j t j I Nz

, sets 2

0 0

it t= ; computes ( ) ( )2

0
ˆ i

i it t =  and ( )i tu by (5) and 

(6), respectively. At 1̂,t t= agent i computes ( )1̂i tx , ( )1̂i ty ,

( )1̂j tz  
i

j I i N , and ( )1̂i t by (2), (4) and (5), 

respectively, then agent i checks ETCs: if ( ) ( )1 1i it f te , 

agent i sets 1

1 1̂

it t= , ( ) ( )1

1 1̂

i

i it t=z x , and so ( )1

1 1 0
i

i t =e , then 

sends ( )1

1

i

i tz to out-neighbor(s); if ( ) ( )2 2i it f te , agent i sets

2

1 1̂

it t= , ( ) ( )1
ˆ ˆ
i it t=  , and so ( )2

2 2 0
i

i t =e , then updates the 

control input by (6); Agent i samples ( )1̂i ty ; At 2̂t t= , agent i 

repeats the previous procedure, and so force. 

Remark 1 Note that agent i cannot predict ( ),  
ij t j I Nx , by 

(2). Thus, if ( )i t is defined by ( ) ( ) ( )
i

i i j

j I

t t t


 = − 
N

x x , 

agent i needs to receive ( )j tx continuously to monitor the 

ETC. To overcome this drawback, for   ( ),  
i jj I i t N x is 

replaced by ( )j tz that can be predicted by (4), and one more 

ETC is introduced to restrict  the difference between ( )j tx and
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( )j tz . When the difference between ( )j tx and ( )j tz is large, 

the related ETC is satisfied so that agent j sends the latest

( )j tx to agent i, and agent i uses this information as the initial 

value to predict ( )j tz by (4).  

The main result is presented as follows. For ease of 
notation, some index t is omitted. 
Theorem 1 Consider the linear MASs with dynamics 
described by (1) and OETCC law (6) under Assumptions 1 and 

2. Let the observer gain in (2) be T

1 1 1K PC= − , where

1 10,  0P   is the solution of the ARE 

 T T

1 1 1 1 1 22 nP A AP PC CP I + − = −  (9) 

with 2 0  . Let the control gain in (6) be T

2 3 2K B P= − , where

3 0  and 2 0P  is the solution of the ARE 

 
T T

2 2 3 2 2 4

1
( )

2
nP A A P a G P BB P I + − = −  (10) 

with 4 0  . Let the threshold functions in (8) be ( )jif t =

( )0
2

22ˆ , 1,2
4

ji t tj

i ji

j

c e j
g

 − −
+ = , where 1 2,  0   and 1 +

2 1  , ,  0ji jic   , 1,2j = ,
( )

31 2
1

4

5 4g
r a G r

 


= + with

T

1 L RL = , ( )
2

T 2 T

2 2 2L RL P BB P =  and min :1ir r= 

i N , ir is defined in Definition 1, and 2 5g = +
( )

3 3

4

4
a G r

 



with
T T

3 2 2L RL P BB P =  . Then consensus can be 

achieved exponentially, and no agent will exhibit Zeno 
behavior. 
Proof: For1 i N  , define the observer error as 

 i i i= −e x x  (11) 

We first prove that there exists 1 and 1 such that
2

1

N

i

i=

 e

( )1 0

1

t t
e




− −
 . This means the observer state can approach the 

real state exponentially. According to (1) and (2), i =e  

( )1i i iA K C− = +x x e . Let
T 1

1 1

1

N

i i

i

V P−

=

= e e be a Lyapunov 

function. It follows from Rayleigh quotient that 

 ( ) ( )
2 21 1

min 1 1 max 1

1 1

N N

i i

i i

P V P − −

= =

  e e  () 

Taking the time derivative of 1V along the trajectory of ie and 

using
T

1 1 1K PC= − yields (T 1 T 1

1 1 1

1 1

2 2
N N

i i i

i i

V P P A− −

= =

= = + e e e

) ( )T 1 T 1 T

1 1 1 1

1

2
N

i i i

i

K C P A A P C C− −

=

= + −e e e . Since ( ),A C is 

detectable, ( )T T,A C is stabilizable. Let 1P be the solution of 

(9), then 1V = ( ) ( )
2 2 2T 1 1

2 1 2 min 1

1 1

N N

i i i

i i

v P v P− −

= =

 −  −
   e e e . 

Combining this inequality and (12) yields 1 1 1V V − , where

( ) ( ) 2
1 1

1 min 1 max 1 2P P v  − − =
  

. By comparison principle,

( ) ( )1 0

1 1 0

t t
V e V t

− −
 . Combining this inequality and (12) yields 

 
( )1 0

2

1

1

N
t t

i

i

e



− −

=

 e  () 

where ( ) ( )1

1 1 0 min 1V t P  − =
 

. Next, we prove for1 i N  ,

iδ will go to zero exponentially. According to (1), (3) and (6),

( )2
ˆ ˆ

i

i i i j

j I

A BK


= + −δ δ δ δ
N

. Let ( )1col , , N=δ δ δ and

( )1
ˆ ˆ ˆcol , , N=δ δ δ . Then 

 ( ) ( )2
ˆ

NI A L BK=  + δ δ δ  () 

Let ( ) ( )1 1 1 and 

i i

i i j i i j

j I j I 

= − = − ε e e ε e e
N N

. According to 

(3), (5), (7) and (11), one has 

 
1 2

ˆ
i i i i i= + − +ε ε e   () 

Let ( )1col , , N=ε ε ε , ( )1 11 1col , , N=ε ε ε , and (2 21col ,=e e

)2, Ne . Then 1 2
ˆ = + − +ε ε e   . It follows from (14) that 

           ( ) ( )( )2 1 2NI A L BK=  +  + − +δ δ ε ε e  () 

Let
T

2 2

1

N

i i i

i

V r P
=

=  δ δ be a Lyapunov function. It follows that 

  ( ) ( )
2 2

min 2 2 max 2

1 1

N N

i i i i

i i

P r V P r 
= =

  δ δ  () 

Note that 2V can also be written as ( )T

2 2V R P= δ δ . Taking 

the time derivative of 2V along the trajectory of (16), and using
T

2 3 2K B P= − and Definition 1 yields 

( )T

2 22V R P= δ δ  

( ) ( )( )T T T

2 3 2 2 1 22 2R P A RL P BB P=  −  + − +δ δ δ ε ε e  

( ) T T T

2 2 3 2 22R P A A P a G P BB P   + − δ δ  

( ) ( )T T T T

3 2 2 3 2 2 12 2RL P BB P RL P BB P −  + δ ε δ ε  

( )T T

3 2 2 22 RL P BB P− δ e  () 

Let ( )1 , , NR diag r r= .  By Young’s Inequality 

( )T T

3 2 22 RL P BB P− δ ε  

( ) ( )
T

T T

3 2 22 R B P RL B P    = −  
   

δ ε  

( ) ( )T T T T T

3 1 2 2 1 2 21R P BB P L RL P BB P     + 
 
δ δ ε ε  

where 1 = ( )12a G with ( )1 0,1  to be determined later. 

Let =e ( )1col , , Ne e . Then ( )nL I= ε e , and so (T TL RLε  

) ( )
2 2T T T 2 T

2 2 2 2 2P BB P L RL P BB P   =  
  

ε e e e . Thus, 

( )T T

3 2 22 RL P BB P− δ ε  

( )( )
( )

2T T 3 2
1 3 2 2

1

2
2

R a G P BB P
a G

 
 


  +δ δ e  () 

Let ( )1 11 1col , , N=e e e . Following similar procedure yields 

( )T T

3 2 2 12 RL P BB Pδ ε   

( )( )
( )

2T T 3 2
2 3 2 2 1

2

2
2

R a G P BB P
a G

 
 


  +δ δ e   () 

( )T T

3 2 2 22 RL P BB P− δ e   
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( )( )
( )

2T T 3 3
3 3 2 2 2

3

2
2

R a G P BB P
a G

 
 


  +δ δ e  () 

where ( )2 3,  0,1   are parameters to be determined. 

Substituting (19)–(21) to (18), one has T

2 2V R P A  +δ  

( ) ( ) 
( )

2T T 3 2 2
2 1 3 2 2

1 2

2 1
2

A P a G P BB P
a G

  
 

 


− − + +


δ e  

2 23
1 2

3






+ 


e e , where

3

1

1

i

i

 
=

=  . Take 1 4,  1 3i i =   , 

then 1 3 4 = . Under Assumption 1, according to Lemma 1, 

one can let 2P be the solution of (10). It follows that

( )
( )

( )
2 2 2 23 3 2

2 4 2 1 3 2

1

2 2N

i i

i

V r
a G a G

  
  

=

 − + + + δ e e e

Combining this inequality and (17) yields 2 2 2V V − −

( )
( )

( )
2 2 2 23 3 2

2 4 2 1 3 2

1

2 2N

i i

i

r
a G a G

  
   

=

+ + + δ e e e  , 

where ( )2 0,1  and ( ) ( )2 4 2 max 21 P   = − . Choosing

2 1 2 = and using  min :1ir r i N=   , one has 

( )
2 23

2 2 2 4 2 1

1 1

21

2

N N

i i i

i i

V V r
a G


  

= =


 − − + 


 δ e  

( )
2 23 2

3 2

1

2N

i

i a G

 


=


+ +


 e e  

         
( )

(2 23
2 2 4 2 1

1 4

41

2

N

i i i

i

V r
a G r


  

=

 − + − +
 δ e  

)
( )

2 23 2
3 2

2
i

a G

 
 + +


e e                                           () 

According to (15), 

( )2

1

N

i i

i

r
=

− δ  

T T T T T

1 1 2 2

1

ˆ ˆ ˆ2
N

i i i i i i i i i i i

i

r
=

= − − − − +
 ε ε ε ε e e ε    

T T T T T

1 2 1 2 1 2
ˆ ˆ2 2 2 2 2i i i i i i i i i i

− + + − +


ε e ε ε ε e ε e   () 

where
T T T1ˆ ˆ ˆ2 4

4
i i i i i i +ε ε ε   , 

T T T

1 1 1

1ˆ ˆ ˆ2 4
4

i i i i i i−  +ε ε ε   , 

T T T T T T T

2 2 2 1 1 1 2

1ˆ ˆ ˆ2 4 ,  2 ,  2
4

i i i i i i i i i i i i i i +  + − e e e ε ε ε ε ε ε ε e    

T T T T T

2 2 1 2 1 1 2 2,  and 2i i i i i i i i i i+  +ε ε e e ε e ε ε e e . Applying these 

inequalities to (23) yields ( )
22

1 1

1 ˆ
4

N N

i i i i

i i

r r
= =


−  − +


 δ   

)2 2 2

1 25 5 5i i i+ +ε ε e . Recall ( )nL I= ε e . Then apply

T

1 L RL = , one has ( )
2 T T

1 1

N N

i i i i i n

i i

r r R I
= =

= =  = ε ε ε ε ε

( )
2T T

1nL RL I  e e e . For the same reason, applying

( )1 1nL I= ε e and  min :1ir r i N=   yields
2

1

1

N

i i

i

r
=

 ε

2 21
1 1 1

1

N

i i

i

r
r




=

  e e  Therefore, 

( )2

1

N

i i

i

r
=

− δ  

2 2 2 21
1 2 1

1

1 ˆ 5 5 5
4

N

i i i i

i

r
r




=

 
 − + + + 

 
 e e e  (24) 

Applying (13), (24) to (22), and using
( )

31 2
1

4

5 4g
r a G r

 


= +

,
( )

3 3
2

4

5 4g
a G r

 


= + yield

2

2 2 2 4

1

1 1 ˆ
2 4

N

i i

i

V V r 
=


 − + − +


   

)
( )

( )1 0
2 2 3 2

1 1 2 2 4 1 1

25

2

t t

i ig g e
a G

 
  

− −
 

+ + +  
 

e e . By event-

triggering mechanism and (8), before the next triggering time, 

( ) ( )ji jit f te , 1,2j = . For 1,2j = , let ( ) ( )ji jif t h t=

( )0ji t t

jic e
− −

+ , where ,  0ji jic   , and ( )jih t is to be 

determined. Then
( ) ( )0 022 2 22 ji jit t t t

ji ji ji ji jif h c e h c e
 − − − −

= + + , and 

so 2V   

( )0

2 2
2

2 2 4

1 1

1 1 ˆ2
2 4

ji

N
t t

i j ji ji j ji j i

i j

V r g h c g e h


  
− −

= =

 
− + + − + 

 
   

( )

( )
( )0 1 0

2
22 3 2

4 4 1 1

1 1

21 5

2 2

ji

N
t t t t

i j ji

i j

r g c e e
a G

  
   

− − − −

= =

 
+ +  

 
 . Let

jih =

( )02

2

ji t t

ji ji j

j

c e g

g

− −
 −

, where
2

ˆ
ji j j ig = +

( )022 24 ji t t

ji jc g e
− −

, then
( )0

2
2 1 ˆ2 0

4

ji t t

j ji ji j ji j ig h c g e h



− −

+ − =  

and
( )0

2
22ˆ

2 4

jiji t tj

ji i ji

j j

f c e
g g

 − −


= = +  Let maxc =

 :1 ,  1,2jic i N j  = and  1 min :1 , 1,2ji i N j =   =  

Then
( ) ( )0 1 0

2 2
2 22 2

1 1 1 1

ji

N N
t t t t

i j ji i j

i j i j

r g c e r g c e
 − − − −

= = = =

    Let  =

( )

2
2 3 2

4 4 1 1

1 1

21 5

2 2

N

i j

i j

r g c
a G

 
   

= =

 
+ +  

 
 and  2 1 1min 2 ,  =

. Then

( )

( )
( )0 1 0

2
22 3 2

4 4 1 1

1 1

21 5

2 2

ji

N
t t t t

i j ji

i j

r g c e e
a G

  
   

− − − −

= =

 
+ +   

 


( )2 0t t
e




− −
. Therefore, one has 

 
( )2 0

2 2 2

t t
V V e


 

− −
 − +  () 

Note that this inequality holds at the time when ji jife for 

all1 i N  , 1,2j = . However, at some time instants, jie

may be greater than the threshold function for some1 i N 

, 1,2j = . According to (4), iz is discontinuous at
1

1

i

i

kt ,

1 1,2,ik = . It follows from (5) that i in (7) is also 

discontinuous at these times. By (8), this may lead to

2 2i ife at some
1

1

i

i

kt . On the other hand, according to (6), ˆ
i

is discontinuous at
2

2

i

i

kt ,
2 1,2,ik = . Since 1if depends on ˆ

i  it 

follows from (8) that 1 1i ife may occur at some
2

2

i

i

kt . In 

addition, when agent i receives jz from agent j, the 
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discontinuity of jz leads to discontinuity i . This may further 

lead to 2 2i ife  Since it can be considered that each agent 

monitors ETCs continuously, jie becomes zero once ji e

jif . Hence, ji jife only happens at some discrete time 

instants. Let 1 2, ,t t be the times when ji jife , then

( ) 0ji kt
+ =e , 1,2,k = , where ( )ji kt

+
e ( )lim

k

ji
t t

t
+→

= e  

According to (25),
( )2 0

2 2 2

t t
V V e


 

− −
 − + on

) ( )0 1 1, ,
Z

k k
k

t t t t
+

+


 . Let ( )W t be the solution of  

 
( )3 0

2

t t
W W e


 

− −
= − +  () 

with initial ( ) ( )0 2 0W t V t= , where 3 2 = if 2 2  , and

3 2  otherwise. By the comparison Lemma, ( ) ( )2V t W t

on )0 1,t t . Since ( )2V t and ( )W t are continuous at 1t t= , 

( ) ( ) ( ) ( )
1 1

2 1 2 1lim lim
t t t t

V t V t W t W t
− −→ →

=  = . Thus, applying the 

comparison lemma on )1 2,t t yields ( ) ( )2V t W t on )1 2,t t . It 

follows that ( )2V t ( )W t on )0 2,t t . Repeating this procedure 

gives ( ) ( )2 0,  V t W t t t  . Using (26) and 3 2  yields

( ) ( ) ( ) ( ) ( )( )2 0 3 0 2 3 0

2 0

2 3

1
t t t t t t

W t e V t e e
   

 

− − − − − − − = + −
 −

  It 

follows that ( ) ( ) ( )3 0

2 2 0

2 3

t t
V t V t e



 

− − 
 + 

− 
 Using (17) to 

this inequality yields
( )3 0

2

2

1

N
t t

i i

i

r e



− −

=

 δ , where

( )
( )2 2 0

min 2 2 3

1
V t

P




  

 
= + 

− 
. This implies that consensus 

can be achieved exponentially. By following a similar 
procedure as in [10], it can be proved that no agent will exhibit 
Zeno behavior.                                                                       ■ 
Remark 2 According to the event-triggering mechanism and 

(8), continuous information transmission and the control input 

update are avoided, and they are unnecessary to be triggered 

at the same time. Different from , (6) implies 

that the latter is unnecessary to be triggered once an agent 

receives information. However, the analysis in the proof of 

Theorem 1 shows that when one task is triggered, the other 

one may also be triggered. In addition, when an agent receives 

information the control task may be triggered as well. 

Remark 3 By (5), (7), (8) along with the threshold function

2if determined by Theorem 1, for 1 i N  , at the latest 

triggering time
2

2

i

i

kt , agent i can predict the next triggering 

time, and continuously monitoring this ETC can be avoided. 

IV. SIMULATION EXAMPLE 

In this section, an example is given to illustrate the 
effectiveness of the proposed OETCC law. 

Consider a consensus problem of 6 agents. The dynamic 
of each agent is described by (1), where A=[0 -1 0; 1 0 0; 0 1 

0] ，B=[1; 0; 0]，and C=[0 0 1]. It can be verified that 

Assumption 1 is satisfied. The network topology is described 
in Fig. 1, which is strongly connected. The corresponding 

Laplacian matrix is L=[1 -1 0 0 0 0; -1 4 -1 -1 0 -1; 0 0 1 -1 0 
0; 0 0 0 1 -1 0; 0 -1 0 0 2 -1; -1 0 0 0 -1 2]. 

We first compute general algebraic connectivity: Under 

Assumption 2, by Lemma 2, one can obtain ( ) 0.7132a G = . 

Next, determine the observer gain 1K and control gain 2K : 

Choose 1 0.5 = , 2 1 = , 3 0.25 = and 4 1 = , and solve ARE 

(9) and (10) for 1 2 and P P  , respectively. Then according to 

Theorem 1, one can obtain  
T

1 0.2480 -0.6622 -0.9551K =

and  2 -2.1202 -0.6764 -0.8373K = . Finally, we determine 

the parameters in the threshold functions 1if and 2if : Choose

1 0.5 = and 2 0.5 = , and for 1 6i  , choose 1 0.085ic = ,

1 0.025i = , 2 0.275ic = and 2 0.025i = . 

Assume 0 0t = . Let each agent monitors ETCs at k t with

0.01t = and 1,2,k = . Write ix as ( )1 2 3col , ,i i i

i x x x=x . The 

initial state of agent i, 1 6i  , is assumed to be

( ) 10 20 300 col( , , )i i i

i x x x=x , where 10 2 7ix i= − , 20 2 6ix i= − and 

30 3ix i= − . The initial observer state is set as ( )0 0=x .  Write 

the observer error as ( )11 12 13 61 62 63col , , , , , ,e e e e e e=e . For

1 3j  , let ( )1 6ˆ col , ,j j jx x=x . Note that consensus is 

achieved if for any 1 3j  , and 1 , 6p q  , 0p q

j jx x− = . 

The performance of the MAS is simulated during [0, 60]. The 

histories of the components of e , ˆ
jx and control input are 

presented in Fig. 2, 3 and 4, respectively. We focus on the 
histories during [0, 25]. Fig. 2 indicates that the observer error 
almost becomes zero before 20t = . Fig. 3 shows that 

consensus is almost achieved before 25t = . In Fig 4, the 

magnitude of control input decreases when the disagreement 
among agents becomes smaller. The histories of the triggering 
times related to information transmission and control input 
update during [0, 60] are presented in Fig 5a and Fig 5b, 
respectively. For most of the agents, both tasks are triggered 
at a high frequency before 10t = , and the frequency decreases 

significantly after this time. Note that in Fig 2 and 3, the 
observer error and the disagreement among agents are also 
reduced significantly after 10t = . The numbers of triggering 

times during [0, 60] are listed in Table 1, where
1i

trigN and
2i

trigN

denote the number of triggering times of agent i related to 
information transmission and control input update, 
respectively. Since each ETC is monitored 6,000 times during 
this period, both tasks are not triggered frequently. 

V. CONCLUSION 

In this paper, an observer-based event-triggered consensus 

problem has been considered for general linear MASs under 

strongly connected network. Two ETCs have been applied to 

 
Fig. 1 Network topology 
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the consensus algorithm so that both continuous control input 

update and information transmission are not required. In 

addition, the triggering times for both tasks are unnecessarily 

to be the same. It has been verified that under the proposed 

algorithm, consensus can be achieved exponentially. 
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Fig. 2 Histories of observer error 

 

Fig. 3 Histories of state 

 

Fig. 4 Histories of control input 

 

 
Fig. 5a Histories of time for information transmitting 

 

Fig. 5b Histories of time for control update 

Table 1: Number of triggering times 

i 1 2 3 4 5 6 

1i

trigN
  

344 286 189 184 298 406 

2i

trigN
 

131 560 117 126 199 402 
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