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Abstract

We present Metis, a model-checking framework designed for

versatile, thorough, yet configurable file system testing in the

form of input and state exploration. It uses a nondeterministic

loop and a weighting scheme to decide which system calls and

their arguments to execute. Metis features a new abstract state

representation for file-system states in support of efficient and

effective state exploration. While exploring states, it compares

the behavior of a file system under test against a reference file

system and reports any discrepancies; it also provides support to

investigate and reproduce any that are found. We also developed

RefFS, a small, fast file system that serves as a reference, with

special features designed to accelerate model checking and en-

hance bug reproducibility. Experimental results show that Metis

can flexibly generate test inputs; also the rate at which it explores

file-system states scales nearly linearly across multiple nodes.

RefFS explores states 3–28× faster than other, more mature file

systems. Metis aided the development of RefFS, reporting 11

bugs that we subsequently fixed. Metis further identified 12 bugs

from five other file systems, five of which were confirmed and

with one fixed and integrated into Linux.

1 Introduction

File system testing is an essential technique for finding bugs [43]

and enhancing overall system reliability [27], as file-system

bugs can have severe consequences [53, 92]. Effective testing

of file systems is challenging, however, due to their inherent

complexity [4], including many corner cases [87], myriad

functionalities [8], and consistency requirements (e.g., crash con-

sistency [64,72]). Developers have created various testing tech-

nologies [59,71,86] for file systems, but new bugs (both in-kernel

and non-kernel) continue to emerge on a regular basis [42,43,85].

To expose a file-system bug, a testing tool must execute a

particular system call using specific inputs on a given file-system

state [52,53,87]. For example, identifying a well-known Ext4

bug [48] requires a write operation on a file initialized with a

530-byte data segment. In this case, the write operation is an

input, and the file with a specific size constitutes (part of) the

file-system state. Recent work [9, 52] also underscored the

importance of adequately covering both file-system inputs and

states during testing. While existing testing technologies seek

to cover a broad range of file systems’ functionality, they often

do not, however, integrate coverage of both file-system inputs

and states [12,43,59,85]. For example, handwritten regression

tools like xfstests [71] can achieve good test coverage of specific

file-system features [4, 58], but do not comprehensively cover

syscall inputs; similarly, fuzzing techniques (e.g., Syzkaller [25])

are designed to maximize code—not input—coverage [40].

Both the input and state spaces of file systems are too vast

to be completely explored and tested [10, 21], so it is better to

leverage finite resources by focusing on the most pertinent inputs

and states [52,86,88]. For example, metadata-altering operations,

such as link and rename, and states with a complex directory

structure are more frequently utilized in POSIX-compliance

testing [67]. Existing testing technologies also lack the versatility

to test specific inputs and states [25,59,71]. Thus, new testing

tools and techniques are needed [52,53] to avoid under-testing

(which could miss potential bugs) or over-testing (which wastes

resources that may be better deployed elsewhere).

This paper presents Metis, a novel model-checking framework

that enables thorough and versatile input and state space

exploration of file systems. Metis runs two file systems

concurrently: a file system under test and a reference file system

to compare against [26]. Metis issues file-system operations

(i.e., system calls with arguments) as inputs to both file systems

while simultaneously monitoring and exploring the state space

via graph search (e.g., depth-first search [31]).

To compare the relevant aspects of file-system states, we

first abstract them and then compare the abstractions. The

abstract states include file data, directory structure, and essential

metadata; abstract states constitute the state space to be explored.

Metis first nondeterministically selects an operation and then fills

in syscall arguments through a user-specified weighting scheme.

Next, it executes the same operation in both file systems and

then compares both systems’ abstract states. Any discrepancy

is flagged as a potential bug. Metis evaluates the post-operation

states to decide if a state has been previously explored; if

so, it backtracks to a parent state and selects a new state to

explore [31]. Metis continuously tests new file-system states until

no additional unexplored states remain, logging all operations

and visited states for subsequent analysis. Metis’s replayer can

reproduce potential bugs with minimum time and effort.

Metis effectively addresses the common challenges of

model checking [16, 31] file systems. It checks file-system

implementations directly, eliminating the need to build a formal

model [61]. To manage large file-system input and state spaces,

Metis enables parallel and distributed exploration [33] across

multiple cores and machines. Metis works with any kernel or

user file system, and does not require any specific utilities nor

any modification or instrumentation of the kernel or the file
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system. It detects bugs by identifying behavioral discrepancies

between two file systems without the need for oracles or external

checkers, thus simplifying the process of applying Metis to new

file systems. With few constraints, Metis is well suited for testing

file systems that are challenging for other testing approaches,

e.g., file system fuzzing [43], that require kernel instrumentation

and utilities. Nevertheless, the quality of the reference file system

is pivotal for assessing the behavior of other file systems [26].

We therefore developed RefFS as Metis’s reference file system.

RefFS is an in-memory user-space POSIX file system with new

APIs for efficient state checkpointing and restoration [73, 86].

Prior to using RefFS as our reference file system, we used

Ext4 as the reference to check RefFS itself; Metis identified

11 RefFS bugs that we fixed during that process. Subsequently,

we deployed 18 distributed Metis instances to compare RefFS

and Ext4 for one month, totaling 557 compute days across all

instances and executing over 3 billion file-system operations

without detecting any discrepancy. This ensured that RefFS is

robust enough to serve as Metis’s (fast) reference file system.

Our experiments show that Metis can configure inputs more

flexibly and cover more diverse inputs compared to other

file-system testing tools [25, 59, 71]. Metis’s exploration rate

scales nearly linearly with the number of Metis instances, also

known as verification tasks (VTs). Despite being a user-level file

system, RefFS’s states can be explored by Metis 3–28× faster

than other popular in-kernel file systems (e.g., Ext4, XFS, Btrfs).

Using Metis and RefFS, we discovered 12 potential bugs across

five file systems. Of these, 10 were confirmed as previously

unknown bugs, five of which were confirmed by developers as

real bugs. Moreover, one of those bugs—which the developers

confirmed existed for 16 years—and the fix we provided, was

recently integrated into mainline Linux.

In sum, this paper makes the following contributions:

1. We designed and implemented Metis, a model-checking

framework for versatile and thorough file-system input and

state-space exploration.

2. We designed and implemented an effective abstract

state representation for file systems and a corresponding

differential state checker.

3. We designed and implemented the RefFS reference file

system with novel APIs that accelerate and simplify the

model-checking process.

4. Using RefFS, we evaluated Metis’s input and state coverage,

scalability, and performance. Our results show that Metis,

together with RefFS, not only facilitates file-system

development but also effectively identifies bugs in existing

file systems.

2 Background and Motivation

In this section, we first introduce the procedures and challenges

for testing and model-checking file systems. We then discuss

two vital dimensions for file system testing: input and state.

We demonstrate the challenges of achieving versatile and

comprehensive coverage of both inputs and states.

File system testing and model checking. File systems can be

tested statically or dynamically. Static analysis [9,57] evaluates

the file system’s code without running it; while useful, it struggles

with complex execution paths that may depend on runtime state.

Our work therefore emphasizes dynamic testing—executing and

checking file systems in real-time scenarios [12,59,67]. Gener-

ally, dynamic testing involves (1) crafting test cases using system

calls, (2) initializing the file system, (3) running the test cases,

and (4) post-execution validation of file system properties. Hence,

the quality of test cases directly affects the testing efficacy.

Model checking is a formal verification technique that seeks

to determine whether a system satisfies certain properties [16,77].

The model is typically a state machine, and the properties, usually

expressed in temporal logic, are checked using state-space

exploration [15]; here, each state represents a snapshot of the

system under investigation. To automate this process, model

checkers (e.g., SPIN [31]) are used to generate the state space,

verify property adherence, and provide a counterexample when

a property is violated.

Extracting a model from a system implementation can

be challenging, especially for large systems like file sys-

tems [86,87]. Thus, recent work on implementation-level model

checking [86, 87] seeks to check the implementation directly

(without a model). Such approaches [86] require one to create

new, specialized checkers to test new file systems, and these

checkers are typically focused on a limited range of bugs, such

as crash-consistency bugs [86, 87]. The ongoing challenge is

to simplify implementation-level file-system model checking

so that using it does not require extensive effort or significant

expertise in model checking and file systems, while at the same

time being able to identify a wide range of bugs.

Covering system calls and their inputs. We refer to the

system calls (syscalls) and their arguments as inputs or test

inputs because syscalls are commonly used by user-space

applications—and thus testing tools—to interact with file

systems [22, 81]. Thoroughly testing file system inputs is

challenging. While file-system–related syscalls represent only

a subset of all Linux syscalls [7,74], each syscall has multiple

arguments, and the potential value range for these arguments

is vast [52,74]. For example, open returns a file descriptor, ac-

cepting user-defined arguments for flags and mode in addition

to pathname. Both flags and mode are bitmaps with 23 and

17 bits, respectively, representing many possible combinations.

The bits represented in flags alone have 2
23 possible values,

leading to an aggregate input space of 240. Similarly, write and

lseek take 64-bit-long byte-count arguments that have a large

input domain of 264 possible values. Nevertheless, it is vital to

test as many representative syscall inputs as possible.

Fully testing all syscalls with every potential argument is

impractical [25, 37]. Instead, a sensible approach [45, 52] is

to segment a large input space into multiple, disjoint input

partitions—called input space partitioning [39, 52, 78]. How
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choose what to execute, including individual syscalls (e.g.,

unlink) as well as meta-operations comprising a (small)

sequence of syscalls (e.g., the write file operation opens a

file and writes to it at a specific offset). From a given file system

state, multiple potential successor states may arise. Through its

nondeterministic choices of operations, Metis can effectively ex-

plore many of these options, ensuring thorough state exploration.

To bound the input space, each operation randomly picks a file

or directory name from a predetermined set of pathnames. The

Input Driver is flexible and can generate files or directories with

arbitrarily deep directory structures, long pathnames, and other

unexpected scenarios such as many files inside a single directory.

We focus on state-changing operations [26] (i.e., not

read-only ones) as the Input Driver seeks to maximize the

exploration of file system states. Currently, the Input Driver

supports five meta-operations (create file, write file,

chown file, chgrp file, and fallocate file), and 10 in-

dividual syscalls (truncate, unlink, mkdir, rmdir, chmod,

setxattr, removexattr, rename, link, and symlink).

Adding a new operation has minimal effort of about 10 LoC.

Metis exercises read-only operations such as read, getxattr,

and stat after each state-changing operation, when computing

file system abstract states in the State Explorer (§3.2).

After selecting the operation, Metis chooses its arguments

based on a series of user-specified weights that control how

often various argument partitions (§2) are tested. In the Input

Driver, weights represent the probabilities assigned to different

input partitions, which control testing frequencies. The method

of assigning weights varies based on the argument type [7,52].

For bitmap arguments, each bit receives a probability of being

set. The number of input partitions in a bitmap argument is

equivalent to its individual bit count. Given the ubiquity of

powers of 2 in file systems [38], numeric arguments like write

size (requested byte count) have input partitions segmented

by these numbers as boundary values, rounding down to the

nearest boundary. For example, write sizes ranging from 1024

to 2047 bytes (210 to 2
11
−1) are grouped in the same partition.

Assigning a weight (e.g., 15%) to this partition implies a 15%

chance of selecting a write size between 1024 and 2047 bytes.

The total weight of all write-size partitions equals 100%. We

placed 0 bytes as a distinct partition (unusual but allowed

under POSIX) because the smallest power of 2 is 1, which is

greater than 0. Additionally, Metis can also be configured to

test only boundary values (powers of 2) such as 4096 as well as

near-boundary values (±1 from the boundary, e.g., 4095/4097)

that are useful for testing underflow and overflow conditions.

The choice of weights depends on the user’s objectives.

For example, while O SYNC is common in crash-consistency

testing [59], it is used infrequently for POSIX compliance [67].

Due to disk I/O’s slow speed, many tests focus on small write

sizes [12]. However, testing larger sizes can uncover size-specific

bugs [67, 76]. Our objective is to ensure that Metis remains

versatile and to allow one to adjust the input weights in line with

the test focus.

3.2 State Exploration and Tracking

State explorer. The objective of Metis’s State Explorer is to use

graph traversal to conduct thorough and effective “state graph ex-

ploration,” where the nodes correspond to file-system states and

the edges represent transitions caused by operations [15]. Metis

supports depth-first search (DFS) as the main search algorithm.

The State Explorer relies on the SPIN model checker [31] to

conduct the state-space exploration. SPIN supports the Promela

model-description language, and allows embedding C code in

Promela code. This capability allows us to seamlessly issue

low-level file-system syscalls and invoke utilities. SPIN’s role is

to provide optimized state-exploration algorithms (e.g., DFS) and

data structures to track and store the status of the state graph; thus,

we do not have to implement these features in the State Explorer.

In model checking, there are two types of states: concrete

and abstract. Concrete states contain all the information that

describes the states of the file system being checked. Abstract

states serve as signatures to identify different system states of

interest during the exploration.

After each operation, the State Explorer calls the abstraction

function to extract abstract states as hash values from both file

systems. Every time an abstract state is created, SPIN checks

whether it has already been visited by looking up the abstract

state in SPIN’s hash table and decides on the next action, either

backtracking to a previous concrete state or continuing from

the current one. Meanwhile, the State Explorer mmaps the full

file-system image into memory to be tracked by SPIN as a

concrete state. Concrete states are stored in SPIN’s stack to allow

the State Explorer to restore the full file-system state as required.

To improve the performance of state exploration, we use RAM

disks as backend devices for on-disk file systems. In Metis, we

create both file systems with the minimum device sizes to reduce

the memory consumption of maintaining concrete states and to

make it easier to trigger corner cases such as ENOSPC.

File system abstract states. A concrete state is a reflection or

snapshot of the entire (and highly detailed) file-system image,

which renders it inappropriate for distinguishing a previously

visited state [11]. This is because any small change to the file-

system image leads to a new concrete state, even though there

may be no “logical” change in the file system. For example,

Ext4 updates timestamps in the superblock during each mutating

operation, even if no actual change to a user-visible file was made.

This substantially expands the state space, with many states

differing only by minor timestamp changes, and leads to wasted

resources on logically identical states. Additionally, because file

systems are designed with different physical on-disk layouts, we

cannot use concrete states to compare their behaviors. Therefore,

we need a different state representation that includes only the

essential and comparable attributes common to both file systems.

To address this problem, we defined an abstraction function to

calculate file-system abstract states to distinguish unique states,

and to compare file system behaviors. The abstract state contains

pathnames, data, directory structure, and important metadata for
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Problem Cause of discrepancies Solution

Different directory size for same contents Size calculation methods Ignore directory sizes

Different orders of directory entries Internal data structures Sort the output of getdents

FS-specific special files and directories Internal implementations Create an exception list of special entries

Different usable data capacities Space reservation and utilization Equalize free space among file systems

Table 1: Examples of false positives identified and addressed by Metis.

all files and directories (e.g., mode, size, nlink, UID, and GID);

we exclude any noisy attributes such as atime timestamps.

We then hash this information to compact the abstract state

for a more effective comparison. Metis supports several hash

functions to compute abstract states; we evaluated the speed

and collision resistance of each hash function (results elided for

brevity) and chose MD5 by default as it had the best tradeoff

of those characteristics.

The abstraction function deterministically aggregates key file

system data and metadata, enabling comparison across different

file systems. Specifically, the abstraction function begins by

enumerating all files and directories in the file system by travers-

ing it from the mount point. Their pathnames are sorted into a

consistent, comparable order. We then read each file’s contents

and call stat to extract its important metadata mentioned above,

following the pathname order. Finally, we compute the (MD5)

hash based on the files’ content, directory structure, important

metadata, and pathnames to acquire the abstract state. Using

abstract states not only prevents visiting duplicate states but

also significantly reduces the amount of memory needed to

track previously-visited states, owing to our lightweight hash

representation, which in turn boosts Metis’s exploration speed.

Tracking full file system states. In addition to abstract states,

another complexity in tracking file system states is saving and

restoring the concrete states when Metis needs to backtrack to

a previous state (i.e., when reaching an already visited state);

this involves State Save/Restore (SS/R) operations for concrete

states. Concrete states must contain all file system information

including persistent (on-disk) and dynamic (in-memory) states.

Metis can feasibly save and restore on-disk states by copying

the on-disk device and subsequently copying it back. Kernel file

systems (e.g., Ext4 [55]) maintain states in kernel space, which

is inaccessible to Metis, a user process. Similarly, user-space

file systems built on libFUSE (e.g., fuse-ext2 [2]) are separate

processes with separate address spaces, so again Metis cannot

directly track their internal state. Tracking only persistent on-disk

state leads to cache incoherency, because cached in-kernel

information is inconsistent with the on-disk content.

We tried and evaluated several approaches to tracking full file

system states (performance results elided for brevity) including

fsync syscall, syncmount option, process snapshotting [17,84],

VM snapshotting [44, 46], and LightVM [54]. None of these

approaches were effective due to their functional deficiencies

or inefficient performance. For those reasons, we adopted the

approach presented in [73] to unmount and remount the file

system between each operation in Metis. An unmount is the

only way to fully guarantee that no state remains in kernel

memory. Remounting guarantees loading the latest on-disk

state, ensuring cache coherency between each state exploration.

This unmount-remount method was a compromise that ensures

data coherency yet provides reasonable performance (§5.2),

especially coupled with our specialized RefFS (§4).

3.3 Differential State Checker

Metis checker goals and approaches. Using only the Input

Driver and State Explorer would constrain the detection of

bugs to those manifesting as visible symptoms [12], such as

kernel crashes. We thus needed a dedicated checker to identify

cases where file systems fail silently [43] (e.g., data corruption).

Moreover, existing checkers usually require considerable effort

to be applied to newly developed or constantly-evolving file sys-

tems. For example, since many checkers are hand-written (e.g.,

xfstests), the testing of new file systems involves redesigning and

refactoring test cases. Some checkers depend on an exact (e.g.,

POSIX) specification or an oracle for bug detection [59, 67]:

they are difficult to adapt to continuously-evolving file systems.

File systems vary considerably in terms of their developmental

stages [53, 90]: mature file systems are typically more stable

than new, emerging, or less popular ones [53]. Yet many still

share common (POSIX) features and data-integrity requirements.

Therefore, we rely on a differential testing approach [56], to

check emerging file systems for silent bugs, eliminating the need

for a detailed specification or an oracle.

We developed Metis’s Differential State Checker to identify

a broad range of file system bugs and facilitate file system de-

velopment. Our checker can easily adapt to test new file systems;

it requires no modification to the checker, only a replacement of

the file system under test. Metis uses a well-tested, reliable file

system as the reference file system and a less-tested, emerging

one as the file system under test. After each file system operation,

the Differential State Checker compares the resulting states of

both file systems to detect any discrepancies. To prevent false

positives, it only compares the common attributes of file systems,

including their abstract states, return values, and error codes.

Eliminating false positives. As any discrepancy is reported

as a potential bug, when developing Metis we found that it

sometimes identified discrepancies that were not bugs (i.e.,

false positives). We implemented measures to avoid these false

positives. Table 1 summarizes several such cases including their

problems, causes, and solutions.

All these discrepancies arose due to different file system

designs and implementations. For instance, Ext4 has a special
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lost+found directory and computes directory sizes by a

multiple of the block size. In contrast, other file systems

report sizes by the number of active entries and do not have

a lost+found directory. Despite the same device sizes for

different file systems, the available space varies due to different

utilized and reserved space (e.g., for metadata). To address this,

we equalize free space among file systems by creating dummy

files based on the differences in their available spaces.

While developing Metis, we analyzed every discrepancy we

encountered and addressed all false positives. Whenever a false

positive was identified, we updated the state abstraction function

or file system initialization code to eliminate such instances, an

infrequent process that was conducted manually. None of these

solutions introduce false negatives, because they all deal with

non-standardized behavior. For example, an application should

not expect sorted output from getdents. Nevertheless, if a

change introduces any misbehavior, Metis’s Differential State

Checker will report and handle it.

3.4 Logging and Bug Replay

When detecting a discrepancy, it is important to be able to analyze

the operations executed by the file systems to identify and repro-

duce the potential bug. Thus, Metis’s Event Logger records de-

tails of all file-system operations and outcomes, comprising every

syscall and their arguments, return values, error codes, SS/R oper-

ations, and resultant abstract state. Additionally, the Event Logger

logs file-system information such as the directory structure and

important metadata to pinpoint the deviant behavior as soon as a

discrepancy is detected. To reduce disk I/O, we store the runtime

logs in an in-memory queue and periodically commit them to

disk. Leveraging the Event Logger, we can reproduce the precise

sequence of operations leading to a discrepancy found by Metis.

Metis can replay identified bugs by re-executing the

operations from the start of Metis’s run. This process can be

time-consuming, however, if the discrepancy was detected

after executing many operations and passing through numerous

states [3]. So we needed a way to reproduce a discrepancy

quickly. Existing test-case minimization techniques [43, 91]

remove one operation from a sequence until the remaining

operations can reproduce the bug; but this trial-and-error process

is slow due to the abundance of I/O operations.

To replay bugs efficiently, the Optimized Replayer reproduces

them using only a few operations (recorded in logs) and one (con-

crete state) file system image. Using SPIN, we retain concrete

states in a stack, thereby capturing all file-system images along

the current exploration path and allowing for bug reproduction

from any desired location in the stack. Recent findings [43,59]

indicate that most bugs can be reproduced on a newly created file

system using a sequence of eight or fewer operations. Accord-

ingly, Metis uses an in-memory circular buffer to retain pointers

to a few of the most recent file-system images (defaults to 10, but

configurable) for quick post-bug processing. In practice, we first

attempt to reproduce the bug using the most recent image (imme-

diately preceding the bug state) along with the latest operation. If

unsuccessful, we turn to the previous image and the two last oper-

ations, and so on in a similar pattern. This eliminates the need for

Metis to replay the entire operation sequence from the beginning.

3.5 Distributed State Exploration

Along with performing state abstraction and setting limits on the

number of files and directories, we also restrict the search depth

to control the exponential growth of the state space. We set the

maximum search depth to 10,000 by default [31]. If the search

hits the 10,000th level, Metis reverts to the prior state rather

than exploring deeper. Thus, the state space becomes bounded,

allowing Metis to perform an exhaustive search. Still, even with

this depth restriction, the state space remains large because of the

variety in test inputs and file system properties [21]. Exploring

this space using a single Metis process (called a verification task,

or VT) requires significant time.

To parallelize the state-space exploration [32] we use Swarm

verification [33], which generates parallel VTs based on the

number of CPU cores. Each VT examines a specific portion

of the state space. To prevent different VTs from re-exploring

the same states, and to avoid having to coordinate states across

VTs, SPIN employs several diversification techniques [33],

where every VT receives a unique combination of bit-state hash

polynomials, number of hash functions, random-number seeds,

search orders (e.g., forward or in reverse) and search algorithms

(e.g., DFS), ensuring varied exploration paths.

We enabled these parallel and distributed exploration capabil-

ities for Metis. The setup uses a configuration file to determine

the machine and CPU core count; Metis then produces the exact

VT count based on the configuration file. When Metis runs on

distributed machines, each runs a handful of VTs, one per CPU

core. Each VT is automatically configured with a distinct com-

bination of diversification parameters, guiding them to explore

different state space areas. Utilizing multiple Metis VTs across

multiple cores and machines increases the overall speed of state

exploration while testing more inputs. Every Metis VT operates

independently, with its own device, mount point, and logs, with-

out interference with other VTs. Given that VTs explore states

autonomously without inter-VT communication, there is a risk

of resource wastage if several VTs examine the same state [33].

We deployed multiple VTs on several multi-core machines and

evaluated Metis extensively under Swarm verification (§5.2).

3.6 Implementation Details

Metis uses SPIN to achieve basic model-checking functions. The

Promela modeling language [31] serves as the main interface

with SPIN. We wrote 413 lines of Promela, consisting of

do...od loops that repeatedly select one of a number of cases

in a nondeterministic fashion. Each case issues file-system

operations, performs differential checks, and records logs. The

main part of Metis comprises 7,911 lines of C/C++ code that

implement Metis’s components and its communication with

SPIN. We also created 1,230 lines of Python/Bash scripts to

manage different Metis VTs and runtime setup, such as invoking
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ramfs), to track their own state changes. However, capturing and

restoring their entire state proved extremely challenging because

the state resides across many kernel-resident data structures [5].

Consequently, we developed a new file system, called RefFS,

specifically designed to function as the reference system.

RefFS architecture. RefFS is a RAM-based FUSE file system.

Figure 2 shows the architecture of RefFS and its interplay with

Metis and relevant kernel components. It incorporates all the

standard POSIX operations supported by the Input Driver along

with the essential data structures for files, directories, links, and

metadata. We developed RefFS in user space to avoid complex

kernel interactions and have full control over its internal states.

Comprising 3,993 lines of C++ code, RefFS uses the libFUSE

user-space library together with /dev/fuse to bridge user-space

implementations and the lower-level fuse kernel module. Metis

handles file system operations on RefFS in the same manner

as other in-kernel file systems. Most importantly, RefFS also

provides four novel snapshot APIs to manage the full RefFS

file system state via ioctls: ioctl SAVE, ioctl RESTORE,

ioctl PICKLE, and ioctl LOAD. These are described next.

4.1 RefFS Snapshot APIs

RefFS shows how file systems themselves can support SS/R

operations in model checking through snapshot APIs. The

essence of SS/R operations lies in their ability to save, retrieve,

and restore the concrete state of the file system. Although RefFS

is an in-memory file system lacking persistence, it possesses

a concrete state (i.e., snapshot) that includes all information

associated with the file system. Existing file systems like

BtrFS [68] and ZFS [8], which support snapshots, can only clone

(some of) the persistent state but not their in-memory states. In

contrast, RefFS can capture and restore the in-memory states

through its own APIs. Since RefFS stores all its data in memory,

it guarantees saving and restoring the entire file system state.

Snapshot pool. The snapshot pool is a hash table that orga-

nizes all of RefFS’s snapshots; the key is the current position in

the search tree. The value associated with each key is a snapshot

structure that saves the full file system state including all data

and metadata such as the superblock, inode table, file contents,

directory structures, etc. The memory overhead of the snapshot

pool is low because the size of the pool is smaller than Metis’s

maximum search depth. Because RefFS is a simple file system,

the average memory footprint for each state is just 12.5KB.

Save/Restore APIs. The ioctl SAVE API causes RefFS to

take a snapshot of the full RefFS state and add an entry to the snap-

shot pool. The ioctl RESTORE does the reverse, restoring an

existing snapshot from the pool. When Metis calls ioctl SAVE

with a 64-bit key, RefFS locks itself, copies all the data and

metadata into the snapshot pool under that key, and then releases

the lock. Similarly, ioctl RESTORE causes RefFS to query the

snapshot pool for the given key. If it is found, RefFS locks the

file system, restores its full state, notifies the kernel to invalidate

caches, unlocks the file system, and then discards the snapshot.

Pickle/Load APIs. Unlike other file systems, RefFS maintains

concrete states by itself in the snapshot pool, so Metis does not

need to keep RefFS’s concrete states in its stack. To ensure

good performance, RefFS’s snapshot pool resides in memory.

However, this means that all snapshots are lost when RefFS is

unmounted, which would make it challenging to analyze and

debug RefFS from a desired state. Thus, committing these

snapshots to disk before Metis terminates is important to ensure

they are available for post-testing analysis and debugging. Given

a hash key, the ioctl PICKLE API writes the corresponding

RefFS state to a disk file. It can also archive the entire snapshot

pool to disk. Likewise, the ioctl LOADAPI retrieves a snapshot

from disk, loading it back into RefFS to reinstate the file system

state. Using the ioctl PICKLE and ioctl LOAD APIs, RefFS

can flexibly serialize and revert to any file system state both

during and after model checking, aiding bug detection and

correction. Specifically, these APIs allow RefFS to gain the same

benefits as Metis’s post-bug replay and processing, enabling bug

reproduction from any point in a Metis run.

5 Evaluation

We evaluated the efficacy and performance of Metis and RefFS,

specifically: (1) Does Metis have the versatility to test different

input partitions compared to other testing tools? (See §5.1.)

(2) What is Metis’s performance? How does it scale with the

number of VTs when using Swarm verification? (See §5.2.)

(3) What is RefFS’s performance compared to other file systems?

How reliable and stable is RefFS, as Metis’s reference file sys-

tem? (See §5.3.) (4) With RefFS set as the reference file system,

does Metis find bugs in existing Linux file systems? (See §5.4.)

Experimental setup. We evaluated Metis on three identical

machines, trying various configurations, particularly with

multiple distributed VTs. Each machine runs Ubuntu 22.04

with dual Intel Xeon X5650 CPUs and 128GB RAM. We also

allocated a 128GB NVMe SSD for swap space. We evaluated

Metis’s performance using RAM disks, HDDs, and SSDs by

comparing Ext4 with Ext2. The results showed that RAM disks

were 20× faster than HDD and 18× than SSD. Also, Metis

performs best when the file system device is as small as possible.

Therefore, we used RAM disks as backend devices for on-disk

file systems and minimum mountable device sizes for all file

systems in all evaluations that follow.

5.1 Test Input Coverage

We assessed input coverage (§2) for Metis and other file

system tests on two dimensions: completeness and versatility.

Completeness considers whether a testing tool covers all input

partitions (§2) in test cases. Versatility is the ability to tailor test

cases for any desired input coverage. Metis outperforms existing

checkers and a fuzzer [25] on both dimensions.

Comparison with existing testing tools. We selected

three testing tools, each representing a unique technique:

CrashMonkey [59] for automatic test generation, xfstests [71] for

(hand-written) regression testing, and Syzkaller [25] for fuzzing.
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FS Testing Approach Input Effort to test Effort to add State Code Cover- Bug
(Examples) Versatility new FS new ops Tracking age Tracking Detection

Metis: this work ��� � � ✔ ✘
Behavioral

discrepancies

Traditional

Model Checking: CVFS [21], CREFS [88]
� ��� ��� ✔ ✘

User-specified

assertions

Implementation-level Model Checking:

FiSC [87], eXplode [86]
� �� �� ✔ ✘

User-written

checkers

Fuzzing: Syzkaller [25], Hydra [43] �� �� � ✘ ✔ External checkers

Regression Testing: xfstests [71], LTP [58] � �� ��� ✘ ✘
Preset expected

outcome

Automatic Test Generation:

CrashMonkey [59], Dogfood [12]
�� � �� ✘ ✘

External checkers

or an oracle

Table 3: Comparison of representative file system testing tools. In column 2, the more � symbols, the more relatively versatile the system is; conversely,

in columns 3–4, more � symbols denote more effort.

Of the remaining unconfirmed bugs, four were deterministic and

three were nondeterministic. Deterministic bugs are those easily

reproducible after Metis reported a discrepancy or the kernel

returned errors (e.g., hang or BUG). We are currently pinpointing

the faulty code for the deterministic bugs and preparing patches

for submission to the Linux community. Metis also detected

nondeterministic bugs that its replayer could not reproduce. For

instance, after using unlink to delete file d-00/f-01, the size

of another file f-02 in F2FS incorrectly changed to 0 instead of

the correct value. Replaying the same syscall sequence did not

reproduce this bug. To trigger it, we had to rerun Metis, but the

time and number of operations needed varied across experiments.

Given the bug’s nondeterminism, we suspect a race condition be-

tween F2FS and other kernel contexts. We verified that these un-

confirmed bugs persist in the Linux kernel repository (v6.3, May

2023) without any fixes, thus classifying them as unknown bugs.

To detect them, all these potential bugs require specific

operations on a particular file system state, underscoring the

value of both input and state exploration. JFFS2 bug #5 is

an example of the interplay between input and state. After

4.3 hours of comparing JFFS2 with RefFS, Metis reported

a discrepancy due to differing file content. We observed the

bug occurred when truncating a file to a smaller size, writing

bytes to it at an offset larger than its size, and then unmounting

the file system to clear all caches. Uncovering this multi-step,

data-corruption bug required specific inputs (truncate, write)

and then unmounting and remounting, because there was a

cache incoherency between the JFFS2 in-memory and on-disk

states. Ironically, the fact that Metis was “forced” to un/mount, is

exactly why we found this bug, which was present in the 2.6.24

Linux kernel and remained hidden for 16 years. We fixed this

long-standing bug, and our patch has since been integrated into

the Linux mainline (all stable and development branches).

6 Related Work

File system testing and debugging. We divide existing file

system testing and bug-finding approaches into five classes: Tra-

ditional Model Checking, Implementation-level Model Checking,

Fuzzing, Regression Testing, and Automatic Test Generation.

Table 3 summarizes these approaches across various dimensions.

Traditional model checking [21,88] builds an abstract model

based on the file system implementation and verifies it for

property violations. Doing so demands significant effort to create

and adapt the model for each file system, given the internal

design variations among file systems [53].

Implementation-level model checking [86,87] directly exam-

ines the file system implementation, eliminating the need for

model creation. Due to file systems’ complexity, however, this ap-

proach requires either intrusive changes to the OS kernel [86,87]

or manually crafting system-specific checkers [86]. Additionally,

existing work [86,87] based on this approach generally only iden-

tifies crash-consistency bugs and is incapable of detecting silent

semantic bugs. Unlike these methods, Metis checks file systems

for behavioral discrepancies on an unmodified kernel. Thus,

there is no need to manually create checkers when testing a new

file system [86]. Moreover, other model-checking approaches

rely on fixed test inputs [21,86] and lack the versatility to accom-

modate different input patterns. All model-checking approaches,

including Metis, track file system states to guarantee thorough

state exploration [15], a feature often lacking in other approaches.

Model checking and fuzzing are orthogonal approaches,

each with its own advantages and disadvantages. File system

fuzzing [25,43,83,85] continually mutates syscall inputs from

a corpus, prioritizing those that trigger new code coverage

for further mutation and execution, but they cannot make

state-coverage guarantees, risk repeatedly exploring the same

system states, and require kernel instrumentation. Some fuzzing

techniques [43, 85] also corrupt metadata to trigger crashes

more easily and use library OS [65] to achieve faster and more

reproducible execution than VM-based fuzzers. However, such

designs have their own drawbacks: they require file-system–

specific utilities to locate metadata blocks and cannot test

out-of-tree file systems unsupported by library OS. Hybridra [89]

enhances existing file system fuzzing with concolic execution,
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but it remains fuzzing-based and has the same limitations of file

system fuzzers, including the lack of state-coverage guarantees.

Fuzzing mainly supplies inputs to stress file systems and com-

monly finds bugs using external checkers, such as KASan [24]

(memory errors) and SibylFS [67] (POSIX violations). Cur-

rent fuzzers configure the tested syscalls but not their argu-

ments [25,70], as testing is driven by code coverage. Compared to

fuzzing, Metis employs a test strategy that explores both the input

and state spaces, rather than solely maximizing code coverage.

Manually written regression-testing suites like xfstests [71]

and LTP [58] check expected outputs and ensure that code

updates do not [re]introduce bugs. Because they are hand-created,

they are not easily extensible and do not attempt to automate

or systematize their input or state exploration. Compared to their

XFS-specific tests, xfstests’ “generic” tests can be used with any

file system. Nevertheless, from our past experience (including

building RefFS), even when adopting the generic tests, some

setup functions must be manually modified.

Automatic test generation [12, 47, 59] creates rule-based

syscall workloads (e.g., opening a file before writing) and

employs external checkers (e.g., KASan [24]) or an oracle [59]

to identify file system defects. This technique is easily adapted

to new file systems and extensible with new operations, owing to

the universality of syscalls. Nevertheless these implementations

have lacked the versatility needed to explore diverse inputs

and do not explore the state space like Metis. Furthermore,

these testing methods typically identify only a limited range of

bugs; for instance, CrashMonkey [59] exclusively detects crash-

consistency bugs. We do not include a comparative analysis of

testing for other storage systems, such as NVM libraries [19] and

data structures [20], given their different testing targets and goals.

Ultimately, Metis is not designed to replace any existing tech-

nique; rather, we believe that it is an additional tool that offers a

complementary combination of capabilities not found elsewhere.

Verified file systems. For Metis, a reliable and ideally bug-free

reference file system is critical. Verified file systems are built ac-

cording to formally verified logic or specifications. For example,

FSCQ [14] uses an extended Hoare logic to define a crash-safe

specification and avoid crash-consistency bugs. Yggdrasil [72]

constructs file systems that incorporate automated verification

for crash correctness. DFSCQ [13] introduces a metadata-prefix

specification to specify the properties of fsync and fdatasync

for avoiding application-level bugs. SFSCQ [34] offers a

machine-checked security proof for confidentiality and uses data

non-interference to capture discretionary access control to pre-

clude confidentiality bugs. However, the specifications of verified

file systems have only been used to verify particular properties

(e.g., crash consistency [13,14,72] or concurrency [93]), so other

unverified components can still contain bugs. Worse, even after

rigorous verification, bugs can still hide due to erroneous spec-

ifications (e.g., a crash-consistency bug reported on FSCQ [43]).

None of these verified file systems include the extra APIs that

RefFS provides, which are crucial for optimizing model-checking

performance. While RefFS has not been formally verified, it re-

lies on long-term Metis testing to attain high robustness. Thus,

we chose it, rather than a verified file system, as the reference.

7 Conclusion

File system development is difficult due to code complexity,

vast underlying state spaces, and slow execution times due to

high I/O latencies. Many tools and techniques exist for testing

file systems, but they cannot be easily updated to test specific

conditions at a configurable level of thoroughness. Moreover,

they tend to require code or kernel changes or cannot easily

adapt to testing new file systems.

In this paper, we presented Metis, a versatile model-checking

framework that can thoroughly explore file-system inputs and

states. Metis abstracts file-system states into a representation

that can be used to compare the file system under test against

a reference one. We designed and built RefFS, a reference

POSIX file system with novel features that accelerate the

model-checking process. When used with Metis, RefFS is

3–28× faster than other, more established, file systems. We

extensively evaluated Metis’s input and state coverage, scalability,

and performance. Metis, helped by RefFS, can speed file-system

development: we already found a dozen bugs across several file

systems. Overall, we believe that Metis, with its unique features,

serves as a valuable addition to file system developers’ tool suite.

Finally, Metis’s framework is versatile enough to be adapted to

other systems (e.g., databases).

Future work. Our near-term plans include expanded state

exploration using Swarm verification, investigating any bugs we

discover, and then fixing and reporting them. We are also be-

ginning to test network and distributed/parallel file systems [29].

In the long run, we plan the following: (i) Metis can trigger

nondeterministic bugs, such as race conditions. Therefore, we

need to integrate techniques to more deterministically explore

and reproduce such bugs [23]. Also, we plan to explore kernel

thread interleaving states to find more concurrency bugs [83].

(ii) We intend to enhance Metis by emulating crash states to

identify crash-consistency bugs in kernel file systems [47, 59].

(iii) We aim to add support for testing controlled file-system

corruptions [29,85]. For example, if both RefFS and the test file

system can be corrupted in a logically identical fashion, Metis

can investigate more error paths (e.g., those leading to EIO).
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A Artifact Appendix

Abstract

The paper artifact contains the implementations of the Metis

model-checking framework, the RefFS reference file system,

and other necessary components as well as the code needed

to reproduce most of the experimental results presented in this

paper. Our artifact allows straightforward checking of those

Linux file systems supported by Metis, and can be easily adapted

to examine other file systems. We also provide documentation

that explains how to set up the environment, scale up the

exploration process, and detect and reproduce file system bugs

based on Metis’s logs and replayer.

Scope

This artifact is intended not only to validate the main claims

in this paper but also to enable others to use and extend our

tools, find more file-system defects, and enable future research.

Specifically, we include code that automatically reproduces the

results discussed in §5, including:

• Input coverage results shown in Figures 3, 4, and 5.

• Metis performance using Swarm verification in terms

of operations and unique abstract states per second, as

presented in Figure 6.

• RefFS performance compared to other file systems while

using Metis, as shown in Figure 7.

• Detection and reproduction of file system bugs that were

found by Metis.

Contents

The artifact includes two main Git repositories: the Metis file

system model-checking framework and the RefFS user-space

reference file system. Additionally, it contains several auxiliary

Git repositories that support a basic model-checking facility and

coverage analysis. Specifically, the artifact includes:

• Source to compile and execute the Metis framework for

checking file systems.

• Source to build and operate the RefFS reference file system.

• Scripts to reproduce most of the experimental results

appearing in this paper.

• Modified SPIN and Swarm verification scripts, optimized

for seamless integration with Metis.

• The IOCov [52] tool used to compute input and output

coverage for file-system testing tools.

Hosting

All the repositories are hosted on GitHub with README files

for documentation; some are archived using Chameleon Cloud’s

Trovi service [41] and Zenodo with a permanent DOI.

Metis Repository

• Repository: https://github.com/sbu-fsl/Metis

• Branch: “master”

• Commit: ae08f6802be7cacb614847ebce78c18af86d553a

• Zenodo Archive [50]: https://zenodo.org/records/10537199

• DOI: https://doi.org/10.5281/zenodo.10537199

RefFS Repository

• Repository: https://github.com/sbu-fsl/RefFS

• Branch: “master”

• Commit: 680f5539791fc9c410d7d3cfcf2970ec4edf43a6

• Zenodo Archive [51]: https://zenodo.org/records/10558327

• DOI: https://doi.org/10.5281/zenodo.10558327

Other Repositories

• Repository of the Modified SPIN: https://github.com/sbu-fsl/

fsl-spin

• Repository of the Modified Swarm Verification Tool:

https://github.com/sbu-fsl/swarm-mcfs

• IOCov Repository: https://github.com/sbu-fsl/IOCov

Requirements

Generic Requirements

The artifact requires x86 Ubuntu 20.04 or 22.04 with one of

the following Linux kernel versions: 5.4.0, 5.15.0, 5.19.7, 6.0.6,

6.2.12, 6.3.0, or 6.6.1. It may work with other Linux distributions

and kernels but we did not test that.

Metis is both CPU- and memory-intensive. Running

the artifact does not demand specific CPU resources, but a

higher-end CPU can improve the performance of Metis’s

state-space exploration. Metis’s memory usage depends on

the type of file system being checked. Generally, the required

memory size needs to be at least the sum of the minimum

mountable sizes of the two file systems being compared (the

file system under test and a reference file system), multiplied

by Metis’s maximum search width (default 10,000). Therefore,

larger amounts of RAM are helpful. If sufficient RAM is not

available, we recommend setting up a swap disk on a fast device

such as a high-end SATA-SSD or NVMe-SSD. Metis also

generates many logs during execution, so we recommend using

at least a 500GB disk to avoid running out of log space.

This artifact comes with several prerequisites. We therefore

provide a script script/setup-deps.sh in the Metis

repository to automatically install all the required tools and

libraries on an Ubuntu system.

136    22nd USENIX Conference on File and Storage Technologies USENIX Association



Requirements for running Metis with Swarm verification

When using multiple parallel Verification Tasks (VTs) in

Metis, the required computational resources amount to the

demand of a single VT, multiplied by the total number of

VTs. Specifically, the number of CPU cores should equal or

exceed the number of VTs operating on a machine. Similarly,

memory and disk resources should linearly scale with the

number of VTs. The number of VTs can be configured in the

fs-state/swarm.lib file within the Metis repository.

When VTs in Metis are distributed over multiple machines,

each machine must be equipped with resources proportional to

the number of VTs it runs. Moreover, in this distributed setting,

one machine should be designated as the primary, with the

remaining machines serving as workers. The primary machine

should be set up for password-less SSH key-based access to the

workers. We recommend that the hostnames of the workers are

accurately entered in the swarm.lib configuration file on the

primary machine.
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